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1. Introduction. Let X be an arbitrary (real or complex) Banach
space with norm ||-||; and let B[X] denote the Banach algebra of all
bounded linear operators of X into itself with the usual operator norm
II*llstx3- Here we are concerned with linear approximation processes on
X defined as follows:

DEFINITION 1. Let {L,;;ne N, ne4} be a family of operators in
B[X], where N denotes the set of all natural numbers and 4 is an
arbitrary index set. The family {L,;} is said to be a linear approxi-
mation process on X if for every fe X,

lim || L, (f) — fllx = 0 uniformly in ne4.

In this note we would like to study the direct problem of approxi-
mation by particular linear approximation processes {L, ; n € N, n€ 4},
L, ; being of convolution type in connection with families of strongly
continuous operators in B[X]. That is, we estimate the degree of con-
vergence of L, ,(f) to f (in the sense of our Definition 1) by a modulus
of continuity of f, which can be defined in a natural way (cf. [9; p. 204]).
We also study the multiplier type operators in connection with Fourier
series expansions corresponding to a total, fundamental sequence of
mutually orthogonal projections in B[X] (ef. [3]).

The results obtained in this paper yield applications to the almost
convergence of sequences of operators in B[X]. For the basic properties
of almost convergent sequences of real numbers, see [7] (cf. [6], [8],
[10]). We also give applications to the approximation problem in homo-
geneous Banach spaces due to Katznelson [5] (ef. [9. p. 206]), which are
more than the Banach spaces LZ, 1 < » < «, and C,, of all 2z-periodic,
pth power Lebesgue integrable functions f with the norm

171, = {@wem | irora}”

and of all 2zx-periodic continuous functions f with the norm
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Iflle = max{|f@); |t| =< =},

respectively. An excellent source for references and a systematic treat-
ment on approximation by convolution integral operators in LZ, 1 <
p < =, and C,. can be found in the books of Butzer and Nessel [2] and
DeVore [4].

2. Approximate identities for convolution operators. Let R denote
the set of all real numbers and let .9 = {T,;tc R} be a family of
operators in B[X] with T, = I, the identity operator, such that for each
fe X the map ¢t — T,(f) is strongly continuous. Therefore, the uniform
boundedness principle implies that

M, = sup{||T,||sx1; 1] = 7}

is finite. The convolution of f in X with &k in L}, is the element kxf
in X given by

ke = @2m | koTat

which exists as a Bochner integral (ef. [9; pp. 201-202]).
Let ke L}, and Pe B[X]. Then the relation

(kxP)(f) = kx(P(f)) (feX)

determines a convolution operator k*P on X. Note that kxP belongs to
B[X] and

1ExPllgx1 = MoK |||l Pllscxs »

and moreover, if PT, = T,P for each te R, then P(k*I) = (kxI)P. In
many cases we deal with linear approximation processes on X which
can be generated via convolution operators of the form kxI, k being a
non-negative or even function in Lj..

In connection with convergence theorems we give the following
standard definition.

DEFINITION 2. An approximate identity (for convolution) is a family
{k,; ne N, ne A} of elements in L}, such that

(1) sup{l|E,2lls me N, ved} < o,
(2) lim (1/27) Si k,:t)dt =1 uniformly in \e4
and

(3) limS _Ikwi(®ldt =0 uniformly in e 4
ésitisw

n—0
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for any fixed ¢ satisfying 0 < 0 < 7.
LEMMA 1. Let {k,; ne N, \€ A} be an approximate identity and let
@ be a continuous X-valued function on [—=x, w]. Then
lim(1/27) Si k. ()@@)dt = @(0) wuniformly in red.

We omit the proof, which is elementary ([ef. [5; Chapter I, Lemma
2.2]). As an immediate consequence of Lemma 1, we have the following.

PROPOSITION 1. Let {k,,;ne€ N, n€ A} be an approximate identity.
Then the family {k,.*I;ne N, n€ A} is a linear approrimation process
on X.

