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1. Introduction. For the theory of stability in differential equa-
tions, Liapunov's second method may be the most important. In the
case of functional differential equations, there were also many attempts
to establish various kinds of Liapunov type theorems, see e.g. [1] — [6],
[8], [10]~[18]. Among them, there are three main ideas, one based
on Liapunov functionals (cf. [13]), one by Razumikhin [15] and one
by Barnea [1]. The idea based on Liapunov functionals is the most
perfect in the sense that we can develop it in the way parallel to that
for ordinary differential equations including the establishment of neces-
sary and sufficient conditions of stability. However, the construction
of such a Liapunov functional is very hard for concrete problems. This
difficulty stimulates the development of the ideas by Razumikhin and by
Barnea (cf. [2], [5], [6], [14], [17], [18]). The author also gave some ex-
tensions of the ideas in a unified way combining both, see [10], [11]. In
this paper we give several results in the same direction. For the ex-
amples, refer to [12].

Recently, Burton [3] presented a kind of stability theorems. Noting
that actually his result is deeply related with the choice of the phase
space and that in a concrete problem there are several possibilities for
the choice of the phase space, we state our results for functional dif-
ferential equations on an abstract phase space discussed in [9].

2. Admissible phase space. Let (X, \\ \\z), or simply X, be a linear
space of unvalued functions on (—°°, 0] with a semi-norm || | | γ , and
denote by Xτ the space of functions φ(s) on (— °°, 0] which are continu-
ous on [ — τ, 0] and satisfying φ-τeX for given X and τ ^ 0, where and
henceforth φt denotes the function on (—<*>, 0] defined by φt(s) = φ(t-+ s).

The space (X, || | |Λ) is said to be admissible, if the following are
satisfied: For any τ ^ 0 and any φe XT

(aj φteX for all ί e [ — τ, 0], especially, φ0 = φeX;
(a2) φt is continuous in te[ — τ, 0],
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(a.) μ\\φ(O)\\ ^ \\φ\\z ^
where μ > 0 is a constant and K(s), M(s) are continuous functions. In
the above, (X, || | | x) is said to have a fading memory, if K(s) = K is a
constant and M(s) -» 0 as s-^co. We note that (Xτ, || | |X r) again is
admissible for τ ^ 0, where | | ^ | L r = sup_r^,g0||^.IL> while Rn is an ad-
missible space with the semi-norm defined by \\φ\\B* — \\Φ(Q)\\ For con-
venience, we introduce an order relation X < Y in the set of admissible
spaces, which means XaY and | | ^ | | F <: i\\φ\\x (ψeX) for a constant 7.
Therefore, the condition (a3) means that Xτ < X < Rn.

As typical and important examples of admissible spaces, we will
bring to mind the spaces C\ of functions φ, continuous on [ — ft, 0] (or
on (—00, 0] with the property that er*φ(s) has a limit as s—>— 00 if
h = 00) and jfcfί of functions ^, measurable on ( — ft, 0], such that
er1l?Ks)ll a r ^ integrable on ( — ft, 0], where 7, ft are constants satisfying
0 ^ 7 < °°, O ^ f t ^ cχ>, and the semi-norms are given by

( 1 ) II ̂ r = SUP β1|0(8)|| , \\φ\\Mr = ||0(O)|| + Γ β^||0(8)||ώ ,
h -h^s^O h J-h

(refer to [9]). The following lemma is trivial.

LEMMA 1. ( i ) Every admissible space contains every continuous
function with compact support.

(ii) Cl and M[ have fading memories if 7 > 0 or ft < 00.
(iii) If ft < co, then Cl < C{ and Ml < Mi for any 7 and β.
(iv) Ify>β, then Cβ

h < Ml
( v ) // 0 ^ k :S ft ^ 00, ίfow Cί < Cfc

r, Jlfί < Ml.
By this lemma, C{, Ml will be written as Ch, Mh if ft < co, while

C r, Mr are used for Cί, Ml when ft = co.
Throughout this paper, 7 = [0, 00) and ^ " ( 7 ) denotes the class of

real-valued continuous, non-decreasing functions on 7, while a e J3Γ+(I)
means aeSΓ{I) and a{r) > 0 for r > 0.

