ON THE ANALYTICITY OF THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

Kiyokazu Nakagawa

(Received June 4, 1979, revised December 15, 1980)

1. Introduction. Consider the Navier-Stokes equation:

$$
\begin{cases}D_{t} u-\Delta u+\nabla p=f-\operatorname{div} N(u) & \text { in } D^{+} \times(0, T), \tag{1.1}\\ \operatorname{div} u=0 & \text { in } D^{+} \times(0, T), \\ \left.u\right|_{t=0}=u_{0} \quad\left(\operatorname{div} u_{0}=0\right),\left.u\right|_{x_{3}=0}=0 .\end{cases}
$$

Here $N(u)=\left\{u_{j} u_{k}\right\}_{(j, k=1,2,3)}$ and

$$
\operatorname{div} N(u)=\left(\begin{array}{c}
\operatorname{div} N_{1}(u) \\
\operatorname{div} N_{2}(u) \\
\operatorname{div} N_{3}(u)
\end{array}\right), \quad N_{j}(u)=\left(\begin{array}{c}
u_{1} u_{j} \\
u_{2} u_{j} \\
u_{3} u_{j}
\end{array}\right)
$$

The set D is a neighborhood of the origin in the three dimensional Euclidean space E_{3} and $D^{+}=D \cap E_{3}^{+}$with $E_{3}^{+}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in E_{3} ; x_{3}>0\right\}$. Let Ω and \mathscr{D} be some complex neighborhoods of ($0, T$) and D, respectively. Let $C^{r, r / 2}\left(D^{+} \times \Omega\right)$ be a weighted Hölder space. Now our result is as follows:

THEOREM 1.1. Let f and u_{0} be analytically extended from $D \times(0, T)$ and D to $\mathscr{D} \times \Omega$ and \mathscr{D}, respectively. Let $u \in C^{2+\mu,(2+\mu) / 2}\left(D^{+} \times \Omega\right)$ and $p \in C^{1+\mu,(1+\mu) / 2}\left(D^{+} \times \Omega\right)$ satisfy the equation (1.1) which are analytic in $\omega \in \Omega$ for each $x \in D^{+}(0<\mu<1)$. Then $u(x, t)$ and $p(x, t)$ are analytic near $\left(0, t_{0}\right)$ for any $t_{0}\left(0<t_{0}<T\right)$.

The analyticity of the solutions was proved in Kahane [3] and Masuda [7], but they only proved the interior analyticity.

Many authors have proved the analyticity of the solutions of elliptic and parabolic equations, for example, Friedman [1], Morrey [8], etc. There are several methods to prove the analyticity. We will here use the method of Morrey. First, by Morrey [8], we shall show that there exists a complex analytic extension of the solution of the associated Stokes equation in a half space. Next, we will decompose the solution (u, p) of (1.1) into $u=u^{\prime}+u^{\prime \prime}, p=p^{\prime}+p^{\prime \prime}$, respectively. Here (u^{\prime}, p^{\prime}) is the solution of some integral equation and ($u^{\prime \prime}, p^{\prime \prime}$) is the solution of some Stokes equation. We will prove that they and their first spatial
derivatives have complex analytic extensions in $\left(z_{1}, z_{2}, \omega\right)$ for $(z, \omega) \in \mathscr{D}_{00}=$ $\left\{(z, \omega) \in D \times \Omega ; z=x+i y, \omega=t+i s, x, y \in E_{3}, t, s \in E_{1}, y_{3}=0,\left|\left(z_{1}, z_{2}\right)\right|<\delta\right.$, $\left.\left|\omega-t_{0}\right|<\delta, 0<x_{3}<\delta\right\}$. Hence we see that $u, D_{x_{3}} u, p$ are analytic in $\left(z_{1}, z_{2}, \omega\right)$ for $(z, \omega) \in \mathscr{D}_{0 j}$. Moreover, we will see that

$$
|u(z, \omega)|+\left|D_{x_{3}} u(z, \omega)\right|+|p(z, \omega)|<M
$$

for $(z, \omega) \in \mathscr{D}_{00}$, where δ and M are independent of x_{3}. Therefore, by the Cauchy-Kowalewsky Theorem, there exists a neighborhood of ($0, t_{0}$) in $D \times(0, T)$ in which u and p are analytic.

The author wishes to thank Professor Takeshi Kotake and Dr. Kinji Watanabe for their useful suggestions and encouragement. .
2. The Stokes equation. We consider the following Stokes equation in a half space:

$$
\left\{\begin{array}{c}
D_{t} v-\Delta v+\nabla q=f \quad \text { in } E_{3}^{+} \times(-T, T) \tag{2.1}\\
\operatorname{div} v=\operatorname{div} \phi \quad \text { in } E_{3}^{+} \times(-T, T) \\
\left.v\right|_{t=-T}=v_{0} \quad\left(\operatorname{div} v_{0}=\left.\operatorname{div} \phi\right|_{t=-T}\right),\left.\quad v\right|_{x_{3}=0}=0 \\
v_{\infty}=\lim _{|x| \rightarrow \infty} u(x, t)=0, \quad q_{\infty}=0
\end{array}\right.
$$

If the vector valued functions f, ϕ and v_{0} are smooth and decrease fast enough as $|x| \rightarrow \infty$, then it is well known that the system (2.1) has a unique classical solution, which one can write explicitly in terms of the given data.

First, let \bar{v} be the solution of the equation:

$$
\left\{\begin{array}{l}
\Delta \bar{v}=\operatorname{div} \phi \quad \text { in } \quad E_{3}^{+} \times(-T, T), \tag{2.2}\\
\left.D_{x_{3}} \bar{v}\right|_{x_{3}=0}=0, \quad \bar{v}_{\infty}=0 .
\end{array}\right.
$$

Next, let (v^{\prime}, p^{\prime}) be the solution of the equation:

$$
\left\{\begin{array}{cl}
D_{t} v^{\prime}-\Delta v^{\prime}+\nabla p^{\prime}=\tilde{f} & \text { in } E_{3} \times(-T, T) \tag{2.3}\\
\operatorname{div} v^{\prime}=0 & \text { in } E_{3} \times(-T, T) \\
\left.v^{\prime}\right|_{t=-T}=\tilde{v}_{0}, \quad v_{\infty}^{\prime}=p_{\infty}^{\prime}=0
\end{array}\right.
$$

where \tilde{f}, \tilde{v}_{0} denote smooth extensions, vanishing as $|x| \rightarrow \infty$, of the functions $f, v_{0}-\left.\nabla \bar{v}\right|_{t=-T}$ to the spaces $E_{3} \times(-\infty, T), E_{3}$, respectively. Finally, let $\left(v^{\prime \prime}, p^{\prime \prime}\right)$ be the solution of the equation:

$$
\left\{\begin{array}{cl}
D_{t} v^{\prime \prime}-\Delta v^{\prime \prime}+\nabla p^{\prime \prime}=0 & \text { in } E_{3}^{+} \times(-T, T), \tag{2.4}\\
\operatorname{div} v^{\prime \prime}=0 & \text { in } E_{3}^{+} \times(-T, T), \\
\left.v^{\prime \prime}\right|_{t=-T}=0,\left.\quad v^{\prime \prime}\right|_{x_{3}=0}=-\left.v^{\prime}\right|_{x_{3}=0}-\left.\nabla \bar{v}\right|_{x_{3}=0}=b, \quad v_{\infty}^{\prime \prime}=p_{\infty}^{\prime \prime}=0
\end{array}\right.
$$

Then one can easily verify that

$$
\left\{\begin{array}{l}
v=U\left(\widetilde{f}, \phi, \widetilde{v}_{0}\right)=v^{\prime}+v^{\prime \prime}+\nabla \bar{v} \tag{2.5}\\
q=P\left(\widetilde{f}, \phi, \widetilde{v}_{0}\right)=p^{\prime}+p^{\prime \prime}-D_{t} \bar{v}+\Delta \bar{v}
\end{array}\right.
$$

is an actual solution of (2.1).
The integral representation of the solution (2.5) is also known. Let

$$
\begin{aligned}
& K(x)=-1 / 4 \pi|x|, \quad Q=\nabla_{x} K \otimes \delta_{t}, \\
& \Gamma(x, t)= \begin{cases}(4 \pi t)^{-3 / 2} \exp \left(-|x|^{2} / 4 t\right) & \text { for } t>0, \\
0 & \text { for } t<0,\end{cases} \\
& \Gamma^{\prime}(x, t)=\Gamma(x, t+T), \quad T=\Gamma I-\operatorname{Hess}\left\{\left(K \otimes \delta_{t}\right) * \Gamma\right\},
\end{aligned}
$$

where δ_{t} is Dirac's delta function on the real line, I is the 3×3 unit matrix, Hess $(F)=\left\{D_{x_{j}} D_{x_{k}} F\right\}_{(j, k=1,2,3)}$ is the Hessian and $f * g$ is the convolution of functions (or distributions) f and g on $E_{3} \times(-\infty, \infty)$. Then we may represent the solution of (2.3) as

$$
\left\{\begin{array}{l}
v^{\prime}(x, t)=T * \widetilde{f}(x, t)+\Gamma^{\prime} I *\left(\widetilde{v}_{0} \otimes \delta_{t}\right)(x, t)-\Gamma^{\prime} I *\left(\left.T * \widetilde{f}\right|_{t=-T} \otimes \delta_{t}\right)(x, t) \tag{2.6}\\
p^{\prime}(x, t)=Q * \widetilde{f}(x, t)
\end{array}\right.
$$

