QUANTITATIVE THEOREMS ON LINEAR APPROXIMATION PROCESSES OF CONVOLUTION OPERATORS IN BANACH SPACES

(Received November 29, 1979)

1. Introduction. Let X be an arbitrary (real or complex) Banach space with norm $\|\cdot\|_X$ and let B[X] denote the Banach algebra of all bounded linear operators of X into itself with the usual operator norm $\|\cdot\|_{B[X]}$. Here we are concerned with linear approximation processes on X defined as follows:

DEFINITION 1. Let $\{L_{n,\lambda}; n \in N, \lambda \in \Lambda\}$ be a family of operators in B[X], where N denotes the set of all natural numbers and Λ is an arbitrary index set. The family $\{L_{n,\lambda}\}$ is said to be a linear approximation process on X if for every $f \in X$,

$$\lim \|L_{n,\lambda}(f)-f\|_{\scriptscriptstyle X}=0$$
 uniformly in $\lambda\in arLambda$.

In this note we would like to study the direct problem of approximation by particular linear approximation processes $\{L_{n,\lambda}; n \in N, \lambda \in A\}$, $L_{n,\lambda}$ being of convolution type in connection with families of strongly continuous operators in B[X]. That is, we estimate the degree of convergence of $L_{n,\lambda}(f)$ to f (in the sense of our Definition 1) by a modulus of continuity of f, which can be defined in a natural way (cf. [9; p. 204]). We also study the multiplier type operators in connection with Fourier series expansions corresponding to a total, fundamental sequence of mutually orthogonal projections in B[X] (cf. [3]).

The results obtained in this paper yield applications to the almost convergence of sequences of operators in B[X]. For the basic properties of almost convergent sequences of real numbers, see [7] (cf. [6], [8], [10]). We also give applications to the approximation problem in homogeneous Banach spaces due to Katznelson [5] (cf. [9. p. 206]), which are more than the Banach spaces $L_{2\pi}^p$, $1 \leq p < \infty$, and $C_{2\pi}$ of all 2π -periodic, pth power Lebesgue integrable functions f with the norm

$$\|f\|_p = \left\{ (1/2\pi) \int_{-\pi}^{\pi} \lvert f(t)
vert^p dt
ight\}^{1/p}$$
 ,

and of all 2π -periodic continuous functions f with the norm

$$||f||_{\infty} = \max\{|f(t)|; |t| \leq \pi\}$$
,

respectively. An excellent source for references and a systematic treatment on approximation by convolution integral operators in $L^p_{2\pi}$, $1 \le p < \infty$, and $C_{2\pi}$ can be found in the books of Butzer and Nessel [2] and DeVore [4].

2. Approximate identities for convolution operators. Let R denote the set of all real numbers and let $\mathscr{T} = \{T_t; t \in R\}$ be a family of operators in B[X] with $T_0 = I$, the identity operator, such that for each $f \in X$ the map $t \to T_t(f)$ is strongly continuous. Therefore, the uniform boundedness principle implies that

$$M_{\mathscr{T}} = \sup\{||T_t||_{B[X]}; |t| \leq \pi\}$$

is finite. The convolution of f in X with k in $L_{2\pi}^1$ is the element k*f in X given by

$$k*f=(1/2\pi)\int_{-\pi}^{\pi}k(t)T_{t}(f)dt$$
 ,

which exists as a Bochner integral (cf. [9; pp. 201-202]).

Let $k \in L^1_{2\pi}$ and $P \in B[X]$. Then the relation

$$(k*P)(f) = k*(P(f)) \quad (f \in X)$$

determines a convolution operator k*P on X. Note that k*P belongs to B[X] and

$$||k*P||_{B[X]} \leq M_{\mathscr{T}} ||k||_{_{1}} ||P||_{B[X]}$$
 ,

and moreover, if $PT_t = T_t P$ for each $t \in R$, then P(k*I) = (k*I)P. In many cases we deal with linear approximation processes on X which can be generated via convolution operators of the form k*I, k being a non-negative or even function in $L^1_{2\pi}$.

In connection with convergence theorems we give the following standard definition.

DEFINITION 2. An approximate identity (for convolution) is a family $\{k_{n,\lambda}; n \in N, \lambda \in A\}$ of elements in $L_{2\pi}$ such that

$$\sup\{||k_{n,\lambda}||_1; n \in N, \lambda \in \Lambda\} < \infty,$$

(2)
$$\lim_{n\to\infty} (1/2\pi) \int_{-\pi}^{\pi} k_{n,\lambda}(t) dt = 1 \quad \text{uniformly in} \quad \lambda \in \varLambda$$

and

(3)
$$\lim_{n\to\infty}\int_{\delta\leq |t|\leq\pi}|k_{n,\lambda}(t)|dt=0 \quad \text{uniformly in} \quad \lambda\in \Lambda$$

for any fixed δ satisfying $0 < \delta < \pi$.

LEMMA 1. Let $\{k_{n,\lambda}; n \in N, \lambda \in \Lambda\}$ be an approximate identity and let Φ be a continuous X-valued function on $[-\pi, \pi]$. Then

$$\lim_{n \to \infty} (1/2\pi) \int_{-\pi}^{\pi} k_{n,\lambda}(t) \varPhi(t) dt = \varPhi(0)$$
 uniformly in $\lambda \in \Lambda$.

We omit the proof, which is elementary ([cf. [5; Chapter I, Lemma 2.2]). As an immediate consequence of Lemma 1, we have the following.

PROPOSITION 1. Let $\{k_{n,\lambda}; n \in N, \lambda \in \Lambda\}$ be an approximate identity. Then the family $\{k_{n,\lambda}*I; n \in N, \lambda \in \Lambda\}$ is a linear approximation process on X.

PROOF. Let f be an arbitrary element in X and take $\Phi(t) = T_t(f)$ in Lemma 1.

COROLLARY 1. Let $\{k_{n,\lambda}; n \in \mathbb{N}, \lambda \in \Lambda\}$ be a family of non-negative functions in $L^1_{2\pi}$ satisfying (2) with Fourier series expansions

$$k_{n,\lambda}(t) \sim \sum_{j=-\infty}^{\infty} \hat{k}_{n,\lambda}(j)e^{ijt} \qquad (n \in N, \lambda \in \Lambda)$$
 ,

where

$$\hat{k}_{n,\mathbf{l}}(j) = (1/2\pi) \int_{-\pi}^{\pi} k_{n,\mathbf{l}}(t) e^{-ijt} dt$$
 .

Suppose that $\lim_{n\to\infty}\{\hat{k}_{n,\lambda}(0)-\operatorname{Re}(\hat{k}_{n,\lambda}(1))\}=0$ uniformly in $\lambda\in\Lambda$, where $\operatorname{Re}(\hat{k}_{n,\lambda}(1))$ denotes the real part of $\hat{k}_{n,\lambda}(1)$. Then the family $\{k_{n,\lambda}*I; n\in N, \lambda\in\Lambda\}$ is a linear approximation process on X.