L E M M A 2. L e i X be admissible, and let δ e J%Γ+(I) be given. Then,
for any τ > 0 there exists a constant θ > 0 and ape <5Γ+(I) such that
for any φ e Xr we have

( 2 ) m[{te[-τ, 0]: \\φt\\x ^ θ\\φ\\z}] ̂  p(\\φ\\x) ,

where m[A] is the Lebesgue measure of AdR, whenever

( 3 ) \\φ(s) - φ(t)\\ ^ ε if \s - t\ ^ δ(ε) , * , * e [ - r , 0 ] .

PROOF. Put K = supo^8 r̂jK"(s), M = supo^^rM(s) for K{s) and Jlί(s)
given in (a3) for the admissible space X, and let μ be the one in (a3).
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Suppose that ψeXτ. Then, clearly we must have \\Φt\\x^ e/(2M) for all
te[-τ, 0] if \\φ\\x ^ ε and if | |^(ί)| | ^ e/(2K) for all te[-τ, 0]. On the
other hand, if \\Φ(s)\\^ε/(2K) for an se[-τ, 0], then by (3) we have
\\φ(t)\\ ^ e/(4K) for t e[s - δ(ε/(4K)), s + δ(ε/(4ίΓ))]n[-τ, 0] ( = J ) , and
hence | | ^ | | x ^ μe/(4K) for £ e J . Thus, we can conclude (2) by setting
θ = min{l/(2Jlf), ^/(4ϋΓ)}, ^(e) = min{r, δ(ε/(AK))} (^m[J]). q.e.d.

A special case of the following lemma is stated in [3].

LEMMA 3. Let c e J ^ + ( J ) , and let 7, h, τ, τ ^ /&, and B be given
positive constants (h may be 00). Then, there exist de^έΓ+{I) and

{namely q(r) is non-increasing), h ^ q(r) > 0, such that

S o
c(\\φ(s)\\)ds ^ d(ε)

-ff(ε)

/or α^t/ ε > 0 α^d ^ e ! ί ( D (M()J satisfying \\φ(s)\\ ^ 5, H^H^ ̂  β for

all 8 6[-g(e), 0].

S o
er8||0(s)||ds for ^ e M2

r

Λ. First
of all, we prove that there are d* 6 J?T+(/)* and -g*6.5Γ(/) such that
& ̂  ί*(r) > 0 for r ^ 0 and

(5) Illtflll^ e implies ί° c(\\φ(s)\\)ds ^ d*(e)
J-flf*(e)

if | | ^ (8) | | ^B and | | |0. | | | ^ £ for 8 6[-?*(e), 0]. Let J = { s e [ - & , 0]:
^ <5} for & > 0 and δ > 0. Then,

's||^(s)||ds ^ β-'fcβ + δ/y + Bm[J]

if ||^(s)|| <* B on [-k, 0] and | | |^- f c | | | ^ B (the first terms in the center

and right hand sides will be deleted if h <* k). Hence, by setting

k = q*(e) = min{h, [log(35/ε)]/τ} and δ = δ(ε) = τε/3, we have m[J] ^ e/(8B)

if IIÎ IH ̂ ε , which implies (5) with d*(r) = c(yr/3)r/@B). Since

Γ e^||^(s)||ds, we can find a t e [ - τ , 0] so that ||0(t)|| ^ {τ/(l - e

while Hî lll ^e^\\\φ\\\ for t e [ - τ , 0]. Therefore, 11^11^

111̂ III ^ vlll̂ lH with v = τ/(l - β~ )̂ + β^, namely, inf- r^0 | |&l|jf];^6 im-

plies IH ÎII ^ ε/v. This together with (5) implies (4), where q(r) = q*(r/v)f

d{r) = d*(φ). q.e.d.