Let $\widetilde{b}\left(x^{\prime}, t\right)=b\left(x^{\prime}, t\right)$ for $t \geqq-T$, and $\widetilde{b}\left(x^{\prime}, t\right)=0$ for $t \leqq-T, G=$ $\left\{G_{j k}\right\}_{(j, k=1,2,3)}, x^{\prime}=\left(x_{1}, x_{2}\right)$,

$$
\begin{aligned}
G_{j k}(x, t)= & -2 \delta_{j k} D_{x_{3}} \Gamma(x, t)+2 \delta_{k 3} D_{x_{j}} K(x) \otimes \delta_{t} \\
& -4 D_{x_{k}} \int_{E_{2}} d y^{\prime} \int_{0}^{x_{3}} D_{y_{3}} \Gamma(y, t) D_{x_{j}} K(x-y) d y_{3}, \\
A(x, t)= & \int_{E_{2}} \Gamma\left(y^{\prime}, 0, t\right)\left|x-y^{\prime}\right|^{-1} d y^{\prime}
\end{aligned}
$$

where $\delta_{j k}$ is Kronecker's delta. The solution of (2.4) is written as

$$
\left\{\begin{align*}
v^{\prime \prime}(x, t)= & G *\left(\tilde{b} \otimes \delta_{x_{3}}\right)(x, t), \tag{2.7}\\
p^{\prime \prime}(x, t)= & -2 \operatorname{div}\left\{Q_{3} I *\left(\widetilde{b} \otimes \delta_{x_{3}}\right)\right\}(x, t)-2\left(K I \otimes \delta_{t}\right) *\left(D_{t} \widetilde{b}_{3} \otimes \delta_{x_{3}}\right)(x, t) \\
& -\pi^{-1} \operatorname{div}\left(D_{t}-\sum_{k=1}^{2} D_{x_{k}}\right)\left\{A I *\left(b \otimes \delta_{x_{3}}\right)\right\}(x, t)
\end{align*}\right.
$$

Let $N(x, y)=K(x-y)+K(x-\bar{y}), \bar{y}=\left(y_{1}, y_{2},-y_{3}\right)$. The solution of (2.2) is written as

$$
\begin{equation*}
\bar{v}(x, t)=\int_{E_{3}^{+}} N(x, y) \operatorname{div} \phi(y, t) d y \tag{2.8}
\end{equation*}
$$

Now, we introduce some function spaces. Let $B\left(x_{0}, R\right)$ denote the ball $\left|x-x_{0}\right|<R$ in E_{3} and $B_{R}=B(0, R)$. Let

$$
\begin{aligned}
& \sigma=\left\{x \in E_{3} ; x_{3}=0\right\}, \quad \sigma_{R}=B_{R} \cap \sigma, \quad G_{R}=\left\{x \in B_{R} ; x_{3}>0\right\}, \\
& I_{T}=(-T, T), \quad I_{h T}=\left\{\omega=t+i s ;|s|<h(t+T), t \in I_{T}\right\},
\end{aligned}
$$

where $0<h<1$. Let $C^{k+\mu}\left(G_{R}\right)$, (k; an integer, $0<\mu<1$), be the usual Hölder space. For $f \in C^{k+\mu}\left(G_{R}\right)$, we define

$$
\begin{array}{r}
|f|_{k+\mu}=\sup _{x_{1}, x_{2}, \alpha}\left|D_{x}^{\alpha} f\left(x_{1}\right)-D_{x}^{\alpha} f\left(x_{2}\right)\right| /\left|x_{1}-x_{2}\right|^{\mu}, \tag{2.9}\\
\left(x_{1}, x_{2} \in G_{R}, x_{1} \neq x_{2},|\alpha|=k\right) .
\end{array}
$$

For $f \in C^{k+\mu,(k+\mu) / 2}\left(G_{R} \times I_{T}\right)$, we define

$$
\begin{align*}
&\|f\|_{k+\mu}= \sup _{x_{1}, x_{2}, t, \alpha, a}\left|D_{t}^{a} D_{x}^{\alpha} f\left(x_{1}, t\right)-D_{t}^{a} D_{x}^{\alpha} f\left(x_{2}, t\right)\right| /\left|x_{1}-x_{2}\right|^{\mu} \tag{2.10}\\
&+\sup _{x, t_{1}, t_{2}, \alpha, a}\left|D_{t}^{a} D_{x}^{\alpha} f\left(x, t_{1}\right)-D_{t}^{a} D_{x}^{\alpha} f\left(x, t_{2}\right)\right| /\left|t_{1}-t_{2}\right|^{\mu / 2} \\
&+\sup _{x, t_{1}, t_{2}, \beta, b}\left|D_{t}^{b} D_{x}^{\beta} f\left(x, t_{1}\right)-D_{t}^{b} D_{x}^{\beta} f\left(x, t_{2}\right)\right| /\left|t_{1}-t_{2}\right|^{(k+\mu-2 b-|\beta|) / 2}, \\
&\left(\left(x_{j}, t\right),\left(x, t_{j}\right) \in G_{R} \times I_{T}, j=1,2, x_{1} \neq x_{2}, t_{1} \neq t_{2},\right. \\
&|\alpha|+2 a=k, 0<k+\mu-2 b-|\beta|<2) . \\
& C_{0}^{k+\mu,(k+\mu) / 2}\left(G_{R} \times I_{T}\right)=\left\{f \in C^{k+\mu,(k+\mu) / 2}\left(G_{R} \times I_{T}\right) ;\right. \tag{2.11}\\
&\left.D_{t}^{a} D_{x}^{\alpha} f(0,0)=0,|\alpha|+2 a \leqq k\right\} .
\end{align*}
$$

Assume f to be of the form $\operatorname{div} F$. Then we have the following by Solonnikov [11, p. 76] and McCracken [6, p. 49].

Proposition 2.1. Let $F \in C_{0}^{1+\mu,(1+\mu) / 2}\left(E_{3}^{+} \times I_{T}\right), \phi \in C_{0}^{2+\mu+\varepsilon,(2+\mu+\varepsilon) / 2}\left(E_{3}^{+} \times I_{T}\right)$, $v_{0} \in C^{2+\mu}\left(E_{3}^{+}\right)$and suppose they decrease fast enough as $|x| \rightarrow \infty$. Then the solution (2.5) satisfies the following properties.
(2.12) $\quad\|v\|_{2+\mu}+\|\nabla q\|_{\mu}+\|q\|_{1+\mu_{-\varepsilon}}$

$$
\begin{aligned}
& \leqq C\left\{\|F\|_{1+\mu\left(E_{3}^{+} \times I_{T}\right)}+\|\phi\|_{2+\mu+\varepsilon\left(E_{3}^{+} \times I_{T}\right)}+\left|v_{0}\right|_{2+\mu} \mu_{\left(E_{3}^{+}\right)}\right\}, \\
& \\
& (0<\mu-\varepsilon<1, \varepsilon>0) .
\end{aligned}
$$

(2) If $F_{j} \in C^{1+\mu,(1+\mu) / 2}\left(E_{3}^{+} \times I_{T}\right)(j=1,2)$ decrease fast enough as $|x| \rightarrow \infty$, then

$$
\left\|U\left(\operatorname{div} \widetilde{F}_{1}, \phi, \widetilde{v}_{0}\right)-U\left(\operatorname{div} \widetilde{F}_{2}, \phi, \widetilde{v}_{0}\right)\right\|_{2+\mu} \leqq C\left\|F_{1}-F_{2}\right\|_{1+\mu_{\left(E_{3}^{+} \times I_{T}\right)}}
$$

where \widetilde{F}_{j} denotes a smooth extension of F_{j} similar to \tilde{f} for f.
(3) If $F \in C_{0}^{1+\mu,(1+\mu) / 2}\left(E_{3}^{+} \times I_{h T}\right)$ and $\phi \in C_{0}^{2+\mu+\varepsilon,(2+\mu+\varepsilon) / 2}\left(E_{3}^{+} \times I_{h T}\right)$ are analytic in $\omega \in I_{h r}$ for each $x \in E_{3}^{+}$, then v and q are analytic in $\omega \in I_{h}$ for each $x \in E_{3}^{+}$and the inequality (2.12) holds for $I_{h r}$.
3. The integral equation. In this section we consider the functions v_{R}, q_{R} which are determined by u, p of (1.1).