Proor. Let f be an arbitrary element in X and take @(t) = T.(f)
in Lemma 1.

COROLLARY 1. Let {k,;;neN, Ne A} be a family of mon-negative
functions in Lj, satisfying (2) with Fourier series expansions

boi®) ~ 3, Fusi)e  (neN,ned),
where
FuiG) = 27) || Rs®yestdt .
Suppose that lim,,w{lz,.,;(O) — Re(l'c\,,,&(l))} =0 wuniformly in Ned, where

Re(fi,,,;(l)) denotes the real part of k,;(1). Then the family {k,*I; n € N,
NE A} 18 a linear approximation process on X.

PROOF. Let 0 < 6 < m. Then we have
§ - kai)dt < 27(f,,(0) — Re(y (1YL — cos d)
ssitlsw

for all e N and for all xe€ 4. Therefore, the desired assertion follows
from Proposition 1.

REMARK 1. Let {L,; pe N} be a sequence of operators in B[X] and
let f, ge X. In view of the concept of almost convergence of sequences
of real numbers due to Lorentz [7], we say that the sequence {L,(f);
p € N} is almost convergent to g in X if

lim H(l/n) '"glL,( f) — gHX =0 uniformly in m =12, ---

(cf. [6], [8], [10]). Let
(4) Lon=n)"SSL, mn=12, ---).

p=m
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Then the family {L,,.; n€ N, me N} is a linear approximation process
on X if and only if for each fe X, the sequence {L,(f); p€ N} is almost
convergent to f in X.

REMARK 2. Let {k,; p€ N} be a sequence of functions in L}, having
Fourier series expansions

kit ~ 3, k(e (peN),
and let
(5) b = (U0) "3 by (mym=1,2, ).

Applying Proposition 1 and Corollary 1, we have the following:

(i) If the family {k,.; 7€ N, me N} is an approximate identity,
then for each fe X, the sequence {k,*f; pe N} is almost convergent to
fin X.

(ii) If each function k&, is non-negative and if {IE,,(O);peN} and
{l?,,(O) — Re(lg,,(l)); p € N} are almost convergent respectively to one and
zero, then {k,«f; » € N} is almost convergent to f for each fe X.

3. A quantitative theorem. In order to recast Corollary 1 in a
quantitative form we shall need the following additional assumption
upon the family 9~ = {T,;te R}:

(7-1) There exists a constant C,- = 1, independent of f, s and ¢,
such that

(6 ) H Ts(f) - Tt(f)“X = Cﬁ'“ Ts—t(f) - f”A
for all s, te R and for all fe X.

REMARK 8. If 9 = {T,;te R} is a uniformly bounded strongly con-
tinuous group of operators in B[X] (for the fundamentals of semi-group
theory, see [1]), then (6) holds with C. = sup{||T,||sux; t€ R}. If in ad-
dition each T, is isometrie, then ||T.(f) — T.(Nllx = |Te-(f) — fllx-

We now introduce a modulus of continuity of elements in X associ-
ated with the family .7 (cf. [9; p. 204]).

DEFINITION 3. Suppose .7 satisfies (Z-1) and let feX. For 6 =0
we define the modulus of continuity of f associated with .~ by

0(X; f, 0) = sup{||T(f) — fllx; [¢] = 8} .
The modulus of continuity has the following fundamental properties:
LEMMA 2. Suppose 7~ satisfies ((7-1) and let fe X.
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(i) wo(X;f, 0) is a mon-decreasing function of 6 on [0, =) and
w-(X;f, 0)=0.

(ii) w~(X;f, 720) = (1 + 7C)w(X; f, 6) for each 1, 6 = 0.

(iii) limy.p0 (X5 f, 0) = 0.