PROOF. Let $0 < \delta < \pi$. Then we have

$$\int_{\delta \leq |t| \leq \pi} k_{\mathbf{n},\mathbf{l}}(t) dt \leq 2\pi \{ \hat{k}_{\mathbf{n},\mathbf{l}}(0) - \operatorname{Re}(\hat{k}_{\mathbf{n},\mathbf{l}}(1)) \} / (1 - \cos \delta)$$

for all $n \in N$ and for all $\lambda \in \Lambda$. Therefore, the desired assertion follows from Proposition 1.

REMARK 1. Let $\{L_p; p \in N\}$ be a sequence of operators in B[X] and let $f, g \in X$. In view of the concept of almost convergence of sequences of real numbers due to Lorentz [7], we say that the sequence $\{L_p(f); p \in N\}$ is almost convergent to g in X if

$$\lim_{n o \infty} \left\| (1/n) \sum_{p=m}^{m+n-1} L_p(f) - g
ight\|_X = 0 \quad ext{uniformly in} \quad m=1, 2, \cdots$$

(cf. [6], [8], [10]). Let

(4)
$$L_{n,m} = (1/n) \sum_{n=1}^{m+n-1} L_{p}$$
 (m, $n = 1, 2, \cdots$).

Then the family $\{L_{n,m}; n \in N, m \in N\}$ is a linear approximation process on X if and only if for each $f \in X$, the sequence $\{L_p(f); p \in N\}$ is almost convergent to f in X.

REMARK 2. Let $\{k_p; p \in N\}$ be a sequence of functions in $L_{2\pi}^1$ having Fourier series expansions

$$k_{\it p}(t) \sim \sum\limits_{j=-\infty}^{\infty} \hat{k}_{\it p}(j) e^{ijt} \qquad (p \in N)$$
 ,

and let

(5)
$$k_{n,m} = (1/n) \sum_{p=m}^{m+n-1} k_p \qquad (m, n = 1, 2, \cdots).$$

Applying Proposition 1 and Corollary 1, we have the following:

- (i) If the family $\{k_{n,m}; n \in N, m \in N\}$ is an approximate identity, then for each $f \in X$, the sequence $\{k_p * f; p \in N\}$ is almost convergent to f in X.
- (ii) If each function k_p is non-negative and if $\{\hat{k}_p(0); p \in N\}$ and $\{\hat{k}_p(0) \text{Re}(\hat{k}_p(1)); p \in N\}$ are almost convergent respectively to one and zero, then $\{k_p*f; p \in N\}$ is almost convergent to f for each $f \in X$.
- 3. A quantitative theorem. In order to recast Corollary 1 in a quantitative form we shall need the following additional assumption upon the family $\mathcal{I} = \{T_i; t \in R\}$:
- (\mathcal{T} -1) There exists a constant $C_{\mathcal{T}} \geq 1$, independent of f, s and t, such that

$$\|T_{s}(f) - T_{t}(f)\|_{X} \leq C_{\mathscr{T}} \|T_{s-t}(f) - f\|_{X}$$

for all $s, t \in R$ and for all $f \in X$.

REMARK 3. If $\mathscr{T} = \{T_t; t \in R\}$ is a uniformly bounded strongly continuous group of operators in B[X] (for the fundamentals of semi-group theory, see [1]), then (6) holds with $C_{\mathscr{T}} = \sup\{\|T_t\|_{B[X]}; t \in R\}$. If in addition each T_t is isometric, then $\|T_s(f) - T_t(f)\|_X = \|T_{s-t}(f) - f\|_X$.

We now introduce a modulus of continuity of elements in X associated with the family \mathcal{I} (cf. [9; p. 204]).

DEFINITION 3. Suppose $\mathscr T$ satisfies $(\mathscr T\text{-1})$ and let $f\in X$. For $\delta\geq 0$ we define the modulus of continuity of f associated with $\mathscr T$ by

$$\omega_{\mathscr{T}}(X; f, \delta) = \sup\{||T_t(f) - f||_X; |t| \leq \delta\}.$$

The modulus of continuity has the following fundamental properties:

LEMMA 2. Suppose \mathcal{T} satisfies (\mathcal{T} -1) and let $f \in X$.

- (i) $\omega_{\mathscr{T}}(X;f,\delta)$ is a non-decreasing function of δ on $[0,\infty)$ and $\omega_{\mathscr{T}}(X;f,0)=0$.
 - $(ii) \quad \omega_{\mathscr{T}}(X;f,\ \eta\delta) \leqq (1+\eta C_{\mathscr{T}})\omega_{\mathscr{T}}(X;f,\ \delta) \ \textit{for each} \ \eta,\ \delta \geqq 0.$
 - (iii) $\lim_{\delta\to 0+} \omega_{\mathscr{T}}(X; f, \delta) = 0.$

PROOF. The parts (i) and (iii) are obvious by the definition and the strong continuity of the map $t \to T_t(f)$ at t=0. Condition (\mathcal{T} -1) yields that

$$\omega_{\mathscr{T}}(X; f, \delta + \eta) \leq C_{\mathscr{T}}\omega_{\mathscr{T}}(X; f, \delta) + \omega_{\mathscr{T}}(X; f, \eta)$$
.

Hence by induction on n we have

$$\omega_{\mathscr{T}}(X;f,\ n\delta) \leqq \{1+(n-1)C_{\mathscr{T}}\}\omega_{\mathscr{T}}(X;f,\ \delta) \quad (n\in N)$$
,

from which the part (ii) follows.

Lemma 3. Let k be a non-negative function in $L_{2\pi}^1$ with its Fourier series expansion

$$k(t) \sim \sum_{j=-\infty}^{\infty} \hat{k}(j)e^{ijt}$$
.

Then we have

$$(1/2\pi) \int_{-\pi}^{\pi} |t| k(t) dt \leqq \pi \{ (1/2) (\hat{k}(0) - \operatorname{Re}(\hat{k}(1))) \}^{1/2} \{ \hat{k}(0) \}^{1/2}$$

and

$$(1/2\pi)\int_{-\pi}^{\pi}t^2k(t)dt \leq (\pi^2/2)\{\hat{k}(0) - \operatorname{Re}(\hat{k}(1))\}$$
.

The proof follows by elementary computations using the inequality $2x/\pi \le \sin x$ ($0 \le x \le \pi/2$) and Hölder's inequality (cf. [2; Lemma 1.5.7]).

