
Tόhoku Math. Journ.
33(1981), 35-63.

SOME ARITHMETICAL APPLICATIONS OF GROUPS H\R, G)
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In a preceding paper [8] we defined a series of abelian groups
Hq(JR, G) for a commutative ring R and a group G acting on R. If G
is finite and R is Galois over the fixed subring Ro of R, then H\R9 G) cz
Pic (Ro) (the Picard group of RQ), and H\R, G) ~ Br (R/Ro) (the Brauer
group of Azumaya algebras over Ro split by R). We have constructed
two long exact sequences, one of which generalizes the exact sequence
of Chase, Harrison and Rosenberg [2]. In [8, §6] we considered ex-
tensions of integer rings of algebraic number fields, and showed that
these groups are intimately related to arithmetically important Galois
cohomology groups. For instance, the above-mentioned exact sequence
reduces to that of Iwasawa [12] in the case of unramified extensions.
As a continuation, we shall deal, in the present paper, with some number-
theoretical problems which fit to cohomological approach by making use
of our groups Hq(R, G), whereas in [8] our main objective lied in the
study of the Brauer groups of rings.

These groups Hq(R, G) are defined in [8] by means of something like
the group cohomology with values in the category &dj$). Similar
method is applied to Amitsur cohomology in [9], and a systematic treat-
ment of this construction is given by Ulbrich [20] in the most general
form. Moreover, there is another approach to this type of construction
due to Villamayor and Zelinsky [21]. These works deal with quite
general cases, and are of rather abstract character. However, when
dealing with integral domains (or orders in commutative algebras), we
can argue more concretely in terms of invertible ideals as is mentioned
on [8, p. 12]. In the first three sections, we shall develop new simpler
foundations for groups H9(R, G) along this line, which are not quite
general, but are sufficient for most applications. This is the method of
mapping cones, and we realize that an exact sequence of aforementioned
type was established in the general form by MacLane on the occasion
of his study of infinite abelian groups [17]. In §1 we deal with two
basic exact sequences in the general setting, and in § 2 the case of group
cohomology. For finite groups we define the reduced groups Hq as in
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the theory of group cohomology. In §3 we further specialize to Galois

cohomology and arrive at the groups Hq(R, G) and Hq(R, G).
From §4 onward, we restrict ourselves to algebraic number fields.

Then, as was already observed in [8], groups Hg(R, G) are in close con-
nection with cohomology groups of idele class groups, and this fact is
the basis for most applications of groups Hq(R, G). As one of such ap-
plications we give a proof to an old theorem of Iwasawa [11] on the
class number of cyclotomic-type extensions. In §5 and §6 we treat the
Hasse norm principle and the problem of genera in non-cyclic extensions.
These problems are recently studied by several authors (e.g., [3], [4], [5],
[6], [19]), and we shall reproduce some of their results as well as some
classical results by our method. In §7 we consider cyclotomic fields,
and treat cohomological results of Iwasawa [13], [14] in this manner.
Not that this way of approach really improves on the existing one
which is direct and is not difficult. Yet it will be of some interest to
deal with the matter more in the spirit of [12], thereby affirming a
suggestion at the end of that paper.

In a short Appendix at the end of the paper we derive one of the
exact sequences of Hochschild and Serre [10] by the method of mapping
cones.

In a subsequent paper we shall deal with Amitsur-type groups of
integer rings of algebraic number fields ([9a]).

1. Mapping cones. 1.1. By a complex we mean a cochain complex
C — {Cq, δq (q e Z)} of abelian groups. To a morphism (of degree 0) of
complexes f: A-> B one associates the mapping cone C(f) which is defined
as follows:

C(f) = {Cq, δq} , Cq = Aq+1 x Bq , δ(a, b) = (~δa,fa + δb) .

We have an exact sequence

(1.1) o-+B->C(/)->A t -»O,

where A$ is A with degree raised by 1, i.e.,

A\ = Aq+1 , δla = -δq+1a (for a e A\) .

For definiteness we fix the morphisms of (1.1) as follows: Bq^Cq(f) to
be the natural embedding Bq —> C?, while Cq(f) —> A\ to be the projection:
(α, δ)h->α. The short exact sequence (1.1) gives rise to the cohomology
exact sequence

(1.2) > H q { A ) — H q { B ) -* Hq(C(f)) -+ H q + 1 ( A ) - > • • • ,
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which is natural in / : A —• B in the following sense. If we mean by a
morphism φ: (/: A -> B) -» (/': A' -> £') a pair of 9V A -> A' and ^ β : B-»B'
such that <£>5/ = /V^> then 9 defines homomorphisms <£>9: Hq(C(f)) —>
Hq{C(f')) such that the following diagram is commutative

> iJ'CB) > Hq(C(f)) > Hq+1(A) > - - -

i I I
> Hq(Bf) > Hq(C(f')) > Hq+1(A') >

We shall call (1.2) the first exact sequence associated to /.

LEMMA 1.1. If f:A—>B is mononiorphic, there is a morphism g:
C(f) —> coker / ^ B/A, which yields the following commutative diagram:

> Hq{B) > Hq(C(f)) > Hq+1(A) > - -

> Hq(B) > Hq(B/A) — Hq+1(A) >

It follows that Hq(g) is an isomorphism for every q.

PROOF, g is given by the map (α, 6) ι-> 6 (mod A).

REMARK. The inverse map iϊ9(coker /) —> Hq(C(f)) is given as
follows. Let 6(mod A) be in the kernel of δ. Then there is a such that
db = —fa. The class of (α, b) is just the element of Hq(C(f)) correspond-
ing to the class of 6(modA).

Similarly we have

LEMMA 1.2. / / / is epimorphic, there is a morphism (ker/)#—> C(/),
which yields the following isomorphism of cohomology exact sequences:

> Hq(B) > Hq+1(ker f) > Hq+\A) > - - -

n

> H\B) > Hq(C{f)) > Hq+1(A) > - .

(ker / ) , -> C(f) is given by a\-*(a, 0). The inverse map Hq(β(f)) ->
Hq+1(kerf) is given as follows. Let 8(a, b) = 0 for (α, b)eC(f). Then
δa — 0, fa = —δb. If b — fau then a + δaλ is a cocycle in ker/, and its
cohomology class is the image of the class of (α, 6).

Important is the following exact sequence, which, in this general
form, was found by MacLane [17].

THEOREM 1.3. Concerning the exact sequence of complexes

(1.3) 0 -> ker/-> A^B-* coker/-> 0
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we have the following long exact sequence

(1.4) > Hq+1(ker f) ^ Hq(C(f)) A i ϊ « ( c o k e r / ) Λ i ϊ « + 2 ( k e r / ) - > • • •

which is natural in f.

In [17, Theorem 4], two sequences (1.2) and (1.4) are embedded in
a 'braid diagram'. The direct proof of Theorem is not difficult, and is
left to the reader. The following gives an alternative proof.

Let

g:X->Y, h:Y->Z

be morphisms of complexes. The mapping cone construction yields two
exact sequences:

where the subscript b means the lowering of degree by 1. Combining
them, we have a four term exact sequence:

0 ^ Zb — C(h)b A C(g) -> X, — 0 .

This F, in turn, gives rise to the following exact sequence of mapping
cones:

(1.5) 0 -> C(g) -> C(F) -> C(h) -> 0 .

