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Introduction. The problem of the lifting of modular cusp forms has
been discussed by several authors (cf. [3] and [12]).

Recently Oda [10] constructed, from modular cusp forms of one vari-
able, modular cusp forms associated with indefinite quadratic forms with
signature (2, n — 2).

In this paper, we shall consider the case n — 5 and we shall treat
the relations between the Hecke operators of the space of modular
forms of one variable and those of the space of Siegel modular forms
of degree two. The preparatory section is § 1. In § 2, by using trans-
formation formulas of theta series obtained by Shintani [13], we show
the existence of a linear mapping Ψ of @2A._1(JΓ0(4)) into Sk(Γ£\2)), where
@2fc-i(Λ)(4)) (resp. Sk(Γ?\2))) denotes the space of cusp forms of weight
(2k - l)/2 (resp. of weight k with respect to Γ«S2)(2)). In § 3, by a
method similar to that of Niwa [8], we determine explicitly Fourier
coefficients of ¥(f) at infinity, where /6@2fc_1(Γ0(4)). In the last section,
applying the results in § 3, we show that Ψ(f) is a common eigen-func-
tion of Hecke operators on Sk(Γ^(2))9 if / is a common eigen-function
of Hecke operators on @2/b-i(Λ>(4)). Furthermore, we give a relation be-
tween Andrianov's zeta function associated with Ψ{f) and Shimura's
one associated with /.

We note that our results are closely related with Maa/3-Andrianov's
results (cf. [2], [4], [5] and [6]).

The author is indebted to the referee suggesting some revisions of
the original version of this paper.

1. Notations and preliminaries. We denote, as usual, by Z, Q, R
and C the ring of rational integers, the rational number field, the real
number field and the complex number field. For a ring A, we denote
by A£ the set of all nxm matrices with entries in A, and denote
Al (resp. Al) by An (resp. Mn(A)). For zeC, we put φ ] = exp(2ττώ)
with i = V^Λ. and define i/Ίs~ = zm so that -ττ/2 < arg(z1/2) ^ τr/2. Fur-
ther we put zm = {V~z)h for every keZ. This section is devoted to
summarizing several fundamental facts which we need later.
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Let Sp(n9 R) be the real symplectic group of degree n9 i.e.,

0 EnSp(n, R) = {Me M2n(R) | *MJnM = Jn) , where Jn = x

and tM denotes the transpose of M. Let &n be the complex Siegel
upper half plane of degree n, i.e., Qn = {Z = X + %Y \ X9 Ye Mn(R)9
ιZ = Z and Y > 0}. Define an action of Sp(n, R) on φ n by

/A B\
Z > M(Z) = (AZ + B)(CZ + D)-1 for all Λf = 6 Sp(n, R)

\C Όj

and for all Ze$n. Denote by Kn the group of stabilizers at iEne$n9

i.e., Kn = {MeSp(nf R)\M(iEn) = ij&n}. It is well-known that Kn =
Sp(n9 R) Π O(2ri), where O(2n) denotes the orthogonal group. Clearly
Sp(n9 Z) — Sp(n, R) Π M2n(Z) is an arithmetic discrete subgroup of
Sp(n9 JB). For each positive integer N9 put

Γi>n)(N) = Jί ) G Sp(w, Z)|C Ξ 0 (mod N)\ and Γ0(iV) - Γίυ(2SΓ) .

We call a holomorphic function F on φw a Siegel modular cusp form of
weight k with respect to Γ^n)(N)9 if the following conditions (i) and (ii)
are satisfied:

( i ) For all M=(£ ^eΓ^n)(N) and all Ze$n, F(M(Z)) = det(CZ+

D)kF(Z).
(ii) \F(Z)\(άet(lm(Z)))m is bounded on Qn.

We denote by Sk(Γ^n)(N)) the space of Siegel modular cusp forms of
weight k with respect to Γ!>n)(N). Every FeSk(Γ^](N)) has the Fourier
expansion F(Z) = ^T a(T)e[tr(TZ)] at infinity, where T runs over the
semi-integral positive definite matrices.