3. Functional differential equation. Let X be an admissible space.
Consider the functional differential equation

(E) x(t) = f(ty xt)
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and assume that f{t, φ) is completely continuous on IxX. For the fun-
damental properties of the solutions of (E), see [9]. Here, we reproduce
only the following lemma (cf. [9; Theorem 2.5]).

LEMMA 4. Suppose that the zero solution of (E) is unique for the
initial value problem. Then, there exist continuous functions L(t, s, r)
on P, non-decreasing in r, L(t, s, 0) = 0, and δo(t, s) on P, δQ(t, s) > 0,
such that any solution x{t) of (E) satisfies

(L) \ \ x t \ \ x ^ L ( t , s , \\x8\\x) i f \\x.\\x £ δ o ( t , 8) , t ^ s .

REMARK 1. If L(t, s, r) and δo(t, s) can be chosen so that L(t, s, r) =

L(t — s, 0, r) and δQ(t, s) = δo(t — s, 0), then the relation (L) will be re-

ferred to as (UL). A sufficient condition for (E) to have the property

(UL) is ||/(ί, φ)\\ ^ Bg(\\φ\\x) on IxX, where B is a constant, ge^Γ+(I)

and limr_o+ I (l/g(s))ds = oo.

4. Basic inequalities. Hereafter, we assume that:
(hO v(t) and wit) are nonnegative continuous functions on [τ, oo)

for a r ^ O and v(t) denotes the upper right Dini derivative.
(h2) F(r) 6 JΓ(I) and F(r) > r for r > 0.
(h3) p(t, r) is continuous on /x(0, oo), nondecreasing in r and satis-

fies p(t, r) ^ t, pit, r) —• oo as £ -> oo.
(hj c(ί, r) is nonnegative, continuous on P, nondecreasing in

r, c(ί, r) ^ c(r) for a c e 3T+(I) and for all t ^ 0.
The following lemma is trivial.

LEMMA 5. Under the assumption (h3), σ(t, r) = sup{s: p(s, r) ^ ί} is
continuous on /x(0, oo), nonincreasing in r, σ(t, r) ^ ί, and pit, r) ^ τ
if t^ σiτ, r) and r > 0. Moreover, we can find a β(τ; v) > 0 /or which
v(t) ^ /3(τ; v) o?ι [τ, σ(τ, β(τ; v))] if v(t) is continuous there.

Now, we shall state the following theorems.

THEOREM 1. Let r ^ 0 be given, and suppose that v{t) ^ —w(t)
whenever v(t) > 0, p(t, v(t)) ^ τ and v(s) £ F(v(t)) for all s e [p(t, v(t)), t].
Then, we have

( i ) v(t) ^ β(τ; v) for all t ^ τ,
( i i ) lim supt^ooV^) = β > 0 implies limί^oo

/v(ί) = /?,

(iii) Γw(ί)dί < <*> if \\mt^jv{t) > 0.

P R O O F . ( i ) Set β(τ; v) = β > 0, and suppose t h a t v(tx) > β for a

ίx > r . Clearly tx> σ{τ, β) by Lemma 5. Then, we can find a t2e

[o{τ, β), ί j so that vit2) > β, v(t2) > 0 and v(t) ^ v(t2) for all ί e [r, ί2].
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Since p(t29 v(t2)) ^ p(t2, β)^τ and v(t) ^ v(t2) ύ F(v(t2)) for t e[p(t2, v(t2))f

ί2], we have v(t2) ^ 0, a contradiction.
(ii) For given β > 0 we can find an ε > 0 for which

(6 ) β + ε ^ F(β - ε) , β - ε > 0 .

If lim inf t-*ooV(t) = 7 < β, then letting ε < β — 7 we can choose tx and ί2

so that v(t) ^ β + ε for all t ^ ίlf £2 ̂  crfo, /3 — ε), v(£2) ^ β — e and
^(^2) > 0. By the same argument as in (i) there arises a contradiction,
since v(t) ^ β + ε ^ F(/3 - ε) ^ F(v(ί8)) (ί-'e [ίlf ίj]) and j>(ί2, v(ί2)) ^
P(ί2, /S - e) ^ ίlβ

(iii) Suppose that l im^i ;^) = β > 0. Choose £x and t2 so that
1̂ (0 — /3| < ε for t^tx and ί2 ^ σ(tlf β — ε), where ε > 0 satisfies (6).
Hence, as in (ii), we have
( 7 ) v(t) ^ -w(t) f o r a l l t^t2,

which implies I w(t)dt < co since v(ί) ^ 0, ιι (ί) ^ 0. q.e.d.