On the other hand, we have C(hg) for the composite map hg:X-+Z.

LEMMA 1.4. C(F) is chain equivalent to C(hg).

PROOF. F consists of the following maps F9:

FQ: Yq X Zq~ι -* Xq+ι X Yq (y, z) h-> (0, y) .

Hence the complex C(F) is defined as follows:

C<(F) = Cq+\h)b x Cq(g) = (Yq+1 x Zq) x (Xq+1 x Yq)

δ[(v, z\ (a?, »')] = K-δy, hy + fe), (-δx, gx + δy' + y)],

We define the following maps:

φq: Cq(F) -> Cq(hg): [(y, z\ (x, y')] H+ (a?, % ' - »)

ψq: Cq(hg) — Cff(F): (a?, z) ^ [(-^x, -«), (a?, 0)] .

Then we can easily verify that these maps commute with δ and that they
satisfy

I = φ*ψ* , and / - ψqφq = δs + sδ ,

where the homotopy sq: Cq(F) -> Cq-\F) is defined by



ARITHMETICAL APPLICATIONS 39

sq: [(», z\ (x, y')\ H* [(y'f 0), (0, 0)] .

This proves Lemma 1.4.

The following corollary to Lemma 1.4 will be of some interest.

COROLLARY 1.5. We have the following long exact sequence:

> H'(C(g)) -> H'(C(hg)) -

Proof of Theorem 1.3 is now immediate. We have only to decompose

the given / as A -2> Y>-> B, and apply Lemmas 1.1 and 1.2 to the above

exact sequence.
We call the sequence (1.4) the second exact sequence associated to /.

By the definition of various maps, α, β9 y of this sequence are given as
follows.

a takes the class of α e k e r / to that of (a, O)eC(f).
β takes the class of (α, b)eC(f) to that of — 6(mod/A).
7 takes the class of δ(mod/A) to that of δα, where α e A is such

that δb = -fa.

1.2. We return to the commutative square

(1.6) \ψA \ψB

A' -ί-» B' .

We call

Y = {(a', b) e A' x B|/ 'α' = φJb)/{(φAaf fa), aeA}

the center of the diagram, and denote by [α', 6] the class containing
(α', 6). (1.6) is extended to the commutative diagram

0 > ker / > A -^-> B > coker / > 0

(1.6') \ψκ \ψA \ψB \ψc

0 > ker / ' > A' -£-+ B' • coker / ' > 0 .

Denoting by A' xB' B the pullback of / ' and φB and by A! x A B the
pushout of φA and /, we have three sequences:

(1.7) 0-+A-> A! xB,B-+ Y-+0

(1.8) 0-> Y-*A! XAB->B'->0

(1.9) 0 -> ker / φΛ ker / ' -> Γ -+ coker / ^ coker f -> 0 ,

where ker f'-+Y is the map α' i-> [α', 0] and Γ -* coker / is the map
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[a', δ] ι-> δ(mod/A). (1.7) is exact at A if and only if (1.9) is exact at
ker/, and (1.8) is exact at B' if and only if (1.9) is exact at coker/'.
The other parts of the three sequences are always exact. The verifica-
tion of the exactness is easy. For example, let Ys [a', b] ι-> 0. This
means that b = fa (aeA). Then a' — φaeker f and its image in Y is
[α' - φa, 0] = [a', δ].

EXAMPLE. If φA is the identity A—> A, then Y ~ ker φB.

The following is the mapping cone version of [8, Theorem 2] and
[9, Theorem 6.1].

THEOREM 1.6. If φκ is injective and φc is surjective in (1.6'), we
have the following long exact sequence:

(1.10) > Hq( Y) Λ Hq(C(f)) ^ Hq(C(f'))

Λ Hq+\Y) ^ Hq+1(C(f)) -> • ,

where φ is the map induced by (1.6), and X, ψ are defined below.

PROOF. (1) The definition of maps. First assume the injectivity
of φκ and define ψ as follows. Let δ[a', 6] = 0 for [a', δ] 6 YQ. By as-
sumption, there is a unique a e A9+1, such that δa' = φa, δb = fa, and
we have δa = 0. Then (a, -6) 6 Cg(f) satisfies δ(α, -b) = (-δa,fa- δb) = 0.
If α' = ^α^ b =fa19 then α = δa17 and the corresponding element of C(f) is
(δtti, — faλ) = δ( — au 0). Hence the cohomology class of (α, —6) is well-de-
fined. Since we have a = 0 for [δa', δb], we get a map ψ: Hq(Y)->Hg(C(f)).

Next assume the surjectivity of φc and define 1 as follows. Let
(α', V) e C9(/'), and 6' = fa[ - φbx with a[ e A!\ b, e Bq. If δ(μ'9 V) = 0,
then fa* = -δb' = -f'δa[ + φδb, so that f'(a' + δαί) = φ(δbλ). If 6' =
/'αg — φb2 with another αg 6 A'q, b2 e Bq, then f'(a[ — a'2) = <p(6L — 62).
Hence (α' + δa[, δbj-ia' + δ < δb2) = 5(αJ-α2, &! —δ2). This means that the
cohomology class of (a'+ δa[, δbλ) in iί9+1G4/ x B. B) is well-determined.
Moreover, the image of δ(a', b') is verified to be the class 0. Hence we
have Hq(C(f'))->Hq+1(A'xB,B). Followed by the map induced from
A' xB'B-^> Y, this provides the desired map X.

(2) The proof of exactness at Hq{C(f)). First, φψ[a', b] = (φa, -φb) =
δ(-a', 0). Conversely, let φ(a, b) = δ(a', b') for {a, b) e Zq(C(f)), i.e., φa =
-δα', ?>& = / 'α ' + δδ'. By the surjectivity of φc, V = /'αj + 9>δt with
a[ e A'9"1, δx e Bq~\ Then we observe that (a' + δ < δ - δb,) e (A' xB> B)q.
Since δ(a' + δa[, b - δbλ) = -(φa, fa) by δb = -fa, we have -[a' + δa[,
b - δb,] e Zq(Y) and this is mapped by ψ to (a, b - δb,) = (α, δ) - δ(0, δx).

Exactness at Hq(C(f')). First, %^(α, δ) = [^α, -<5δ] = [φa, fa] = 0. Let
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Z(α', δ') = [α' + δa[, δδj = δ [ < 62] with some αJeA'*, 6 2 e ΰ 9 such that
/ ' α 2 = φb2, where a[, bι are as in the definition of X. This means that
there is a e Aq+1 such that a' + δa[ = φa + δα2, δδx = fa + £δ2. Then
<p<5α = Sα' = 0 and fδa = 0 so that <5α = 0 by the injectivity of φκ.
Since -fa = S(δ2 - 6J, we have (α, 62 - b,) e Zq(C(f)). Now,

(α', 6') - <p(α, 62 - bx) = (S(αί - αj), 6' - ^(δ2 - &,)) = δ(a[ - αj, 0)

by b' = f'a[ — φbλ and / ' α 2 = φδ2. This shows that the cohomology class
of (α', δ') is in the image of φ.