LEMMA 4. Suppose that \mathcal{J} satisfies (\mathcal{J} -1). Let k be a non-negative function in $L^1_{2\pi}$, and $f \in X$. Then we have

$$\begin{array}{ll} (7) & \|k*f - \hat{k}(0)f\|_{X} \\ & \leq \{\hat{k}(0)\}^{1/2} \omega_{\mathscr{T}}(X;f,\,\delta) [\{\hat{k}(0)\}^{1/2} + (\pi C_{\mathscr{T}}/\delta)\{(1/2)(\hat{k}(0) - \operatorname{Re}(\hat{k}(1)))\}^{1/2}] \\ & \text{for each } \delta > 0. \end{array}$$

PROOF. We have

$$k*f - \hat{k}(0)f = (1/2\pi)\!\!\int_{-\pi}^{\pi}\!\!k(t)\{T_t(f) - f\}dt$$
 ,

which implies

$$||k * f - \hat{k}(0)f||_{X} \le (1/2\pi) \int_{-\pi}^{\pi} k(t) ||T_{t}(f) - f||_{X} dt$$

$$\leq (1/2\pi) \int_{-\pi}^{\pi} k(t) \omega_{\mathscr{T}}(X; f, |t|) dt$$
.

Therefore it follows from the part (ii) of Lemma 2 that

$$\|kst f - \hat{k}(0)f\|_{\scriptscriptstyle X} \leq \omega_{\scriptscriptstyle \mathscr{S}}(X;f,\,\delta)(1/2\pi)\,\int_{-\pi}^{\pi} \{1\,+\,(|\,t\,|C_{\scriptscriptstyle \mathscr{S}}/\delta)\}k(t)dt$$
 ,

which implies (7) by Lemma 3. The proof of the lemma is complete.

Given a family $\{L_{n,\lambda}; n \in \mathbb{N}, \lambda \in \mathbb{A}\}\$ of operators in B[X], let

$$|||A_n(f)-f|||_X=\sup\{\|L_{n,\lambda}(f)-f\|_X;\lambda\in A\} \qquad (n\in N,\ f\in X)$$
 .

Note that $\{L_{n,\lambda}\}$ is a linear approximation process on X if and only if $\lim_{n\to\infty}|||A_n(f)-f|||_X=0$ for every $f\in X$.

We are now in a position to recast Corollary 1 in a quantitative form as follows.

THEOREM 1. Let $\{k_{n,\lambda}; n \in N, \lambda \in \Lambda\}$ be a family of non-negative functions in $L^1_{2\pi}$ such that for each $n \in N$

(8)
$$\alpha_n = \sup\{(\hat{k}_{n,\lambda}(0))^{1/2}; \ \lambda \in \Lambda\}$$

is finite. Suppose that $\mathscr{T} = \{T_t; t \in R\}$ satisfies (T-1). Then for the family $\{k_{n,\lambda}*I; n \in N, \lambda \in A\}$ we have

$$(9) \qquad |||A_n(f) - f|||_X \leq ||f||_X \gamma_n + \{\alpha_n + (1/2)^{1/2} \pi C_{\mathscr{T}}\} \alpha_n \omega_{\mathscr{T}}(X; f, \beta_n)$$

for all $n \in N$ and for all $f \in X$, where

$$\beta_n = \sup\{[\hat{k}_{n,\lambda}(0) - \operatorname{Re}(\hat{k}_{n,\lambda}(1))]^{1/2}; \ \lambda \in A\}$$

and

(11)
$$\gamma_n = \sup\{|\hat{k}_{n,\lambda}(0) - 1|; \lambda \in \Lambda\}.$$

In particular, if $\hat{k}_{n,\lambda}(0) = 1$ for all $n \in N$ and for all $\lambda \in \Lambda$, then (9) reduces to

(12)
$$|||A_n(f) - f|||_X \leq \{1 + (1/2)^{1/2} \pi C_{\mathscr{T}}\} \omega_{\mathscr{T}}(X; f, \beta_n) .$$

PROOF. Taking $k = k_{n,\lambda}$ in Lemma 4, we have

$$(13) ||k_{n,\lambda}*f - \hat{k}_{n,\lambda}(0)f||_X \leq \alpha_n \{\alpha_n + (1/2)^{1/2}\pi C_{\mathscr{F}}(\beta_n/\delta)\} \omega_{\mathscr{F}}(X;f,\delta).$$

If $\beta_n > 0$, take $\delta = \beta_n$ in (13). Then the inequality

$$(14) ||k_{n,\lambda}*f - f||_X \le ||k_{n,\lambda}*f - \hat{k}_{n,\lambda}(0)f||_X + |\hat{k}_{n,\lambda}(0) - 1| ||f||_X$$

implies (9). If $\beta_n = 0$, then (13) reduces to

$$||k_{n,\lambda}*f - \hat{k}_{n,\lambda}(0)f||_X \leq \alpha_n^2 \omega_{\mathscr{T}}(X;f,\delta)$$
.

Letting $\delta \to 0+$, we have $k_{n,\lambda}*f = \hat{k}_{n,\lambda}(0)f$ by (iii) of Lemma 2. Thus

(14) reduces to

$$||k_{n,\lambda}*f - f||_{X} = |\hat{k}_{n,\lambda}(0) - 1| ||f||_{X}$$

which implies (9), and the proof of the theorem is complete.

In connection with even functions we shall need the following condition $(\mathcal{I}-2)$ instead of $(\mathcal{I}-1)$:

(\mathcal{I} -2) For every s, t, $u \in R$ and for every $f \in X$,

(15)
$$||T_s(f) + T_t(f) - 2T_u(f)||_X = ||T_{s-u}(f) + T_{t-u}(f) - 2f||_X.$$

REMARK 4. (\mathcal{I} -2) already implies (\mathcal{I} -1) with $C_{\mathcal{I}} = 1$;

$$||T_s(f) - T_t(f)||_X = ||T_{s-t}(f) - f||_X$$
 $(f \in X, s, t \in R)$.

If $\mathcal{F} = \{T_t; t \in R\}$ is a strongly continuous group of isometric operators in B[X], then $(\mathcal{F}-2)$ always holds.

DEFINITION 4. Suppose \mathscr{T} satisfies $(\mathscr{T}\text{-}2)$ and let $f \in X$. For $\delta \geq 0$ we define the generalized modulus of continuity of f associated with \mathscr{T} by

$$\omega_{\mathcal{F}}^*(X; f, \delta) = \sup\{\|T_t(f) + T_{-t}(f) - 2f\|_{\mathcal{F}}; 0 \le t \le \delta\}.$$

LEMMA 5. Suppose \mathcal{T} satisfies (\mathcal{T} -2) and let $f \in X$.

- (i) $\omega_{\mathscr{F}}^*(X;f,\delta)$ is a non-decreasing function of δ on $[0,\infty)$ and $\omega_{\mathscr{F}}^*(X;f,0)=0$.
 - (ii) $\omega_{\mathscr{F}}^*(X; f, \eta \delta) \leq (1 + \eta)^2 \omega_{\mathscr{F}}^*(X; f, \delta)$ for each $\eta, \delta \geq 0$.
- (iii) $\omega_{\mathscr{F}}^*(X; f, \delta) \leq 2\omega_{\mathscr{F}}(X; f, \delta)$ for each $\delta \geq 0$. Thus in particular, $\lim_{\delta \to 0+} \omega_{\mathscr{F}}^*(X; f, \delta) = 0$.