COROLLARY. Suppose that v{t) and w(t) satisfy the conditions in
Theorem 1. Then, the following assertions hold:

( i ) // for any σ^τ, Γ > 7 > 0, G > 0 £Λ,βre is a T such that

( 8 ) \σ+Tw(t)dt ^G as long as Γ ^ v(t) ^ 7 on [σ, σ + T] ,
Jσ

then limt-joζt) — 0.
(ii) If for any ε > 0 there exist positive numbers η(ε), ξ(e) and

ζ(ε) such that

( 9 ) m[{s e [t -η(e), t]: w(s) ^ ζ(ε)}] ̂  ζ(ε)

whenever w{t) ^ ε and v{t) ^ ε, ίfeβ^ l i m ^ ^ ^ ) = 0 or w(t) —> 0 as ί —> 00.

PROOF. Suppose that lim^^vit) = β > 0 by noting Theorem 1 (ii)
and, hence, that we have (7) together with \v(t) — β\ < ε for t ^ t2.
Then, under the assumption in (i) immediately we have a contradiction,

S t2+τ rt2+τ

w(s)ds <; β + ε — 1 w(s)ds < β — ε
H Jt2

by choosing T for σ = ί2, Γ = /3 + ε, y = β - e, G = 2ε.
( i i) Suppose that w(t) does not converge to 0 as ί —> oo f that is,

w(sk) ^ ε for an ε > 0 and a divergent sequence {sk}, where we may as-
sume that β ^ 2ε, sfc+1 — sfc ^ ^(e), 8X ^ ί2 + r){e). By the assumptions

S 8k

w(s)ds^kξ(ε)ζ(ε), which diverges as k-^oo. This contra-

diets (7), and hence w{t) should converge to 0 as ί—> oo. q.e.d.
REMARK 2. If wit) = c(t, v{t)) for a c(ί, r) in (h4), then the condition
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(8) is equivalent to

(10) [a+Tc(t, y)dt ^ G .

THEOREM 2. Let r ^ 0 be given, and suppose that v(t) ^ — w(t)
whenever p(t, v(t)) ^ τ and v(t) > 0. Then, we have

( i ) if vfa) <̂  ε for an ε > 0 and for α ί ^ tf(r, ε), ίftew v(£) ̂  ε
/or all t ;> ίlf

(ii) under the condition (8), ίfeere is a Tlf which depends on τ,
β(τ; v) and given ε > 0, such that v(t) <; ε for all t^τ + 2\.

PROOF. ( i ) Suppose that v(t2) > ε for a ί2 > tlβ Then, we may as-
sume that v{t2) > 0, which yields a contradiction, since p{t2, v{t2)) ;Ξ>
p(ί2, ε) ^ r.

(ii) Let T = T(τ, ε) be chosen so as to satisfy (8) with σ = σ(τ, ε),
Γ = β(τ; v), 7 = ε and G = /5(τ; v). Then, Γx(r, β) = Γ(r, ε) + σ(r, ε) ~ r
is a desirable one. In fact, suppose that v{t) ^ ε for all t e [σ(τ, ε), τ + ΓJ.
Then, p(ί, v(ί)) ^ p(ί, e) ^ r and, hence, ύ(t) ^ —w(t) there. Therefore,

S τ+T1

w(t)dt^v(σ(τ, ε)) —
σ(r,e)

v(z + Tλ) ̂  β(τ; v) — ε, which contradicts (8), where we note r + Γx =
σ(τ, ε) + Γ. Thus, there is a t, e [σ(τ, ε), τ + 7\] for which t (ίi) ^ ε, and
hence v(ί) <̂  ε for all ί ^ ίj by (i). q.e.d.