Exactness at Hq+\Y). First, φX(a',b') = (a, -δbj, where a is
determined by the conditions φa = δ(a' + δa[) = 0, /α = δ(δδχ) = 0, i.e.,
a = 0. Hence ψl{a\ b') = <5(0, —60. Let, conversely, α/r[α', 6] = (α, ~δ) =
S(αi, δi) with (α2, 62) 6 C%f), where a is as in the definition of ψ. This
means that —a = δa1 and — 6 = fax + <?6X. Since / ' (α ' + φaj — φb +
φfaλ = —δiφbj), we have (a'+ φalf φb±) e Zq(C(f')), and the cohomology
class of this element is mapped by X to the class of

[a' + φal9 - δ δ j - K δ] + [φalf fa,] = [α', 6] .

REMARK. The exact sequence which we have just established may
be viewed as a compositum of the following two parts. 1° We have
the following commutative diagram

A = A^^A! >A'xAB

A'xB,B >B-^-*B' = B'

which yields a sequence of mapping cones:

C{a) - C(f) -> C{f') - C(β) .

Under the assumption of the injectivity of φκ and the surjectivity of
φc, the resulting sequence

H"(C(a)) -> H\OJ)) -v H"(C(f')) -+ H%C(β))

is exact. 2° Since a is injective and β is surjective, we have, by
Lemmas 1.1 and 1.2, the following diagram

and also this is exact.
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Consider in particular the following square:

AJ^O.

In this case, we can identify Y with B (cf. the above Example), and
C(f') with At obviously. We can easily verify that if we identify Y
with B by the correspondence [a, b]\^ — 6, then the sequence (1.10)
precisely coincides with the sequence (1.2). Therefore (1.10) may be
viewed as a generalization of (1.2), so that we shall call (1.10) likewise

the first exact sequence (associated to / ~̂> / ' ) .
Now, the situation is symmetric in rows and columns of the square.

Indeed, φκ is injective if and only if ker φA —> ker φB is injective, and
φc is surjective if and only if coker φA —> coker φB is surjective. Hence
we have the first exact sequence also for the pair of φA and φB.
Combining this with the former, we obtain the following

PROPOSITION 1.7. Under the assumption of Theorem 1.6, we have the
following diagram which is exact and commutative except at the asterisked
square which is anti-commutative, where unnamed sequences are those
of (1.2).

i 1 I ί
H'-\A) * H"~\B) * H"-\C{f)) > H\A)

1 1 1' 1
Hq-\A') > Hq-\B') > H'-\C(f')) * Hg(A')

i 1 * 1 ' 1
ΛC(φt))-^H->(C(φ.))^-~ H'(Y) -^

I I I*
H%A) > H%B) > H\C(f)) >

1 1 1 1
The verification of the commutativity is straightforward.
Next we examine the interrelation between the first and the second
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exact sequences. Observe the following diagram with Y at the center.

0

0 >ker/-^» ker/' >X >0

I I I
0 > A >A'xB.B >Y >A'xΛB > B' >0

I 1 . 1
0 > Z > coker / -^-> coker / ' > 0

0

where X=cokeτφκ and Z = ker φc. Two short exact sequences (1.7),
(1.8) are connected in the middle row of this diagram, while the exact
sequence (1.9) is decomposed into three short exact sequences displayed
in 'Z' form.

PROPOSITION 1.8. The following diagram is exact and commutative
except at the asterisked square which is anti-commutative, where unnamed
sequences are those derived from the short exact sequences in the above
diagram.

1 1 , 1 , 1
> H'(kerf) -* H"-\C{f)) A #«-'(coker /) — H +1(ker /)

1 1' , i
> H\kQΐ /') ^ H"-\C{f')) -^H"

1 1' 1 * 1
> H"{X) > H\Y) > H\Z)

V I I
I a I o I r I

»• jff +1(ker / ) -> H«(C(f)) -?->H >(coker f) -^ iϊ«+2(ker / ) > • • •

1 ! ! !

Proof is a routine work. Notice that the position of the anti-
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commutative square differs from that in [8, Proposition 4.1], as some
of the maps are changed by sign.

2. Hq(G, f) and Hq{G, f). Let G be a group, and /: A -> B be a
homomorphism of G-modules. For a G-chain complex C, / gives rise to
a morphism of complexes HomG (C, A) —> HomG (C, 5). We denote the
mapping cone of this morphism again by C(f) (by abuse of notation).
So we have an exact sequence of complexes:

(2.1) 0 -> HomG (C, 5) -> C(/) -> HomG (C, A)t -> 0 .

This is natural in C and /. Namely, if φ\ C —> C is a morphism of chain
complexes, and (/: A -» 2?) -» (/': A' —> 5') is a morphism of G-homomor-
phisms, we have a naturally defined morphism C(/) -> C"(/'), which yields
the following commutative diagram:

0 > HomG (C, 5) > C(f) > Horn,, (C, A) t > 0

i 1 I
0 > HomG (C, β') > C'(f') >HomG (C, A')t > 0 .

Hence the cohomology exact sequence belonging to (2.1) is mapped to
that for C, / ' .

A chain equivalence between C and C induces an isomorphism of
H*(C(f)) and H*{C\f)). Hence, the structure of the groups Hq(C(f)),
where C is a ZG-projective resolution of Z, is independent of a partic-
ular choice of C. Denoting these groups by the notation Hq(G, / ) , we
have

PROPOSITION 2.1. A G-homomorphism f: A-> B canonically de-
termines a series of groups Hq(G, f) (qeZ), and we have the following
(first and second) exact sequences:

> Hq(G, A) -> Hq(G, B) -> Hq(G, f) -* Hq+1(G, A) -+ •

> Hq+1(G, ker /) -> H\G, f) -> iί9(G, coker /) -> ii^2(G, ker /) -* -

which are natural in f: A—> B.

Notice that we have the group in dimension —1:

(2.2) H-\G, f) - (ker ff

(where MG means the set of G-invariant elements of M). Therefore the
initial part of the first exact sequence is as follows:

(2.3) 0 -> (ker ff -> AG -> BG -> H\G, f) -* H\G, A) -> - ,

while the second exact sequence, after trivially isomorphic terms casted
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aside, begins with

(2.4) 0 -»H\G, ker /) -> iϊo(G, /) -> (coker /)* -> JΪ2(G, ker /) -* .

We can treat more general cases (cf. [17, §4]), but we consider the
group cohomology alone in this paper.

When G is finite, we can apply the same arguments to complete
ZG-resolutions of Z. We use the notation Hq(Gf / ) , if necessary, to
denote Hq(C(f)) in the complete cohomology. If, in particular, G is
finite cyclic, generated by σ, we can compute the cohomology groups of
G by means of the complex

> ZG — ZG — ZG >

Since all constructions are periodic of degree 2, we have

PROPOSITION 2.2. If G is finite cyclic, there are isomorphisms
Hq(G9 f) ~> Hq+2(G, f) (qeZ), natural in /, such that both of the follow-
ing diagrams are commutative:

> Hq(G, B) -> H\G, f) -> Hq+ι(G, A) -> -
I I I

> Hq+2(G, B) -> Hq+2(Gt f) -> Hq+\Gf A) -> -

> Hq+1(G, ker / ) -> Hq{G, f) -> Hq(Gf coker / ) -> - •

I I I
• Hq+\G, ker /) -> Hq+2(G, f) -> Hq+2(G, coker /)->••• .

We can equally define Hq(Gf f) for a topological group G and a con-
tinuous G-homomorphism f: A-> B of topological G-modules. If G is
profinite and 4̂, £ are discrete G-modules, Hq(G, f) is the direct limit
of Hq(G/N, fN) via suitably defined inflation maps, where N runs through
open normal subgroups of G, and fN denotes the map AN —> BN induced
by / on iSΓ-invariant elements.