PROOF. The parts (i) and (iii) are obvious by definition and the part (iii) of Lemma 2. Condition (\mathscr{T} -2) yields that $\omega_{\mathscr{T}}^*(X;f,n\delta) \leq n^2\omega_{\mathscr{T}}^*(X;f,\delta)$ $(n \in N)$, from which the part (ii) follows.

LEMMA 6. Suppose that \mathcal{T} satisfies (\mathcal{T} -2). Let k be a non-negative, even function in $L^1_{2\pi}$, and $f \in X$. Then we have

$$\begin{aligned} (16) \qquad & \|k*f - \hat{k}(0)f\|_{\scriptscriptstyle X} \leq \pmb{\omega}_{\mathscr{F}}^*(X;f,\,\delta)[(\pi^2/4)(\hat{k}(0) - \hat{k}(1))(1/\delta^2) \\ & \qquad \qquad + (1/2)(\hat{k}(0))^{1/2}\{(\hat{k}(0))^{1/2} + 2^{1/2}\pi(\hat{k}(0) - \hat{k}(1))^{1/2}/\delta\}] \end{aligned}$$

for each $\delta > 0$.

PROOF. Since k is even and positive, we have

$$\hat{k_t} st f - \hat{k}(0)f = (1/2\pi)\!\int_0^\pi k(t)\{T_t(f) + T_{-t}(f) - 2f\}dt$$
 ,

and so

$$egin{align} \| \, k st f \, - \, \hat{k}(0) f \|_{\scriptscriptstyle X} & \leq (1/2\pi) \! \int_{_0}^{\pi} k(t) \| \, T_t(f) \, + \, T_{-t}(f) \, - \, 2f \|_{\scriptscriptstyle X} dt \ & \leq (1/2\pi) \int_{_0}^{\pi} k(t) oldsymbol{\omega}_{\mathscr{F}}^*(X;f,\,t) dt \; . \end{split}$$

Therefore it follows from the part (ii) of Lemma 5 that

$$\|kst f - \widehat{k}(0)f\|_{\scriptscriptstyle X} \leq (1/2\pi) \omega_{\scriptscriptstyle \mathcal{F}}^{st}(X;f,\;\delta) \int_{\scriptscriptstyle 0}^{\pi} (1\,+\,t/\delta)^2 k(t) dt$$
 ,

which implies (16) by Lemma 3.

THEOREM 2. Let $\{k_{n,l}; n \in \mathbb{N}, \lambda \in \Lambda\}$ be a family of non-negative, even functions in $L^1_{2\pi}$ such that for each $n \in \mathbb{N}$, α_n defined by (8) is finite. Suppose that $\mathscr{T} = \{T_t; t \in R\}$ satisfies (\mathscr{T} -2). Then for the family $\{k_{n,l}*I; n \in \mathbb{N}, \lambda \in \Lambda\}$ we have

$$(17) \quad |||A_n(f) - f|||_X \leq ||f||_X \gamma_n + (1/2) \{\pi^2/2 + \alpha_n (2^{1/2}\pi + \alpha_n)\} \omega_{\mathscr{F}}^*(X; f, \beta_n)$$

for all $n \in N$ and for all $f \in X$, where α_n , β_n and γ_n are numbers defined by (8), (10) and (11), respectively. In particular, if $\hat{k}_{n,\lambda}(0) = 1$ for all $n \in N$ and for all $\lambda \in \Lambda$, then (17) reduces to

(18)
$$|||A_n(f) - f|||_X \leq (1/2)(1 + 2^{-1/2}\pi)^2 \omega_{\mathscr{T}}^*(X; f, \beta_n) .$$

PROOF. In view of Lemma 6 the proof is essentially similar to that of Theorem 1, and so we omit the details.

COROLLARY 2. Let $\{k_p; p \in N\}$ be a sequence of functions in $L^1_{2\pi}$, and let $\{k_{n,m}; n \in N, m \in N\}$ be the family of functions defined by (5) such that for each $n \in N$, α_n defined by (8) is finite. Then the following statements hold:

- (i) Suppose that $\mathscr{T} = \{T_t; t \in R\}$ satisfies (\mathscr{T} -1) and each k_p is non-negative. Then for the family $\{k_{n,m}*I; n \in N, m \in N\}$, (9) holds for all $n \in N$ and for all $f \in X$. If in addition $\hat{k}_p(0) = 1$ for each $p \in N$, then (12) holds for all $n \in N$ and for all $f \in X$.
- (ii) Suppose that $\mathcal{T} = \{T_t; t \in R\}$ satisfies (\mathcal{T} -2) and each k_p is non-negative and even. Then for the family $\{k_{n,m}*I; n \in N, m \in N\}$, (17) holds for all $n \in N$ and for all $f \in X$. If in addition $\hat{k}_p(0) = 1$ for each $p \in N$, then (18) holds for all $n \in N$ and for all $f \in X$.

REMARK 5. Let $\{k_p; p \in N\}$ be a sequence of non-negative, even functions in $L^1_{2\pi}$ with Fourier series expansions

$$k_{\scriptscriptstyle p}(t) \sim 1 \, + \, 2 \sum\limits_{j=1}^{\infty} a_{\scriptscriptstyle p}(j) {
m cos} \; jt \qquad (p \in N) \; .$$

Suppose that $\mathcal{T} = \{T_t; t \in R\}$ satisfies (\mathcal{T} -2) and there exists a constant

C>0 such that $1-a_p(1) \leq C/p$ for all $p \in N$. Then the latter statement of the part (ii) of Corollary 2 implies that

$$(19) \quad |||A_n(f) - f|||_X \leq (1/2)(1 + 2^{-1/2}\pi)^2 \omega_{\mathscr{S}}^*(X; f, \{C(\gamma + \log(n+1))/n\}^{1/2})$$

for all $n \in N$ and for all $f \in X$, where γ is Euler's constant:

$$\gamma = \lim_{p \to \infty} \left(\sum_{j=1}^{p} (1/j) - \log p \right) = 0.5772156649015328 \cdots$$

We mention some concrete examples of non-negative, even functions k_p , $p \in N$.