Clearly, the assumption on v(t) in Theorem 2 is stronger than that
in Theorem 1. However, the following proposition shows that under
some subsistent conditions Theorem 1 can be converted to Theorem 2.
The proposition can be proved in the same way as in [11; Theorem 4].

PROPOSITION 1. Let v{t)<±— w(t) as long as p{t, v{t)) ^ τ, v(t) > 0
and v(s) g F(v(t)) for s e [p(t, v(t)), t], and suppose that

(11) σ(t, r) — t is positive, nondecreasing in t

and F{r)jr is nondecreasing. Put u{t) = supr^s^tv(s)exp[α(s, v(s))(s — t)]
for a(t, r) = {σ(t, F~\r)l2) - t}~ι\og[rlF-\r)\. Then, u(t) satisfies the con-
dition in Theorem 2, or more precisely, ύ(t) ^ — d{t) if p{t, u(t)) ^ r
and u(t) > 0, where d(t) = min{w(t), a(t, u{t))u{t)}. Moreover, if w{t) and
a(t, r) satisfy (8) and (10), respectively, and if a{t, r) is independent of
t or w{t) = c(v(t)) for a ce ^Γ(I), then d(t) satisfies (8).

5. Definition of stability. Let x(t) be an arbitrary solution of (E).
The definitions of stability in (X, Y) can be given in the usual way
(refer to [18]) associated to the relation
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(12) \\x7\\x^δ and t^τ + T imply | | a ? t | | r ^ e ,

where ( F , || ||F) is an admissible space satisfying X < Y.
For example, the zero solution of (E) is said to be stable in (X, Y)

if for any ε > 0 and r ^ O we can find a δ > 0 so that (12) holds with
T = 0 and uniformly asymptotically stable in (X, Y) if it is stable in
(X, Y) with δ independent of τ and if there are a constant δ > 0 and
a function T of e > 0 for which (12) holds whatever τ ^ 0 is. The fol-
lowing proposition is obvious.

PROPOSITION 2. // X2< Xt< Y,< Y2, then the stability in (Xu Y,)
implies the stability in (X2, Y2) of the same type. Especially, the
stability in (X, Rn) follows from the stability in (X, X), while the re-
verse also holds when X has a fading memory.

YREMARK 3. By the condition (a8) on the admissible space, if \\xχ

is bounded on a finite interval, so is ||ίc(ί)ll» and hence \\xt\\x is bounded
on any finite interval by (a8). Since we assume that /(£, <f) is completely
continuous, this fact guarantees that any solution x(t) of (E) is contin-
uable up to infinity as long as | |α? t | | r remains bounded.

6. Liapunov function. A Liapunov function is a collection
{V(t, φ\ τ): τ Ξ> 0} of real-valued, continuous functions V(t, φ; r), defined
on {(£, φ): φeXt-T, t^τ), satisfying

(A) a{\\φ\\r) £ V(t, φ; τ)

and

(B) V(t,φ; τ)<ίb{t,τ9\\φ\\Xt_τ)

for an α e J^T+(/) and for a function b(t, τ, r), continuous on P, non-
decreasing in r, b{t, τ, 0) = 0. Define V{E)(t, φ\ τ) — sup[lim sup8_ ί+0 {V(s,
%s', τ) — V(t, φ; τ)}/(s — t)] for a solution x(s) of (E) satisfying xt = φ,
where "sup" runs over such solutions. Clearly, for any solution x(t) of
(E) starting at t = τ we have xt e Xt-T and v(t) = V(t, xt; r) satisfies
v(t) ^ F(E)(ί, xt; τ).

Now, we shall state the following theorems concerning the stability
in (X, Y). The conditions (L), (UL) are those given in Lemma 4 and
Remark 1. It is clear that we can replace | | # t | | F ^ ε for an arbitrary
small ε > 0 in (12) by V(t, xt; r) ^ ε under the condition (A).