Let 7: H-* G be a group homomorphism. An additive homomorphism
<£> from a G-module A to an iϊ-module A' will be called an operator
homomorphism if it satisfies φ(y(σ)a) — σφ{a) for aeA, σeH, i.e., if it
is an iϊ-homomorphism when A is viewed as an iϊ-module via 7. Let
/: A —> B (resp. / ' : Af —> Bf) be a homomorphism of G-modules (resp. H-
modules), and φ = (<£>4, ̂ ) be an operator morphism / —»/'. Further,
let C (resp. C) be a protective resolution of Z over G (resp. over H).
Then there is an operator morphism C —> C, and this gives rise to the
following diagram which is exact and commutative:
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0 > HomG (C, ker/) • HomG (C, A) —U HomG (C, 5) > HomG (C, coker/)

1 1 , 1
0 > Horn* (C, kerf) > Horn* (C, A') — ^ Horn* (C, 5') > Horn* (C, coker/') > 0 .

By Theorem 1.6, if the kernel map is injective and the cokernel map is
surjective, we have the following exact sequence with a suitable complex
Y:

(2.5) >H\ Y) -> H\G, f) -> H'(H, /') -* i f ^ ( Γ) — - .

If, in particular, H = G, we can take C" = C, and we have

PROPOSITION 2.3. Assume that, for a commutative square (1.6) of
G-modules, ker / —* ker / ' is injective and coker / —» coker / ' is surjec-
tive, and let Y be its center. Then we have the following exact sequence:

(2.6) > H9(G, Y) ^ H\G, f) ^ Hq(G, /') Λ Hq+1(G, Y) -> .

3. H9(R, G) and Hq{R, G). Let R be an integral domain with the
field of quotients K. We denote by I(R) the group of invertible R-
ideals of K, and by Pic (R) the factor group of I(R) by the group of
principal ideals. Let pr be the map which assigns to every non-zero
element αeϋΓ* ( = K — {0}) the principal ideal (α) = αi2. Then we have
the following exact sequence:

(3.1) 0 -» Σ7(Λ) -> K* ^ /(Λ) -> Pic (R) -> 0 ,

where Z7(ff) denotes the group of units of i?.
Let ίΓ/A; be a finite Galois extension with Galois group G, and

assume that R is G-admissible. Then (3.1) is an exact sequence of G-
modules, and we can apply to it the construction of §2. We define

(3.2) H*(R9 G) = H'-KG, pr) .

Thus H9(R, G) is computed as follows. Let C be any ZG-projective
resolution of Z. Then, a g-'cochain' is a pair (F, f) of a g-cochain
/: Cq->K* and a (g - l)-cochain F: C*-1-* I(R); (F, f) is a 'cocycle' if /
is a cocycle and <5.F = (/-1), while it is a 'coboundary' if / = δh'1 and
F = hδH for some (H, h). This is in accordance with the description
of Hq given in [8, p. 12], where C is assumed to be the non-homogene-
ous standard complex of G. The main exact sequences of [8, Theorems
1 and 2] are, in the present case, obtained as a special case of Proposi-
tion 2.1.

THEOREM 3.1. We have the following exact sequences:
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(3.3) * H\G, K*) Λ H%G, I(R)) Λ Hq+1(R, G) ^ H*+1(G, # * ) - > • • •

(3.4) > H\G, U(R)) Λ H%R, G)

A H*-\G, P i c (R)) Λ i J « + 1 ( G , E7(Λ)) - > • • - .

C l e a r l y w e h a v e

(3.5) H\R, G) ~ U(R0)

where Ro = Rf]k. By Hubert's Theorem 90, the beginning part of (3.3)
becomes

0 -> U(R0) -> &* -• /(.B)G -> fiΓ1^, G) ~> 0 .

Respecting the traditional terminology ambiguous for ideals which are
invariant under G, we can state this as follows.

PROPOSITION 3.2. Hι(R, G) is the group of k-equivalence classes of
ambiguous K-ideals.

We also have the modified (or reduced) groups

(3.6) H\R, G) = 6*-\G, pr)

for all dimensions qeZ, and Theorem 3.1 holds for these Hq (and ίtq)
as well.

The motivation for these groups lied primarily in the following fact
which we shall quote without proof.

THEOREM 3.3 ([8, §5 and §7]). // R is G-Galois over R0 = Rnk,
we have

H\R, G) = Pic (Ro) , H\Ry G) ~ Pic (Ro)/NR/Bo(Pic (R))

H\R, G) CΪ Br (R/RQ) ,

where Br (R/Ro) means the R-split part of the Brauer group of RQ.

However, the main objective of the present paper is to utilize the
groups Hq in case R/Ro is non-Galois, namely admits ramification.

Let S be another integral domain, L its field of quotients, and H
a finite group of automorphisms of L which maps S onto S. Let
φ: R —> S be an injective ring homomorphism, and y:H-^G a group
homomorphism such that φ(y(σ)a) — σ(φ(a)) for a e R, a e H. We denote
by the same φ the induced map K —> L. We have a commutative
diagram
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0 » U(R) > K* • I(R) > Pic (R) > 0

I I I I
0 > U(S) > L* > I(S) > Pic (S) > 0

and this gives rise to homomorphisms Hq(R, (?) -> H9(S, H). Under
suitable conditions, we have a long exact sequence connecting these
groups (2.5). This happens e.g. in the case of completion with respect
to a valuation, H being the decomposition group. In §4 and §7, we
will exploit the quotient ring of R by a multiplicative subset to evade
ramified primes.

4. The case of algebraic number fields. 4.1. Here and throughout
the rest of paper, we consider algebraic number fields. So let if be a
finite extension of Q and R = Rκ be the ring of integers of K. Let
Jκ be the idele group of K. K* is embedded in Jκ as the group of
principal ideles, and the factor group Cκ = Jκ/K* is the idele class
group. Further, let Uκ be the group of unit ideles which is the direct
product Uκ = Uo x C/oo, where UQ is the product of all local unit groups
U% for non-archimedean primes, and U^ is the product of completions
of K at archimedean primes. Then Jκ/Uκ (resp. JK/K*UK) is isomorphic
to the ideal group I(R) (resp. ideal class group Pic (R))9 which we shall
denote rather as Iκ (resp. Pκ) in what follows. Hence (3.1) is expressed
in the following form:

(4.1) o->Eκ^K*1^Iκ-*Pκ-+O,

where Eκ is the group of (global) units U(R).
In some problems which we shall deal with in the following sections,

it is more adequate to consider narrow ideal classes. So let Ui be the
group of totally positive unit ideles, i.e.,

Ui = Uo x Ut , where Ut = Π R+ x Π C
real φ complex $

where R+ denotes the group of positive real numbers, and put

the latter being the narrow ideal class group. The sequence (4.1) is
modified to

(4.2) 0 >EΪ >κ*-?£+Ii >PΪ >0,

where Ei is the group of totally positive units of K.
Now let K/k be a finite Galois extension of degree n of algebraic
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number fields with Galois group G. We denote the groups Hq~\G, pr+)
(resp. 0*-\G, pr)) associated to (4.2) by H«(R, (?) (resp. H&R, G)). We
deal mainly with modified groups, for which we have

PROPOSITION 4.1. ff?(JB, G) ~ H9(R, G) for every qeZ.