- (1°) $k_p(t)=1+2\sum_{j=1}^p{\{1-j/(p+1)\}\cos{jt}}$, the Fejér kernel (in this case, C=1).
- (2°) $k_p(t) = 1 + 2 \sum_{j=1}^{p} \{(p!)^2/((p-j)! (p+j)!)\}\cos jt$, the de La Vallée Poussin kernel (in this case, C=1).
- (3°) $k_p(t) = \{3/(p(2p^2+1))\}\{(\sin(pt/2))/\sin(t/2)\}^4$, the Jackson kernel (in this case, C=3/2).

$$(4^{\circ})$$
 $k_{p}(t) = 1 + 2 \sum_{i=1}^{p} a_{p}(j) \cos jt$ with

$$\begin{split} a_{\scriptscriptstyle p}(j) &= \{ (p-j+3) \mathrm{sin}((j+1)\pi/(p+2)) \\ &- (p-j+1) \mathrm{sin}((j-1)\pi/(p+2)) \} \{ 2(p+2) \mathrm{sin}(\pi/(p+2)) \}^{\scriptscriptstyle -1} \; , \end{split}$$

the Fejér-Korovkin kernel (in this case, $C = \pi$, cf. [2; pp. 79-80]).

DEFINITION 5. Suppose $\mathscr{T}=\{T_t;\,t\in R\}$ satisfies $(\mathscr{T}\text{-}1)$. An element $f\in X$ is said to satisfy the Lipschitz condition with constant M and exponent α , or to belong to the class $\mathrm{Lip}_{\mathscr{T}}(X;\,\alpha)_{\mathtt{M}},\,M>0,\,\alpha>0$, if $\omega_{\mathscr{T}}(X;\,f),\,\delta)\leq M\delta^{\alpha}$ for all $\delta\geq 0$. Further, we let $\mathrm{Lip}_{\mathscr{T}}(X;\,\alpha)=\bigcup\{\mathrm{Lip}_{\mathscr{T}}(X;\,\alpha)_{\mathtt{M}};\,M>0\}$.

DEFINITION 6. Suppose $\mathscr{T}=\{T_t;\,t\in R\}$ satisfies $(\mathscr{T}\text{-}2)$. An element $f\in X$ is said to satisfy the generalized Lipschitz condition with constant M and exponent α , or to belong to the class $\mathrm{Lip}_{\mathscr{F}}^*(X;\,\alpha)_{_M},\,M>0,\,\alpha>0$, if $\omega_{\mathscr{F}}^*(X;\,f,\,\delta)\leq M\delta^{\alpha}$ for all $\delta\geq 0$. Further, we let $\mathrm{Lip}_{\mathscr{F}}^*(X;\,\alpha)=\bigcup\{\mathrm{Lip}_{\mathscr{F}}^*(X;\,\alpha)_{_M};\,M>0\}$.

REMARK 6. Under the hypotheses of Theorem 1, if f belongs to $\text{Lip}_{\mathscr{T}}(X;\alpha)_{\mathtt{M}}$, then (12) implies that

$$|||A_n(f) - f|||_X \le M\{1 + (1/2)^{1/2}\pi C_{\mathscr{T}}\}\beta_n^{\alpha}$$

for all $n \in \mathbb{N}$. Under the hypotheses of Theorem 2, if f belongs to $\operatorname{Lip}_{\mathscr{T}}^*(X;\alpha)_M$, then (18) implies that

$$|||A_{\mathbf{n}}(f) - f|||_{\mathbf{X}} \leq (\mathit{M}/2)(1 + 2^{-1/2}\pi)^2 \beta_{\mathbf{n}}^{\alpha}$$

for all $n \in N$. In particular under the hypotheses of Remark 5, if f belongs to $\text{Lip}_{\mathcal{F}}^*(X;\alpha)_{\mathcal{M}}$, then (19) implies that

$$|||A_n(f) - f|||_{\mathcal{X}} \leq (M/2)(1 + 2^{-1/2}\pi)^2 \{C(\gamma + \log(n+1))/n\}^{\alpha/2}$$

for all $n \in N$.

THEOREM 3. Let $\mathscr{T}=\{T_i;\ t\in R\}$ be a uniformly bounded strongly continuous group of operators in B[X], having G as its infinitesimal generator with domain D(G) and M as its bound. Let $\{k_{n,\lambda};\ n\in N,\ \lambda\in A\}$ be a family of non-negative, even functions in $L^1_{2\pi}$ such that for each $n\in N,\ \alpha_n$ defined by (8) is finite. Then for the family $\{k_{n,\lambda}*I;\ n\in N,\ \lambda\in A\}$ we have

(20)
$$|||A_n(f) - f|||_X \leq ||f||_X \gamma_n + 2^{-1/2} \pi ||G(f)||_X \alpha_n \beta_n \\ + 2^{-1/2} \pi \{1 + M(2^{-3/2} \pi)\} \beta_n \omega_{\mathscr{T}}(X; G(f), \beta_n)$$

for all $n \in N$ and for all $f \in D(G)$, where α_n , β_n and γ_n are numbers defined by (8), (10) and (11), respectively. In particular, if $\hat{k}_{n,\lambda}(0) = 1$ for all $n \in N$ and for all $\lambda \in \Lambda$, then (20) reduces to

$$egin{align} (21) & |||A_n(f)-f|||_X \leqq 2^{-1/2}\pi \|G(f)\|_Xeta_n \ & + 2^{-1/2}\pi \{1+M(2^{-3/2}\pi)\}eta_n\omega_{\mathscr{T}}(X;\,G(f),\,eta_n) \;. \end{split}$$

PROOF. Let k be a non-negative, even function in $L^1_{2\pi}$, and $f \in D(G)$. Then we have

$$\begin{aligned} \|k*f - \hat{k}(0)f\|_{X} & \leq 2^{-1/2}\pi\{\hat{k}(0)(\hat{k}(0) - \hat{k}(1))\}^{1/2}\|G(f)\|_{X} \\ & + 2^{-1/2}\pi\{\hat{k}(0) - \hat{k}(1)\}^{1/2}[1 + M(2^{-3/2}\pi/\delta)\{\hat{k}(0) - \hat{k}(1)\}^{1/2}]\boldsymbol{\omega}_{\mathscr{T}}(X; G(f), \delta) \end{aligned}$$

for each $\delta > 0$. Indeed,

$$k*f - \hat{k}(0)f = (1/2\pi) \left\{ \int_0^{\pi} k(t)(T_t(f) - f)dt + \int_0^{\pi} k(t)(T_{-t}(f) - f)dt \right\}$$

= $g + h$,

say. Since

$$T_{\it t}(f)-f=\int_{\scriptscriptstyle 0}^{\it t}T_{\it u}(G(f))du \qquad (t>0)$$
 ,

we have

$$\begin{split} \|g\|_X & \leq \Big\{ (1/2\pi) \int_0^{\pi} t k(t) dt \Big\} \|G(f)\|_X \ &+ (1/2\pi) \int_0^{\pi} k(t) \Big\{ \int_0^t \|T_u(G(f)) - G(f)\| du \Big\} dt \;. \end{split}$$

The second integral is, by virtue of the part (ii) of Lemma 2, majorized by

$$egin{aligned} &(1/2\pi)\int_0^\pi k(t)\Bigl\{\int_0^t (1+(M/\delta)u)\omega_{\mathscr{S}}(X;\,G(f),\,\delta)du\Bigr\}dt\ &=\omega_{\mathscr{S}}(X;\,G(f),\,\delta)(1/2\pi)\int_0^\pi tk(t)\{1+(M/2\delta)t\}dt \;. \end{aligned}$$

In a similar manner, we obtain the same estimate for $||h||_x$, and consequently

This, in virtue of Lemma 3, proves the desired estimate (22).