Let Q be a non-degenerate symmetric nxn matrix. We denote by
O(Q) (resp. O(Q)0) the real orthogonal group (resp. the connected com-
ponent of the unity O(Q)) for Q, i.e., O(Q) = {geGLn(R)\*gQg = Q}. Now
we treat

/ 0 - 1 0 0 0 l

- 1 0 0 0 0

0 0 0 - 1 0

0 0 - 1 0 0

0 0 0 0 - 1 /

with signature (2, 3). It is well-known that O(Q)0 is isomorphic to
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Sp(2, R)j{±Ex) as a Lie group. We shall explicitly construct an iso-
morphism of Sp(2, R)/{±E4} onto O(Q\.

First we summarize the fundamental facts on tensor algebras. Let
OR4)* be the dual space of R\ Let {el9 e2f e3, e±} be the dual base of {elf

eif β8, e4], where e, = '(0, , 0, 1, 0, -, 0) (1 £ i ^ 4). Put ®2GR4)* =
{/|/ is a bilinear mapping of R'xR' into Λ} and Λ2(i24)* = {/€®2(/?4)*|
/(X, Γ) = -f(Y,X) for all X, YeR*}. We define a mapping Φ of
SL4(i?) into End*(A2(JF)*) by (Φ(g)f)(X, Y) = f(gX, gY) for all g e SL^R),
all / € Λ W * and all X, FeΛ 4 . We note that Φ(gg') = Φ{g')Φ(g) for all
#, gr' 6 SLJίR). It can be easily seen that

( * ) Sp(2, R) = {ge SL,(R) \ ΦW&Λe, + β 2 M) - β.Λ^ + e8AeJ .

Define an inner product <α, β}' (α, ^ e Λ W ) by aAβ =
{a, βYeΛ/\e2f\ezAe,. Set V= {a e A2(Λ4)* | <α, eίΛe8 + e2Aβ4> = 0}. We see
that F = i?(/i, , /5), where /x = eΛ/\e^f2 = e2Λe?, f3 = eiΛe2, /4 = e3Λβ4

and /B = iβ1/\ez — β2Λe4)/τ/ 2 . Through the mapping of F onto Jϊ5 given
by a = Σ?=i ^i/i -+% = *(a?i, ̂ 2, a?3, »*, »δ)»

 w e c a n identify F with Rδ. From
(*) and the above identification we get a mapping Φ' — Φ \ Sp(29 R) of
Sp(2, R) into GLδ(R), where Φ|Sp(2, Λ) denotes the restriction of Φ to
Sp(2, R). Here it should be noted that (a, β)' = '»( —Q)i/. Now we de-
fine (φti(g))i*<,j** by '̂(flr)/, = ΣJ=i ΦjMfj d ^ i ^ 5) for every </ G Sp(2, Λ).
The following lemma can be easily checked.

LEMMA 1.1. Let g — (gtj) be an element of Sp(2, R). Then it holds
that

(1) φij(g) belongs to Zlg^]^^^ for all ί and j such that 1 <̂
h 3 ^ 4, _

(2) φδj(g) belongs to V 2 Zlg^]^^^ for all j such that 1 <̂  j ^ 4,
(3) φa(g) belongs to V 2 "^[ffj^^y^e for all ί such that 1 <̂  i ^ 4,
( 4 ) ω̂(flf) belongs to Z[gi3^tti^9

where Z[gi5\^ί)ά^ denotes the polynomial ring over Z. Moreover φiό{g)
satisfy the relations that φ3j(g) = 0 (mod N) for all j — 1, 2 and 4 and
V 2 φZ6(g) ΞΞ 0 (mod N) if g31, gS2, gA1 and g42 belong to NZ and φ33(g) =

Set /o(flr) = Φ\g)~\ Then we get the following lemma easily.

LEMMA 1.2. Under the above notations, p gives an isomorphism of
the Lie group Sp(2, R)/{±Ei\ onto O(Q)0; moreover, it satisfies the prop-
erty p(K2)^0(Eδ).