PROOF. Apply Proposition 2.3 to the square

K > l κ .

In this case, Y ~ ker (JJ —> Iκ) ~ Πreai$ #AR+. But, since the decomposi-
tion group of a real prime Sβ reduces to {1}, Hq(G, Y) is a product of
several H9({1}, R/R+) = 0. Hence the homomorphism H%G, pr+) ->
Hq(G, pr) is an isomorphism for every q.

By this proposition we use the notation Hq instead of HI even
when dealing with the construction concerning (4.2). Notice that un-
modified groups Hi may differ from Hq for g = 0, 1. Indeed, for q = 0, we
have Hl(R, G)~Et while H\R, G)~Ek. For g = l, H$.(R, G) is the cokernel
of k* -> {HY, while H\R, G) is the cokernel of &* -> /f. In particular,
when K/k is unramified, we have H\(R, G) ~ Pk

+ while H\R, G) ~ Pk.
The second exact sequence concerning (4.2) reads for modified

cohomology

(4.3) > ίϊq(G, Ei) ^ Hq{R, G) Λ Hq~\G, Pi) Λ Hq+\Gf Eϊ) -> - .

As is remarked in [8, p. 18], this reduces to the exact sequence given
by Iwasawa [12] in case K/k is an unramified extension, since in this
case the map ωq of (4.4) below is an isomorphism for every q.

[8, Proposition 6.1] is modified to

PROPOSITION 4.2. We have the following commutative diagram with
exact rows:

(4.4)

> H%G, K*) >Hq(G, Jκ) > Hq(G, Cκ) > Hq+\G, K*) >

\wq ώ)3

> H«(G, K*) -ϊ-*6\G, Iϊ)-^H"+\R, G) - ^ H«+1(G, K*) >

I I !• I
> ίϊ\G, Pit) >6%G, Iϊ) >H*(G, Pϊ) >H^\G, Pit) >••-,

where 1° the upper sequence is the cohomology exact sequence belonging
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to 0 —> K* —> J ^ —> Cκ-+ 0, 2° ίλe middle sequence is the first exact se-
quence associated to (4.2) up to sign, 3° £/&e lower sequence is the
cohomology exact sequence belonging to 0 —> Pit —* Ii —» P# —> 0, where
Pit = K*Ui/Ui(~K*/Eκ), and 4° ίfeβ compositum of ωq with * is ίΛe
homomorphism induced by the natural map Cκ-^> P i .

PROOF. We have a commutative diagram of G-modules

where i and V are monomorphisms. Proposition 4.2 is immediate by the
naturality of the first exact sequence together with Lemma 1.1.

The upper half of (4.4) is more important than the lower part, and
we shall call this upper half the basic diagram for Hq(R, G). As is ex-
perienced in [8], the following fact is useful:

(4.5) Hg(cokernels of basic diagram) ~ H9+\kernels of basic diagram).

As is well-known, the 1-cohomology H\G, A) vanishes for A = K*,
Jκ, CK, IK (hence also for It), and further H\G, Jκ) = 0. Therefore the
most interesting part of the basic diagram splits into two sections: One
which will be studied in the next section (cf. (5.1)), and the following

r\ r\ TT^l TC*\ ^ 7-7" V T \ ^ T-[2(Ci \ T-Γ^( TC*\ > 0

(4.6) I j L2 L2

0 > H\R, G) -^H2(K*)-?-> H\IK) - ^ H\R, G) -^>H\K*) .

We utilized this diagram in [8] in the case of unramified extensions to
determine the structure of the Brauer group Br (R/Ro) — H\R, G). A
similar computation is possible in the general case, only lacking being
the interpretation for H2. Thus, let S = {p} be the set of all (finite and
infinite) primes of k which ramify in the extension K/k, and for pe S
let ep be the ramification index and Gp the decomposition group of one
of the primes 3̂ of K lying above p. Further let e be the least common
multiple of all ep (peS). Since the map denoted j in (4.6) is the summa-
tion of Hasse local invariants, and since H2(G, Cκ) is cyclic of order n =
[K: k] generated by the fundamental cohomology class, we obtain the
following proposition by applying (4.5).
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PROPOSITION 4.3. Concerning the structure of H2 and H3 of a cyclic
extension K/k we have the following exact sequences:

(4.7) 0 -> H\R, G) -> Π Z/epZ -> Z/eZ -> 0
peS

(4.8) 0 -» z / ^ Z -> /73(i?, (?) -> Π ZlepZ -> 0 .
/ β peS,finite

In particular, we have

COROLLARY 4.4. H\R9 G) = 0 if and only if ep (p e S) are pairwise
relatively prime.

Obviously this is the case when the number of ramified primes of
k is at most one.

4.2. Let K/k be a cyclic extension, and assume that all primes of
k are unramified in K/k except possibly one finite prime p which de-
composes in K as pR = β̂% 3̂ being a prime of K. Then we have that
H\R9 G) - H%R, G) = 0 and that H\R, G) is of order n by Proposition
4.3. The second exact sequence then gives

0 -• H\G, Pκ) -> H\G, Eκ) -> (a group of order n)

-> S2(G, Pκ) -> iϊ4(G, £?x) -> 0 .

Since iί^G, Pκ) and £Γ2(G, P x) are of the same order by the finiteness
of Pκ, it follows that

Applying this to the beginning part of second exact sequence

0 -> H\G, Eκ) - H\R, G) -» PI -> H\G, Eκ) - 0

we get

(4.9) \H\R,G)\ = n\P%\.

Let R' (resp. RΌ) be the ring of ^-integers of K (resp. ring of p-
integers of &), and consider the first exact sequence concerning the
morphism (JSΓ* -> I{R)) -> (K* -> /(Λ')):

0 -> ?7(S0) -> U(R[) ->YG-> H\R, G) -> H\R\ G) -> iϊ^G, Γ) .

In this case, F = ker (I(R) -> I(i2')) is the free abelian group generated
by «β, on which G acts trivially. Hence Γ σ = Y and ίί^G, Γ) = 0.
Since R'/RΌ, being an unramified extension of Dedeking domains, is G-
Galois, we have H\R\ G) ~ Pic (JSί) by Theorem 3.3. We shall examine
the image of U(R'O) in Y. This is the subgroup Yo consisting of ψ = aR
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with some a e R'o. Let Sβr (r > 0) be a generator of YQ. Then a e Ro,
and ψ' must be a power of pR: $βr = p8R, r = es. This s is nothing but
the order of the ideal class of p in Pic (Ro), and is equal to the order of
the kernel of the epimorphism Pic (Ro) —> Pic (R'o). Hence, by the above
exact sequence, we have

IH\R, G)\=es\H\R', G)\ = e(s|Pic (Λί)|) = e|Pic (Ro)| .

Combining this with (4.9), we obtain

PROPOSITION 4.5. Undr the assumption at the beginning of this
section, we have the following identity:

(4.10) hk( = \Pk\) = ^\Pi\ .
e

Notice that n/e is the degree of the maximal unramified subextension
of K/k. Assuming moreover that e — n and that G is of prime power
order, we recover the following theorem of Iwasawa [11], which im-
mediately yields a generalization of the classical theorem of Weber on
cyclotomic fields.