First, we notice the following. There exists R_{0} such that G_{R} is contained in D^{+}for $0<R<R_{0}$. We regard u, p to be restricted onto such G_{R}. Since f in (1.1) is analytic in $\mathscr{D} \times \Omega$, there exists $F=\left\{F_{j k}\right\}_{(j, k=1,2,3)}$
analytic in $\mathscr{D}_{0} \times \Omega$ and satisfying $\operatorname{div} F=f$. Here \mathscr{D}_{0} is a complex neighborhood of the origin which is contained in \mathscr{D}. We choose one such F and fix it in what follows. It is easy to see that we can assume $u_{0}=0$ in (1.1). We put

$$
\begin{aligned}
& \mathscr{Q}(x, t)=\sum_{2 k+|\alpha| \leq 2}(k!\alpha!)^{-1} D_{t}^{k} D_{x}^{\alpha} u(0,0) x^{\alpha} t^{k}, \\
& \mathscr{R}(x, t)=\sum_{|\beta| \leq 1} D_{x}^{\beta} p(0,0) x^{\beta} .
\end{aligned}
$$

We define $\Psi(w)=\left\{\Psi_{j k}(w)\right\}_{(j, k=1,2,3)}$ by

$$
\begin{aligned}
\Psi_{j_{k}}(w)(x, t)= & -\left\{w_{j}(x, t)+\mathscr{Q}_{j}(x, t)\right\}\left\{w_{k}(x, t)+\mathscr{Q}_{k}(x, t)\right\}+u_{j}(0,0) u_{k}(0,0) \\
& +F_{j k}(x, t)-F_{j_{k}}(0,0)+\delta_{j k}\left\{D_{x_{3}}^{2} u_{k}(0,0)-D_{x_{k}} p(0,0)\right\} x_{k}
\end{aligned}
$$

Lemma 3.1. There exists an extension operator $\Phi: C_{0}^{k+\mu,(k+\mu) / 2}\left(G_{R} \times I_{T}\right) \rightarrow$ $C_{0}^{k+\mu,(k+\mu) / 2}\left(E_{3} \times(-\infty, T)\right)$ such that $\left.\Phi(f)\right|_{G_{R} \times I_{T}}=f$ and that

$$
\|\Phi(f)\|_{k+\mu_{\left(E_{3} \times(-\infty, T)\right.}} \leqq C\|f\|_{k+\mu\left(G_{R} \times I_{T}\right)}, \quad(0<\mu<1),
$$

with a constant C independent of R, T.
We give here the sketch of the proof for $k=1$. Let (r, ϕ_{1}, ϕ_{2}), $0 \leqq$ $r \leqq R, 0 \leqq \phi_{1} \leqq \pi, 0 \leqq \phi_{2}<2 \pi$, be polar coordinates in G_{R}. Let the function $x=x\left(r, \phi_{1}, \phi_{2}\right)$ be the transformation from the polar coordinate to the orthogonal coordinate. We put $f_{0}\left(r, \phi_{1}, \phi_{2}, t\right)=f\left(x\left(r, \phi_{1}, \phi_{2}\right), t\right)$ and set

$$
f_{0}^{\prime}\left(r, \phi_{1}, \phi_{2}, t\right)= \begin{cases}f_{0}\left(r, \phi_{1}, \phi_{2}, t\right) & (0 \leqq r \leqq R) \\ \sum_{j=1}^{2} C_{j} f_{0}\left(R-j(r-R), \phi_{1}, \phi_{2}, t\right) & (R<r \leqq 2 R)\end{cases}
$$

where $\sum_{j=1}^{2} C_{j}(-j / 2)^{m}=1(m=0,1)$. We put $f^{\prime}\left(x^{\prime}, x_{3}, t\right)=f_{0}^{\prime}\left(r(x), \phi_{1}(x)\right.$, $\left.\phi_{2}(x), t\right)$, where the functions $r=r(x), \phi_{1}=\phi_{1}(x), \phi_{2}=\phi_{2}(x)$ are the transformation from the orthogonal coordinate to the polar coordinate. We define f^{*} by

$$
f^{*}\left(x^{\prime}, x_{3}, t\right)= \begin{cases}f^{\prime}\left(x^{\prime}, x_{3}, t\right) & \left(x_{3} \geqq 0\right) \\ \sum_{j=1}^{2} C_{j}^{*} f^{\prime}\left(x^{\prime},-j x_{3} / 2, t\right) & \left(x_{3}<0\right),\end{cases}
$$

where $\sum_{j=1}^{2} C_{j}^{*}(-j / 2)^{m}=1(m=0,1)$, and also \bar{f} by

$$
\bar{f}(x, t)= \begin{cases}f^{*}(x, t) & -T \leqq t \leqq T \\ f^{*}(x,-t-2 T) & -3 T \leqq t \leqq-T\end{cases}
$$

An extension operator stated in the lemma is then given by

$$
\Phi(f)(x, t)= \begin{cases}\psi(|x| / R) \psi((-t-T) / T) \bar{f}(x, t) & \text { in } B_{2 R} \times(-3 T, T) \\ 0 & \text { outside of } B_{2 R} \times(-3 T, T)\end{cases}
$$

where ψ is a smooth function on the reals such that $\psi(s)=1,0$ for $s \leqq 1$, $s \geqq 4 / 3$, respectively.

In what follows we fix one such extension operator Φ. We put

$$
\left\{\begin{array}{l}
U(x, t)=U\left(\operatorname{div} \Phi(\Psi(u-\mathscr{Q})),-\Phi(\mathbb{Q}),-\left.\Phi(\mathbb{Q})\right|_{t=-T}\right)(x, t), \tag{3.1}\\
P(x, t)=P\left(\operatorname{div} \Phi(\Psi(u-\mathscr{Q})),-\Phi(\mathscr{Q}),-\left.\Phi(\mathbb{Q})\right|_{t=-T}\right)(x, t) .
\end{array}\right.
$$

We define functions v_{R} and q_{R} by

$$
\left\{\begin{align*}
v_{R}(x, t) & =K_{R}[\Psi(u-\mathscr{Q})](x, t) \tag{3.2}\\
& =U(x, t)-\sum_{2 k+|\alpha| \leq 2}(k!\alpha!)^{-1} D_{t}^{k} D_{x}^{\alpha} U(0,0) x^{\alpha} t^{k} \\
q_{R}(x, t) & =L_{R}[\Psi(u-\mathscr{Q})](x, t)=P(x, t)-\sum_{|\beta| \leq 1} D_{x}^{\beta} P(0,0) x^{\beta}
\end{align*}\right.
$$

Then they satisfy

$$
\begin{cases}D_{t} v_{R}-\Delta v_{R}+\nabla q_{R}=\operatorname{div} \Phi(\Psi(u-\mathscr{Q})) & \text { in } E_{3}^{+} \times I_{T}, \tag{3.3}\\ \operatorname{div} v_{R}=-\operatorname{div} \Phi(\mathscr{Q}) & \text { in } E_{3}^{+} \times I_{T}, \\ \left.v_{R}\right|_{t=-T}=-\left.\Phi(\mathscr{Q})\right|_{t=-T}-\sum_{2 k+|\alpha| \leq 2}(k!\alpha!)^{-1} D_{t}^{k} D_{x}^{\alpha} U(0,0) x^{\alpha} t^{k},\left.\quad v_{R}\right|_{x_{3}=0}=0 .\end{cases}
$$

From now on, we regard $v_{R}, q_{R}, K_{R}, L_{R}$ as restricted onto $G_{R} \times I_{T}$. By Proposition 2.1 and Lemma 3.1, we easily obtain the following.

Proposition 3.1. The operators K_{R}, L_{R} satisfy the following properties.
(1) K_{R} is an operator from $C_{0}^{1+\mu,(1+\mu) / 2}\left(G_{R} \times I_{T}\right)$ into $C_{0}^{2+\mu,(2+\mu) / 2}\left(G_{R} \times I_{T}\right)$ and satisfies

$$
\left\|K_{R}[\Psi]\right\|_{2+\mu} \leqq C\|\Psi\|_{1+\mu} \quad \text { for } \quad \Psi \in C_{0}^{1+\mu,(1+\mu) / 2}\left(G_{R} \times I_{T}\right)
$$

where $C=C\left(R_{0}, T_{0}\right)$ for $R \leqq R_{0}, T \leqq T_{0}$.
(2) If $\Psi_{j} \in C_{0}^{1+\mu,(1+\mu) / 2}\left(G_{R} \times I_{T}\right)(j=1,2)$, then

$$
\left\|K_{R}\left[\Psi_{1}\right]-K_{R}\left[\Psi_{2}\right]\right\|_{2+\mu} \leqq C\left\|\Psi_{1}-\Psi_{2}\right\|_{1+\mu},
$$

where $C=C\left(R_{0}, T_{0}\right)$ for $R \leqq R_{0}, T \leqq T_{0}$.
(3) If $\Psi \in C_{0}^{1+\mu,(1+\mu) / 2}\left(G_{R} \times I_{T}\right)$, then $\nabla L_{R}[\Psi] \in C_{0}^{\mu, \mu^{\prime} /}\left(G_{R} \times I_{T}\right)$ and $L_{R}[\Psi] \in$ $C_{0}^{1+\mu-\varepsilon,(1+\mu-\varepsilon) / 2}\left(G_{R} \times I_{T}\right)$ for any ε satisfying $0<\mu-\varepsilon<1, \varepsilon>0$.
(4) If $\Psi \in C_{0}^{1+\mu,(1+\mu) / 2}\left(G_{R} \times I_{h T}\right)$ is analytic in $\omega \in I_{h T}$ for each $x \in G_{R}$, then $\quad K_{R}[\Psi] \in C_{0}^{2+\mu,(2+\mu) / 2}\left(G_{R} \times I_{h T}\right), \quad \nabla L_{R}[\Psi] \in C_{0}^{\mu, \mu / 2}\left(G_{R} \times I_{h T}\right), \quad L_{R}[\Psi] \in$ $C_{0}^{1+\mu-\varepsilon,(1+\mu-\varepsilon) / 2}\left(G_{R} \times I_{h T}\right)$ and they are analytic in $\omega \in I_{h T}$ for each $x \in G_{R}$.