THEOREM 3. Assume that (L) holds and that there is a Liapunov
function {V(t, φ\ τ): τ ^ 0} which satisfies

(C) V{Έ){t, Φ;τ)£- W(t, φ; τ)
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for a nonnegative continuous function W(t, φ; τ) whenever
(cj V(t,φ;τ)>0,
(c2) p(t,V(t,φ;τ))^τ,
(c.) V(s, φ8-t; τ) ^ F(V(t, φ; τ)) for s e [p(t, V(t, φ; τ)), t], where p(t, r)

and F(r) are those in (h3) and (h2), respectively (see Section 4). Then,
the zero solution of (E) is stable in (X, Y). Moreover,

( i ) it is asymptotically stable in (X, Y) under the conditions
(HJ v(t) = V(t, xt; τ), w(t) = W(t, xt; τ) satisfy (8) for any solution

x(t) of (E), or
(H2) -||/(ί, Φ)\\^N for a constant N,. and Wit, φ\ τ) = c(\\φ\\γ) for a

(i i) it is equiasymptotically stable in (X, Y) under the condition
(Hi) and one of the following conditions:

(H3) p(t, r) — t ( = p(r)) is positive and independent of t,
(H4) W(t9 φ; τ) = c(V(t, φ; τ)) for ace 3T+(I), and the condition (11)

holds with 1 {σ(t, r) — t}~λdt — oo for the σ(t, r) in Lemma 5,

(H5) the condition (c3) is dropped, that is, (C) holds whenever (d)
and (c2) are satisfied.

PROOF. Let x(t) be a solution of (E) starting at t = τ for a τ ^ 0,
and set v(t) = V(t, xt; τ) and w(t) = W(t, xt; τ). Clearly, we can find a
o > 0 for any given ε > 0 so that

(13) s u p δ(β, τ, L(s, τ,δ))£e, δ^ inf δo(s, τ) .

Therefore, | | α ? Γ | | x ^ δ implies v(t)<*ε on [r, σ(τ, ε)] by Lemma 4, and
hence, v(t) ^ ε for all t ^ τ by Theorem 1 (i) because we can put
β(z; v) = ε there under the choice of δ. This shows that the zero solu-
tion of (E) is stable in (X, Y), and we can prove (i) under (Hx). Now,
assume the condition (H2). Since \\f(t,φ)\\<^N guarantees that x(t)
satisfies (3) with δ(r) = r/N in Lemma 2, we have m[{se[t — 1, t]: | | x 8 | | F ^
0||&«llr}l^/0(l|α«lϊr) for a ^ > 0 and pe^Γ+(I), that is, m[{s e [t - 1, t]:
w(s) ^ c(θ\\xt\\γ)}]^ p(\\xt\\γ). Hence, the condition (9) in Corollary (ii) to
Theorem 1 is satisfied with η(ε) = 1, ξ(ε) = c(θc\ε)), ζ(ε) = ρ(c~\ε)),
where c~\r) = mΐ{s: c(s) ^ r}, and the desired conclusion follows from
the corollary, (ii) is proved by Theorem 2 (ii) under the condition (H5),
while the condition (Hδ) is verified under (H3) or (H4) by Proposition 1,
where we note that F(r)/r is nondecreasing as in Proposition 1 on
[0, r0] for an r0 > 0, which is sufficient to prove the stability, if F{r) is
chosen suitably. q.e.d.

THEOREM 4. In Theorem 3 assume that (L) is replaced by (UL),
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(14) b(t, τ, r) = b(t - τ, 0, r) m (B)

and (H3) is satisfied. Then, the zero solution of (E) is uniformly stable
in (X, Y), and it is uniformly asymptotically stable in (X, Y) under
one of the following conditions:

(H6) the condition (HJ holds, and T appearing in (8) in connection
with (Άj) can be chosen independent of σ,

(H7) in addition to (H2) and (H5) there is an I > 0 such that

Yι < X

PROOF. It is clear that d can be chosen as a function of ε alone so
as to satisfy (13) under the assumptions, where we note σ(t, r) = t + p(r)
under (H3). Therefore, the zero solution of (E) is uniformly stable in
(X, Y), and the sufficiency of (H6) is immediate. Since the uniform
stability is established, in order to prove the uniform asymptotic stabil-
ity it is sufficient to show that for any ε > 0 we can find T so that

