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0. Introduction. Let SL(n, R) denote the group of all n x n real
matrices of determinant 1. In the previous paper [12], we classified real
analytic SL(n, R) actions on the standard ^-sphere for each n ^ 3. In
this paper we study real analytic SL(n, R) actions on the standard
m-sphere for 5^n^m^2n — 2. We shall show that such an action is
characterized by a certain real analytic Rx action on a homotopy
(m — n + l)-sphere. Here Rx is the multiplicative group of all non-zero
real numbers.

In Section 1 we construct a real analytic SL(n, R) action on the
standard (n + k — l)-sphere from a real analytic JBX action on a homo-
topy λ -sphere satisfying a certain condition for each n + k ^ 6. In
Section 3 we state a structure theorem for a real analytic SL(nf R)
action which satisfies a certain condition on the restricted SO(n) action,
and in Section 5 we state a decomposition theorem and a classification
theorem. In Section 6 we construct real analytic Rx actions on the
standard fc-sphere. It can be seen that there are infinitely many (at
least the cardinality of the real numbers) mutually distinct real analytic
SL(n, R) actions on the standard m-sphere.

1. Construction. Let ψ:RxxΣ->Σ be a real analytic Rx action
on a real analytic closed manifold Σ which is homotopy equivalent to
the A -sphere. Define a real analytic involution T of Σ by T(x) = ψ( — 1, x)
for xeΣ. Put F = F(RX, Σ), the fixed point set. We say that the
action ψ satisfies the condition (P) if

( i ) there exists a compact contractible ^-dimensional submanifold
X of Σ such that X U TX = Σ and X n TX = F,

(ii) there exists a real analytic Rx equivariant isomorphism j of
RxF onto an open set of Σ such that j(0, x) = x for xeF. Here Rx

acts on R by the scalar multiplication.
Notice that F = F(T, Σ), the fixed point set of the involution T by

the condition (i), and hence F is a real analytic (k — l)-dimensional
closed submanifold of Σ. Define a map
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/: (Λ» - O)xF-^(Rn - O)x(Σ - F)

by f(u, x) = (u, i(l, x)) for u e Rn — 0, x e F. Then the map / is a real
analytic SL(n9 R) equivariant isomorphism of (Rn — 0) x F onto an open
set of (Rn - 0)xRχ(Σ - F), where SL(n, R) acts naturally on Rn, Rx acts
on Rn by the scalar multiplication and Rx acts on Σ by the given action
ψ. Here (Rn - 0)xRχ(Σ - F) is the quotient of (Λ* - 0)x(Σ - F) ob-
tained by identifying (u, y) with (£-*%, ψ<£, y)) for ueRn - 0, y eΣ - F,
teRx. Put

Rn - 0)x(Σ - F) ,

which is the space formed from the disjoint union of RnxF and
(Rn - 0) x Rχ(Σ - F) b y i d e n t i f y i n g (u, x) w i t h f(u, x) tor ueRn - 0,xe F.
By the construction, it can be seen that the space M(ψ, j) is a compact
Hausdorff space with SL(n, R) action, and M(ψ, j) admits a real analytic
structure so that the SL(n, R) action is real analytic.

PROPOSITION 1.1. (a) Let j\:RxF->Σ be a real analytic Rx equi-
variant isomorphism of RxFonto an open set of Σ such that ^(0, x) = x
for xeF. Then M(ψ, j±) is real analytically isomorphic to M(ψ, j) as
SL(n, R) manifolds.

(b) Suppose n^l and n + k ^ 6. Then M(ψ, j) is real analyti-
cally isomorphic to the standard (n + k — l)-sphere.

PROOF. It is easy to see that there is a real analytic function
s: F->RX such that ^(t, x) = j(s(x)t} x) for teR,xeF. Let g be a real
analytic automorphism of the disjoint union of Rn x F and (Rn — 0)xRχ(Σ — F)
defined by

g(u, x) = {s(x)u, x) for ueRn, x e F ,

g(v, y) = (v,y) for veRn - 0 , yeΣ - F .

Then it is easy to see that g induces a real analytic SL(n, R) equivari-
ant isomorphism of M(φ, j\) onto M(φ, j).

To show (b), we consider the restricted SO(n) action on M(ψ, j).
We can assume j([0, oo)χF)aX by the condition (P). Put X1 = X —
i([0, ϊ)xF). Let Dn denote the closed unit disk of Rn. Let dY denote
the boundary of a given manifold Y. Then it can be seen that there
exists an equivariant diffeomorphism

) = DnxF[jdDnxX1

as smooth SO(n) manifolds, where h: dDnxF->dDnxdX1 is a C00 diffeo-
morphism defined by h(u, x) = (u, j(l, x)) for ^edDn, xeF. Hence
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M(ψ, j) is C°° diffeomorphic to d(DnxX1). Here Xx is a compact con-
tractible yfc-manifold; hence d(DnxX^) is simply connected for n ^ 1.
Therefore M(ψ, j) is C°° diffeomorphic to the standard (n + k — l)-sphere
for % + k ^ 6 by the ft-cobordism theorem (cf. Milnor [8, Theorem 9.1]).
It is known by Grauert [3] and Whitney [13, Part III] that two real
analytic paracompact manifolds are real analytically isomorphic if they
are C°° diffeomorphic. Consequently, M(ψ, j) is real analytically iso-
morphic to the standard (n + k — l)-sphere for n + k ^ 6. q.e.d.