ProOOF. The parts (i) and (iii) are obvious by the definition and the
strong continuity of the map ¢t — T.(f) at ¢t = 0. Condition (.7-1) yields
that

0~(X;f, 0+ 1) = CroX;f, 0) + 0(X; 1, 7).
Hence by induction on » we have
0A(X;f, n0) = {1 + (n — DC-}o~(X;f, 5) (neN),
from which the part (ii) follows.
LEMMA 3. Let k be a non-negative function in Li, with its Fourier

series expansion

k() ~ 3 k(je .

j=—oc0

Then we have
Wem " |¢kedt < w(1/2)0E0) — Re(RL)}(EO)"
and
(1/27) S’;t%(t)dt < (@2/2){E(0) — Re(k(1))} .
The proof follows by elementary computations using the inequality
2z/r <sinx (0 <z < w/2) and Holder’s inequality (ef. [2; Lemma 1.5.7]).

LEMMA 4. Suppose that .7~ satisfies (7-1). Let k be a non-negative
function in L., and feX. Then we have

(1) ks f — kO)F|x A X
=< (k)0 (X; £, DIEO)}" + (wC/6){(1/2)(k(0) — Re(k(1))}"]

for each 6 > 0.
PROOF. We have

b f — BOF = (12m)|” HTS) — fldt,
which implies

T

o £ = BOFlx = (1/2m)| ROUT() = fllzdt
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= aem | ko (X 7, bt .
Therefore it follows from the part (ii) of Lemma 2 that
orf = EOfllx < 0-(X; f, B)1/2m) [ 0+ (tIC/oNkwa

which implies (7) by Lemma 3. The proof of the lemma is complete.
Given a family {L, ;; ne€ N, ne 4} of operators in B[X], let

WAL — flllx = sup{[| L, .(f) — fllxsined}  (meN, feX).

Note that {L,;} is a linear approximation process on X if and only if

lim,_«|||4.(f) — flllx = 0 for every fe X.
We are now in a position to recast Corollary 1 in a quantitative
form as follows.

THEOREM 1. Let{k,,;ne N, e 4} be a family of non-negative func-
ttons in L. such that for each ne N

(8) a, = sup{(k,..(0)"*; v e 4)

18 finite. Suppose that 7 = {T,;tc R} satisfies (-1). Then for the
family {k, xI; ne N, » € A} we have

(9) A = Flllx = 1Fllx7a + {an + (1/2)72C 5 },0 (X f, B2)
Jfor all ne N and for all fe X, where

(10) B = sup{[k, ,(0) — Re(k, (1))]"*; € 4)

and

(11) v, = sup{| %, 200) — 1|; v e 4} .

In particular, if IEM(O) =1 for all ne N and for all e, then (9)
reduces to

(12) NA.(f) = flllx = {1 + 1/2)"*7C}o-(X; f, Ba) -

Proor. Taking k¥ =k, ; in Lemma 4, we have
18) kit f — kup(0)fllx < afa, + 1/2)7C(B.[0)}0 (X £, 0) -
If B, >0, take 6 = B3, in (13). Then the inequality
A8 kwsrf — Fllx S Vot f = FusOf |l + 1502(0) = 11 [I£1lx
implies (9). If B, =0, then (13) reduces to

[kui#f — kui(Ofllx = 20X f, 9) -

Letting 6 —» 0+, we have k, xf = l?.,,,z(O)f by (iii) of Lemma 2. Thus
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(14) reduces to
owitf = Flle = 1£aa(0) — 1] [|£]x ,
which implies (9), and the proof of the theorem is complete.

In connection with even functions we shall need the following con-
dition (.7-2) instead of (7-1):

(Z-2) For every s, t, ue R and for every fe X,
(15) I Tof) + Ti(f) — 2Tu(llx = | Te-ulf) + Te=u(f) — 2f|lx -

REMARK 4. (.7-2) already implies (<-1) with C. = 1;

IT(f) = TdNlx = [IT-if) = fllx ~ (feX, s, teR).

If & ={T,;teR} is a strongly continuous group of isometric operators
in B[X], then (7-2) always holds.

DEFINITION 4. Suppose .& satisfies (-2) and let fe X. For 6=0
we define the generalized modulus of continuity of f associated with .7~
by

03 (X; f, 0) = sup{||T:(f) + T-.(f) — 2fllx; 0 = ¢t = 8} .

