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1. Introduction. Let X be an arbitrary (real or complex) Banach
space with norm || | | x and let B[X] denote the Banach algebra of all
bounded linear operators of X into itself with the usual operator norm
IHUur] Here we are concerned with linear approximation processes on
X defined as follows:

DEFINITION 1. Let {LnίX;neN, xeΛ} be a family of operators in
B[X], where N denotes the set of all natural numbers and A is an
arbitrary index set. The family {Lnti} is said to be a linear approxi-
mation process on X if for every / e l ,

lim || Ln>x{f) - f\\x = 0 uniformly in λ e A .
7t->OO

In this note we would like to study the direct problem of approxi-
mation by particular linear approximation processes {Ln>λ; ne N, Xe A},
Ln>x being of convolution type in connection with families of strongly
continuous operators in B[X]. That is, we estimate the degree of con-
vergence of Lntλ(f) to / (in the sense of our Definition 1) by a modulus
of continuity of /, which can be defined in a natural way (cf. [9; p. 204]).
We also study the multiplier type operators in connection with Fourier
series expansions corresponding to a total, fundamental sequence of
mutually orthogonal projections in B[X] (cf. [3]).

The results obtained in this paper yield applications to the almost
convergence of sequences of operators in B[X]. For the basic properties
of almost convergent sequences of real numbers, see [7] (cf. [6], [8],
[10]). We also give applications to the approximation problem in homo-
geneous Banach spaces due to Katznelson [5] (cf. [9. p. 206]), which are
more than the Banach spaces LξXf 1 ^ p < <*>, and C2π of all 2ττ-periodic,
pth. power Lebesgue integrable functions / with the norm

11/11, = j (1/27Γ) j J/(t)| 'dίp ,

and of all 27Γ-periodic continuous functions / with the norm
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respectively. An excellent source for references and a systematic treat-
ment on approximation by convolution integral operators in Lξπ, 1 ^
p < °o, and C2π can be found in the books of Butzer and Nessel [2] and
DeVore [4].

2. Approximate identities for convolution operators. Let R denote
the set of all real numbers and let ^~ = {Tt;teR} be a family of
operators in B[X] with To — /, the identity operator, such that for each
feX the map t—> Tt(f) is strongly continuous. Therefore, the uniform
boundedness principle implies that

is finite. The convolution of / in X with k in L\π is the element k*f
in X given by

k*f=(l/2π)\πjc(t)Tt(f)dt,

which exists as a Bochner integral (cf. [9; pp. 201-202]).
Let keU2π and PeB[X]. Then the relation

(k*P)(f) = k*(P(f)) (/el)

determines a convolution operator k*P on X. Note that k*P belongs to
B[X] and

and moreover, if PTt = TtP for each t e R, then P(k*I) = (k*I)P. In
many cases we deal with linear approximation processes on X which
can be generated via convolution operators of the form k*I, k being a
non-negative or even function in L\π.

In connection with convergence theorems we give the following
standard definition.

DEFINITION 2. An approximate identity (for convolution) is a family
{kn>x; ne N, XeΛ} of elements in L\π such that

(1) supίHΛ^Hx neJV; XeΛ} < oo ,

(2) lim (l/2ττ) Γ kn,x(t)dt = 1 uniformly in λ e A
M-»OO J —π

and

(3) lim 1 \kntλ(t)\dt = 0 uniformly in XeΛ
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for any fixed δ satisfying 0 < δ < π.

LEMMA 1. Let {knχ,neN, XeΛ} be an approximate identity and let
Φ be a continuous X-valued function on [ — π, π\. Then

lim(l/2π) [* k%tX(t)Φ(t)dt = Φ(0) uniformly in XeΛ .
W-OO J-7Γ

We omit the proof, which is elementary ([cf. [5; Chapter I, Lemma
2.2]). As an immediate consequence of Lemma 1, we have the following.

PROPOSITION 1. Let {knχ, neN, xe Λ) be an approximate identity.
Then the family {kn>λ*I; neN, Xe Λ} is a linear approximation process
on X.

PROOF. Let / be an arbitrary element in X and take Φ(t) = Tt(f)
in Lemma 1.