REMARK. By the condition (P), it is shown that Σ is real analyti-
cally isomorphic to the standard fc-sphere for k ^ 5 by the ft-cobordism
theorem.

2. Certain subgroups of SL(n, R). As usual we regard Λfn(jβ) with
the bracket operation [A, B] = AB — BA as the Lie algebra of GL(n, K).
Let gl(w, JB) and %o(n) denote the Lie subalgebras of Mn(R) correspond-
ing to the subgroups SL(n, R) and SO(n) respectively. Then

Ά(n, R) = {XeMn(R): trace X = 0} ,

8o(n) = {XeMn(R): X is skew symmetric} .

Define certain linear subspaces of 8ί(n, R) as follows:

ί/0 0\
Sί(n — r, R) = : A is (n — r) x {n — r) matrix of trace 0

(\0 A)

$o(n — r) = 8o(ri) Π s\(n — r, R) ,

tym(n — 1) = {Xe$l(n — 1, JB): X is symmetric} ,

α = {(αo.) e Sί(n, R): aiS = 0 for i Φ 1} ,

α* = {(α<i) e 8ί(n, R): aiό = 0 for j Φ 1} ,

b = {(α,,.) e 8l(n, R): aiά = 0 for iΦ j , α22 = α33 = = αwn} .

Then

, Λ) - δl(n - 1, Λ) 0 α 0 α* © b ,

1, R) = $o(n - 1) © &jm(w - 1)

as direct sums of vector spaces. Moreover we have

(2.1) [a, a] = [o*, α ] = [b, b] = [b, βϊ(» - 1, Λ)] = 0 ,

[α, b] = [o, βI(Λ - 1, Λ)] = o , [α*, b] = [o , δl(w - 1, R)] = α* .

Let SL(n — r, R) and S0(n — r) denote the connected subgroups of
SL(n, R) corresponding to the Lie subalgebras $l(n — r, R) and So(n — r),
respectively.
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Let Ad: SL(n, R) —> GL(Sl(n9 R)) be the adjoint representation defined
by Ad(A)X = AX A-1 for A e SL(n, R), Xe$ί(n, R). Then the linear sub-
spaces Sί(n — 1, JB), α, α* and b are Ad(SL(n — 1, J?)) invariant, and the
linear subspaces $o(n — 1) and %t)m(n — 1) are Ad(SO(n — 1)) invariant.
Moreover, the linear subspaces 3qm(n — 1), α, α* and b are irreducible
Ad(SO(n — 1)) spaces respectively for each n ^ 3. Put

9) =

/o ga?2 qxn\

0 0

0 0 /

:x<eR

for p, qeR. Then f (p, g) is an Ad(SO(n — 1)) invariant linear subspace
of α 0 α * , and we have

(2.2)
- 1)] = [l(3>, <Z), ί>] = !(p, -9)

(0 for pg = 0 ,

>(n - 1) for pg Φ 0 .

LEMMA 2.3. Suppose n^>Z. Let g be a proper Lie subalgebra of
Sί(n, R) which contains $o(n — 1). Then g is one of the following:
$o(n - 1), Zo(n - 1) 0 b, $o(n - 1) ® α, $o(n - 1) 0 α*, §o(^ - 1) 0 l(p, g)
/ o r p g ^ o, ^o(^ - 1) 0 α 0 b, 30θ - 1) 0 α* 0 b, 8l(n - 1, Λ), δl(w - 1,
R) 0 b, Sί(n - 1, Λ) 0 α, gl(n - 1, Λ) 0 α*, δl(^ - 1, R) 0 α 0 b, δί(n - 1,
i ί ) 0 α * 0 b .

PROOF. Since g contains %o(n — 1), g is an Ad(SO(n — 1)) invariant
linear subspace of 8ί(n, R). Hence we have g = $o(n — 1) 0 (g ΓΊ &jnt(w—l))©
(gΓl(flφ cι*)) 0 (g Π b) as a direct sum of Ad(SO(n — 1)) invariant linear
subspaces. Since tym(n — 1) is irreducible, we have g P[$ϊ)m(n — 1) = 0
or Ss)m(n — 1). Since g is a proper Lie subalgebra of 8l(n, R), g does not
contain α 0 α* by (2.1). Suppose n ^ 4. Then we derive that g n (&0<**)
coincides with certain l(p, q). If g contains 8t)m(n — 1), then (2.2) im-
plies that g Π (α©α*) = 0, α or α*. Now we can prove the lemma for
n ^ 4 by a routine work from (2.1) and (2.2). The proof for n — 3 is
similar, so we omit the detail. q.e.d.

REMARK. Let G(p, q) denote the connected Lie subgroup of SL(n, R)
corresponding to the Lie subalgebra $o(n — 1) 0 t(p, q) for pq Φ 0. If
pq < 0, then G(p, q) is conjugate to G(l, -1) = S0(n). If pq > 0, then
G(p, q) is conjugate to G(l, 1), which is non-compact.
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LEMMA 2.4. ( i ) Assume that g is one of the following:

§o{n - 1), $o(n - 1) © b, §o{n - 1) φ α, 8o(n - 1) 0 α 0 b ,

-1)©Ϊ(P,9) for pg^O,δI(w-l,Λ),βI(Λ-l,Λ)φb.