2. Weil representation and theta series. In the following, we as-



68 H. KOJIMA

sume that k is even. In this section, we shall construct Siegel modular
cusp forms of degree two from modular cusp forms of half integral
weight. For this purpose, we need to derive transformation formulas
of certain theta series (cf. [13]). Let Q be as in § 1. The Weil repre-
sentation τ(*, Q) of SL2(R) is defined by

, Q)f)(x) =
|c|-5/2|det(Q)|1/2JΛ5 e[(a(x, x) - 2(x, y) + d(y, y»/2c]f(y)dy

if c Φ 0 ,

\a\δ/2e[ab(x,x)/2]f(ax) if c = 0

for every feL\R5) and for every

* = ( α ^ e S L 2 ( Λ ) ,

where (x, y) — ιxQy. The group GLδ(R) acts on L\R5) as follows:
T/(aO = |det(r) |- 1 / 2 /(r-^) for all TeGLb(R) and for all feL\Rδ). Put

fk(x) = <x, f ( - i , i, 1, - 1 , 0)> f cexp(-τrΣU^) for all α G/ί5. Then/,
satisfies the equalities

(2.1) p(fc)fk = (det(A - #£))fe/fe for all Λ: =

and

/ cos θ sin
ε(k(θ))y(k(θ), Q)fk — exp( — iθ)-{2k-1)/2fk , where k(θ) =

\ — sinί

and e(Λ(̂ )) is the symbol in [13]. Set Lλ = {*(xίf x2t VYx^eZ} and
L(N) = {f(α?lf a?2, Nx3, xif V~2xδ) \ xt e Z). We put

Let XQ be the trivial character modulo 2. We can check that p satisfies
the relations

(2.2) p(M)L(l) = 1,(1) , ρ(M)L(2) = L(2) and ^(ikf)^ Ξ= ̂  (mod L(2))

for all MeΓ?\2) and for all xeL(l) .

Define a theta series θk(z9 g) on ^ xxSp(2, R) by

Z9 Q))fk(h), where σ z =
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z — u + ίv and h = '(• , hZf •) runs over L(l). By virtue of (2.1) and
[13, Prop. 1.6], we have the following.

LEMMA 2.1. The function Θk(z, g) satisfies the following properties:

( i ) Θk(σ(z\ g) = j{σ, z)^Θk(z, g) for all * = (J J ) e Λ(4) and for

(ii) Θk(z, ygtc) = det(A — Bi)kΘk(z, g) for all jeΓ^2)(2) and for all

K = ( )eK2r where εd and ( —) are the symbols in [12].
\ — B A' \d /
Let @2A:-i(̂ o(4)) be the space of modular cusp forms of weight

(2& - l)/2 with respect to Γ0(4) (cf. [12]). The property (i) of Lemma
2.1 shows that, for a function /e@2A;_1(Γ0(4)), the integral

V v{2k~1)/2f\[τ^2k-1{z)Θk{z, g)v~2dudv
JDQU)

is well-defined with z — u + ίv9 where A(4) denotes the fundamental
domain for Γ0(4), fllτ^-^z) = (-2ώ)-(2fc-1)/2/(-l/4^) and ®k(z, g) means
the complex conjugate of θk(z, g). Now we define a function Ψ(f) on
€>2 by

F(/)(Z) = J(g, iE2f \ v^-1

JZ?0(4)

with Z = g(iE2), where

J(g, iE2) = det(Ci + D) with ^ - Γ ^J e Sp(2, Λ) .

By virtue of Lemma 2.1 (ii), we have

Ψ(f)(M(Z)) = (άet(CZ + D)fΨ(f)(Z) for every Λf =

Since Ψ(f) is holomorphic on § 2, we see that Ψ(f) is a Siegel modular
form with respect to Γt?\2) (cf. [10] and [11]).

3. Explicit calculation of the Fourier coefficients of Ψ(f). For a
positive matrix YeM2(R)f set g = g(Y) and Y = yYλ with det(Fx) = 1
and ?/ > 0, where

_ /i/Y o
\ o Λ/Ύ'