THEOREM 4.6. // K/k is a cyclic extension of prime power degree
pa of algebraic number fields, and if a prime p is fully ramified in K/k
and all the other primes are unramified, then we have p\hκ if and only
if p\hk.

5. On the Hasse norm theorem and H\R, G). We look at the basic
diagram in dimensions —1 and 0:

H~\JK)^ H-\CK) -^->H\K*)-^H\JK)-^ H\CK) >0

(5.1) I jar1 \w° \ω°

0 > H°(R, G) -ΞZ>H°(K*) — H\IK) ~^-> H\R, G) > 0 .

(Notice that H~\G, Iκ) = 0.) From the exactness of the lower sequence,
it follows immediately that

(5.2) H\R, G) ~ Eκ/k/Nκ/kK* ,

where Eκ/k means the group of aek* such that (α) is the norm of an
ideal of K. We put

^f{K/k) = ker i° = {everywhere local norms}/{global norms} ,

whose order is usually denoted i(K/k), and which we call the Hasse
norm index of K/k.

LEMMA 5.1. ^(K/k) is isomorphic to imα)"1.
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PROOF. ^(K/k) is isomorphic to cokeri"1, and Lemma 5.1 is im-
mediate by diagram chasing.

THEOREM 5.2 (Gurak [6], Razar [19]). Let K' be an intermediate
field of K/k, normal over k and corresponding to a {normal) subgroup H
of G. If(G, G)ΓiH=(G, H), then J?{K'\k) is a factor group of ^(K/k).
Hence, under this condition, if the Hasse norm theorem (HNT) holds
for K/k, then it holds for K'/k.

COROLLARY 5.3. (1) ([6], [19], Garbanati [3]) Let K/k be an abelian
extension and K* an intermediate field. Then ^(K'/k) is a factor
group of ^(K/k). Hence if HNT holds for K/k, it holds for every
subextension.

(2) ([6], [19]) If Kz)K'z)k is a normal tower such that [K:K']
and [K': k] are relatively prime, then HNT for K/k implies HNT for
K'/k.

PROOF OF THEOREM 5.2. Clearly Eκ/k is a subgroup of EKΊk, and
the inclusion map yields a homomorphism H\R, G) —> H°(R', G/H), where
Rr — Rκ>. Now, Z~\G, Cκ) consists of idele classes Ca represented by
ideles a such that Nκ/ka = a^ek*, and ω~ι takes the cohomology class
of Ca to a(modNκ/kK*) e Eκ/k/Nκ/kK*. Hence the following diagram is
commutative:

H~\G, Cκ) - ^ » H-XG/H, Cκ>)

H°(R9 G) > H\R', G/H) .

So, by Lemma 5.1, it suffices to show that the upper map is surjective.
As was observed by Nakayama [18], there is an exact sequence

(5.3) H~\G, Cκ) J^U H~\G/H, Cκ.) - U H\H, CK)G ^U H\G, Cκ) ,

where XG of a G-module X designates the maximal factor group of X
on which G acts trivially, τ is induced from the identity map Cκ, —> Cκ>,
and φ by the norm map NKΊk. But, translated by the Artin map,
NKΊk. H\H, Cκ) -> H\G, Cκ) is nothing but the natural map H/(H, H) -*
G/(G, G). Hence the assumption of Theorem 5.2 means that φ is injec-
tive, so that the map denoted Nκ/K< of the diagram is surjective. This
proves our assertion.

Gurak gave a simple direct proof for Corollary 5.3.(2). Razar proved
Theorem 5.2 by employing Tate's description of ^(K/k). Gurak dealt
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with a more general case where K' is not necessarily normal over k
by making use of the connection of HNT with the relation of the
genus field and the central class field. It will be possible to deal with
this general case in a way similar to the above, if we suitably define
Hq for the relative cohomology.

Now we examine the map w° in (5.1). It decomposes into local maps
w°f9 p running over all primes of k. For an unramified p, w\ is an
isomorphism. If p is a real prime which ramifies in K, then Iκ has no
^-component, while H°(G, Jκ) has a ^-component isomorphic to R*/R+ ~
Z/2Z ~ Tp (the inertia group of any one of the prime divisors of p in
K). Next, let p be a ramified finite prime, 5β any one of the primes of
K lying above p, and G¥f 2\ the decomposition group and the inertia
group of β̂, respectively. By Shapiro's lemma, w\ becomes the map
H\G* Kf) -> H°(G%, Z). Since H~\G^ Z) = 0 and H\GΨ, Kf) = 0, we
have the following exact sequence:

0 -> H°(Gy, U*) -> iϊo(G,, Kf) -> β\G%, Z) -> H\G%, UJ -> 0 .

Since the norm residue symbol at Sβ maps Up precisely onto T9f this
sequence can be written as

0 -> T^IG'v -> G,/G; -> Zjn,Z-* H\G%, U%) -> 0 ,

where np = \G9\ and GJ denotes the commutator subgroup of G f. It
follows that H\G%, U%) is cyclic of order ep (ramification index). Hence
we have

ker w° - Π' Γ,/Gi , coker w° ~ Π Z/epZ ,
p65 0ε5,finite

where the notation Π ί e s ^ means the product of Xp, one 5β|t> for each
pe S. Now the well-known formula

(α, JΓ/fc) = Π ί^ψ^) (a = (ap) e Jk)
p \ p /

means that the map H°(G, Jκ) —> H\G, Cκ), when interpreted by the
reciprocity map, reduces to the natural homomorphism J\G^jG^ —>• GjG',
induced by inclusion maps G% —> G. The image of ker w° by this map,
the subgroup GJG' generated by all T9G'/G', is the subgroup of G/G'
which corresponds to the maximal unramifield subextension Ku. Since
ker w° —> ker ω° is surjective, we obtain, by (4.5), Lemma 5.1 and the
above, the following description of H° and H\

PROPOSITION 5.4. (1) We have the following exact sequences:

(5.4) 0 -> ^(K/k) — H%R, G) — Π ' Γ,/Gi — G./G' -> 0
5
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(5.5) 0 -* G/Gn -* H\R, (?) -> Π Z/β,Z -> 0 .
pe S,finite

(2) If K/k has no unramified subextension, ωQ is the zero map.

6. Theory of genera and H\R, G). Let K/k be a finite Galois ex-
tension of degree n with Galois group G. Let L be a finite abelian
extension of Kf corresponding to a closed subgroup NL of finite index
of Cκ by the reciprocity map. We assume that L is normal over k.
Then Γ = Gal (L/AO is a group extension of G by an abelian kernel A =
Gal (JJ/K) — CK/NL. Let L, be the #e?ms ^eίd of iΓ/Λ; relative to iV̂ ,,
i.e., L5 = K - La, where La is the maximal abelian subextension of L/k.
We have Gal (L/Lg) = An(Γ, Γ). Let Lz be the central class field of
K/k relative to NLy i.e., the maximal subextension of L/K such that
Gal (LJK) is contained in the center of Gal (LJk). Then Gal (L/Lz) =
(Γ, A) = IGA, where IG is the kernel of the augmentation ZG —> Z. It
follows that

A).

Now we recall the Nakayama exact sequence (5.3)

6-KG, Cκ) Λ 6\A, CL)Γ Λ ,ff°(Γ, CJ .