Π Ad(X1)Q =Ίoθ(n — 2).
(ii) Assume that g is one of the following:

$o(n - 1) φ α*, $o(n - 1) 0 α* 0 b .

Then 8o(ri) Π Ad^Xr^Q = ^{n — 2) .

PROOF. Since 8o(w) Π Ad(Xi)g = {Ae^o(^): X{~1AX1eQ}, we have the
desired equations by a routine work from the following relation:

α1
α1 α13 α lΛ

Z-21 4" tt22 0̂ 11 0̂ 1

q.e.d.

Let L(n), L*(n), N(n) and N*(n) denote the connected Lie subgroups
of SL(n, R) corresponding to the Lie subalgebras Sί(n — 1, R) 0 α,
8l(n - 1, R) 0 α*, δl(n - 1, Λ) © α ® b and βl(w - 1, Λ) φ α* φ b, respec-
tively. Then these are closed subgroups of SL(n, R).

PROPOSITION 2.5. Suppose n ^ 3. Lei ilί 6e α^ SL(n, R) space.
Assume that the restricted SO(n) action on M has at most two orbit
types SO(n)/SO(n — 1) and SO(ri)/SO(n). Then the identity component
of an isotropy group of the SL(n, R) action on M is conjugate to one
of the following: L(n)f L*(ri), N(n) N*(n) and SL(n, R).

PROOF. Let g be the Lie algebra corresponding to an isotropy
group. By the assumption on the restricted SO(ri) action, we see that
Ad(x)Q contains §o(n — 1) for some xeSL(n, R). Such a Lie subalgebra
is determined by Lemma 2.3. Moreover, we can derive 2o(ri) Π Ad(y)Q Φ
%o(n — 2) for any y e SL(n, R) by the assumption on the restricted SO(n)
action. Hence we see that g is one of the following up to conjugation:
Sl(n - 1, Λ)φα, Sί(n - 1, R) 0 α*, §>l(n - 1, R) 0 α 0 b, δl(n - 1, Λ)0α*0b,
8l(n, R) by Lemma 2.3 and Lemma 2.4. On the other hand, it is easy
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to see that the restricted S0(n) actions on the homogeneous spaces
SL(n, R)/L(n), SL(n, R)/L*(n), SL(n, R)/N(n) and SL(n, R)/N*(n) have
only one orbit type SO(n)/SO(n — 1) respectively. q.e.d.

3. Structure theorem. Let φ: G x ikf—> M be a real analytic G action.
Let g be the Lie algebra of all left invariant vector fields on G. Let
L{M) denote the Lie algebra of all real analytic vector fields on M.
Then we can define a Lie algebra homomorphism φ+: g-^ L{M) as follows
(cf. Palais [10, Chapter II, Theorem II]):

φ+(X)q(f) = lim (/Wexp(-ίX), ?)) - f(q))/t
ί0

for X e g, q e M and a real analytic function / defined on a neighborhood
of q. It is easy to see that Φ+(X)g — 0 iff q is a fixed point of the one-
parameter subgroup {exp£X}. For each subgroup H of G, let F(H, M)
denote the fixed point set of the restricted H action of φ. Then F(H, M)
is a closed subset of M.

LEMMA 3.1. Let φ: SL(n, R)xM-^ M be a real analytic action. Let
pe F(SL(n, R), M). Suppose that there exists an analytic system of
coordinates (U;uu , um) with origin at p, such that

( * ) Φ+t{Xa))q= ~ Σ XiMQ)(d/dut)

for (xtj) e $ί(n, R), qe U. Then, (i) there exists an open neighborhood V
of p in F(SL(n, R), M) and there exists an analytic isomorphism h of
RnxV onto an open set of M such that
(a) Λ(0, v) = v for veV,
(b) h(gu, v) = φ(g, h{u, v)) for g e SL(n, R), ueRn,veV.
Moreover, (ii) if pairs (Vu hλ) and (V2, h2) satisfy the conditions (a), (b),
then

h,{Rnx V,) Π h2(Rnx V2) = h,(Rnx (V, ΓΊ F2)) ,

and there exists a unique real analytic real valued function f on Vγ Π V2

such that hγ(u, v) — h2(f(v)u, v) for u6Rn, ve VΊΠ V2.

PROOF. The assumption (*) implies F(SL(n, R), M) Π U= {q e U: uL(q) =
' ' = w»(ί) = 0} Define a real analytic isomorphism k of U onto an
open set of Rm by k(q) = (u^q), -*-,um(q)). There is a positive real
number r such that Dn

r x D™~n c k(U), namely (ulf , u j 6 fc(Z7) for
(ul9 , u j e /> ,̂ (wn+1> , u j e JO?-. Here we denote />: = { K , v j e
i?w: 1̂ + + vl < r2}. Consider the following curves

α(£) = a(t; X, u, v) = &(^(exp tX, k~\u, v))) ,

b(t) = 6(ί; X, w, v) = ((exp
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for XeSl(n, R), ueDn

r,ve D™~n. The curve b(t) is defined for each t e R,
the curve a(t) is defined on an interval ( — tlf t2) for some positive real
numbers tl9 t2. Put X = (xiS)9 α(ί) = (αx(ί), , am(t)) and b(t) = (ft̂ ί), ,
&„(£))• Then it follows from the assumption (*) that

(d/dt)ai(t) = Σ Xijdj(t) for 1 <Ξ i <̂  w ,

(d/dt)at(t) = 0 for n < i <> m .