For a non-negative integer ε, we define three theta series by

(3.1) θlε(z; Y,) = v(-ε+2)/2 Σ Hε(l/27Γi; ( ^ — ys, - l / 2
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*£z; Yγ) = v^

l'QJ' + ivΨ

and

(3.2) Θ2,ε(z; y) = v{~ε+1)/2 Σ Σ X0(m)exv(-2πimnu - πv(y2m2 + y~2n2))

x He(λ/2πv (my — ny~1)) ,

where z = u + iv, Lί = {y e R31 'yQ.x e Z for all x e LJ, H.(x) = ( - l ) ε

y\ V
VYy.y, l + 2yt

and ί (resp. V) runs over ^ (resp. 2L*). By the definition of 7(*, Q),
we have

-y\

where r0 = '(—i, i, 1, — 1, 0). On the other hand, a direct calculation
yields Φ'(ff)-V0 = y~ι X-yy^i, yyti, 1, -y\ -V~2yy2i) and

Φ'(g*) =

1

\-

Noting that (* — iy)k

yl

-vl
0

0

1/2 2/i2/

= Σf=o

-yl

0

0

, V~2

kcε(-iy
k

y*y*

Hk-e

0

0

t
0

0

0

0

0

ΪΓ

0

(x)H,(y),

- V 2 y&

V~2yώ

0
2 0

1 + 2&

we obtain

il

(3.3) Θk(z, g) -

The Poisson summation formula gives a different expression of Θ2,e (cff

[8, p. 152]):

2,ε\z> y) — v Δπ t y v

which shows

(3.4) θU-Vte; V) = 2(1/ 2 πiyzv-'Yy Σ %0(^)^ε Σ J(% «)£A;(7(2), w, y) ,

where J ^ P Λ «j = (c» + d), k(z, n, y) = exp( — πy2n2/Av) and 7 runs over
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/\o\Γ0(4).

Next we derive several transformation formulas of θlt£(z; Fx). For
every x e Rd, put

gε(x) = H,Q/2π(yu -yZf -V /

Here we note that VR{Y^ belongs to O(QX). By a direct computation,
we obtain

gt{VRm~lx) = HjV2π(xx - x2))exv(-π(xl + x\ + α?!))

with x — \xly x2y a?8). This equality shows that

e(k(θ))7(k(θ), Qdg. = exp(-iθ)-«-»'*ga ,

where τ(*, Qi) is the Weil representation associated with Qt. Therefore,
by virtue of [13, Prop. 1.6], we obtain the following lemma.

LEMMA 3.1. Let σ be an element of ΓQ(4). Then

and

Every fe&2k-i(ΓΌ(4:)) has the Fourier expansion f(z) = ΣΓ=i a(n)e[nz]
at oo. For every semi-integral matrix T = (. ,o 1 ) > 0 with integers
t19 t2 and t8, we set T(tlf t2, ί8) = Γ, e(T) = g.c.m. («„ ί2, t8) and iV(Γ) =
4det(Γ). Define Cf(T) by C/(Γ) = Σ !Um)mh'1a{N{T)lmt) (Γ>0), where
m runs over all positive integers with m\e(T).

THEOREM 1. Let f be an element of β2fc_1(Γ0(4)). Suppose k > 5 is
even. Then Ψ(f) has the Fourier expansion

Ψ(f)(Z) = cΣ*Cf(T)e[tτ(TZ)]
T

at infinity, where c Φ 0 is a constant not depending upon f and T
runs over semi-integral matrices T — T(t19 t29 ί3) > 0.

PROOF. Since Ψ{f) is a Siegel modular form with respect to Γ<ί2)(2),
we see that Ψ(f) has the Fourier expansion Ψ(f)(Z) = Σiτ^C(T)e[tr(TZ)]
at infinity. Set Z = %Y with Y > 0. Then

( * ) Ψ{f){iY) = Σ C(Γ)exp(-2πtr(TΓ)) .

On the other hand, we have

ίVΎ oS _ / v i υ \\
f\ [τάn-MθkU Λ / ^ J v(ί*-1)/2v-2dwdv .

w* \ \ 0 vF"1//
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The formulas (3.3), (3.4) and Lemma 3.1 imply that

(**) Ψ(f)(ίY) = y~kVΎΈ-k Σ kCε(-iy\ /I fa]*-^,/*; ^O^-sO*; v)
£=0 JD0(4)

\
JD0(4)

x

Σ *C.(-i) ί /|[rJι,-1(-l/4z)g1..(-l/42!; F.)
ε=0 Jz>0(4)