Taking $k = k_{n,\lambda}$ in (22), we finish the proof exactly as that of Theorem 1.

REMARK 7. Let $\{k_p; p \in N\}$ and $\mathcal{T} = \{T_t; t \in R\}$ be as in Remark 5 and Theorem 3, respectively. Then (21) reduces to

$$\begin{aligned} (23) \quad & |||A_n(f) - f|||_X \leq 2^{-1/2} \pi ||G(f)||_X \{C(\gamma + \log(n+1))/n\}^{1/2} \\ & + 2^{-1/2} \pi \{1 + M(2^{-3/2}\pi)\} \{C(\gamma + \log(n+1))/n\}^{1/2} \\ & \times \boldsymbol{\omega}_{\mathscr{T}}(X; f, \{C(\gamma + \log(n+1))/n\}^{1/2}) \end{aligned}$$

for all $n \in N$ and for all $f \in D(G)$. In particular, if $f \in D(G)$ belongs to $\operatorname{Lip}_{\mathscr{T}}(X;\alpha)_{\mathbb{K}}$, then (23) implies that $|||A_n(f)-f|||_X \leq 2^{-1/2}\pi ||G(f)||_X \{C(\gamma+\log(n+1))/n\}^{1/2}+2^{-1/2}\pi K\{1+M(2^{-3/2}\pi)\}\{C(\gamma+\log(n+1))/n\}^{(1+\alpha)/2}$ for all $n \in N$.

- 4. Multiplier operators. In this section we would like to discuss certain families $\{T_t; t \in R\}$ of multiplier operators. Let Z denote the set of all integers, and let $\{P_j\}_{j \in Z}$ be a sequence of projections in B[X] satisfying the following properties:
- (i) The projections P_j are mutually orthogonal, i.e., for all $j, m \in \mathbb{Z}$ there holds $P_j P_m = \delta_{j,m} P_m$, $\delta_{j,m}$ being Kronecker's symbol.
- (ii) The sequence $\{P_j\}$ is total, i.e., $P_j(f)=0$ for all $j\in Z$ implies f=0.
- (iii) The sequence $\{P_j\}$ is fundamental, i.e., the linear subspace of X spanned by the ranges $P_j(X)$, $j \in Z$, is dense in X. Then for each $f \in X$ the series $\sum_{j=-\infty}^{\infty} P_j(f)$ is called the (formal) Fourier series expansion.

sion of f (with respect to $\{P_i\}$), and the following notation is used (cf. [3]):

$$f \sim \sum_{j=-\infty}^{\infty} P_j(f) .$$

Let $\mathscr S$ denote the set of all sequences $a=\{a_j\}_{j\in Z}$ of scalars. An element $a\in \mathscr S$ is called a multiplier sequence for X (corresponding to $\{P_j\}$) if for each $f\in X$ there exists an element $f_a\in X$ such that $a_jP_j(f)=P_j(f_a)$ for all $j\in Z$, thus

$$f_a \sim \sum_{j=-\infty}^{\infty} a_j P_j(f) .$$

Note that f_a is uniquely determined by f, since $\{P_j\}$ is total and so the map $f \to f_a$ defines a bounded linear operator of X into itself by the closed graph theorem. An element $T \in B[X]$ is called a multiplier operator on X if it permits an expansion of type (25).

REMARK 8. The expansion (24) represents a slight generalization of the concept of Fourier series in a Banach space X associated with a fundamental, total, biorthogonal system $\{f_j, f_j^*\}_{j \in Z}$. Here $\{f_j\}_{j \in Z}$ and $\{f_j^*\}_{j \in Z}$ are sequences of elements in X and X^* (the dual space of X), respectively, such that the linear subspace of X spanned by $\{f_j\}$ is dense in X (fundamental), $f_j^*(f) = 0$ for all $j \in Z$ implies f = 0 (total), and $f_j^*(f_m) = \delta_{j,m}$ for all $j, m \in Z$ (biorthogonal). Then (24) and (25) read

$$f \sim \sum_{j=-\infty}^{\infty} f_j^*(f) f_j$$
, $T(f) \sim \sum_{j=-\infty}^{\infty} a_j f_j^*(f) f_j$,

respectively.

The following proposition shows that if $\mathscr{T} = \{T_t; t \in R\}$ is generated via multiplier operators on X with associated multiplier sequences of exponential type, then every convolution operator k * I with $k \in L^1_{2\pi}$ is a multiplier operator on X.

PROPOSITION 2. Let $\mathscr{T} = \{T_t; t \in R\}$ be a family of operators in B[X] such that $\sup\{\|T_t\|_{B[X]}; t \in R\}$ is finite and

(26)
$$T_t(f) \sim \sum_{j=-\infty}^{\infty} \exp(a_j t) P_j(f) \qquad (t \in R, \quad f \in X) ,$$

where $a = \{a_j\}$ is a sequence in \mathscr{S} . Then \mathscr{T} is a strongly continuous group of operators in B[X], and with each $k \in L^1_{2\pi}$ the convolution operator k*I on X is a multiplier operator on X with associated multiplier sequence $c = \{c_j\}_{j \in Z} \in \mathscr{S}$ defined by

$$c_j = (1/2\pi) \int_{-\pi}^{\pi} k(t) ext{exp}(a_j t) dt$$
 , $j \in Z$,

thus

(27)
$$k*f \sim \sum_{j=-\infty}^{\infty} c_j P_j(f)$$

for every $f \in X$. Furthermore, the infinitesimal generator G of \mathscr{T} with domain D(G) satisfies

(28)
$$G(f) \sim \sum_{j=-\infty}^{\infty} a_j P_j(f)$$

for all $f \in D(G)$. If, furthermore, with the nth Cesâro mean operator σ_n defined by

$$\sigma_n = \sum\limits_{j=-n}^n \{1-|j|/(n+1)\} P_j$$
 ,

the sequence $\{\sigma_n\}$ is uniformly bounded, i.e.,

(29)
$$\sup\{\|\sigma_n\|_{B[X]}; n = 0, 1, 2, \cdots\} < \infty,$$

then

(30)
$$D(G) = \left\{ f \in X; \ g \sim \sum_{j=-\infty}^{\infty} a_j P_j(f) \ \text{for some } g \in X \right\}.$$

PROOF. Since $\{P_j\}$ is total, the expansion (26) implies that \mathscr{T} forms a group of operators in B[X]. We have

$$\lim_{t o s} \|T_t(h) - T_s(h)\|_{\scriptscriptstyle X} = \lim_{t o s} \left| \exp(a_j t) - \exp(a_j s) \right| \|h\|_{\scriptscriptstyle X} = 0$$

for every $h \in P_j(X)$, $j \in Z$, and so the map $t \to T_t(f)$ is strongly continuous for each $f \in X$, since $\{P_j\}$ is fundamental and \mathscr{T} is uniformly bounded. Let $k \in L^1_{2\pi}$ and $f \in X$. Then we have, for all $j \in Z$,

$$P_{\it j}(k*f) = (1/2\pi)\!\!\int_{-\pi}^{\pi}\!\!k(t)P_{\it j}(T_{\it t}(f))dt = (1/2\pi)\!\!\int_{-\pi}^{\pi}\!\!k(t)\!\exp(a_{\it j}t)P_{\it j}(f)dt = c_{\it j}P_{\it j}(f)$$
 ,

which implies (27), and so the first assertion of the proposition is proved.