On the other hand,

(d/dtMt) = Σ »<A(«) for 1 ^ i ^ w ,
i=i

(d/dt)bt(f) = 0 f o r n < i ^ m

by the definition of 6(ί). Since α(0) = 6(0), we can derive that

(**) α(ί; X, u, v) = 6(ί; X, u, v)
on the interval (-ίx, t2). Put u0 = (r/2, 0, , 0) eDn

r. Then it follows
from the equation (**) that the identity component of an isotropy group
at k~\uOf v) coincides with L(n) for each v e D™~n. Hence we can define
a map h' . Rn x D?~* -> M by

h = ίfc-̂ O, v) for w = 0 ,

\φ(g, k~\u0, v)) for u = gu0 , βr e SX(w, Λ) .

First we shall show that kh' = identity on Z)̂  x D™~n. Let ueDΐ
and u ^ 0. Then u can be expressed as follows: u = (expZ1 expX2)^0

for X1e8o(ri), and X2 is a diagonal matrix with diagonal components
c, —c, 0, , 0 for ce i ί . The equation (**) implies that &(0(expίX2,
kr\uQ, v)) = ((exτρtX2)u0, v) for |f| ^ 1 and k(φ(ex^tXl9 k~\(exj) X2)u0, v))) =
((exp ί XxXexp X2)^o, v) for ί 6 R. Then we have kh' = identity on Dn

r x
D™-n. Since &: U—>k(U) is a real analytic isomorphism, it follows that
the restriction of K to Dn

rxD™-n is a real analytic isomorphism of
D" x Z> -̂π onto an open set of M. On the other hand, the restriction of
hf to (Rn — 0)xZ>Γ"% is real analytic by definition. Moreover, the map
K is SL(n, R) equivariant by definition. Hence the map h' is a real
analytic local isomorphism at each point of RnxD™-%.

Now we shall show that K is an injection. Assume that h\gxuQ9 vt) =
h'(g2u0, v2) for some gt e SL(n e R), vt e D?~n. Since h! is equivariant, we
have k-\uOf vx) = φ{gτ1g2, k-\uQf v2)). Put g = g^g2. Let Lt be the iden-
tity component of the isotropy group at k~\uOf v,). Then LL = gL2g~ι

and Li — L(n) by the assumption (*). Hence g e NL(n), the normalizer
of L(n) in SL(n, R). The equation (**) implies that k{φ{{xiβ), k'\uOf v))) =
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(Mo, v) for veD?~n, {xi5)eNL{n), 0 < |a?u| < 2. We can choose g or g~ι

as (xί:}) such that 0 < |ccn| < 2. It follows that vλ — v2 and g = gl1g2£
L(ri). Hence gλu0 = g2u0. Therefore K is an injection. The map v —>
/z/(0, v) is a real analytic isomorphism of D™~n onto an open neighborhood
V of p in F(SL(w, R), M).

Define a map h: Rnx F—> M by Λ(w, v) = /&'(%, &(v)) for ueRn,veV.
Then it is easy to see that h is a real analytic isomorphism of RnxV
onto an open set of M satisfying the conditions (a), (b).

Next, let /&<: RnxVi-*Mbe a real analytic into isomorphism satis-
fying the conditions (a), (b) for ί = 1, 2. Put e = (1, 0, , 0) e Λ\ As-
sume that φ(gl9 hi(ef vj) = φ(g2, h2(ef v2)) for some gt e <SZ#(w, JB), v< e F*.
Then h^e, vλ) — Φ(gϊ1g2, h2(e, v2))9 and hence gϊιg2 e NL(n), because the iso-
tropy group at ht(ef vτ) coincides with L(n). Put xt the diagonal matrix
with diagonal components t, t~\ 1, , 1. Then xteNL(n). Since
hi(te, vt) = φ(xtf hi(e, vt)) and NL(n)/L(n) is abelian, it follows that
Kite, v,) = φ{glιg2, h2(te, v2)) for ί ^ O . Let t -> 0. Then v, = φ{g^g2, v2) =
v2. It follows that hJ(Rnx V1)nh2(Rnx V2) is contained in ht(Rnx V) for
V=V1Γ\V2. Since ht(RnxV) is a smallest open SL(n, R) invariant
neighborhood of V = WOx F), we can derive that hλ(Rnx V) = h2(Rnx F),
and hence h1(Rnx V1)f]h2(Rnx V2) = h1{Rnx V).

From the above argument, there exists a unique real analytic func-
tion /: F —> R such that h^e, v) = h2(f(v)e, v) for veV. Then h^u, v) =
h2(f(v)u, v) for u e Rn, veV, because hx and h2 are SL(n, R) equivariant.

q.e.d.
REMARK 3.2. Let M be a real analytic paracompact manifold. Then

M admits a real analytic Riemannian metric, because M is real analyti-
cally isomorphic to a real analytic closed submanifold of RN (cf. Grauert
[3, Theorem 3]). Suppose that M admits a real analytic action of a
compact Lie group H. Then M admits a real analytic H invariant Rie-
mannian metric, by averaging a given real analytic Riemannian metric.
In particular, each connected component of F(H, M) is a real analytic
closed submanifold of M.