COROLLARY 1. Let {knχ, neN, xe A] be a family of non-negative
functions in L\π satisfying (2) with Fourier series expansions

KM ~ Σ K,λ(j)eίjt (n e N, X e A) ,

where

KM =

Suppose that limΛ_co{fcΛ̂ (0) — Re(kn>λ(ϊ))} = 0 uniformly in XeΛ, where
Re(knfλ(ΐ)) denotes the real part ofίcntλ(ϊ). Then the family {kntλ*I; neN,
X e Λ} is a linear approximation process on X.

PROOF. Let 0 < δ < π. Then we have

5S 2π{knM ~ Re(^fi(l))}/(1 - cos δ)

for all neN and for all XeΛ. Therefore, the desired assertion follows
from Proposition 1.

REMARK 1. Let {Lp;peN} be a sequence of operators in B[X] and
let /, geX. In view of the concept of almost convergence of sequences
of real numbers due to Lorentz [7], we say that the sequence {Lp(f);
peN} is almost convergent to g in X if

lim (1/n) Σ Lp(f) -9 = 0 uniformly in m = 1, 2,

(cf. [6], [8], [10]). Let

(4 ) Ln>m - <X/n)mΣlL, (m, n = 1, 2, -..) .
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Then the family {Ln,m\ neN, meN} is a linear approximation process
on X if and only if for each / e l , the sequence {Lp(f); peN} is almost
convergent to / in X.

REMARK 2. Let {kp; peN} be a sequence of functions in L\π having
Fourier series expansions

fc,(t)~.Σ KUyjt (veN),
J——OO

and let

( 5 ) K,m = (lfn) m+±lkp (m, n = 1, 2, •) .

Applying Proposition 1 and Corollary 1, we have the following:
( i ) If the family {kn,m; neN, meN} is an approximate identity,

then for each / e l , the sequence {kp*f; peN} is almost convergent to
/ in X

(ii) If each function kp is non-negative and if {ίcp(0);peN} and
{ίcp(0) — Re(ίcp(l)); p e N} are almost convergent respectively to one and
zero, then {fcp*/; peN} is almost convergent to / for each feX.

3. A quantitative theorem. In order to recast Corollary 1 in a
quantitative form we shall need the following additional assumption
upon the family άΓ = {Tt;teR}:

(J7"Λ) There exists a constant C^ Ξ> 1, independent of /, s and t,
such that

(6 ) || Ts(f) - Tt(f)\\χ £ CΛ Ts-t(f) - /llx

for all s, teR and for all feX.

REMARK 3. If S~ = {Tt',teR} is a uniformly bounded strongly con-
tinuous group of operators in B[X] (for the fundamentals of semi-group
theory, see [1]), then (6) holds with C^ = sup{\\Tt\\BU]) teR}. If in ad-
dition each Tt is isometric, then \\T8{f) - Tt(f)\\x - ||Γs_t(/) - / | | x .

We now introduce a modulus of continuity of elements in X associ-
ated with the family ^~ (cf. [9; p. 204]).

DEFINITION 3. Suppose ^~ satisfies ( ^ 1 ) and let / e l For δ >̂ 0
we define the modulus of continuity of / associated with ^~ by

ωAX f, 8) = supf l lW) - f\\z; \t\ £ δ} .

The modulus of continuity has the following fundamental properties:

LEMMA 2. Suppose ^~ satisfies (.^1) and let feX.
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( i ) ωAX f9 δ) is a non-decreasing function of δ on [0, ©o) and
ωAX f, 0) = 0.

(ii) ωAX f, Vδ) ̂  (1 + ηCA)^AX;f, δ) for each η, δ ^ 0.
(iii) Umδ-.0+ωAX;f, δ) = 0.

PROOF. The parts (i) and (iii) are obvious by the definition and the
strong continuity of the map t —> Tt(f) at t = 0. Condition (J7~Λ) yields
that

ωAX f, δ + V)^ CjrωAX f, δ) + ωAX f, V)

Hence by induction on n we have

ωAX f, nδ) ^ {1 + (n - l)Cs-}ωAX;f, δ) (neN) ,

from which the part (ii) follows.