Suppose now that f belongs to D(G). Then for each $j \in \mathbb{Z}$ we have

$$P_{j}(G(f)) = \lim_{t o 0} \; (1/t) P_{j}(T_{t}(f) - f) = \lim_{t o 0} \; (1/t) \{ \exp(a_{j}t) - 1 \} P_{j}(f) = a_{j}P_{j}(f)$$
 ,

which implies (28), and therefore D(G) is contained in the set on the right-hand side of (30). Suppose next that (29) is satisfied. Let f be an element of X such that

$$g \sim \sum_{j=-\infty}^{\infty} a_j P_j(f)$$

for some $g \in X$. Then $\sigma_n(g) = G(\sigma_n(f))$ for all $n \in N$. Since $\{P_j\}$ is fundamental, (29) implies that $\lim_{n\to\infty} \|\sigma_n(h) - h\|_X = 0$ whenever h belongs to X. Thus we have

$$\lim_{n o\infty}\|\sigma_{n}(f)-f\|_{\scriptscriptstyle X}=0$$
 and $\lim_{n o\infty}\|G(\sigma_{n}(f))-g\|_{\scriptscriptstyle X}=0$,

which imply that $f \in D(G)$ and G(f) = g, since G is a closed operator. This proves (30), and the proof of the proposition is complete.

REMARK 9. Condition (29) is a standard one in the study of multiplier sequences and summation processes of Fourier series expansions in Banach spaces (cf. [3]). For the particular sequence $\{a_j\}_{j\in Z}=\{-ij\}_{j\in Z}$, (27) reduces to

$$k*f \sim \sum_{j=-\infty}^{\infty} \hat{k}(j)P_j(f)$$
.

In view of Remarks 3 and 4 and Proposition 2, we have the following theorem in which the convolution operators in question have Fourier series expansions of the form (27).

THEOREM 4. Let $\mathscr{T} = \{T_t; t \in R\}$ be a family of multiplier operators on X with Fourier series expansions (26). Then the following statements hold.

(i) Let $\{k_{n,\lambda}; n \in N, \lambda \in \Lambda\}$ be as in Theorem 1. Suppose that $M = \sup\{||T_t||_{B[X]}; t \in R\}$ is finite. Then for all $n \in N$, $\lambda \in \Lambda$ and for all $f \in X$

(31)
$$k_{n,\lambda} * f \sim \sum_{j=-\infty}^{\infty} c_{n,\lambda}(j) P_j(f) ,$$

where

$$c_{n,\lambda}(j) = (1/2\pi) \int_{-\pi}^{\pi} k_{n,\lambda}(t) \exp(a_j t) dt$$

and furthermore, (9) holds with $C_{\mathcal{T}} = M$.

- (ii) Let $\{k_{n,\lambda}; n \in N, \lambda \in \Lambda\}$ be as in Theorem 2. Suppose that $||T_t(f)||_X = ||f||_X$ for all $t \in R$ and for all $f \in X$. Then for all $n \in N$, $\lambda \in \Lambda$ and for all $f \in X$, (31) holds and furthermore, (17) holds.
- (iii) Let $\{k_{n,\lambda}; n \in N, \lambda \in \Lambda\}$ be as in Theorem 3. Suppose that $M = \sup\{||T_t||_{B[X]}; t \in R\}$ is finite. Then for every $n \in N$, $\lambda \in \Lambda$ and for every $f \in X$, (31) holds and furthermore, (20) holds.

- 5. Homogeneous Banach subspaces of $L_{2\pi}^1$. In this section we apply the results obtained in the preceding section to homogeneous Banach subspaces of $L_{2\pi}^1$. Let X be a linear subspace of $L_{2\pi}^1$. X is called a homogeneous Banach subspace of $L_{2\pi}^1$ if it is a Banach space with norm $\|\cdot\|_X$ which satisfies the following properties (cf. [5; p. 14], [9; p. 206]):
- (H-1) There exists a constant C>0 such that $||f||_1 \le C||f||_X$ for all $f \in X$.
- (H-2) For each $f \in X$ and $t \in R$, $T_t(f)$ belongs to X and $||T_t(f)||_X = ||f||_X$, where T_t is the translation operator, i.e.,

$$T_t(f)(u) = f(u-t)$$
, $u \in R$.

(H-3) For each $f \in X$, the map $t \to T_t(f)$ is a continuous X-valued function on R.

Examples of homogeneous Banach subspaces of $L^{\scriptscriptstyle 1}_{\scriptscriptstyle 2\pi}$ are the following:

- (1°) $L_{2\pi}^p$, $1 \leq p < \infty$ (note that (H-3) is not satisfied when $X = L_{2\pi}^\infty$).
- $(2^{\circ}) \quad C_{2\pi}.$
- (3°) $C_{2\pi}^{(n)}=$ the linear subspace of $C_{2\pi}$ of all n-times continuously differentiable functions f with norm

$$\|f\|_{\mathcal{C}^{(n)}_{2\pi}} = \sum_{i=0}^n (1/j!) \|f^{(j)}\|_{\infty}$$
 .

 (4°) $AC_{2\pi}=$ the linear subspace of $L^1_{2\pi}$ of all 2π -periodic absolutely continuous functions f with norm

$$||f||_{AC_{2\pi}} = ||f||_1 + ||f'||_1$$
.

 (5°) 0<lpha<1, $\lim_{2\pi}^lpha=$ the linear subspace of $C_{2\pi}$ consisting of all functions f for which

$$F(f) = \sup\{|f(t+h) - f(t)|/|h|^{lpha}; h
eq 0, t \in R\} < \infty$$

and

$$\lim_{h o 0} \left(\sup\{|f(t+h) - f(t)|/|h|^{lpha}; \, t \in R\}
ight) = 0$$
 ,

with norm

$$||f||_{\mathrm{lip}_{2\pi}^{\alpha}} = ||f||_{\infty} + F(f)$$
.