Putting $\mu=\theta+\varepsilon$ in the hypotheses of Theorem 1.1, the solution (u, p) of (1.1) is in $C^{2+\theta+\varepsilon,(2+\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right)$ and $C^{1+\theta+\varepsilon,(1+\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right)$, respectively, and is analytic in $\omega \in I_{h r}$ for each $x \in G_{R}$. For the function $f=\operatorname{div} F$ in (1.1), we know that $F \in C^{1+\theta+\varepsilon,(1+\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right)$ is analytic in
$\omega \in I_{h T}$ for each $x \in G_{R}$. Then, by Proposition 3.1, we have $v_{R} \in$ $C_{0}^{2+\theta+\varepsilon,(2+\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right), \quad \nabla q_{R} \in C_{0}^{\theta+\varepsilon,(\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right), \quad q_{R} \in C_{0}^{1+\theta,(1+\theta) / 2}\left(G_{R} \times I_{h T}\right)$, and they are analytic in $\omega \in I_{h T}$ for each $x \in G_{R}$. We define H_{R} and M_{R} by

$$
u=v_{R}+H_{R}+\mathscr{Q}, \quad \text { and } \quad p=q_{R}+M_{R}+\mathscr{R} .
$$

Then we see that the functions $H_{R}, \nabla M_{R}, M_{R}$ have the same regularity as that of $v_{R}, \nabla q_{R}, q_{R}$, respectively. The functions H_{R} and M_{R} satisfy

$$
\left\{\begin{align*}
& D_{t} H_{R}-\Delta H_{R}+\nabla M_{R}=0 \text { in } G_{R} \times I_{T}, \tag{3.4}\\
& \operatorname{div} H_{R}=0 \text { in } G_{R} \times I_{T}, \\
&\left.H_{R}\right|_{t=-T}=\mathscr{C},\left.\quad H_{R}\right|_{x_{3}=0}=0,
\end{align*}\right.
$$

where $\mathscr{H}=\sum_{2 k+|\alpha| \leqq 2}(k!\alpha!)^{-1} D_{t}^{k} D_{x}^{\alpha} U(0,0) x^{\alpha} t^{k}$.
Regarding H_{R} as given, we shall consider the integral equation:

$$
\begin{equation*}
w=K_{R}\left[\Psi\left(w+H_{R}\right)\right] \tag{3.5}
\end{equation*}
$$

It is obvious that the function v_{R} is a solution of (3.5) in $C_{0}^{2+\theta,(2+\theta) / 2}\left(G_{R} \times I_{T}\right)$. Now we show the uniqueness of the solution of (3.5).

Proposition 3.2. There exists a positive number M such that (3.5) has a unique solution in $\left\{w \in C_{0}^{2+\theta,(2+\theta) / 2}\left(G_{R} \times I_{T}\right) ;\|w\|_{2+\theta} \leqq M\right\}$, for $0<$ $R<R_{1}$ and $T=O\left(R^{2}\right)$, where $R_{1}=R_{1}(M)$ is a sufficiently small number depending on M.

To prove the above proposition, we need the following.
Proposition 3.3. Choose R_{2} sufficiently small and put $T=O\left(R^{2}\right)$ for $0<R<R_{2}$. Suppose $w \in C_{0}^{2+\mu,(2+\mu) / 2}\left(G_{R} \times I_{T}\right)$ and suppose $\|w\|_{2+\mu}$ is uniformly bounded by some number M for $0<R<R_{2}$. Then

$$
\begin{align*}
& \Psi(w) \in C_{0}^{1+\mu,(1+\mu) / 2}\left(G_{R} \times I_{T}\right), \tag{3.6}\\
& \|\Psi(w)\|_{1+\mu} \leqq C_{1}+C_{2}(M) R^{2} \tag{3.7}
\end{align*}
$$

where C_{1} is independent of M and R, while $C_{2}(M)$ depends only on M. Moreover, if $\left\|w_{j}\right\|_{2+\mu} \leqq M(j=1,2)$, then

$$
\begin{equation*}
\left\|\Psi\left(w_{1}\right)-\Psi\left(w_{2}\right)\right\|_{1+\mu} \leqq C_{3}(M) R\left\|w_{1}-w_{2}\right\|_{2+\mu} \tag{3.8}
\end{equation*}
$$

where $C_{3}(M)$ depends only on M.
Proof. In view of the definition of Ψ, we can verify (3.6) immediately. Let $\Psi_{j_{k}}^{(1)}$ be the first and second order terms of w in $\Psi_{j k}$ and let $\Psi_{j k}^{(2)}$ be the remainder. We put $\left\|\Psi_{j k}^{(2)}\right\|_{1+\mu}=C_{1}$. Since

$$
\sup _{(x, t) \in G_{R} \times I_{T}}\left|D_{t}^{a} D_{x}^{\alpha} w(x, t)\right| \leqq C\left(R^{2-|\alpha|-a+\mu}+T^{(2-|\alpha|-a+\mu) / 2}\right)\|w\|_{2+\mu}, ~(|\alpha|+2 a \leqq 2), ~ \$
$$

we obtain (3.7) and (3.8) by an easy calculation.
Proof of Proposition 3.2. Let w_{1} and w_{2} be two solutions of (3.5) in $\left\{w \in C_{0}^{2+\theta,(2+\theta) / 2}\left(G_{R} \times I_{T}\right) ;\|w\|_{2+\theta} \leqq M\right\}$ for $0<R<R_{1}$. We have $w_{1}-w_{2}=K_{R}\left[\Psi\left(w_{1}+H_{R}\right)\right]-K_{R}\left[\Psi\left(w_{2}+H_{R}\right)\right]$. By Proposition 3.1 with $\mu=\theta$, we obtain $\left\|w_{1}-w_{2}\right\|_{2+\theta} \leqq C\left\|\Psi\left(w_{1}+H_{R}\right)-\Psi\left(w_{2}+H_{R}\right)\right\|_{1+\theta}$, where $C=C\left(R_{0}\right)$ for $R<R_{0}$. By Proposition 3.3 with $\mu=\theta$, we see that $\left\|w_{1}-w_{2}\right\|_{2+\theta} \leqq C_{0}(M) R\left\|w_{1}-w_{2}\right\|_{2+\theta}$. Hence, choosing R_{1} so that $C_{0}(M) R<1 / 2$ for $0<R<R_{1}$, we have $\left\|w_{1}-w_{2}\right\|_{2+\theta}=0$.
4. The complex analytic extensions of the operators K_{R}, L_{R}. Let

$$
\begin{aligned}
& \boldsymbol{B}_{h R}=\left\{z=x+i y ; x, y \in E_{3},|y|<h(R-|x|)\right\}, \\
& \boldsymbol{B}_{0 h R}=\left\{z \in \boldsymbol{B}_{h R} ; y_{3}=0\right\}, \quad \boldsymbol{G}_{h R}=\left\{z \in \boldsymbol{B}_{0 k R} ; x_{3}>0\right\}, \\
& \boldsymbol{\sigma}_{h R}=\left\{z \in \boldsymbol{B}_{h R} ; z_{3}=0\right\}, \\
& \boldsymbol{E}=\left\{\boldsymbol{B}_{0 h R} \times \boldsymbol{I}_{h r}\right\} \cup\left\{E_{3} \times \boldsymbol{I}_{h T}\right\} \cup\left\{\boldsymbol{B}_{0 k R} \times(-\infty, \boldsymbol{T})\right\} \cup\left\{E_{3} \times(-\infty, T)\right\}, \\
& H^{k+\mu}\left(\boldsymbol{G}_{h R}\right)=\left\{f \in C^{k+\mu}\left(\boldsymbol{G}_{h R}\right) ; f \text { is analytic in } z^{\prime}=\left(\boldsymbol{z}_{1}, z_{2}\right) \text { for } \boldsymbol{z} \in \boldsymbol{G}_{h R}\right\} .
\end{aligned}
$$

Let the semi-norm $|\cdot|_{k+\mu}^{*}$ (resp. $\|\cdot\|_{k+\mu}^{*}$) be an extension of (2.9) (resp. (2.10)) with G_{R} replaced by $\boldsymbol{G}_{h R}$ (resp. $G_{R} \times I_{T}$ by $\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}$). We denote by $H^{k+\mu,(k+\mu) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$ (resp. $\left.H_{0}^{k+\mu,(k+\mu) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)\right)$ the space of functions f in $C^{k+\mu,(k+\mu) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$ which are analytic in $\left(z^{\prime}, \omega\right)$ for $(\boldsymbol{z}, \boldsymbol{\omega}) \in \boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}$ (resp. the space of functions f in $H^{k+\mu,(k+\mu) / 2}\left(\boldsymbol{G}_{h R} \times I_{h T}\right)$ which satisfy $\left.D_{\omega}^{a} D_{z}^{\alpha} f(0,0)=0,|\alpha|+2 a \leqq k\right)$. We define the spaces $H_{0}^{k+\mu,(k+\mu) / 2}\left(G_{R} \times I_{h T}\right)$, $H_{0}^{k+\mu,(k+\mu) / 2}(\boldsymbol{E})$ etc. similarly and the norm of the spaces is written as $\|\cdot\|_{k+\mu\left(G_{R} \times \boldsymbol{I}_{h T}\right)}^{*},\|\cdot\|_{k+\mu_{(E)}}^{*}$ etc.