LEMMA 3. Let k be a non-negative function in L\π with its Fourier
series expansion

Then we have

(l/2π)Γ \t\k{t)dt^
J — JΓ

and

(l/2ττ) I t2k(t)dt
J-7Γ

The proof follows by elementary computations using the inequality
2x/π <: sin x (0 ^ x <: π/2) and Holder's inequality (cf. [2; Lemma 1.5.7]).

LEMMA 4. Suppose that ^~ satisfies (J^ϊ). Let kbe a non-negative
function in L\π, and / e l . Then we have

( 7 ) ||fc*/-

/or eαcλ- δ > 0.

PROOF. We have

k*f- fc(0)/ = (l/2ίr)j*_*(*){W)

which implies
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k{t)ωAX;f,\t\)dt.
π

Therefore it follows from the part (ii) of Lemma 2 that

lift*/ - £(0)/|L ^ ωAX f, δ)(l/2ττ) Γ {1 + (\t\Cjr/δ)}k(t)dt ,

which implies (7) by Lemma 3. The proof of the lemma is complete.

Given a family {Lnχ,neN, XeΛ} of operators in B[X], let

\\\An(f) - /Illx = supdIAU/) - f\\x;XeΛ} (neN, feX) .

Note that {Ln>λ} is a linear approximation process on X if and only if

/) - f\\\x - 0 for every / e l
We are now in a position to recast Corollary 1 in a quantitative

form as follows.

THEOREM 1. Let {Jcnfλ; neN, X e Λ} be a family of non-negative func-
tions in L\π such that for each neN

( 8 ) ^ -

is finite. Suppose that J^~ = {Tt;teR} satisfies ( J^ l ) . Then for the
family {kn}X*I; ne N, xe Λ} we have

(9 ) HI An(f) - f\\\x ^ \\f\\χΎn + {an + ai2y/2πC^-}anωAX;f, βn)

for all neN and for all / e l , where

(10) βn = sup{[fc%,,(0) - Re(£^(l))]1/2; X e Λ)

and

(11) 7 = sup{|fcΛ f 2(0)-l|;λe^[}.

In particular, if kntλ(0) = 1 for all neN and for all Xe A, then (9)
reduces to

(12) \\\An(f) - f\\\x <: {1 + (IWπCΛωAX f, β.)

PROOF. Taking k = kn,k in Lemma 4, we have

(13) \\k%ll*f - £..a(O)/|U ^ an{an + aβ)V2πCAβJS)}ωAX; f, δ) .

If βn > 0, take δ = βn in (13). Then the inequality

(14) \\κ,x*f - f\\z ^ \\kntl*f - KMfWx + \KM - 11 ll/llχ
implies (9). If /3M = 0, then (13) reduces to

II Aw*/ - ^..i(0)/||χ ^ alωAX f, 8) .

Letting δ-^0+, we have kna*f = kn,λ(O)f by (iii) of Lemma 2. Thus
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(14) reduces to

which implies (9), and the proof of the theorem is complete.

In connection with even functions we shall need the following con-
dition (J^2) instead of (J^l) :

C^2) For every s, t, ueR and for every / G I ,

(15) || T8(f) + Tt{f) - 2TJLf)\\z - H2Y-Λ/) + 2W/) - 2f\\x .

REMARK 4. (J^2) already implies (J^l) with C^ = 1;

IIW) ~ W)llx - l|Γ.-4(/) - / L ( / e l , 8 , t 6 ί ) .

If ^ = {Tt;teR} is a strongly continuous group of isometric operators
in B[X], then (j^2) always holds.

DEFINITION 4. Suppose J^~ satisfies (J/^2) and let / e l For <5 ^ 0
we define the generalized modulus of continuity of / associated with
by

ωUX f, δ) - sup{||Γf(/) + Γ-,(/) - 2/| | x; 0 ^ t ^ 3} .

LEMMA 5. Suppose ^~ satisfies (J7~-2) and let / e l
( i ) a)^(X;f, δ) is a non-decreasing function of δ on [0,

α)j-(^;/, θ) = o.
(ii) ωSr(X;f, ηδ) ^ (1 + ί7)2ωJ-(X;/, δ) /or eαc/i ^, δ ^ 0.
(iii) ω^(X; /, δ) ^ 2ft)^(X;/, S) for each δ iΞ> 0. TTms iw particular,

limt^+ωϊ-iX f, δ) = 0.