LEMMA 3.3. Suppose w ^ 3. Let φ: SL(n, R) x M —> M be a real
analytic SL(n, R) action on a connected paracompact m-manifold. Sup-
pose that the restricted SO(n) action of φ has just two orbit types
SO(n)/SO(n - 1) and SO(n)/SO(n). Then

(a) each connected component of F{SO{n), M) is (m — ^-dimen-
sional,

(b) F(SO(n — 1), M) is connected and (m — n + l)-dirnensional,
(c) F(SO(n - 1), M) coincides with either F{L(n), M) or F(L*(ri), M).
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Moreover, if F(SO(n — 1), M) = F(L(n), M), then there is an equivariant
decomposition:

M- F= SL(n, R) X F(L(n), M - F) ,
NL{n)

where F = F(SL(n, R), M) = F(SO(n), M).

PROOF. It follows from the assumption that the isotropy represen-
tation at a point of F(SO(n), M) is equivalent to pn 0 trivial. Here pn

is the canonical representation of SO(n). Hence (a) follows. Put X =
F{SO{n — 1), M) — F(SO(n), M). There is an equivariant decomposition:

M - F = SO(n)/SO(n - 1) x X ,
w

where W = NSO(n - l)/SO(n - 1) = Z2. In particular, dim X=m-n + l.
Let π: M-^ikί* = SO(n)\M be the canonical projection to the orbit space
M*. Then M* = π(F(SO(n - 1), M)) by the assumption. Put g0 the
diagonal matrix with diagonal components —1, —1,1, # , 1 . Define a
map T: F(SO(n - 1), M) -> F(SO(n - 1), M) by T(x) = φ(g0, x). Then T
is an involution on F(SO(n — 1), M) and the fixed point set agrees with
F(SO(n), M). Then orbit space T\F(SO(n - 1), M) is naturally homeo-
morphic to a connected space Λf*. Let Y be a connected component of
F(SO(n - 1), M) such that YnίXSOO), ΛΓ) is non-empty. Then TY = Y
and the orbit space T\Y is a connected component of T\F(SO(n — 1), ikf).
Hence Y = F(SO(n — 1), ΛΓ) is connected. Hence (b) follows. By the
assumption, Lemma 2.3 and Proposition 2.5, we have the following:

F(SO(n - 1), M) = F{L(n\ M) U F(L*(ri), M) ,
F(SO(n), M) = F(L{n\ M)f)F(L*(n), M) = F(SL(n, R), M) .

It follows from the above argument that X has at most two connected
components. If X is connected, then it is easy to see that F(SO(n — ΐ), M)
coincides with either F(L(n), M) or F(L*(n), M). Suppose that X has
two connected components Xγ and X2. Then TXX = X2. Since g0L(n)g^1 =
L(ri) and g0L*(n)g^ = L*(n), we see that if Xx is contained in F(L(n), M)
(resp. F(L*(ri), M))9 then X2 is also contained in F{L{n), M) (resp.
F(L*(n), AT)). Hence (c) follows.

Suppose now that F(SO(n - 1), M) = F(L(n), M). Consider the fol-
lowing commutative diagram:

SO(n)xX ^——\SL{n, R)xX

SO(n) X X —^ : — — ^ SL(n, R) X X
NSOin-l) 3 NLM
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Here X = F(SO(n - 1), M)-F{SO(n\ M) = F(L(n), M) -F(SL{n, R), M);
π, πf are the natural projections; φl9 φ2 are the restrictions of the map
Φ\ ΦΊ, Φi are the induced maps. Then φ[ is an SO(n) equivariant real
analytic isomorphism. Since SL(n, R) = SO(ri) N(n)f it is easy to see
that the map j is a surjection. Here the group N(n) is defined in
Section 2. It follows that φ'2 is an SL(n, R) equivariant real analytic
isomorphism. q.e.d.

We require the following result due to Guillemin and Sternberg [4]:

LEMMA 3.4. Let g be a real semi-simple Lie algebra and let ρ:Q-+
L(M) be a Lie algebra homomorphism of g into a Lie algebra of real
analytic vector fields on a real analytic m-manifold M. Let p be a
point at which the vector fields in the image p($) have common zero.
Then there exists an analytic system of coordinates (U;ul9 , um), with
origin at p, in which all of the vector fields in p($) are linear. Name-
ly, there exists ai5 e g* = HomR(g, R) such that

ρ ( I ) g - - Σ ^ (I)%((/)(3W for X e g , qeU.

REMARK 3.5. The correspondence X—>{aiό{X)) defines a Lie algebra
homomorphism of g into gl(m, R). Let P = (ptί) e GL(m, R). Define an
analytic system of coordinates (U; vlf , vm) by vt(q) — Σ?=i Va^M), Q β
U. Then p(X)q = - Σ*.i b^X^^qXd/dv,) ΐor X e g, q e U. Here (biS(X)) =
P{aiά{X))P~\

LEMMA 3.6. Suppose n^Z. Let φ: SL(n, R)xM-± M be a real an-
alytic action on m-manifold. Suppose that the restricted SO(n) action
of φ has just two orbit types SO(n)/SO(n — 1) and SO(n)/SO(n). Sup-
pose F(SO(n - 1), M) = F(L(n), M). Then for each peF(SL(n9 R), M)
there exists an analytic system of coordinates (U;ulf '--,um), with
origin at p, such that

- Σ Xi5u5{q)(dldu%) for (a?,,) e Sl(w, Λ) , qeU.