LEMMA 5. Suppose .7 satisfies (9-2) and let fe X.

(i) w*(X;f, 6) is a mnon-decreasing function of 6 on [0, ) and
0% (X; f, 0)=0.

(i) wZ(X;f, 79) = 1 + N*e*(X; f, 6) for each 7, 6 = 0.

(iii) w*(X; f, 0) = 2w (X; f, 6) for each 6 = 0. Thus in particular,
lim; .+ @2%(X; f, ) = 0.

PROOF. The parts (i) and (iii) are obvious by definition and the part
(iii) of Lemma 2. Condition (7-2) yields that w*(X; f, nd) =< n*wi(X;
f, 60 (neN), from which the part (ii) follows.

LEMMA 6. Suppose that o~ satisfies (9-2). Let k be a non-nega-
tive, even function in Li,, and f€ X. Then we have

16)  |lk+f — k(O)fx = 03(X; £, D(@/4)(k(0) — AN/
+ (/2)(R(0){(k(0) + 27(k(0) — k(1))**/0)]

for each 6 > 0.
PrROOF. Since k is even and positive, we have

ke f = BOF = Q20| kO(TF) + T-(5) — 2fdt

and so
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Vi = EOFIx < W2 kI TLF) + T-f) = 2f 1t
= (1/2m) | kO3 £, tydt .
Therefore it follows from the part (ii) of Lemma 5 that
[ef — BOFILe < 2R (X £, 0) | + torkedt

which implies (16) by Lemma 3.

THEOREM 2. Let {k,; n€ N, M€ A} be a family of non-negative, even
functions in L. such that for each me N, a, defined by (8) is finite.
Suppose that 7 = {T,; te R} satisfies (7-2). Then for the family
{k.q*I; ne N, ne€ 4} we have

A7) AL — flllx = I llx7n + Q2072 + 2,27 + a.)}@3 (X5 f, Ba)

for all ne N and for all fe X, where a,, B, and v, areAnumbers defined
by (8), (10) and (11), respectively. In particular, if k,(0) =1 for all
ne N and for all N A, then (17) reduces to

(18) IA.(F) — flllx = A/2)A + 2771 @2 (X; 1, Ba) -

ProoF. In view of Lemma 6 the proof is essentially similar to that
of Theorem 1, and so we omit the details.

COROLLARY 2. Let {k,; pe N} be a sequence of functions in L., and
let {k,m; neN, meN} be the family of functions defined by (5) such
that for each me N, a, defined by (8) is finite. Then the following
statements hold:

(i) Suppose that 7~ = {T,; t € R} satisfies (7-1) and each k, is
non-negative. Then for the family {k,.*I; ne N, me N}, (9) holds for
all ne N and for all feX. If in addition 13,,(0) =1 for each pe N,
then (12) holds for all ne N and for all fe X.

(ii) Suppose that 7~ = {T,; tc R} satisfies (7-2) and each k, is
non-negative and even. Then for the family {k,.*I; ne N, me N}, (17)
holds for all ne N and for all fe X. If in addition IE,,(O) =1 for each
P €N, then (18) holds for all ne N and for all fe X.

REMARK 5. Let {k,; pe N} be a sequence of non-negative, even
functions in L}, with Fourier series expansions

key(t) ~1 + 2 2"’, a,(jecos it (peN).

Suppose that 7~ = {T,; t € R} satisfies (.7-2) and there exists a constant
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C > 0 such that 1 — a,(1) < C/p for all pe N. Then the latter statement
of the part (ii) of Corollary 2 implies that

19) |14, — Flllx = A/2)A + 27 2)03(X; £, {C( + log(n + 1)/n})

for all » e N and for all fe X, where v is Euler’s constant:
v = lim (f, a/5 — 1ogp> = 0.5772156649015328- - - .
- Jj=1

We mention some conerete examples of non-negative, even funections
k,, peN.

(1°) k,(t) =1+ 2372, {1 — j/(p + 1)}cos jt, the Fejér kernel (in this
case, C =1).