PROOF. The parts (i) and (iii) are obvious by definition and the part
(iii) of Lemma 2. Condition (J^2) yields that ω^(X; /, nδ) ^ ^2α>^(X;
/, δ) (n e ΛΓ), from which the part (ii) follows.

LEMMA 6. Suppose that J7~ satisfies (J^2). Let k be a non-nega-
tive, even function in L\π, and / e l . Then we have

(16) ||fc*/ ^

/or each δ > 0.

PROOF. Since & is even and positive, we have

k'*f - ίe(O)f - (l/2π)[k(t){Tt(f) + Γ_4(/) - 2f}dt ,
Jo

and so
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\\k*f- k(O)f\\x ^ (l/2π)[k(t)\\Tt(f) + TM)
JO

^ (1/27Γ) (*Up(ί)βί5-(Z; /, t)dt .
Jo

Therefore it follows from the part (ii) of Lemma 5 that

\\k*f- ίe(fi)f\\z ^ (l/2π)ωUX;f, δ) [(1 + t/δfk(t)dt ,
JO

which implies (16) by Lemma 3.

THEOREM 2. Let {knjλ; n e N, λ 6 A} be a family of non-negative, even
functions in L\π such that for each neN, an defined by (8) is finite.
Suppose that ^~ = {Tt;teR} satisfies ( ^ 2 ) . Then for the family
{kn>x*I; neN, XβΛ} we have

(17) \\\An(f) - /HI, ^ H/11,7. + (l/2){π2/2 + an(2^π + a%)}ωl(X\ f, βn)

for all neN and for all feX, where an, βn and yn are numbers defined
by (8), (10) and (11), respectively. In particular, if ίcntλ(0) = 1 for all
neN and for all λe A, then (17) reduces to

(18) IHiUf) ~ f\\\χ ^ (1/2)(1 + 2-v*πγω*AX; f, βn)

PROOF. In view of Lemma 6 the proof is essentially similar to that
of Theorem 1, and so we omit the details.

COROLLARY 2. Let {kp; p e N} be a sequence of functions in L\π, and
let {kn,m; neN, meN} be the family of functions defined by (5) such
that for each neN, an defined by (8) is finite. Then the following
statements hold:

( i ) Suppose that J7~ = {Tt; teR) satisfies (J^-ϊ) and each kp is
non-negative. Then for the family {kn>m*Γ, neN, meN), (9) holds for
all neN and for all feX. If in addition kp(0) = 1 for each peN,
then (12) holds for all neN and for all feX.

(ii) Suppose that ^ = {Tt;teR} satisfies (J7~-2) and each kp is
non-negative and even. Then for the family {&w,m*I; neN, meN}, (17)
holds for all neN and for all feX. If in addition ίcp(0) = 1 for each
peN, then (18) holds for all neN and for all feX.

REMARK 5. Let {kp; peN} be a sequence of non-negative, even
functions in L\π with Fourier series expansions

kp(t) ~ 1 + 2Σαp(i)cos jt (peN) .

Suppose that ^~ = {Tt; teR} satisfies (_^2) and there exists a constant
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C > 0 such that 1 — αp(l) ^ C/p for all p e N. Then the latter statement
of the part (ii) of Corollary 2 implies that

(19) \\\An(f) - / I I I * ^

for all we JV and for all / e l , where 7 is Euler's constant:

7 = lim ( Σ (1/i) - log p ) = 0.5772156649015328- - .

We mention some concrete examples of non-negative, even functions
kp9 peN.

(1°) fc,(ί) = 1 + 2 Σf=i {1 - i/(p + l)}cos jt, the Fejer kernel (in this
case, C = 1).

(2°) fcp(ί) = 1 + 2 Σj=i {(P!)7((ϊ> ~ 3)! (P + i)!)}cos jt, the de La Vallee
Poussin kernel (in this case, C = 1).

(3°) fcp(ί) = {3/(p(2p2 + l))}{(sin(pί/2))/sin(ί/2)}4, the Jackson kernel (in
this case, C = 3/2).