£=o JDO(4)

x Λ(7(β), m

= e" Σ lUw>)mh-1 Σ α(ΛΓ(Γ))exp(-2πm|tr(ΓF)|)
m=l 2'>0

= c'"ΣC /(Γ)βxp(-2π|tr(ΓF)|)

= c'"ΣC /(T)exp(-2τrtr(T'F))

where 7 runs over Γoo\Γ0(4). Note that Γ > 0 and Y > 0, hence
|tr(ΓΓ)| - tr(ΓΓ). Put T = T(nu n2f n3) and tt = exp(-2πyyi) for i =
1, 2 and 3. We have

Σ Cm^i, n2, nz))Wtptp = c'" Σ C/Γfo, ^2, n3))t^tptp

for ίlf t2 and ί3 with 0 < tx < exp( — TΓ), exp( —TΓ) < ί2 < 1 and 0 < ί8 <
exp( —TΓ), where the summation is taken over all (n19 n2, n^)eZl under
the condition T(nlf n2, nz) ^ 0. Here we note that both sides of the
above equality are absolutely uniformly convergent in the cube consider-
ed above. Comparing the coefficients of Laurent expansions, we have

[c'"Cf(T) if T > 0 ,
C ( Γ ) = ' 0 if not ,

which completes our proof of Theorem 1. By the same arguments as
those in [10, § 6], we can show that Ψ(f) is a cusp form.

4. An application to Andrianov's zeta functions. Let n (resp. p)
be a positive integer (resp. a prime number). We denote by Tftn; 2)
(resp. 2V-1)/2(p2; 4)) the Hecke operator on Sfc(Γ<2)(2)) (resp. @2fc-χ(Γ0(4)))
(see [7] and [12]).

Denote by U the set of all complex-valued functions ψ on the set
{T = T(nίf n29 nz)\nly n2 and nBeZ, T > 0} with the property

for all jeSL2(Z). For all ψ e U, we define

J °
0 m
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where SL2(Z)(^ ^jSL2(Z) = \Jι

d=ίSL2(Z)σd (a disjoint union). For every
positive integer m, we also define operators J+(m), Δ~(m) and Π(m) by
(A+(m)ψ)(T) = ψ(mT) and (A~(m)ψ)(T) = f(m~ιT) or 0 according as
m|e(Γ) or m|e(Γ) and

/7(m) -

The following theorem was proved by Andrianov [1] and Matsuda [7].

THEOREM A. Let F(Z) = Σ Γ a(T)e[tr(TZ)]e Sk(ΓI>2)(2)) and let p be a
prime number. Then (Tξ(pn;2))F(Z) = "ZTa(pn: T)e[tr(TZ)]. The coef-
ficient a(pn: T) has the following property:

(a(pnT) if p = 2 ,
a(wn' T) =

&ik2)n{2k*)r(4(^n(^J+(«)))(T) if
where the summation Σ is taken over all {a, β, 7) e Z\ with a, β, 7 ^ 0
α?icί α + ^ + 7 = n.

Now we recall some results in the theory of lattices in quadratic
fields. Let T be a semi-integral positive definite matrix. We denote by
d the discriminant of the imaginary quadratic field Q(V—N(T)). Clearly
—N(T) = dp with a positive integer /.

For a prime number p, we set

(1 0\ p+i
&L2(Z) - U SL2{Z)σί (a disjoint union) .

ii0 p/
A slight modification of Shintani's arguments in [13] yields the follow-
ing (cf. [13, Lemma 2.2, 2.3 and the proof of Lemma 2.8]).

LEMMA 4.1. Suppose that T is primitive (e(T) = 1). Then among

(p + 1) matrices {^TVJS, there are p — (—j matrices (resp. p) with
\ p '

e{PiTιa^ — 1 and 1 + ( —) matrices (resp. 1) with eiσ^σ^ = p (resp.
\ p /

e(σiT
tσ%) = p2), iff is prime to (resp. divisible by) p.