We here follow Morrey [8]. Let B be the ball $|x|<R$ in E_{n}. Let

$$
\begin{aligned}
& \boldsymbol{B}=\left\{z=x+i y ; x, y \in E_{n},|y|<h(R-|x|)\right\}, \\
& \boldsymbol{X}=\left\{z=x+i y ; x, y \in E_{n},|y|<h|x|\right\} .
\end{aligned}
$$

Suppose that the kernel $\mathscr{F}(x)$ has an analytic extension onto \boldsymbol{X}. For each $z=x+i y \in \boldsymbol{B}$, we define a surface $S(z)$ in \boldsymbol{B} passing through the point z, by the equations $\xi=\xi(r)$ for $r \in \bar{B}$, where ξ satisfies

```
(1) \(\operatorname{Re} \xi(r)=r, \quad r \in B, \quad \operatorname{Im} \xi(r)=0, \quad r \in \partial B ;\)
    (2) \(\operatorname{Im} \xi(r)=y, \quad|\operatorname{Im} \xi(r)-y|<h|r-x|\);
    (3) \(|\operatorname{Im} \xi(r)|<h(R-|r|), \quad r \in B\);
    (4) \(\operatorname{Im} \xi(r) \in C(\bar{B})\), differentiable almost everywhere and its
        derivatives \(D_{r_{j}} \operatorname{Im} \xi(r)(j=1,2, \cdots, n)\) are in \(L^{\infty}(B)\).
```

For $f \in H^{\mu}(\boldsymbol{B})$ and a kernel $\mathscr{F}(x)$, we define the integral over the surface $S(z)$ by

$$
\begin{equation*}
\int_{S(z)} \mathscr{F}(z-\xi) f(\xi) d \xi=\int_{B} \mathscr{F}(z-\xi(r)) f(\xi(r)) J(r) d r, \tag{4.2}
\end{equation*}
$$

where $J(r)=\partial\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right) / \partial\left(r_{1}, r_{2}, \cdots, r_{n}\right)$.
Proposition 4.1. Let $f \in H^{\mu}(\boldsymbol{B}), z \in \boldsymbol{B}$.
(1) If both surfaces $S(z)$ and $S^{*}(z)$ satisfy (4.1), then the corresponding integrals defined by (4.2) have the same value.
(2) The function $F(z)=\int_{S(z)} \mathscr{F}(z-\xi) f(\xi) d \xi$ is analytic on \boldsymbol{B} and we have

$$
\begin{equation*}
D_{z_{j}} F(z)=\int_{S(z)} D_{z_{j}} \mathscr{F}(z-\xi) f(\xi) d \xi \tag{4.3}
\end{equation*}
$$

Remark 4.1. The above proposition holds also if we replace \boldsymbol{B} by $\boldsymbol{B}(k)=\left\{z \in \boldsymbol{B} ; \boldsymbol{z}_{k} \in E_{1}\right\}$.

Proposition 4.2. Suppose $f \in C^{\mu}\left(E_{n}\right)$ and suppose it decreases fast enough as $|x| \rightarrow \infty$. If the integral

$$
F(x)=\int_{E_{n} \backslash B} \mathscr{F}(x-r) f(r) d r
$$

is absolutely convergent, then $F(x)$ can be analytically extended to \boldsymbol{B}. We have $F(z)=\int_{E_{\boldsymbol{n}^{\prime}} \backslash \boldsymbol{B}} \mathscr{F}(z-r) f(r) d r$ for $z \in \boldsymbol{B}$.

Now, we return to the Stokes equation (2.1). Notice that the solution (v, q) of (2.1) can be written as follows:

$$
\left\{\begin{array}{l}
v=U\left(\widetilde{f}, \phi, \widetilde{v}_{0}\right)=v^{\prime}+v^{\prime \prime}+\nabla \bar{v} \tag{2.5}\\
q=P\left(\widetilde{f}, \phi, \widetilde{v}_{0}\right)=p^{\prime}+p^{\prime \prime}-D_{t} \bar{v}+\Delta \bar{v}
\end{array}\right.
$$

We have the following proposition.
Proposition 4.3. Suppose that, for the function f in (2.1), there exists $F=\left\{F_{j k}\right\}_{(j, k=1,2,3)}$ such that $f=\operatorname{div} F$ and F has an analytic extension \widetilde{F} to \boldsymbol{E}. Let ϕ, \widetilde{v}_{0} have analytic extensions to $\left\{E_{3} \cup \boldsymbol{B}_{0 h R}\right\} \times \boldsymbol{I}_{h T}$, $E_{3} \cup \boldsymbol{B}_{0 h R}$, respectively. Then the solution $v(x, t)=U\left(\operatorname{div} \widetilde{F}, \phi, \widetilde{v}_{0}\right)(x, t)$, $q(x, t)=P\left(\operatorname{div} \widetilde{F}, \phi, \widetilde{v}_{0}\right)(x, t)$ has an analytic extension to $\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}$ and satisfies

$$
\begin{aligned}
\|v\|_{2+\mu}^{*}+ & \|\nabla q\|_{\mu}^{*}+\|q\|_{1+\mu-\varepsilon}^{*} \\
& \leqq C\left\{\widetilde{F}\left\|_{1+\mu(E)}^{*}+\right\| \phi \|_{2+\mu+\varepsilon\left(\left\{E_{3} \cup \boldsymbol{B}_{0 h R} \mid \times \boldsymbol{I}_{h T}\right)\right.}^{*}+\left|\widetilde{v}_{0}\right|_{\left.2^{*}+\mu_{\left(E_{3} \cup B_{0 h R}\right.}^{*}\right\}}\right\}
\end{aligned}
$$

To prove this proposition, we first give the complex analytic extensions of the kernels $T(x, t), Q(x, t), A(x, t)$ and $G(x, t)$. The analytic extension of $K(x)$ is well known. So, by using Propositions 4.1 and 4.2,
we obtain the following lemmas,- where we define

$$
\begin{aligned}
& I^{0}=(0, \infty), \quad I_{h}^{0}=\left\{\omega=t+i s ;|s|<h t, t \in I^{0}\right\}, \\
& \boldsymbol{X}_{h}=\left\{z=x+i y ; x, y \in E_{3},|y|<h|x|\right\}, \\
& \boldsymbol{X}_{0 h}=\left\{z \in \boldsymbol{X}_{h} ; y_{3}=0\right\}, \quad \boldsymbol{Y}_{h}=\left\{z \in \boldsymbol{X}_{0 h} ; x_{3}>0\right\} .
\end{aligned}
$$

Lemma 4.1. The kernel $T(x, t)$ (resp. $A(x, t)$, resp. $\left.G_{j k}(x, t)(k \neq 3)\right)$ can be extended to an analytic function in (z, ω) for $(z, \omega) \in X_{h} \times I_{h}^{0}$ (resp. $\left(z^{\prime}, \omega\right)$ for $(z, \omega) \in Y_{h} \times I_{h}^{0} \operatorname{resp} .\left(z^{\prime}, \omega\right)$ for $\left.(z, \omega) \in \boldsymbol{Y}_{h} \times I_{h}^{0}\right)$, and we have, for $(z, \omega) \in X_{h} \times I_{h}^{0}$,

$$
\begin{equation*}
\left|D_{z}^{\alpha} D_{\omega}^{m} T(z, \omega)\right| \leqq C\left(|x|^{2}+t\right)^{-(|\alpha|+3) / 2-m} \tag{4.4}
\end{equation*}
$$

(resp. for $(z, \omega) \in \boldsymbol{Y}_{h} \times \boldsymbol{I}_{h}^{0}$,

$$
\begin{equation*}
\left|D_{z}^{\alpha} D_{\omega}^{m} A(z, \omega)\right| \leqq C\left(|x|^{2}+t\right)^{-(|\alpha|+1) / 2} t^{-m-1 / 2}, \tag{4.5}
\end{equation*}
$$

resp. for $(z, \omega) \in Y_{h} \times I_{h}^{0}$,

$$
\begin{equation*}
\left|D_{z^{\prime}}^{\alpha} D_{z_{3}}^{n} D_{\omega}^{m} G_{j k}(z, \omega)\right| \leqq C t^{-m-1 / 2}\left(|x|^{2}+t\right)^{-(|\alpha|+3) / 2}\left(x_{3}^{2}+t\right)^{-n / 2} \tag{4.6}
\end{equation*}
$$

The real number h depends on the kernels. We choose and fix a sufficiently small positive number h so that the above analytic extensions exist.

We put $\mathscr{F}=\Gamma, \boldsymbol{B}=\boldsymbol{B}_{0 h R}$ and take $S(\boldsymbol{z})$ satisfying (4.1). Then we have the following.

Lemma 4.2. Suppose that $f \in C_{0}^{\mu, \mu / 2}\left(E_{3} \times(-\infty, T)\right)$ and suppose it decreases fast enough as $|(x, t)| \rightarrow \infty$, and has an analytic extension to $\boldsymbol{H}_{0}^{\mu, \mu / 2}(\boldsymbol{E})$. Put

$$
F(x, t)=\int_{-\infty}^{t} \int_{E_{3}} \Gamma(x-r, t-\tau) f(r, \tau) d r d \tau
$$

Then $F(x, t)$ can be extended analytically in $\left(z^{\prime}, \omega\right)$ for $(z, \omega) \in \boldsymbol{B}_{0 h R} \times \boldsymbol{I}_{k T}$ and we have

$$
\|\boldsymbol{F}\|_{2^{\prime} \mu}^{*} \leqq C\|f\|_{\mu(\mathbf{E})}^{*}
$$

Similarly, the following lemmas hold.
Lemma 4.3. Suppose that $g \in C_{0}^{1+\mu,(1+\mu) / 2}\left(E_{3} \times(-\infty, T)\right)$ and suppose it has a compact support in $E_{3} \times(-\infty, T)$ and has an analytic extension to $H_{0}^{1+\mu,(1+\mu) / 2}(\boldsymbol{E})$. Then the function $F(x, t)$ defined by

$$
F(x, t)=\int_{E_{3}} K(x-r) D_{r} g(r, t) d r
$$

can be extended analytically in $\left(z^{\prime}, \omega\right)$ for $(z, \omega) \in \boldsymbol{B}_{0 h R} \times \boldsymbol{I}_{h T}$ and satisfies

$$
\begin{equation*}
\left\|D_{z}^{\alpha} F\right\|_{l^{\prime}}^{*} \leqq C\|g\|_{1+\mu(E)}^{*}, \quad|\alpha|=2, \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\|F\|_{1+\mu-\varepsilon}^{*} \leqq C\|g\|_{1+\mu(\mathbf{E})}^{*} . \tag{4.8}
\end{equation*}
$$