(4°) fcp(t) = 1 + 2 Σf=i αp(i)cos jt with

αp(i) - {(p - j + 3)sin((i + l)π/(p + 2))
- (p - j + l)sin((i - l)π/(p

the Fejer-Korovkin kernel (in this case, C = π, cf. [2; pp. 79-80]).

DEFINITION 5. Suppose ^~ = {Tt;teR} satisfies ( ^ 1 ) . An element
feX is said to satisfy the Lipschitz condition with constant M and ex-
ponent a, or to belong to the class Lip^-(X; a)Mf M > 0, a > 0, if ω^(X;
f, δ) ^ Mδa for all δ ^ 0. Further, we let Lip^(X; a) = UiLip^(-X"; < )̂̂ ;
ikf>0}.

DEFINITION 6. Supposed" = {Γj; teR} satisfies {ά?~-2). An element
/ e l is said to satisfy the generalized Lipschitz condition with constant
M and exponent α, or to belong to the class Lip3-(X; a)Mf M > 0, α>0,
if ft)^(X; /, δ) ^ Mδα for all δ ^ 0. Further, we let Lip^(X; a) =

REMARK 6. Under the hypotheses of Theorem 1, if / belongs to
-(X; a)Mt then (12) implies that

\\\An(f) -f\\\x^ M{1 + (l/2)1/2πC^}/3:

for all neN. Under the hypotheses of Theorem 2, if / belongs to
(X; a)M, then (18) implies that

\\\An(f) - /III* ^ (ΛΓ/2)(1 + 2-1/2π)2/3:
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for all neN. In particular under the hypotheses of Remark 5, if /
belongs to Lip/(X; a)Mf then (19) implies that

\\\An(f) ~ /HI* ^ (AΓ/2)(1 + 2-^τr)2{C(7 + log(n

for all neN.

THEOREM 3. Let JT~ — {Tt; teE) be a uniformly bounded strongly
continuous group of operators in B[X], having G as its infinitesimal
generator with domain D(G) and M as its bound. Let {kn}λ; neN, λe A)
be a family of non-negative, even functions in L\π such that for each
ne N, an defined by (8) is finite. Then for the family {kn,λ*I\ ne N,
XeΛ) we have

(20) HμUO ~ /HI* ^ 11/11*7, + 2-^π\\G(f)\\xanβn

+ 2-1/2τr{l + M(2-^π)}βnωAX; G(f), βn)

for all neN and for all feD{G), where an, βn and Ύn are numbers
defined by (8), (10) and (11), respectively. In particular, if ίcntλ(0) — 1
for all neN and for all λeΛ, then (20) reduces to

(21) | | K ( / ) - f\\\x £ 2-^
π)}βnωAX; G(f), βj .

PROOF. Let k be a non-negative, even function in L\π, and feD(G).
Then we have

(22) \\k*f - k(0)f\\x ^ 2-

+ 2-mπ{ίc(0) - £(1)}1/2[1 + M(2-mπ/δ){ίc(Q)

- k(l)y'*]ωAX; G(f), δ)

for each δ > 0. Indeed,

k*f-k(0)f= (l/2π) {jfc(t)(T,(/) - f)dt + Jfc(t)(Γ_t(/) - f)d

= 9 + h ,

say. Since

Tt(f) - f = [ Tu{G{f))du (t > 0) ,
JO

we have

\\g\\x ^ {(l/2π)^tk(t)dή\\G(f)\\x

π) J* k(t)\ [ || Tu(G(f)) - G(f) || du]dt.
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The second integral is, by virtue of the part (ii) of Lemma 2, major-
ized by

(l/2τr) j*fc(ί){j\l + (M/δ)u)ωAX; G(f\ δ)du}dt

= ωAX; G(f), δ)(l/2π)[*tk(t){l + (M/2δ)t}dt .
Jo

In a similar manner, we obtain t h e same es t imate for | |ΛΊ|X, and con-
sequently

11**/ - kθ)f\\x :S \(l/π)\Ίk(t)dt\\\G(f)\\x
v J o )

(M/2δ)t}dt~\ωAX; <?(/), δ) .