By the reciprocity map, Gal (LJLg) given above is isomorphic to the
kernel of φ, hence to the image of τ, which can be factored as

H-XG, Cκ) - 1 * H\A, CL)Γ(~A/IGA)

\
H-\G9 CK/NL){~NA/IGA) ,

where σ is the homomorphism induced by the natural map Cκ —> CK/NL,
and the subscript N means the kernel of the norm map. Hence we
have

LEMMA 6.1 ([3], [19]). Gal(Lβ/LJ is isomorphic to im<7.

Let us consider the particular case NL — K*U£/K*9 and write out
L+, L+, Lt in this case. Then Gal (L+/K) ~ P£ and L+ is the narrow
absolute class field of K. Gal (L+/L+) corresponds to the subgroup of
Pi consisting of narrow ideal classes represented by aeJκ such that
Na e k*NUi, namely the classes in the principal genus, and g+ = [L+ : K]
gives the number of genera in the narow sense. We put z+ = [Lf : K].
If g+ — z+, i.e., if L+ = Li, we shall say that the principal genus
theorem (PGT) holds for K/k. Since the above map σ is factored through
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ω~ι of the basic diagram (cf. Proposition 4.2. 4°), we obtain, in view of
Lemma 5.1,

PROPOSITION 6.2. Gal (Li/Li) is a factor group of ^(K/k). In
particular, if the Hasse norm theorem holds for K/k, then the principal
genus theorem also holds.

This is classically well-known.
The following also gives a sufficient condition for PGT.

PROPOSITION 6.3. // there is a prime fully ramified in K/k, then
the principal genus theorem holds for K/k, and there is a subfield M
of Li such that L+ = K ®k M (linearly disjoint compositum).

PROOF. By assumption, ω2: H\G, Cκ) -» H\R, G) of the basic diagram
(4.6) is the zero map, hence a fortiori so is H2(G, Cκ) -» H2(G, Pί). It
follows from the Safarevic-Weil theorem ([1, Chap. XIV, Theorem 6])
that the extension

0 -> Gal (L+/K) -> Gal (L+/k) ^G-*0

splits. Hence so does the extension

0 -* Gal {LiIK) -* Gal (LiIk) -> G -> 0

and therefore there is a subfield M of Li such that K |Ί M = k,
K' ikf = Li. But, since Gal (!/+/#) is central in Gal (Li/k), M is normal
over k, and Gal (M/k) ~ Gal (LiIK) which is abelian. The assertion of
Proposition 6.3 is now clear.

An expression of the narrow genus number g+ is given by

(6.1) g+ = ff
where hi denotes the narrow class number of k. To see this, compute
[Ki : K] in two ways. This is equal to g+\imσ\ by Lemma 6.1 on the
one hand, and to

(Pi : IαPi) = (Pi : N(Pi)) • I H-\G, Pi) I

on the other. Our identity holds, since we have

(Pi : ΛPt)) = \Nκ/kPi\ = hil(Pk

+ : Nκ/hPi) .

Then, how about coker σ ? We consider the second exact sequence
augmented by H~\G, Cκ):
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H~\G, Cκ)

i
H\G, Ei) > H\R, G) * H'\G, Pi) » H\G, Ei)

i
coker ω~λ > coker σ .

Assume that 7 is the zero map, as is satisfied by the extension over Q
to be considered just below. Then we easily observe that

(6.2) H\Gt Ei) -* coker ω~ι -> coker a -> 0

is exact. By (5.4), coker or 1 can be determined if we have enough
information about ramification in K/k, and we know coker σ modulo the
image of H\G, Ei). But the latter (units modulo local norms) seems
difficult to calculate.

When k — Q, the situation is largely simplified.
(1) Since hjj = 1, we have g+ — \coker σ\.
(2) 7 is the zero map. This is verified by the definition of 7.

Hence the exact sequence (6.2) holds.
(3) H°(G, Ei) = 0 or ~ Z/2Z, according as whether K is real or

imaginary. When K is imaginary, the image of this group in H°(R, G)
is mapped, in the exact sequence (5.4), precisely to the factor TΌo (~Z/2Z)
in ker w°, where 00 denotes the unique infinite prime of Q.

(4) Since there is no unramified extension of Q, G is generated by
all T% for finite primes ^3.

Applying these observations to the exact sequences (5.4) and (6.2),
we have the following exact sequence:

(6.3) 0 > coker αrι/#°(G, Ei) > Π' T^G'* > G/G' > 0 .
p e S, finite

I
coker σ

If, in particular, K is an abelian extension, this yields the following
well-known formula for the narrow genus number:

(6.4) g+ = IίePl[K:Q]

which is due to Gauss in the quadratic case, generalized to cyclic ex-
tensions by Iyanaga and Tamagawa [15], and to abelian extensions by
Leopoldt [16].

If K/Q is cyclic, a)'1 and a are the zero maps, and we have the
equally well-known identity
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(6.5) g+ = \H-\G, Pi)I - \H\G, P£)\

= the order of the group of ambiguous ideal classes .

Finally we return to the general Galois extension of Q, and observe
that im α n im ft)"1 = 0 in H\R, G). This is easily verified by the defini-
tion of maps and is also clear by the above statement (3). It follows
that β maps im ft)-1 isomorphically to im σ, so that we obtain

PROPOSITION 6.4 ([3], [19]). For a finite Galois extension K/Q, we
have J?(K\Q) ^ Gal (L+/L+). Hence HNT holds if and only if PGT
holds.

7. Cyclotomic fields. 7.1. Let p be a rational prime and let K —
Q(ζ) where ζ is a primitive pα-th root of unity g Q. Let k be a subfield
of K of similar type, and let G be the (cyclic) Galois group of K/k. Put
n = \G\ = [K: k] (a power of p). Since there is only one ramified prime,
and this is fully ramified, it follows from Proposition 4.3 (or from
Proposition 5.5) that

(7.1) H2m(R, G) = 0 , H2m+\R, G) ~ Z/nZ .

This is a special case of the situation dealt with in §4.2, where we
applied this to deduce a class number relation of k, K. As one more
application of this, we prove another theorem of Iwasawa ([13, Theorem
13]).

THEOREM 7.1. Let K/k be as above. Then we have

H2m(G, Eκ) ^ H2m(G, Pκ) , ίϊ2W+1(G, Eκ) ~ H*~+\G, Pκ) x ZjnZ .

PROOF. We may, and shall, assume m = 0. By the first half of
(7.1), the second exact sequence reduces to

0 - H-\Pκ) -> H\EK) A H\R, G) - H\PK) -> H\EK) -+ 0 .

So, in view of the second half of (7.1), we have only to prove that a
is a split epimorphism. In the present case, H\R, G) ^ coker w° in the
basic diagram (5.1). Since H°(G, Iκ) is the direct product of im w° and
the cyclic group generated by the class (mod NGIK) of the ambiguous
ideal sp = (1 — ζ), H\R9 G) is generated by the class represented by
(1, ξβ) e JSΓ* x IGκ (the image of the class of 5β by ψ). Let

c(ί7) = γ 5 τ {σeG)

be the cyclotomic 1-cocyclee Z\G, Eκ). The image of the cohomology
class of c(σ) by a is represented by (c(σ), R). But, since (c(σ)"1, Sβ) =
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δ(l — ζ, jβ)-1, this is identical with the class of (1, Sβ), the generator of

H\R, G). Finally, since we have c(σ)n = γ-1 with η = ( l - ζ ) /ΛΓ(l-ζ) e #*,

the class of c(σ) is precisely of order n, and the map a splits. q.e.d.