Lemma 4.4. Let \widetilde{v}_{0} be in $H^{2+\mu}\left(E_{3} \cup \boldsymbol{B}_{0 h R}\right)$. Then the function $\boldsymbol{F}(x, t)$ defined by

$$
F(x, t)=\int_{E_{3}} \Gamma(x-r, t+T) \widetilde{v}_{0}(r) d r
$$

can be extended to $\left\{E_{3} \cup \boldsymbol{B}_{0 k R}\right\} \times \boldsymbol{I}_{h T}$ so that $\boldsymbol{F} \in H^{2+\mu,(2+\mu) / 2}\left(\left\{E_{3} \cup \boldsymbol{B}_{0 h k}\right\} \times \boldsymbol{I}_{h T}\right)$. We have

$$
\|\boldsymbol{F}\|_{2+\mu}^{*} \leqq C\left|\tilde{v}_{0}\right|_{\left.2+\mu_{\left(E_{3} \cup\right.}^{*} \cup B_{0 h R}\right)}^{*}
$$

Proof of Proposition 4.3. As mentioned above, the functions v^{\prime} and p^{\prime} given by (2.6) have analytic extensions and satisfy the desired inequalities. In other words, we obtain the extension and the estimate for p^{\prime} by Lemma 4.3. Regarding the function v^{\prime} as the solution of the Cauchy problem for the heat equation with $f-p^{\prime}$ on the right-hand side, by Lemmas 4.2 and 4.3 , we have

$$
\left\|v^{\prime}\right\|_{2+\mu}^{*}+\left\|p^{\prime}\right\|_{1+\mu-\varepsilon}^{*}+\left\|\nabla p^{\prime}\right\|_{\mu}^{*} \leqq C\left\{\|F\|_{1+\mu(\mathbf{E})}^{*}+\|\left.\widetilde{v}_{0}\right|_{2+\mu_{\left(E_{3} \cup\right.}^{*} \boldsymbol{B}_{0 h R}} ^{*}\right\} .
$$

In the same way as in the proof of Lemma 4.3, we have

$$
\|\bar{v}\|_{3+\mu}^{*} \leqq C\|\boldsymbol{\phi}\|_{2+\theta+\varepsilon\left(\left\{E_{3} \cup \mathbf{B}_{0 h} R^{\left.\prime \times \mathbf{I}_{h T}\right)}\right.\right.}^{*}
$$

where \bar{v} is given by (2.8).
Lemma 4.5. Let b_{3} be the third component of b in (2.4) and suppose it satisfies the condition $D_{t} b_{3}=\sum_{j=1}^{2} D_{x_{j}} e_{j}$. Let $b_{j} \in H_{0}^{2+\mu,(2+\mu) / 2}\left(\left\{\sigma \cup \sigma_{h R}\right\} \times\right.$ $\left.I_{h T}\right)$ and $e_{k} \in H_{0}^{1+\mu,(1+\mu) / 2}\left(\left\{\sigma \cup \sigma_{h R}\right\} \times I_{h T}\right), \quad j=1,2,3, k=1,2$. Then the functions $v^{\prime \prime}$ and $p^{\prime \prime}$ given by (2.4) are extended analytically in (z^{\prime}, ω) for $(z, \omega) \in \boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}$ and satisfy

$$
\begin{aligned}
&\left\|v^{\prime \prime}\right\|_{2+\mu}^{*}+\left\|p^{\prime \prime}\right\|_{1+\theta-\varepsilon}^{*}+\left\|\nabla p^{\prime \prime}\right\|_{\mu}^{*} \\
& \leqq C\left(\|b\|_{2+\mu\left(\left\{\sigma \cup \boldsymbol{o}_{h R} \mid \times \boldsymbol{I}_{h}\right)\right.}^{*}+\|e\|_{1+\mu\left(\left\{\sigma \cup \boldsymbol{o}_{h R} \mid \times \boldsymbol{I}_{h T}\right)\right.}^{*}\right)
\end{aligned}
$$

For the detail of the proof of each lemma see Morrey [9, pp. 174179].

In view of the definition of b_{3} in (2.4), we get the following by Solonnikov [11, p. 53].

$$
D_{t} b_{3}\left(x^{\prime}, t\right)=\sum_{j=1}^{2} D_{x_{j}} b_{j}^{\prime}\left(x^{\prime}, t\right)+\sum_{j=1}^{2} D_{x_{j}} b_{j}^{\prime \prime}\left(x^{\prime}, t\right)
$$

where

$$
\begin{aligned}
b_{j}^{\prime}\left(x^{\prime}, t\right)= & (4 \pi)^{-1}\left[D_{x_{3}} \int_{E_{3}} \Gamma(r, t)|x-r|^{-1} d r * f_{j}\right. \\
& \left.-D_{x_{j}} \int_{E_{3}} \Gamma(r, t)|x-r|^{-1} d r * f_{3}\right]\left.\right|_{x_{3}=0}
\end{aligned}
$$

$$
\begin{aligned}
b_{j}^{\prime \prime}\left(x^{\prime}, t\right)= & \left.D_{x_{j}} \int_{E_{3}} \Gamma(x-r, t+T) \widetilde{v}_{03}(r) d r\right|_{x_{3}=0} \\
& -\left.D_{x_{3}} \int_{E_{3}} \Gamma(x-r, t+T) \widetilde{v}_{0 j}(r) d r\right|_{x_{3}=0}
\end{aligned}
$$

The above formula is also valid after the analytic extension. Hence it is easy to see that there exist $e_{k}(k=1,2)$ satisfying $D_{t} b_{3}=\sum_{k=1}^{2} D_{x_{k}} e_{k}$.

We see that the norms of b and e are bounded by those of \tilde{f} and \widetilde{v}_{0}. Therefore the proof of Proposition 4.3 is complete.

Similarly, we have the following.
Proposition 4.4. Suppose that, for f in (2.1), there exists $F=$ $\left\{F_{j k}\right\}_{(j, k=1,2,3)}$ such that $f=\operatorname{div} F$ and F is in $H_{0}^{1+\mu,(1+\mu) / 2}\left(E_{3}^{+} \times I_{k T}\right)$. Let $f=0$ and $\operatorname{div} \phi=0$ on $G_{R} \times I_{h T}$. Let $\phi \in H_{0}^{2+\mu+\varepsilon,(2+\mu+\varepsilon) / 2}\left(E_{3}^{+} \times I_{h T}\right), v_{0} \in$ $H^{2+\mu}\left(E_{3}^{+} \cup \boldsymbol{G}_{h R}\right)$. Then the solution ($\left.v, q\right)$ of (2.1) has an analytic extension onto $\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}$ and satisfies

$$
\begin{aligned}
& \|v\|_{2+\mu}^{*}+\|\nabla q\|_{\mu}^{*}+\|q\|_{1+\mu-\varepsilon}^{*} \\
& \quad \leqq C\left\{\|F\|_{1+\mu\left(E_{3}^{+} \times \boldsymbol{I}_{h T}\right)}^{*}+\|\phi\|_{2+\mu+\varepsilon\left(E_{3}^{+} \times \boldsymbol{I}_{h T}\right)}^{*}+\left|v_{0}\right|_{2+\mu\left(E_{3}^{+} \cup \boldsymbol{G}_{h R}\right)}^{*}\right\}
\end{aligned}
$$

Now we will give here the analytic extensions of H_{R} and M_{R}.
Proposition 4.5. Let $F \in H^{1+\theta+\varepsilon,(1+\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right), u \in H^{2+\theta+\varepsilon,(2+\theta+\varepsilon) / 2}\left(G_{R} \times\right.$ $\left.I_{h T}\right), p \in H^{1+\theta+\varepsilon,(1+\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right)$. Then H_{R} and M_{R} have extensions \bar{H}_{R} and \bar{M}_{R} which are analytic in $\left(z^{\prime}, \omega\right)$ for $(z, \omega) \in G_{h R} \times I_{h T}$ and satisfy

$$
\left\|\bar{H}_{R}\right\|_{2+\theta}^{*}+\left\|\bar{M}_{R}\right\|_{1+\theta-\varepsilon}^{*} \leqq C\left\{\left\|H_{R}\right\|_{2+\theta+\varepsilon\left(G_{R} \times \boldsymbol{I}_{h T}\right)}+\left\|M_{R}\right\|_{1+\theta\left(G_{R} \times \boldsymbol{I}_{h T}\right)}\right\} .
$$