This, in virtue of Lemma 3, proves the desired estimate (22).

Taking k = knJ in (22), we finish the proof exactly as that of

Theorem 1.

REMARK 7. Let {kv;peN} and J7~ = {Tt\ teR} be as in Remark 5
and Theorem 3, respectively. Then (21) reduces to

(23) \\\An(f) - f\\\x £ 2-^π\\G(f)\\x{C(Ύ + log(n

+ 2"1/2^{1 + M(2-3/2τr)}{C(τ + log(n

xωAX f, {C(Ύ + login + l))/n}m)

for all neN and for all feD(G). In particular, if feD(G) belongs to

Lip^(X; a)κ, then (23) implies that \\\An(f) - f\\\x ^ 2-1/2τr|(G(/)|U{C(τ +

log(ii + l))/n)1/2 + 2~mπK{l + M(2-3/2π)}{C(y + login + l))/n}(1+α)/2 for all

neN.

4. Multiplier operators. In this section we would like to discuss
certain families {Tt; teR} of multiplier operators. Let Zdenote the set
of all integers, and let {Pό}j&z be a sequence of projections in 1?[X]
satisfying the following properties:

( i ) The projections P3 are mutually orthogonal, i.e., for all j,me Z
there holds PόPm = δj>mPm, δitm being Kronecker's symbol.

(ii) The sequence {Pj} is total, i.e., P5if) — 0 for all jeZ implies

/=0.

(iii) The sequence {P5} is fundamental, i.e., the linear subspace of

X spanned by the ranges P3(X), j e Z, is [dense in X. Then for each

feX the series ΣΓ=-«> P, (/) i s called the (formal) Fourier series expan-
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sion of / (with respect to {PJ), and the following notation is used (cf.
[3]):

(24) /~.Σ W).
j — — oo

Let Sf denote the set of all sequences a = {aά}jez of scalars. An ele-
ment a e S? is called a multiplier sequence for X (corresponding to {Pά})
if for each feX there exists an element faeXsuch that aάPά(f) = P, (/«)
for all i e Z, thus

(25) Λ ~ , Σ w α i P , ( / ) .

Note that /α is uniquely determined by /, since {P̂  } is total and so the
map /—>/β defines a bounded linear operator of X into itself by the
closed graph theorem. An element TeB[X] is called a multiplier oper-
ator on X if it permits an expansion of type (25).

REMARK 8. The expansion (24) represents a slight generalization of
the concept of Fourier series in a Banach space X associated with a
fundamental, total, biorthogonal system {fjf f*}jez- Here {fs}Sez

 a n d
{ff}jez are sequences of elements in X and X* (the dual space of X),
respectively, such that the linear subspace of X spanned by {/,•} is dense
in X (fundamental), /?(/) = 0 for all jeZ implies / = 0 (total), and
/*(/«) = δitm for all j,meZ (biorthogonal). Then (24) and (25) read

respectively.

The following proposition shows that if ^ = {Γ<; £ eiϋ} is generated
via multiplier operators on X with associated multiplier sequences of
exponential type, then every convolution operator k * I with k e L\π is a
multiplier operator on X.

PROPOSITION 2. Let ^~ = {Tί; ίeiϋ} fce α family of operators in
B[X] such that supfllTtHsLr]; ίe i ϊ } is j^nίίβ and

(26) Γ 4 ( / ) - Σ expίαyQP^/) (teR, / e l ) ,
J=-0O

f̂eβrβ α = {aά} is a sequence in S< Then ^~ is a strongly continuous
group of operators in B[X], and with each keL\πthe convolution oper-
ator k*I on X is a multiplier operator on X with associated multiplier
sequence c — {Cj}jez^^ defined by
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Cj = (l/2ττ) I k(t)sπp{aάt)dt , j e Z ,

thus

(oη\ k*f ~ V n P (f\
\ΔI) fϋ*J ~ 2-i Gjjrj\J)

for every feX. Furthermore, the infinitesimal generator G of J7~ with
domain D(G) satisfies