Next let R' (resp. RΌ) be the ring of p-integers in K (resp. in k)9

i.e., the quotient ring of R (resp. Ro) with respect to the powers of p.
Since the unique prime of K which divides p is principal, the natural
homomorphism Pκ = Pic (R) —> Pic (Rf) is an isomorphism, and similarly
for the map Pk = Pic (Ro) -+Pic (RΌ). Since the extension R'/RΌ is un-
ramified, we have, by Theorem 3.3,

(7.2) H\R\ G) ~ Pic (RΌ) ^ Pk .

Let E'κ — U(R'). Then we have an exact sequence

(7.3) 0->EK->E^->Z-*0

in which 1 — ζ 6 E'κ maps to 1 e Z. The cyclotomic 1-cocycle c(σ) defines
the characteristic class of this extension.

The basic facts in §4 hold for R' as well after minor modification.
The only difference in calculating H2 and Hs by Proposition 4.3 is that
the ^-component of H2(G, I(R')) reduces to 0, and it follows that

(7.4) H\R\ G) = H\R\ G) = 0 .

We shall inspect a part of the diagram of Proposition 1.8 concerning
the diagram

0 > Eκ > K* > I(R) • Pic (R) > 0

! lί ! l
0 > E'κ > K* >I(R') • Pic (R') * 0 .

Noticing H\G, Z) — 0, we have the following (exact and commutative)
diagram:

H\G, Z) > {ψ} > 0 > 0

i ' 1 I 1
0 > H\G, Eκ) * H\R, G) * (Pic (R))° > H\G, Eκ) > 0

I 1 i I
0 > H\G, E'κ) > H\R', G) —* (Pic {R')f * H\G, E'R) > 0 .

! i 1
0 0 0

It follows that the map denoted * is surjective, hence is an isomorphism.
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The map denoted Δ takes the generator l(mod n) to the characteristic
class c(σ) of (7.3), which have order n, as was shown in the proof of
Theorem 7.1.

PROPOSITION 7.2. Assumptions and notations being as above, we
have

(1) Hq(Rf, (?) = 0 for every q.
( 2 ) HKG, Pκ) ~ H'(G, E'κ) for every q.
( 3 ) H\G, Eκ) ~ H\G, E'κ), and

0 -> Z\nZ -> H\G, Eκ) -> H\G, E'κ) -> 0 (βwcί).
(4) H-+H\G,E'κ)-+Ph-+Pi-+H\GtEκ)-*Q {exact)

{cf. [13, Theorem 11] and [14, §5.4]).

PROOF. (1) follows from (7.4) since G is cyclic. (2) is obtained by (1)
applied to the second exact sequence. (3) was already remarked above,
and (4) is the bottom sequence of the above diagram, on which are
applied the isomorphisms of (3) and (7.2).

7.2. Finally we consider extensions over Q. Let KdQ(ζ), where,
as above, ζ is a primitive pa-th root of unity, and G is the absolute
Galois group of K. Since there is only one T% Φ {1}, namely Tp — G,
in the exact sequence (6.3), we have cokerσ .= 0. On the other hand,
by Proposition 6.3, PGT holds in K/Q, which means that im σ = 0. It
follows that

(7.5) H-\G, Pi) = 0.

We first consider the case p = 2, and obtain the theorem of Weber once
again (cf. §4.2).

PROPOSITION 7.3. Let K be a sub field of Q(ζ2α). Then the narrow
class number hi is odd.

PROOF. (7.5) implies that the finite abelian group P i has no non-
trivial quotient on which G acts trivially. Since G is a 2-group, this
implies that the Sylow 2-subgroup of P£ reduces to the identity.

If p is an odd prime, G is cyclic. In this case, we have

PROPOSITION 7.4. Let K be a sub field of Q(Zpa), where p is an odd
prime.

(1) # (G,Pi) = 0 (qeZ)

and if G is a p-group, then the narrow class number hi is relatively
prime to p.
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0 (K real)
(2) H^(GfEϊ)\^or rτr -

[Z/2Z {K imaginary)
H2m+\G, Ei) ~ Z/nZ, where n = [K:Q] .

PROOF. (1) The vanishing of cohomology groups is an immediate
consequence of the facts that (i) G is cyclic, (ii) P£ is finite, and (iii)
(7.5) holds. The statement on hi is similarly proved as in the preceding
proposition.

(2) The statement on H\G, Ei) is clear by definition. H\Gf Ei)
is isomorphic to H\R, G), since Hg(G, Pi) = 0 by (1). But the latter is
isomorphic to ZjnZ by (5.5).

Appendix. We gave in [7] an elementary proof to the following
theorem of Hochschild and Serre ([10, III Theorem 3]). As an applica-
tion of the method of mapping cones, we shall give it yet another proof.

THEOREM. Let Mbe a G-module and H be a normal subgroup of G.
Let q >̂ 1, and if q > 1, assume that H%Hf M) = 0 for i = 2, , q.
Then we have the following exact sequence:

H<(G/H, MH) Λ H<(G, M) -> H'-\G/H, H\H, M))

, MH) Λ H*+\G9 M) ,

where λ means the inflation map.

PROOF. Put G — G/H. Define a G-module N by the exact sequence

0 -> M-> Homz {ZG, M) -> N-+ 0 .

Since H\H, Homz(ZG, Λf)) = 0 for i ^ 1 as is well-known, we have iso-
morphisms

(A.I) H*(Hf N) ~ Hί+\H, M) (i ^ 1)

and an exact sequence of G-modules

0 -> MH -> Homz (ZG, M) Λ NH -> H\H9 M) -> 0 .

We apply the mapping cone construction to this G-homomorphism h.
Since Homz (ZG, M) has trivial G-cohomology in positive dimensions, the
first exact sequence collapses to

H\G, h) ~ coker (Jlf-* Nσ) ~ H\G, M)

and

iΓ(G, NH) ~ H%G, h) (i ^ 1) .



62 A. HATTORI

Hence the second exact sequence gives the following long exact sequence

0 -> H\G, MH) -> H\G, M) -> H\G, H\H, M)) -> H\G, MH) -> -

>H\G, M^H'-^G, NH)->Hi~1(G,H1(H,M))-*Hi+1(G,MH)-±- .

These facts can be applied in particular to H = {1}, in which case (A.2)
collapses to a series of isomorphisms of (A.I):

Hi+\G, M)μ~ H\G, N) (i ^ 1) .

The naturality of (A.2) shows the commutativity of the diagram

Hi+ί(G, MH) - ί U H\G, NH)

Iχ ί + i

Hί+1(G, M) - ίU H\G, N) ,

where vertical maps are inflations. Since λ1 is injective, we obtain the
case q = 1 of Theorem by replacing the fifth term H\G, NH) of (A.2) by
H\G, M). If H\H, M) = 0 for i = 2, , g, then H\H, N) = 0 for
ΐ = 1, , q — 1. Then, for the module iSΓ, λg - 1 is isomorphic, and Xq is
injective. (This fact which follows from another exact sequence of
Hochschild and Serre can be elementarily proved by induction.) Hence

we can replace A H*-\Gt N
H) in (A.2) by Λ H\G, M) for ί = q - 1 and

q, thus obtaining the general case of Theorem.
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