@2°) k@) =1+237,{®!)/((p— 5! (p+ 5))}ecos jt, the de La Vallée
Poussin kernel (in this case, C = 1).

(8°) k,(t) = {3/(p(2p* + 1))H(sin(pt/2))/sin(t/2)}*, the Jackson kernel (in
this case, C = 3/2).

4°) k() =14 2372, a,(j)cos jt with

a,(9) = {(» — j + 3)sin((s + z/(p + 2))
— (p — j + Dsin((§ — V)z/(p + 2))H2(p + 2)sin(z/(p + 2))}*,

the Fejér-Korovkin kernel (in this case, C = &, cf. [2; pp. 79-80]).

DEFINITION 5. Suppose .7 = {T,; t € R} satisfies (Z-1). An element
fe X is said to satisfy the Lipschitz condition with constant M and ex-
ponent a, or to belong to the class Lip(X; @)y, M >0, a > 0, if w_(X;
f, 0) < Mo~ for all 6 = 0. Further, we let Lip(X; a) = U{Lip-(X; @)u;
M > 0}.

DEFINITION 6. Suppose .9~ = {T,; t € R} satisfies (7-2). An element
fe X is said to satisfy the generalized Lipschitz condition with constant
M and exponent «, or to belong to the class Lip*(X; a)y, M > 0, a>0,
if w*(X; f, 6) < Mo* for all 6 =0. Further, we let Lip*(X; a) =
U{Lip%(X; a)y; M > 0}.

REMARK 6. Under the hypotheses of Theorem 1, if f belongs to
Lip-(X; a),, then (12) implies that

WAL — flllx = M{1 + (1/2)"*7C}3;

for all ne N. Under the hypotheses of Theorem 2, if f belongs to
Lip*(X; a),, then (18) implies that

AL = flilxe = (M/2)1 + 27"7)35
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for all neN. In particular under the hypotheses of Remark 5, if f
belongs to Lip2(X; a),, then (19) implies that

NA.(f) — flilx = (M/2)A + 272)C(v + log(n + 1))/n}**
for all n e N.

THEOREM 3. Let .9 = {T,; te R} be a uniformly bounded strongly
continuous group of operators inm B[X], having G as its infinitesimal
generator with domain D(G) and M as its bound. Let {k,;; ne N, ne A}
be a family of mom-negative, even functions in L. such that for each
neN, a, defined by (8) is finite. Then for the family {k,.=I; n€ N,
N € A} we have

20) A — flllx = [Ifllx7a + 277Gl x0ta B
+ 27x{l + M2~ *m)}B.@~(X; G(f), Ba)

for all ne N and for all feD(G), where «,, B, and 7, areAnumbe'rs
defined by (8), (10) and (11), respectively. In particular, if k,(0) =1
for all ne N and for all xne A4, then (20) reduces to

@D A = flllx = 2777]|G(N)|| 2B
+ 27"7{1 + M@~ ")} B,0(X; G(f), Ba) -

ProoF. Let k& be a non-negative, even function in L}, and fe D(G).
Then we have

(22)  ||kxf — ﬁ(())f”X < 2‘1/2E{]2(0)(E(0) - i‘;(l))}lmllG(f)”X R
+ 277 {6(0) — R(OYL + M(@"x/3){k(0)
— B} o (X; G(f), 8)

for each 6 > 0. Indeed,
ke — kO)f = (/2w {| RO = pat + | kT — Pt}
=g+h,

say. Since
T = f = | TG ¢>0),
we have
lolle = { @2z | ekt LG
+ aem | o[ 1 TG — 60 1 dulde
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The second integral is, by virtue of the part (ii) of Lemma 2, major-
ized by

wzm | kol @ + Mpwe. X G, oyl
= . (X; G(f), 5)(1/27) S”tk(t){l + (M)28)t)dt .