(28) G{f) ~^a5P5{f)

for all feD(G). If, furthermore, with the nth Cesaro mean operator
σn defined by

σn= Σ {1 - \j\/(n H
j=—n

the sequence {σn} is uniformly bounded, i.e.,

(29) sup{||σJU[x]; n = 0, 1, 2, •} <

then

(30) D(G) = \feX;g~mΣi some

PROOF. Since {Pά} is total, the expansion (26) implies that ^~ forms
a group of operators in B[X]. We have

lim ||Γt(λ) - T8(h)\\x = lim |exp(α^) - expία. s)! ||Λ||X = 0
ί t

for every h e Pά(X), j e Z, and so the map t —> Tt(f) is strongly continu-
ous for each feX, since {Py} is fundamental and ^~ is uniformly bound-
ed. Let keLlπ and / e l . Then we have, for all jeZ,

s(k*f) - {lβπ)^_k{t)Pά{Tt{f))dt = (l/2ττ)J"

which implies (27), and so the first assertion of the proposition is
proved.

Suppose now that / belongs to D(G). Then for each jeZ we
have

/) - lim

which implies (28), and therefore D{G) is contained in the set on the
right-hand side of (30). Suppose next that (29) is satisfied. Let / be
an element of X such that
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9 ~ Σ ajPiif)
3 — —OQ

for some geX. Then σn(g) = G{σn{f)) for all w e JNΓ. Since {Pά} is fun-
damental, (29) implies that limn_>oo ||<τn(fc) — h\\x — 0 whenever ft belongs
to X. Thus we have

* . ( / ) - / | L = 0 and lim ||G(σ.(/)) - fir||x = 0 ,

which imply that feD(G) and (?(/) = #, since G is a closed operator.
This proves (30), and the proof of the proposition is complete.

REMARK 9. Condition (29) is a standard one in the study of multi-
plier sequences and summation processes of Fourier series expansions in
Banach spaces (cf. [3]). For the particular sequence {ad}jez = { — ij}jBZ,
(27) reduces to

In view of Remarks 3 and 4 and Proposition 2, we have the follow-
ing theorem in which the convolution operators in question have Fourier
series expansions of the form (27).

THEOREM 4. Let J7~ — {Tt; teR} be a family of multiplier operators
on X with Fourier series expansions (26). Then the following state-
ments hold,

( i ) Let {knχ, ne N, λ 6 A) be as in Theorem 1. Suppose that
M— sup{||Γt||ΰ[X]; teR} is finite. Then for all neN, XeΛ and for all

(31) Ka*f ~ Σ c
Q — — oo

where

cUJ) = (1/2JC) Γ fcB,,(ί)exp(α3 ί)dί

and furthermore, (9) holds with C^ = M.
(ii) Let {kn>λ; neN, XeΛ} be as in Theorem 2. Suppose that

\\Tt(f)\\x= \\fWx for all teR and for all feX. Then for all neN,
XeA and for all feX, (31) holds and furthermore, (17) holds.

(iii) Let {knχ, neN, XeΛ} be as in Theorem 3. Suppose that M =
swp{\\Tt\\Bιxϊ, teR} is finite. Then for every neN, XeΛ and for every
feX, (31) holds and furthermore, (20) holds.
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5. Homogeneous Banach subspaces of L\π. In this section we apply
the results obtained in the preceding section to homogeneous Banach
subspaces of L\π. Let X be a linear subspace of L\π. X is called a
homogeneous Banach subspace of L\π if it is a Banach space with norm
|| | | x which satisfies the following properties (cf. [5; p. 14], [9; p. 206]):

(H-l) There exists a constant C > 0 such that ||jT|U ^ Q\f\\χ f o r a 1 1

/ e l
(H-2) For each feX and teR, Tt(f) belongs to X and \\Tt(f)\\x =

\\f\\x, where Tt is the translation operator, i.e.,

Tt(f)(u) = f(u - t) , ueR.

(H-3) For each/eX, the map t-+Tt(f) is a continuous X-valued
function on R.