Proof. We already know that H_{R} and M_{R} satisfy

$$
\left\{\begin{array}{cl}
D_{t} H_{R}-\Delta H_{R}+\nabla M_{R}=0 & \text { in } G_{R} \times I_{T} \\
\operatorname{div} H_{R}=0 & \text { in } G_{R} \times I_{T} \\
\left.H_{R}\right|_{t=-T}=\sum_{2 k+|\alpha| \leq 2}(k!\alpha!)^{-1} D_{t}^{k} D_{x}^{\alpha} U(0,0) x^{\alpha} t^{k},\left.\quad H_{R}\right|_{x_{3}=0}=0
\end{array}\right.
$$

and $\quad H_{R} \in H_{0}^{2+\theta+\varepsilon,(2+\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right), \quad M_{R} \in H_{0}^{1+\theta,(1+\theta) / 2}\left(G_{R} \times I_{h T}\right), \quad$ and $\nabla M_{R} \in$ $H_{0}^{\theta+\varepsilon,(\theta+\varepsilon) / 2}\left(G_{R} \times I_{h T}\right)$. Let \widetilde{H}_{R} and \widetilde{M}_{R} be extensions of H_{R} and M_{R} to $E_{3}^{+} \times(-\infty, T)$ as in Lemma 3.1. Let $f^{*}=D_{t} \widetilde{H}_{R}-\Delta \widetilde{H}_{R}+\nabla \widetilde{M}_{R}, \phi^{*}=\widetilde{H}_{R}$, $v_{0}^{*}=\left.\widetilde{H}_{R}\right|_{t=-T}$. It is easy to see that v_{0}^{*} is a polynomial on $G_{R}, f^{*}=0$ and $\operatorname{div} \phi^{*}=0$ on $G_{R} \times I_{h T}$. Since $D_{t} H_{R}=\Delta H_{R}-\nabla M_{R}$ in $G_{R} \times I_{h T}$, we see by the construction of H_{R}, M_{R} that there exists F^{*} such that $f^{*}=$ $\operatorname{div} F^{*}$ and $F^{*} \in H_{0}^{1+\theta,(1+\theta) / 2}\left(E_{3}^{+} \times I_{h T}\right)$. Moreover, we know that $\phi^{*} \in$ $H_{0}^{2+\theta+\varepsilon,(2+\theta+\varepsilon) / 2}\left(E_{3}^{+} \times I_{h T}\right)$ and $v_{0}^{*} \in H^{2+\theta,(2+\theta) / 2}\left(E_{3}^{+} \cup \boldsymbol{G}_{h R}\right)$. Then the functions \tilde{H}_{R} and \tilde{M}_{R} satisfy

$$
\left\{\begin{array}{cl}
D_{t} \widetilde{H}_{R}-\Delta \widetilde{H}_{R}+\nabla \widetilde{M}_{R}=f^{*} & \text { in } E_{3}^{+} \times \boldsymbol{I}_{h T}, \tag{4.9}\\
\operatorname{div} \widetilde{H}_{R}=\operatorname{div} \phi^{*} & \text { in } E_{3}^{+} \times \boldsymbol{I}_{h T}, \\
\left.\widetilde{H}_{R}\right|_{t=-T}=v_{0}^{*},\left.\quad \widetilde{H}_{R}\right|_{x_{3}=0}=0, &
\end{array}\right.
$$

and have compact supports. Regarding $f^{*}, \phi^{*}, v_{0}^{*}$, as given data, and $\tilde{H}_{R}, \widetilde{M}_{R}$ as solutions of (4.9), by Proposition 4.4 with $\mu=\theta$, we see that \tilde{H}_{R} and \widetilde{M}_{R} have analytic extensions \bar{H}_{R}, \bar{M}_{R} to $G_{h R} \times I_{h T}$ and satisfy

$$
\begin{aligned}
& \left\|\bar{H}_{R}\right\|_{2+\theta}^{*}+\left\|\bar{M}_{R}\right\|_{1+\theta-\varepsilon}^{*} \\
& \quad \leqq C\left\{\left\|F^{*}\right\|_{1+\theta\left(E_{3}^{+} \times \boldsymbol{I}_{h T}\right)}^{*}+\left\|\phi^{*}\right\|_{2+\theta+\varepsilon\left(E_{3}^{+} \times \boldsymbol{I}_{\boldsymbol{h}}\right)}^{*}+\left|v_{0}^{*}\right|_{\left.2_{+\theta\left(E_{3}^{+} \cup \boldsymbol{c}_{h R}\right.}^{*}\right\}}\right\}
\end{aligned}
$$

By using Lemma 3.1, we obtain Proposition 4.5.
Remark 4.2. The extension operator Φ defined in Lemma 3.1 also satisfies the following. If $f \in H_{0}^{k+\mu,(k+\mu) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$, then $\Phi(f) \in H_{0}^{k+\mu,(k+\mu) / 2}(\boldsymbol{E})$ for $k=1,2,0<\mu<1$. We have

$$
\|\Phi(f)\|_{k+\mu(\mathbb{E})}^{*} \leqq C\|f\|_{k+\mu}^{*}
$$

where C is independent of R and T.
By the above we obtain the complex analytic extensions of the operators K_{R}, L_{R}.

Proposition 4.6. The operators K_{R} and L_{R} satisfy the following properties.
(1) K_{R} is an operator from $H_{0}^{1+\mu,(1+\mu) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$ into $H_{0}^{2+\mu,(2+\mu) / 2}\left(\boldsymbol{G}_{h R} \times\right.$ $I_{h r}$) and we have

$$
\left\|K_{R}[\Psi]\right\|_{2+\mu}^{*} \leqq C\|\Psi\|_{1+\mu}^{*} \quad \text { for } \quad \Psi \in H_{0}^{1+\mu,(1+\mu) / 2}\left(\boldsymbol{G}_{h R} \times I_{h T}\right),
$$

where $C=C\left(R_{0}, T_{0}\right)$ for $R<R_{0}, T<T_{0}$.
(2) If $\Psi_{j} \in H_{0}^{1+\mu,(1+\mu) / 2}\left(\boldsymbol{G}_{h R} \times I_{h T}\right)(j=1,2)$, then

$$
\left\|K_{R}\left[\Psi_{1}\right]-K_{R}\left[\Psi_{2}\right]\right\|_{2_{2+\mu}^{*}}^{*} \leqq C\left\|\Psi_{1}-\Psi_{2}\right\|_{1+\mu}^{*},
$$

where $C=C\left(R_{0}, T_{0}\right)$ for $R<R_{0}, T<T_{0}$.
(3) If $\Psi \in H_{0}^{1+\mu,(1+\mu) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$, then $\nabla L_{R}[\Psi] \in H_{0}^{\mu, \mu / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$ and $L_{R}[\Psi] \in H_{0}^{1+\mu-\varepsilon,(1+\mu-\varepsilon) / 2}\left(\boldsymbol{G}_{h R} \times I_{h T}\right)$ for any ε with $0<\mu-\varepsilon<1, \varepsilon>0$.

Proof. We know that

$$
\begin{aligned}
K_{R}[\Psi](x, t)= & \left.U\left(\operatorname{div} \Phi(\Psi),-\Phi(\mathscr{Q}),-\left.\Phi(\mathscr{Q})\right|_{t=-T}\right)\right|_{G_{R} \times I_{T}}(x, t) \\
& -\left.\sum_{2 k+|\alpha| \leq 2}(k!\alpha!)^{-1} D_{t}^{k} D_{x}^{\alpha} U(0,0) x^{\alpha} t^{k}\right|_{G_{R} \times I_{T}} \\
L_{R}[\Psi](x, t)= & \left.P\left(\operatorname{div} \Phi(\Psi),-\Phi(\mathscr{Q}),-\left.\Phi(\mathscr{Q})\right|_{t=-T}\right)\right|_{G_{R} \times I_{T}}(x, t) \\
& -\left.\sum_{|\beta| \leq 1} D_{x}^{\beta} P(0,0) x^{\beta}\right|_{G_{R} \times I_{T}} .
\end{aligned}
$$

In view of the definition of \mathscr{Q} and Remark 4.2, it is easy to see that the function $\Phi(\mathbb{Q})$ is in $H_{0}^{2+\mu+\varepsilon,(2+\mu+\varepsilon) / 2}(\boldsymbol{E})$. Putting $\widetilde{F}=\Phi(\Psi), \phi=-\Phi(\mathbb{Q})$, and $\widetilde{v}_{0}=-\Phi(\mathscr{Q})$, we use Proposition 4.3. Then, noticing Remark 4.2, we have Proposition 4.6.
5. Proof of Theorem 1.1. First, we prove the following proposition for small R, T.

Proposition 5.1. Let $u_{0} \in H^{2+\theta+\varepsilon}\left(\boldsymbol{G}_{h R}\right)$. Suppose that $u \in H^{2+\theta+\varepsilon,(2+\theta+\varepsilon) / 2}$ $\left(\boldsymbol{G}_{R} \times \boldsymbol{I}_{h T}\right)$ and $p \in H^{1+\theta+\varepsilon,(1+\theta+\varepsilon) / 2}\left(\boldsymbol{G}_{R} \times \boldsymbol{I}_{h T}\right)$ satisfy

$$
\begin{cases}D_{t} u-\Delta u+\nabla p=f-\operatorname{div} N(u) & \text { in } G_{R} \times I_{T} \tag{5.1}\\ \operatorname{div} u=0 & \text { in } G_{R} \times I_{T} \\ \left.u\right|_{t=-T}=u_{0}\left(\operatorname{div} u_{0}=0\right),\left.\quad u\right|_{x_{3}=0}=0 .\end{cases}
$$

Suppose that there exists $F=\left\{F_{\left.j_{k}\right\}_{(j, k=1,2,3)}}\right.$ such that $f=\operatorname{div} F$ and $F \in$ $H^{1+\theta+\varepsilon,(1+\theta+\varepsilon) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right),(0<\theta+\varepsilon<1, \varepsilon>0)$. Then we can extend u and p so that $u \in H^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right), D_{x_{3}} u \in H^{1+\theta,(1+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right), p \in H^{1+\theta,(1+\theta) / 2}$ $\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$.