In a similar manner, we obtain the same estimate for |/ 4|y, and con-
sequently

ket = ROFIx = {wm| ekt [1G(7)
+ |:(1/7z)S:tlc(t){1 + (M/25)t)dt ]w,(X; G(f), 5) .

This, in virtue of Lemma 3, proves the desired estimate (22).
Taking %k = k,, in (22), we finish the proof exactly as that of
Theorem 1.

REMARK 7. Let {k,; pe N} and .9~ = {T,; t€ R} be as in Remark 5
and Theorem 3, respectively. Then (21) reduces to

23) AN — flllx = 27x||G(H)||x{C(v + log(n + 1))/n}"
+ 27 {l + M@2~**m){C(y + log(n + 1))/n}"*
X 0 A(X; f, {C(v + log(n + 1))/n}"?)

for all ne N and for all fe D(G). In particular, if fe D(G) belongs to
Lip(X; @), then (23) implies that |[|A.(f) — flllx = 27Vx([G(N)||AC(y +
log(n + 1))/n}”* + 272z K{1 + M2**m)}{C(v + log(n + 1))/n}*+=* for all
neN.

4, Multiplier operators. In this section we would like to discuss
certain families {T,; ¢t € R} of multiplier operators. Let Z denote the set
of all integers, and let {P;};., be a sequence of projections in B[X]
satisfying the following properties:

(i) The projections P; are mutually orthogonal, i.e., for all j,me Z
there holds P;P, = 0;nPn, 0;. being Kronecker’s symbol.

(ii) The sequence {P;} is total, i.e., P;(f) = 0 for all je Z implies
f=0.

(iii) The sequence {P;} is fundamental, i.e., the linear subspace of
X spanned by the ranges P;X), jeZ, is dense in X. Then for each
fe X the series >3 P;,(f) is called the (formal) Fourier series expan-
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sion of f (with respect to {P;}), and the following notation is used (ecf.

[3):
(24) f~ 5 PAS).

Let & denote the set of all sequences a = {a,};., of scalars. An ele-
ment a € & is called a multiplier sequence for X (corresponding to {P;})
if for each fe X there exists an element f, € X such that a;P;(f) = P;(f.)
for all je Z, thus

(25) fur 3 aPAS) .

Note that f, is uniquely determined by f, since {P;} is total and so the
map f— f, defines a bounded linear operator of X into itself by the
closed graph theorem. An element 7 e B[X] is called a multiplier oper-
ator on X if it permits an expansion of type (25).

REMARK 8. The expansion (24) represents a slight generalization of
the concept of Fourier series in a Banach space X associated with a
fundamental, total, biorthogonal system {f;, f¥};... Here {fi};c, and
{f¥};e, are sequences of elements in X and X* (the dual space of X),
respectively, such that the linear subspace of X spanned by {f;} is dense
in X (fundamental), f¥(f) =0 for all je Z implies f= 0 (total), and
FH(fw) = 0;m for all j, me Z (biorthogonal). Then (24) and (25) read

Fe 3 50, T~ 3 af 50,

respectively.

The following proposition shows that if .7~ = {T,; t € R} is generated
via multiplier operators on X with associated multiplier sequences of
exponential type, then every convolution operator kx*I with ke L;. is a
multiplier operator on X.

PROPOSITION 2. Let 7 = {T,; tc R} be a family of operators in
B[X] such that sup{||T.||zix1; t € R} is finite and

(26) T(f)~ 3 exp@tP(f) (R, feX),

where a = {a;} is a sequence in &~ Then 7 is a strongly continuous
group of operators in B[X], and with each k€ L} the convolution oper-
ator kI on X is a multiplier operator on X with associated multiplier

sequence ¢ = {¢;};.z €S defined by
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¢; = (1/27) S_ k(texplat)dt, jeZ,
thus
@0 kef ~ 3 e:Pf)

for every feX. Furthermore, the infinitesimal generator G of .~ with
domain D(G) satisfies

(28) G(f) ~ 5 a;Pf)

for all fe D(G). If, furthermore, with the nth Cesdro mean operator
o, defined by

o= 3 (L= ljl/tn + D}P;,

the sequence {0,} is uniformly bounded, i.e.,

(29) Sup{llan”B[X]; n = 0, 1; 2) °c '} < oo,
then
(30) D(@G) = {feX; g~ .gmajP,-(f) for some geX} .