PROOF. By Lemma 3.4, there exists an analytic system of coordi-
nates (U;vl9 , vm) with origin at p and there exists atίeΆ(n, JR)* such
that φ+(X)q= -ΣΓi=i aί5{X)v§{q){dldv%) for Xe8l(n, R), qeU. Then
F(SO{n\ M)nU={qeU: φ+(X\ = 0 for X e $o(n)} = {qeU: Σ?=i ai5(X)v5(q) =
0 for Xe%o(ri)9 1 ^ i ^ m). Since dimi^(50(^), M) = m — n by Lemma
3.3 (a), we can assume F(SO(n)9 M) Π U = {q e U: vx(q) = = vn(q) = 0}
b y R e m a r k 3 . 5 . T h e n atj(X) = 0 f o r n + 1 <ί j ^ m, l ^ ί ^ m f o r e a c h

XeSl(n, R), because F(SO(n), M) = F(SL(n, R), M) by Lemma 3.3. There-
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fore the representation X —>(aiά(X)) of §l(n, B) has (m — w)-dimensional
trivial subspace. It is well known that any real representation of
$l(n, B) is completely reducible (cf. Humphreys [6, Section 6]). Hence
the representation X —> (<%(X)) is a direct sum of an ^-dimensional re-
presentation and (m — w)-dimensional trivial representation. It is known
that an ^-dimensional real representation of $l(n, B) is equivalent to the
canonical representation X —> X or the contragredient representation
X—> — tX. By Remark 3.5, there exists an analytic system of coordi-
nates (U;uu , um), with origin at p, such that

(a) Φ+((x«))q=- Σ Xi

or

(b) Φ+((xti))q = txi

for (xiά) e Sί(n9 B), qe U. The case (b) contradicts the assumption
F(SO(n - 1), M) = F(L(w), M). q.e.d.

THEOREM 3.7. Suppose w :> 3. Lei φ: SL(n, B)xM -> M δe α reαϊ
analytic action on a connected paracompact m-manifold. Suppose that
the restricted SO(n) action of φ has just two orbit types SO(ri)/SO(n — 1)
and SO(n)/SO(n). Suppose F(SO(n - 1), M) = F(L(n), M). Put F =
F(SL(n, B), M). Then (i) there exists a real analytic left principal Bx

bundle p:E-^F, and there exists a real analytic isomorphism h of
BnxRχ E onto an open set of M such that

(a) ft(0, u) = p(u) for ueE ,

(b) h(gx, u) = φ(g, h(x, u)) for g e SL(n, B) , xeBn,ueE.

Moreover, (ii) if there exists a real analytic left principal Bx bundle
p': Ef —> F and if there exists a real analytic isomorphism K of Bn x Rχ E'
onto an open set of M such that

(a') A'(0, u') = p'(uf) for u'eE' ,

(V) h\gx, u') = φ(g, h\x, u')) for geSL(n, B) , xeBn, u'eE' ,

then there exists a real analytic Bx bundle isomorphism f:E-+E' such
that h(x, u) = h\x, f{u)) for xeBn,ueE.

PROOF. From Lemma 3.1 and Lemma 3.6, there exists an open
covering {Va, ae A} of F and there exists a real analytic SL(nf B) equi-
variant isomorphism ha of Bn x Va onto an open set of M for each a e A,
such that Λβ(0, v) = v for v e V*. Put U = \JaeA ha(Bnx Va). Then U is
an SL(n, B) invariant open neighborhood of F in M. Put E = F(L(n),
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U - F), a n d d e f i n e ka: R
x x Va - > E b y ka(t, v) = ha(te, v) f o r teRx,ve Va.

Here e = (1, 0, , 0)eRn. The group NL(ri)/L(n) = Rx acts naturally
on E, and the map ka is JBX equivariant. It follows from Lemma 3.1
that E = IJaeΛ K(RX x Va) and fcβ(Λx x Va) Π fc,(Λx x 7,) - fcβ(Λx x (Va n 7,))
for α, /3 e 4, and there exists a unique real analytic function gaβ: Vaf]
Vβ -» Λx such that kβ(t, v) = ka(gaβ(y)t, v) for t e iί x, v e Fα n ^ .

Define p: E-^F by pfcα(ί, v) = v for ί e Λx, v e Fβ. This is a desired
real analytic left principal JBX bundle. We can define a map h:RnxR* E-^M
by h(x, ka(t, v)) = ha(tx, v) for xeRn,te Rx, v e Va. The map h is a real
analytic SL(n, R) equivariant isomorphism onto U. This is a desired map.
Suppose finally that there exists a real analytic left principal Rx bundle
pf:E' -* F and there exists a real analytic isomorphism h' of RnxRχE'
onto an open set of M, satisfying the conditions (a'), (b') It is easy
to see from Lemma 3.1 (ii) that image h — U = image hf. It follows
that there exists a unique SL(n, R) equivariant real analytic isomorphism

f:RnxE-*R*xE'

such that h(x, u) = h'(f(x, u)) for x e Rn, ueE. Considering the fixed
point sets of the restricted L(n) action, we have a real analytic Rx

equivariant isomorphism /: E -> E' such that f(te9 u) — (te, f(u)) for t e
R, ueE. Then /: E —> Ef is a bundle isomorphism of principal Rx bun-
dles, because p(u) = h(0, u) = h'(f(0, u)) = fe'(0, /(u)) = p'(f(u)) for u 6 JE7.

q.e.d.