 (6°) D(L) =the domain in $L^{1}_{2\pi}$ of a closed operator L with range in $L^{1}_{2\pi}$ such that for each $t \in R$, T_{t} commutes with L, with norm

$$||f||_{D(L)} = ||f||_1 + ||L(f)||_1$$
.

Now let X be a homogeneous Banach subspace of $L_{2\pi}^1$ with norm $\|\cdot\|_X$. Recall that $\mathscr{T}=\{T_i; t\in R\}$ is the family of translation operators.

Therefore, we have

$$\omega_{\mathcal{F}}(X; f, \delta) = \sup\{\|f(\cdot - t) - f(\cdot)\|_{X}; |t| \leq \delta\}$$

and

$$\boldsymbol{\omega}_{\mathcal{F}}^{\star}(X;f,\delta) = \sup\{\|f(\cdot+t) + f(\cdot-t) - 2f(\cdot)\|_{x}; 0 \leq t \leq \delta\},$$

respectively.

Let $k \in L_{2\pi}^1$ and $f \in X$. Then

(32)
$$(k*f)(u) = (1/2\pi) \int_{-\pi}^{\pi} k(t) f(u-t) dt .$$

Defining the sequence $\{P_j\}_{j\in Z}$ by $P_j(f)(t)=\widehat{f}(j)e^{ijt}$, it is obvious that $\{P_j\}$ is a total, fundamental sequence of mutually orthogonal projections in B[X] since $\lim_{n\to\infty}\|\sigma_n(g)-g\|_X=0$, whenever g belongs to X by virtue of Theorems 2.11 and 2.12 of [5; Chapter I]. Furthermore, we have

$$T_t(f) \sim \sum_{j=-\infty}^{\infty} e^{-ijt} P_j(f)$$
 , $t \in R$

and

$$k * f \sim \sum_{j=-\infty}^{\infty} \hat{k}(j) P_j(f)$$
.

Consequently, under the above setting all the results obtained in the preceding sections are applicable to homogeneous Banach subspaces X. In particular, the result corresponding to the part (ii) of Corollary 2 extends Theorem 7 of Mohapatra [8] for the real Banach space $C_{2\pi}$ to the more general homogeneous Banach subspaces of $L_{2\pi}^1$ and yields the better estimate of the degree of almost convergence.

Finally, for homogeneous Banach subspaces X of $L_{2\pi}^1$ we recast Corollary 1 in connection with the test function class $\{u_0, u_1, u_2\}$, where $u_0(t) = 1$, $u_1(t) = \cos t$ and $u_2(t) = \sin t$ for all $t \in R$.

THEOREM 5. Let $\{k_{n,\lambda}; n \in N, \lambda \in \Lambda\}$ be a family of non-negative functions in $L^1_{2\pi}$. Suppose that for j=1, 2 and for each $f \in X$, $u_j f$ belongs to X and $||u_j f||_X \leq ||f||_X$, and $||u_0||_X = 1$. Then the following three statements are equivalent:

(i) For every $f \in X$,

$$\lim_{n\to\infty} ||k_{n,\lambda}*f-f||_{X} = 0 \quad uniformly \ in \quad \lambda \in \Lambda ;$$

(ii) For j = 0, 1, 2,

(33)
$$\lim \|k_{n,\lambda}*u_j - u_j\|_{X} = 0 \quad uniformly \ in \ \lambda \in \Lambda;$$

(iii)
$$\lim_{n \to \infty} \widehat{k}_{n,\lambda}(0) = 1$$
 uniformly in $\lambda \in \Lambda$

and

(34)
$$\lim_{n\to\infty} \{\hat{k}_{n,\lambda}(0) - \operatorname{Re}(\hat{k}_{n,\lambda}(1))\} = 0 \quad uniformly \ in \ \lambda \in \Lambda \ .$$

PROOF. It is clear that (i) implies (ii) since u_0 , u_1 and u_2 belong to X. Suppose that (ii) is valid. In view of the general formula (32) we have

$$\{\hat{k}_{n,\lambda}(0) - \operatorname{Re}(\hat{k}_{n,\lambda}(1))\}u_0 = k_{n,\lambda} * u_0 - u_1 k_{n,\lambda} * u_1 - u_2 k_{n,\lambda} * u_2$$

which implies

$$\hat{k}_{n,\lambda}(0) - \operatorname{Re}(\hat{k}_{n,\lambda}(1)) \le \|k_{n,\lambda}*u_0 - u_0\|_X + \|k_{n,\lambda}*u_1 - u_1\|_X + \|k_{n,\lambda}*u_2 - u_2\|_X$$
 ,

since $||u_1f||_X \le ||f||_X$, $||u_2f||_X \le ||f||_X$ whenever f belongs to X, and $||u_0||_X = 1$. Thus letting n tend to infinity in the above inequality, we have (34). For j = 0, (33) is equivalent to

$$\lim_{n o \infty} \widehat{k}_{n,\lambda}(0) = 1$$
 uniformly in $\lambda \in \varLambda$,

and therefore (iii) holds. It follows from Corollary 1 that (iii) implies (i), and the theorem is proved.

We close with the following remark.

REMARK 10. The equivalence of (i) and (ii) in Theorem 5 extends Theorem 5 of King and Swetits [6] for sequences of positive convolution integral operators on $C_{2\pi}$ to the more general homogeneous Banach subspaces of $L_{2\pi}^1$.

REFERENCES

- [1] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-Verlag, Berlin/Heidelberg/New York, 1967.
- [2] P. L. BUTZER AND R. J. NESSEL, Fourier Analysis and Approximation, Vol. I, Birkhäuser, Basel, and Academic Press, New York, 1971.
- [3] P. L. BUTZER, R. J. NESSEL AND W. TREBELS, On summation processes of Fourier expansions in Banach spaces. I. Comparison theorems, Tôhoku Math. J. 24 (1972), 127-140; II. Saturation theorems, ibid., 551-569.
- [4] R. A. DeVore, The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Math. 293, Springer-Verlag, Berlin/Heidelberg/New York, 1971.
- [5] Y. KATZNELSON, An Introduction to Harmonic Analysis, John Wiley, New York, 1968.
- [6] J. P. KING AND J. J. SWETITS, Positive linear operators and summability, Austral. J. Math. 11 (1970), 281-290.
- [7] G. G. LORENTZ, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [8] R. N. MOHAPATRA, Quantitative results on almost convergence of a sequence of positive linear operators, J. Approximation Theory 20 (1977), 239-250.
- [9] H. S. Shapiro, Topics in Approximation Theory, Lecture Notes in Math. 187, Springer-Verlag, Berlin/Heidelberg/New York, 1971.

[10] B. Wood, Convergence and almost convergence of certain sequences of positive linear operators, Studia Math. 34 (1970), 113-119.

DEPARTMENT OF MATHEMATICS RYUKYU UNIVERSITY NAHA, OKINAWA, 903 JAPAN