ProoOF. Since {P;} is total, the expansion (26) implies that .7~ forms
a group of operators in B[X]. We have

lim |1T (k) — Ty(h)||x = lim lexp(a;t) — exp(a;s)| ||k]lx =0

for every he Pi(X), je Z, and so the map ¢ — T,(f) is strongly continu-
ous for each fe X, since {P;} is fundamental and .7~ is uniformly bound-
ed. Let ke Ll and fe X. Then we have, for all je Z,

Py f) = (12| KOPATA = 27| KOexp(a )Pt = e;P(f)

which implies (27), and so the first assertion of the proposition is

proved.
Suppose now that f belongs to D(G). Then for each jeZ we

have

PAG(f) = lim (UOPATAS) — £) = lim (1/){exp(at) — YPAS) = a;P(f) ,

which implies (28), and therefore D(G) is contained in the set on the
right-hand side of (80). Suppose next that (29) is satisfied. Let f be
an element of X such that
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g~ jgw a;P;(f)

for some ge X. Then o,(9) = G(o,(f)) for all ne N. Since {P;} is fun-
damental, (29) implies that lim,.. | c,(h) — k|| = 0 whenever % belongs
to X. Thus we have

lim [|o,() = fllx =0 and lim [G(@,(f) — gl =0,

which imply that fe D(G) and G(f) = g, since G is a closed operator.
This proves (30), and the proof of the proposition is complete.

REMARK 9. Condition (29) is a standard one in the study of multi-
plier sequences and summation processes of Fourier series expansions in
Banach spaces (cf. [3]). For the particular sequence {a;};c; = {—1%5};cz,
(27) reduces to

bef ~ 3 KGPL) -

In view of Remarks 3 and 4 and Proposition 2, we have the follow-
ing theorem in which the convolution operators in question have Fourier
series expansions of the form (27).

THEOREM 4. Let 9 = {T,; tc R} be a family of multiplier operators
on X with Fourier series expamnsions (26). Then the following state-
ments hold.

(i) Let {k,:; mneN, ned} be as in Theorem 1. Suppose that
M = sup{||T.||six1; t€ R} ts finite. Then for all ne N, ned and for all
feX

(8D) knitf ~ 3 e DPAS)

where
euild) = 120 | o (Oexpla it
and furthermore, (9) holds with C, = M.

(ii) Let {k,,; meN, ned} be as in Theorem 2. Suppose that
1Tz = l|fllx for all te R and for all feX. Then for all meN,
NE A and for all feX, (31) holds and furthermore, (17) holds.

(iii) Let {k,; ne N, ne A} be as in Theorem 3. Suppose that M =
sup{|| T.l|zix3; t € R} s finite. Then for every me N, n€ A and for every
fe X, (81) holds and furthermore, (20) holds.
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5. Homogeneous Banach subspaces of L}.. In this section we apply
the results obtained in the preceding section to homogeneous Banach
subspaces of Ll.. Let X be a linear subspace of Lj.. X is called a
homogeneous Banach subspace of L, if it is a Banach space with norm
-y which satisfies the following properties (cf. [5; p. 14], [9; p. 206]):

(H-1) There exists a constant C > 0 such that |f||, < C||f|lx for all
feX.

(H-2) For each feX and te R, T,f) belongs to X and ||T.(f)|lx =
I|fllx, where T, is the translation operator, i.e.,

T(f)u)=flu—1t), uek.
(H-38) For each fe X, the map t — T,(f) is a continuous X-valued

function on R.

Examples of homogeneous Banach subspaces of Li. are the follow-
ing:

(1°) L2, 1< p < o (note that (H-3) is not satisfied when X = L).

2°) Ci.