By using Theorem 1, we prove the following.
THEOREM 2. Suppose that fe @2*-i(Λ(4)) satisfies T{2k-1)/2(p2; 4)/ = ωpf

for all primes p. Then Ψ(f) is a common eigen-function of T\(n\ 2)
for all integers n, i.e., Tl(n\2)Ψ(f) = X(n)Ψ(f). Furthermore,

L(2s - 2k + 4, Zo)

= L(β - Λ + 1, Zo)i(β - Λ + 2, Z.)
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where L(s, Xo) = Σw=i X0(n)n~s.

PROOF. By Theorem 1, Theorem A, Lemma 4.1 and [12, Cor. 1.8],
we can verify T2

k(2;2)Ψ(f) = ωJF(f), Ti(p; 2)Ψ(f) = (ωp + p*-1 + pk~2)Ψ(f)
and T2

k(p2; 2)Ψ{f) = (ω% + (pk~ι + pk~2)ωp + p2k~2)Ψ(f) for all odd primes
p. Since the proof of these is routine and long, we omit the details.
For every positive integer n9 Tk(n; 2) belongs to the algebra generated
by Γfc

2(2;2), Tξ(p; 2) and Tξ(p2; 2) for all odd primes. From those we ob-
tain the desired results (cf. [1] and [7]).

Let S be the Shimura mapping of 82/c_1(Γ0(4)) to S2fc_2(Γ0(2)) in [12]

given by 8(f)(z) = Σ£=i A(n)e[nz], where f(z) = Σ?=i a(n)e[nz] and

Σ?=i A(n)n~s = Σ?=i a(n2)n-8L(s - k + 2, ( z ^ - ) By means of the trace

formula, Niwa [9] showed that S is an isomorphic mapping between
@2fc-1(Γ0(4)) and S2k-2(Γ0(2)). Let T}k-2(n; 2) be the n-th Hecke operator
on S2k-2(ΓQ(2)). As a consequence of Theorem 2, we obtain the following
corollary.

COROLLARY. If feS2k-2(Γ0(2)) satisfies T^2(n; 2)f = ωj for all n,
then ΨoS~\f) is a common eigen-function of Tl(n;2) for all n, i.e.,
Tί(n; 2)(ΨoS~\f)) = X(n)(ΨoS~\f)). Furthermore,

L(2s -2k + 4, Xo)

- k + 2,

REFERENCES

[ 1 ] A. N. ANDRIANOV, Euler products corresponding to Siegel modular forms of genus 2,
Russian Math. Surveys 29 (1974), 45-116.

[2] A. N. ANDRIANOV, Modular descent or on Saito-Kurokawa conjecture, Inv. Math. 53
(1979), 267-280.

[3] K. Doi AND H. NAGANUMA, On the functional equation of certain Dirichlet series, Inv.
Math. 9 (1969), 1-14.

[4] N. KUROKAWA, Examples of eigenvalues of Hecke operators on Siegel cusp forms of
degree two, Inv. Math. 49 (1978), 149-165.

[5] H. MAAB, Uber eine Spezialschar von Modulformen zweiten Grades, Inv. Math. 52
(1979), 95-104.

[6] H. MAAB, Uber eine Spezialschar von Modulformen zweiten Grades (III), Inv. Math.
53 (1979), 255-265.

[ 7 ] I. MATSUDA, Dirichlet series corresponding to Siegel modular forms of degree two, level
N, Sci. papers coll. Gen. Ed. Univ. Tokyo 28 (1978), 21-49.

[8] S. NIWA, Modular forms of half integral weight and the integral of certain theta-
functions, Nagoya Math. J . 56 (1974), 147-161.

[9] S. NIWA, On Shimura's trace formula, Nagoya Math. J. 66 (1977), 183-202.
[10] T. ODA, On modular forms associated with indefinite quadratic forms of signature



SIEGEL MODULAR CUSP FORMS 75

(2, n-2), Math. Ann. 231 (1977), 97-144.
[11] S. RALLIS AND G. SCHIFFMANN, On a relation between SL2 cusp forms and cusp forms

on the tube domains associated to orthogonal groups, preprint.
[12] G. SHIMURA, On modular forms of half integral weight, Ann. of Math. 97 (1973), 440-481.
[13] T. SHINTANI, On construction of holomorphic cusp forms of half integral weight,

Nagoya Math. J. 58 (1975), 83-126.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI, 980 JAPAN