Examples of homogeneous Banach subspaces of L\π are the follow-
ing:

(1°) LI, 1 ^ p < oo (note that (H-3) is not satisfied when X = Lζπ).
(2°) C2ff.
(3°) Cί? = the linear subspace of C2π of all ^-times continuously

differentiable functions / with norm

(4°) AC2π — the linear subspace of L\π of all 2π-periodic absolutely
continuous functions / with norm

II/IU,, = ll/lli + ll/'lli

(5°) 0 < α < 1, lip"- = the linear subspace of C2JΓ consisting of all
functions / for which

F(f) = sup{|/(ί + h) - /(ί)|/|ft|α; Λ ̂  0, t e i2} < oo

and

lim (sup{|/(ί + h) - /(ί)|/| Λ |α; t e R}) = 0 ,
h-*0

with norm

p2

α

π - I I / I

(6°) D(L) — the domain in LJff of a closed operator L with range
in L^ such that for each t e R, Tt commutes with L, with norm

Now let X be a homogeneous Banach subspace of L\π with norm
|| x. Recall that J7~ = {Tt; t e R} is the family of translation operators.
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Therefore, we have

ωAX; f, δ) = suP{||/(. -t) - /( )IU; \t\£δ]
and

ωXX f, δ) = sup{||/( +«)+/(•-«) - 2/( )L; 0 ^ ί :£

respectively.
Let fc614 and / e l Then

(32) (fc*/)(tθ

Defining the sequence {P, }ie* by Pj(f)(t) =f(j)eijt, it is obvious that {Py}
is a total, fundamental sequence of mutually orthogonal projections in
B[X] since limΛ_oo \\σn(g) — g\\z = 0, whenever ί/ belongs to X by virtue
of Theorems 2.11 and 2.12 of [5; Chapter I]. Furthermore, we have

j = — oo

and

k*f~± hi)P,(f).
j=-OQ

Consequently, under the above setting all the results obtained in
the preceding sections are applicable to homogeneous Banach subspaces
X. In particular, the result corresponding to the part (ii) of Corollary
2 extends Theorem 7 of Mohapatra [8] for the real Banach space C2π to
the more general homogeneous Banach subspaces of L\π and yields the
better estimate of the degree of almost convergence.

Finally, for homogeneous Banach subspaces X of L\π we recast
Corollary 1 in connection with the test function class {u0, uu u2), where
uo(t) = 1, Uiit) = cos t and u2(t) = sin t for all teR.

THEOREM 5. Let {knχ, neN, XeΛ} be a family of non-negative
functions in L\κ. Suppose that for j = 1, 2 and for each / e l , uo f
belongs to X and \\ujf\\z ^ | |/|U, and \\uύ\\x = 1. Then the following
three statements are equivalent:

( i ) For every fe X,

lim \\kntχ*f — f\\χ = 0 uniformly in XeΛ

(ii) For j = 0, 1, 2,

(33) lim \\kn}λ*Uj — uό\\x = 0 uniformly in XeΛ

(iii) lim ίcn>λ(0) — 1 uniformly in λ 6 A
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and

(34) lim {kntλ(0) - Re(kn>λ(l))} = 0 uniformly in X e Λ .
n—>oo

PROOF. It is clear that (i) implies (ii) since u0, uλ and u2 belong to
X. Suppose that (ii) is valid. In view of the general formula (32) we
have

{kn,λ(O) - Re(kn,λ(l))}u0 = kn,λ*u0 - ujc^x*^ - u2kn,λ*u2 ,

which implies

ίcn,λ(0) - R e ( k n > λ ( l ) ) ^ \ \ k n t λ * u 0 - uo\\Σ + \ \ k n ^ u λ - u^\x + \ \ k n , λ * u 2 - u2\\x ,

since \\uj\\x <: | | / | | x , \\u2f\\x ^ \\f\\x whenever / belongs to X, and
IWIx = 1. Thus letting n tend to infinity in the above inequality, we
have (34). For j = 0, (33) is equivalent to

lim ίcntχ(O) = 1 uniformly in λ e Λ ,
ίi->oo

and therefore (iii) holds. It follows from Corollary 1 that (iii) implies
(i), and the theorem is proved.

We close with the following remark.

REMARK 10. The equivalence of (i) and (ii) in Theorem 5 extends
Theorem 5 of King and Swetits [6] for sequences of positive convolution
integral operators on C2π to the more general homogeneous Banach sub-
spaces of L\π.
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