As is well known, we may assume that $u_{0}=0$. To prove this proposition, we consider the integral equation:

$$
\begin{equation*}
w=K_{R}\left[\Psi\left(w+H_{R}\right)\right] \tag{3.5}
\end{equation*}
$$

in $H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h r}\right)$. Since the solution (u, p) of (5.1) is written as $u=v_{R}+H_{R}+\mathscr{Q}, p=q_{R}+M_{R}+\mathscr{R}$, it is sufficient to prove that v_{R}, $H_{R} \in H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times I_{h T}\right), q_{R}, M_{R}, D_{x_{3}} v_{R}, D_{x_{3}} H_{R} \in H_{0}^{1+\theta,(1+\theta) / 2}\left(\boldsymbol{G}_{h R} \times I_{h T}\right)$. By Proposition 4.5, we see that H_{R} and M_{R} satisfy the above properties. Regarding $H_{R} \in H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$ as known, we seek the solution w of (3.5) in $H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$. To continue the proof, we need the following Propositions 5.2 and 5.3, the first of which can be proved in the same way as Proposition 3.3.

Proposition 5.2. Choose R_{3} sufficiently small and put $T=O\left(R^{2}\right)$ for $0<R<R_{3}$. Suppose that $w \in H_{0}^{2+\mu,(2+\mu) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$ and $\|w\|_{2+\mu}^{*}$ is uniformly bounded by some number M for $0<R<R_{3}$. Then

$$
\begin{align*}
& \Psi(w) \in H_{0}^{1+\mu,(1+\mu) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h r}\right), \tag{5.2}\\
& \|\Psi(w)\|_{1+\mu}^{*} \leqq C_{1}+C_{2}(M) R^{2}, \tag{5.3}
\end{align*}
$$

where C_{1} is independent of M and R, while $C_{2}(M)$ depends on M. Moreover, if $\left\|w_{j}\right\|_{2+\mu}^{*} \leqq M(j=1,2)$, then

$$
\begin{equation*}
\left\|\Psi\left(w_{1}\right)-\Psi\left(w_{2}\right)\right\|_{1+\mu}^{*} \leqq C_{3}(M) R\left\|w_{1}-w_{2}\right\|_{2+\mu}^{*}, \tag{5.4}
\end{equation*}
$$

where $C_{3}(M)$ depends on M.

Proposition 5.3. Choose R_{4} sufficiently small and put $T=O\left(R^{2}\right)$ for $0<R<R_{4}$. Suppose that H_{R} is in $H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$. Then there exists a solution w of (3.5) which is in $H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$.

Proof. We define the sequence $\left\{w^{k}\right\}$ by $w^{0}=0$ and $w^{k+1}=$ $K_{R}\left[\Psi\left(w^{k}+H_{R}\right)\right]$. By Proposition 4.6 with $\mu=\theta$ and Proposition 5.2, we see that there exists a positive constant M such that $w^{k} \in H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$ and $\left\|w^{k}\right\|_{2+\theta}^{*} \leqq M$. Choosing R_{4} sufficiently small, we then have $\| w^{k+1}-$ $w^{k}\left\|_{2+\theta}^{*} \leqq 2^{-1}\right\| w^{k}-w^{k-1} \|_{2+\theta}^{*}$ for $R<R_{4}$. This shows that the sequence $\left\{w^{k}\right\}$ is a Cauchy sequence in $H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$, whose limit w^{\prime} is the solution of (3.5).

We now continue the proof of Proposition 5.1. The solution $w \in$ $H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times I_{h r}\right)$ is also in $C_{0}^{2+\theta,(2+\theta) / 2}\left(G_{R} \times I_{T}\right)$ and $\|w\|_{2+\theta}$ is uniformly bounded by some number M for $0<R<R_{4}$. On the other hand, v_{R} is the solution of (3.5) and is in $C_{0}^{2+\theta,(2+\theta) / 2}\left(G_{R} \times I_{T}\right)$ and $\left\|v_{R}\right\|_{2+\theta}$ is also uniformly bounded by M for $0<R<R_{4}$. So, by Proposition 3.2, we obtain $w=v_{R}$ in $G_{R} \times I_{T}$. In other words, there exists an analytic extension of v_{R} to $H_{0}^{2+\theta,(2+\theta) / 2}\left(\boldsymbol{G}_{h R} \times \boldsymbol{I}_{h T}\right)$. The same properties are true for q_{R} and $D_{x_{3}} v_{R}$. Therefore the proof of Proposition 5.1 is complete.

Now, we prove Theorem 1.1. We return to the solution (u, p) of (1.1). It is easy to see that the hypotheses of Proposition 5.1 follow from those of Theorem 1.1 with $\mu=\theta+\varepsilon$. By Proposition 5.1, there is a constant $\delta>0$ such that $u, D_{x_{3}} u, p$ are analytic in $\left(z^{\prime}, \omega\right)$ for $(z, \omega) \in$ $\mathscr{D}_{0 \delta}=\left\{(z, \omega) \in \mathscr{D} \times \Omega ; \quad\left|z^{\prime}\right|<\delta, \quad\left|\omega-t_{0}\right|<\delta, \quad y_{3}=0, \quad 0<x_{3}<\delta\right\}$, and $\left|u\left(z^{\prime}, x_{3}, \omega\right)\right|+\left|D_{x_{3}} u\left(z^{\prime}, x_{3}, \omega\right)\right|+\left|p\left(z^{\prime}, x_{3}, \omega\right)\right|<M$ for $(z, \omega) \in \mathscr{D}_{0}$, where δ and M are independent of x_{3}. We consider the Cauchy problem:

$$
\left\{\begin{array}{l}
D_{z_{3}}^{2} \bar{u}_{1}=D_{\omega} \bar{u}_{1}-\sum_{j=1}^{2} D_{z_{j}}^{2} \bar{u}_{1}+D_{z_{1}} \bar{p}-f_{1}+\sum_{j=1}^{3} \bar{u}_{j} D_{z_{j}} \bar{u}_{1}, \tag{5.5}\\
D_{z_{3}}^{2} \bar{u}_{2}=D_{\omega} \bar{u}_{2}-\sum_{j=1}^{2} D_{z_{j}}^{2} \bar{u}_{2}+D_{z_{2}} \bar{p}-f_{2}+\sum_{j=1}^{3} \bar{u}_{j} D_{z_{j}} \bar{u}_{2}, \\
D_{z_{3}}^{2} \bar{u}_{3}=-D_{z_{1}} D_{z_{3}} \bar{u}_{1}-D_{z_{2}} D_{z_{3}} \bar{u}_{2}, \\
D_{z_{3}} \bar{p}=-D_{\omega} \bar{u}_{3}+\sum_{j=1}^{2}\left(D_{z_{j}}^{2} \bar{u}_{3}+D_{z_{j}} D_{z_{3}} \bar{u}_{j}\right)+f_{3}-\sum_{j=1}^{3} \bar{u}_{j} D_{z_{j}} \bar{u}_{3}, \\
\left.\bar{u}\right|_{z_{3}=\bar{o}^{\prime}}=u\left(z^{\prime}, \delta^{\prime}, \omega\right),\left.\quad D_{z_{3}} \bar{u}\right|_{z_{3}=o^{\prime}}=D_{x_{3}} u\left(z^{\prime}, \delta^{\prime}, \omega\right), \\
\left.\bar{p}\right|_{z_{3}=\delta^{\prime}}=p\left(z^{\prime}, \delta^{\prime}, \omega\right), \quad\left(0<\delta^{\prime}<\delta\right) .
\end{array}\right.
$$

By the Cauchy-Kowalewsky Theorem, there exists a unique analytic solution of (5.5) in $\mathscr{D}_{j^{\prime \prime}}=\left\{(z, \omega) \in \mathscr{D} \times \Omega ;\left|z^{\prime}\right|<\delta^{\prime \prime},\left|\omega-t_{0}\right|<\delta^{\prime \prime},\left|z_{3}-\delta^{\prime}\right|<\delta^{\prime \prime}\right\}$, where $\delta^{\prime \prime}$ depends on δ and M, but $\delta^{\prime \prime}$ is independent of δ^{\prime}. Choosing δ^{\prime} sufficiently small, we see that $\left(0, t_{0}\right)$ is in $\mathscr{D}_{j^{\prime \prime}}$.

On the other hand, by Kahane [3], we know that, under the same assumption as in Theorem 1.1, the solution (u, p) of (1.1) is analytic near $\left(0,0, \delta^{\prime}, t_{0}\right)$. The functions u and p satisfy (5.5). Then we have $(u, p)=$ (\bar{u}, \bar{p}) near $\left(0,0, \delta^{\prime}, t_{0}\right)$. Therefore, u and p are analytic near $\left(0, t_{0}\right)$.

References

[1] A. Friedman, On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial differential equations, J. Math. Mech. 7 (1958), 43-58.
[2] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal. 16 (1964), 269-314.
〔3] C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 33 (1969), 387-405.
[4] S. Kaniel and M. Shinbrot, Smoothness of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 24 (1967), 302-324.
[5] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., 1968.
[6] M. McCracken, The Stokes equations in L_{p}, Thesis, Univ. of California, Berkeley, 1975.
[7] K. Masuda, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equations, Proc. Japan Acad. 43 (1967), 827-832.
[8] C. B. Morrey, Jr., On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations, Amer. J. Math. 80 (1958), 198-237.
[9] C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berline-Heidelberg-New York, 1966.
[10] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 7 (1962), 187-195.
[11] V. A. Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations, Amer. Math. Soc. Translations 75 (1968), 1-116.

Department of Mathematics
Hachinohe Institute of Technology
Hachinohe, 031
Japan