(15) inf{||^|L:'σ(τ, ε) ^ t ^ τ + T) S e

if ||x(ί)ll £β (t^τ) and \\xv\\z ^ β for a β > 0. On the other hand, by
Theorem 2 (i) under (H5) it is also sufficient to get \τd{v(t): σ{τ9 ε) <̂  t ^
τ + T} ^ ε for a T independent of τ. Assume the condition (H7), and
suppose t h a t v(t) ^ ε and ||a? t | |^ ^ ε on [σ(τ, ε), τ + Γ ] , while \\xτ\\x ^ β
and \\xt\\γ ^ /S for a /3 > 0 and all t ^ τ. Since Yt < Xf t h a t is, \\xt\\z ^
7supf-i^,^t||aJ,||y for a 7 > 0, we can find a sequence {tk} so t h a t tke
[σ(τ, ε) + (2k — 1)1, σ(τ, ε) + 2kl] and ||a?ίjfc||F ^ e/7 as long as σ(τ,ε) +

2kl <* τ +• T. Therefore from Lemma 2 it follows that Γ* w(t)dt ^
itk-ι

c(εθMp(εli) ( = d(e)) ίor a θ > 0 and a p e .5Γ+(7). Hence,

M(ε), which yields

v(ί) ^ v(σ(r, ε)) - fcd(e) ^ 6(σ(τ, ε) - τ, 0, 7/3) - fcd(e)

as long as ίe[σ(τ, ε) + 2kl, τ + T] and, then, a contradiction if T^
p(ε) + 26(p(ε), 0, jβ)l/d(ε), where we note that \\xσ\\x <^7\\xσ\\Yι<.yβ and
<j(r, ε) — τ = p(e). q.e.d.

REMARK 4. It can be easily seen that if V(t, φ τ) is independent of
τ and satisfies (C), that is, p(t, r) = t, then we can drop the conditions
(L) and (UL) in Theorems 3 and 4, which correspond to a Liapunov type
theorems (cf. [13], [18]). On the other hand, for a special phase space
such as Cl, if Vit, φ; τ) satisfies V(t, φ; τ)^b(t, \\φ\\cr) for a n ί ^ f e and (C)
under the condition (c3) for a p(t, r) ^ ί — h + I, then again we can drop
(L) in Theorem 3 by noting that the relation (13) can be replaced by
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supΓ_Λ+^β<,r&(s, δ) ̂  ε. When I = 0, this corresponds to a Razumikhin
type theorem (cf. [5], [13]). The condition (H7) in Theorem 4 is a gener-
alization of [13; Theorem 31.4] in some sense.

THEOREM 5. Let X — Ml for a y > 0 and 0 <* h 5g oof and suppose
that a Lίapunov function V(t, φ) satisfies (A), (B) with (14), and (C)
wtih W(t, φ) = c(|10(O)||) /or α C G J Γ + ( / ) . ΓΛeτ&, £fte zero solution of
(E) is uniformly asymptotically stable in (X, Y) and, hence, in (Cf, Rn)
for any β < 7.

PROOF. By Theorem 4 and Remark 4, the zero solution of (E) is
uniformly stable in (X, Y). Hence, it is sufficient to get (15) for a T.
Suppose that it is not the case, that is, HftJÎ r ^ ε on [τ, τ + T] for an

S tjc + l
W(t, xt)dt^d(ε) with tk = r + 2g(ε)fc by Lem-

ma 3, where g(r) and d(r) are those given there for c(r). Thus, by
setting T^ 2q(ε)β/d(ε) we have a contradiction if &(r, r, | |»rlL)^i8 The
rest of the proof follows from Lemma 1 and Proposition 2. q.e.d.

REMARK 5. Clearly, the condition (C) in Theorem 5 suffices to hold
under the conditions (cx) and (c2) if already we know the uniform sta-
bility. This theorem is a slight extension of [3; Theorem 1].
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