(8°) C{® = the linear subspace of C,. of all n-times continuously
differentiable functions f with norm

£l = 3% QOIS -

(4°) AC,. = the linear subspace of L. of all 2x-periodic absolutely

continuous functions f with norm
1 llacoe = I1F N+ 1F]]s -

(5°) 0< a <1, lipy. = the linear subspace of C,. consisting of all

functions f for which
F(f) = sup{|f(t + k) — f@Ol/|h|*; h # 0, t e R} < o
and
1}}3)1 (sup{|f(t + k) — fFDI/|k]*; teR}) =0,

with norm

£ 1hwg, = Iflle + F(F)

(6°) D(L) = the domain in L}, of a closed operator L with range
in L}, such that for each te R, T, commutes with L, with norm
o = £l + LGOI -

Now let X be a homogeneous Banach subspace of L. with norm
II'llx- Recall that .7~ = {T; t € R} is the family of translation operators.
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Therefore, we have
@ (X; £, 8) = sup{|[f(- —t) — f(*)|lx; [t] = 6}

and
03 (X; £, 0) = sup{[|f(- +O)+f(- —t) — 2f()|l;; 0 =t = 8},
respectively.
Let ke L}, and fe X. Then
(32) e+ ) = (V/2m)|" k(O)fw — e

Defining the sequence {P;};., by P;(f)(t) = fA(j)e""‘, it is obvious that {P;}
is a total, fundamental sequence of mutually orthogonal projections in
B[X] since lim, . ||6,(9) — g||x = 0, whenever g belongs to X by virtue
of Theorems 2.11 and 2.12 of [5; Chapter I]. Furthermore, we have

T{f)~ 3 ePAf), teR
and
kef ~ 35 KGOP) -

Consequently, under the above setting all the results obtained in
the preceding sections are applicable to homogeneous Banach subspaces
X. In particular, the result corresponding to the part (ii) of Corollary
2 extends Theorem 7 of Mohapatra [8] for the real Banach space C,. to
the more general homogeneous Banach subspaces of L}. and yields the
better estimate of the degree of almost convergence.

Finally, for homogeneous Banach subspaces X of L. we recast
Corollary 1 in connection with the test function class {u,, u,, u,}, where

uy(t) = 1, u,(t) = cost and wu,(t) = sint for all teR.

THEOREM 5. Let {k,,; neN, ned} be a family of mon-negative
functions in Li.. Suppose that for j=1, 2 and for each fe X, u;f
belongs to X and ||u;fllx =< ||fllx, and ||wl|lx = 1. Then the following

three statements are equivalent:
(i) For every fe X,

lim ||k, f — fllx =0 wuniformly in Ned;

(ii) For j=0, 1, 2,
(33) lim ||k, *u; — u;llx = 0 wuniformly in ned;

(iii) lim %, ;(0) = 1 uniformly in e A
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and
(34) lim {k, ,(0) — Re(k, (1))} = 0 wuniformly in ned .

Proor. It is clear that (i) implies (ii) since u,, u, and u, belong to
X. Suppose that (ii) is valid. In view of the general formula (32) we
have

{IEM.Z(O) - Re(lzn,l(l))}uo = kn,l*uo - ulkn,l*ul - u2kn,2*u2 ’
which implies
]E,,,X(O) - Re(i"\n,x(l)) = ([l axuo — Ul x + W Eon vy — Uy |lx + || axus — Ul

since ||u.fllx < Ifllx, l|%fllx < |fllx whenever f belongs to X, and
lluo]]y = 1. Thus letting » tend to infinity in the above inequality, we
have (34). For j = 0, (33) is equivalent to

lim IEM(O) =1 uniformly in e 4,

n—ro00

and therefore (iii) holds. It follows from Corollary 1 that (iii) implies
(i), and the theorem is proved.

We close with the following remark.

REMARK 10. The equivalence of (i) and (ii) in Theorem 5 extends
Theorem 5 of King and Swetits [6] for sequences of positive convolution
integral operators on C,. to the more general homogeneous Banach sub-
spaces of Li..
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