4. Smooth SO(n) actions on homotopy spheres. First we state the
following two lemmas of which proofs are given in Section 7.

LEMMA 4.1. Suppose n ^ 5. Let G be a closed connected proper
subgroup of O(n) such that dim O(n)/G ̂  2n — 2. Then it is one of the
following listed in Table 1 up to an inner automorphism of O(n).
Here

pk: SO(k) -> 0{k) , μk: U(k) — O(2k) , μl: SU(k) -> O(2k)

are the canonical inclusions, Θk is the trivial representation of degree
k, and Alf a), β are irreducible representations, respectively.

LEMMA 4.2. Suppose 5<.n<*k^2n — 2. Then an orthogonal non-
trivial representation of SO(n) of degree k is equivalent to pn 0 θk~n by
an inner automorphism of 0{k).

Now we shall prove the following result.

LEMMA 4.3. Suppose 5<>n^k^2n — 2. Let Σk be a homotopy
k-sphere with a non-trivial smooth SO(n) action. Then the principal
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TABLE 1

i: G-+O(n) dim 0{n)/G

n
71

n
9
8
8
8
8
7
7
7
6
6
6
6
5
5
5
5

50(7i-l)
S0(n-2)
SO(n-2)xSO(2)
Spin(7)
Spin(7)
G2

*7(4)
5ff(4)
G2

UQ)
50(3) X 50(4)
50(3) X 50(3)
U(B)
517(3)
ff(2)xtf(l)
ff(2)
5^(2)
17(1) X U(l)
50(3)

/o^-aθ^2 271-3
Pn-*®Pz 2τι-4
Jrθfl1 15 = 27^-3
J 7 7=7i-l

14=2τι-2
12=2τ&-4
13=271-3

7 = 71
12=2τι-2
12=2τι-2
9=271-3
6=n
7=2τι-5

10=2τι-2
6=2τι-4
7=2τι-3

)θ1 8=271-2
7=271-3

isotropy type is (SO(n — 1)) and the fixed point set F(SO(n), Σk) is non-
empty.

Let us start with some observations. In the following, let M be a
closed connected ft-dimensional manifold with a non-trivial smooth S0(n)
action, let (H) be the principal isotropy type, and suppose 5 <; n <̂  k ^
2n — 2. Denote by H° the identity component of H.

OBSERVATION 4.4. If F(S0(n), M) is non-empty, then (H) =
(S0(n - 1)).

This is a direct consequence of Lemma 4.2, by considering the iso-
tropy representation at a fixed point.

OBSERVATION 4.5. Suppose that M is 2-connected and the S0(n) ac-
tion is transitive. Then M= S0(n)/S0(n - 2) or M= S0(5)/βS0(S).

This is a direct consequence of Lemma 4.1.

OBSERVATION 4.6. Suppose that the principal isotropy type (H) is
one of the following listed in Table 2. Then M is not 3-connected.

PROOF. Since F(S0(n), M) is empty by Observation 4.4 and H° is
a proper maximal connected subgroup of S0(n) by Lemma 4.1, there is
an equivariant decomposition: M = S0(n)/H°xwF(H°, M\ where W =
N{H°)/H° is a finite group. If M is simply connected, then M = S0(n)/
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H°xF and it is not 3-connected, where F is a connected component of
F(H\ M).

TABLE 2

n

n
8
8
7
7
6
6
5

H°

SO(n-2)xSO(2)
Spin(7)
U(4)
G2

50(3) X 50(4)
50(3) X 50(3)
U(S)
βSO(S)

πi(S0(n)IH°)

7Ϊ2~~ Z

πχ = Z2

7T2 = Z

πι — Z2

π2 = Z2

7Γ2 = ^ 2

TZ2 — Z

OBSERVATION 4.7. Suppose that (H) is one of the following:

H° = S0(n - 2) x S0(2); ί/(4), n - 8; f/(3), w - 6; ί/(2), w = 5 .

M is not stably parallelizable.

PROOF. If M is stably parallelizable, then the principal orbit
S0(n)/H is stably parallelizable; hence S0(n)/H° is also stable paralle-
lizable.

OBSERVATION 4.8. Suppose that dim M=2n — 2, πΊ(ilf) = {l}, X(M)Φθ,
and H° is conjugate to S0(n — 2). Then X(M) ^ 4. Here X(M) is the
Euler characteristic of M.

PROOF. The principal orbit SO(n)jH is of codimension one. Since
πλ{M) = {1}, there are just two singular orbits (cf. Uchida [11, Lemma
1.2.1]). By Observation 4.4, F(S0(n), M) is empty. Hence the follow-
ing are the only possibilities of the singular orbit types:

S0(n)/S0(n - 1) = S"-1 , S0(n)/S(0(n - l)xθ(l)) = P^R) ,

S0(n)/S0(n - 2) x S0(2) = Qn-2 , S0(n)/S(0(n - 2) x 0(2)) - Qn-2/Z2 .

By the general position theorem and the assumption πx(M) = {1}, it is
easy to see that the pair of singular orbits is none of the following:
(S-\ P.-6R)), (S«-\ QrJZ2), (P.-xίΛ), P.-χ(Λ))f (P.-i(Λ), Q.-JZJ. Since
Z(Λf) = % (singular orbits), we have the desired result.

OBSERVATION 4.9. Suppose that dimikf = 2% — 2 and (H) is one of
the following:

H° - Spin(T), n = 9; SU(4), n = 8; SU(2), n = 5 .

π,{M) Φ {1} or %(M) ̂  4.

This is similarly proved as Observation 4.8.
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OBSERVATION 4.10. Suppose that n = 6 and H° is conjugate to SU(S).
Then M is not 2-connected.

PROOF. By Observation 4.4, F(SO(6), M) is empty. Hence the
identity component of an isotropy group is conjugate to SU(S) or 17(3)
for each point of M. It follows that there is an equivariant decomposi-
tion: M = SO(6)/SU(S) x w F(SU(Z), M), where W = NSU(S)/SU(S) = U(ΐ).
Then it is seen that M is not 2-connected by the following homotopy
exact sequence:

π2(M) -> 7ΓX( W) -> τr1(SO(6)/Sί/(3)) x ^(F(SU(S)f M)) -> πλ{M) .

PROOF OF LEMMA 4.3. It is sufficient to prove that the set F(SO(n),
Σk) is non-empty by Observation 4.4. It is well known that every
homotopy sphere is stably parallelizable (cf. Kervaire and Milnor [7,
Theorem 3.1]). Let (H) be the principal isotropy type of a non-trivial
smooth SO(n) action on a homotopy A -sphere Σk. Then it follows that
H° is conjugate to SO(n — 1) by Lemma 4.1 and the above Observations.
Suppose that F(SO(n), Σk) is empty. Then there is an equivariant de-
composition: Σk = SO{ri)jSO{n - 1) x w F(SO{n - 1), Σk), where W =
NSO(n — ΐ)/SO(n — 1) = Z2. But this is impossible for k^> n. q.e.d.

THEOREM 4.11. Suppose 5<,n<^k<*2n — 2. Let Σk be a homotopy
k-sphere with a non-trivial smooth SO(n) action. Then there is an
equivariant decomposition: Σk = d(Dnx Y) as a smooth SO(n) manifold.
Here Y is a compact contractible (k — n + lymanifold with trivial
SO{n) action, and Dn is the standard n-disk with the canonical SO(n)
action.

PROOF. Put F = F(SO(n), Σk). By Lemma 4.3, F is non-empty. It
follows from Lemma 4.2 that each connected component of F is of
(k — w)-dimension. Let U be a closed SO(n) invariant tubular neigh-
borhood of F in Σk. Then U is regarded as an w-disk bundle over F
with a smooth SO(n) action as bundle isomorphisms. It follows that
there is an equivariant decomposition: U — DnxwF(SO(n — 1), 317),
where W = NSO(n - l)/SO(n - 1) = Z2. Put E = Σk - inttΓ. Then there
is an equivariant decomposition: E = SO(n)/SO(n - 1) x wF(SO(n - 1), E).
Notice that F(SO(n - 1), dU) = dF(SO(n - 1), E). It is easy to see that
πλ(E) = {1} by the general position theorem. Hence F(SO(n - 1), E) has
just two connected components. Let Y be a connected component of
F(SO(n — 1), E). Then Y is a compact simply connected (fc — n + 1)-
manifold with non-empty boundary, and there is an equivariant decom-
position: Σk = U\JE= d(Dn x Y).
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It remains to prove that Y is contractible. By the Poincare Lefs-
chetz duality, Ht(D*x Y, Σk; Z) = Hk+1-%DnxY; Z) = {0} for each i < n.
Consider the homology exact sequence: Hi+1(Dnx Y, Σk; Z) -> Hi(Σk; Z) ->
Hί(DnxY Z)-* Ht(Dnx Y, Σk; Z). Then Ht(Y; Z) = {0} for 0 < i ^ n - 2.
On the other hand, Y is a compact simply connected manifold with non-
empty boundary, and dim Y <Ξ n — 1 by the assumption k ^ 2n — 2. It
follows that y is contractible. q.e.d.

REMARK. Theorem 4.11 for n ^ 9 has been proved already by Hsiang
[5, Theorem III].

5. Decomposition and classification. Suppose 5^n^m^2n — 2.
Let φ be a non-trivial real analytic SL(nf R) action on Sm. Consider the
restricted SO(n) action of φ. By Theorem 4.11, there exists an equi-
variant decomposition: Sm = d{Dnx Y) as a smooth SO(n) manifold. In
particular, the SO(n) action has just two orbit types SO(n)/SO(n — 1)
and SO(n)/SO(n). Then, by Lemma 3.3, F(SO(n - 1), Sm) coincides with
either F(L(n), Sm) or F{L*(ri), Sm). We shall show first the following
decomposition theorem.

THEOREM 5.1. Suppose 5^n^m^2n — 2. Let φ be a non-trivial
real analytic SL(n, R) action on Sm. Suppose

F(SO(n - 1), Sm) = F(L(n), Sm) .

Then, (i) Σ = F(L(n), Sm) is a real analytic (m — n + l)-dimensional
closed submanifold of Sm which is homotopy equivalent to a sphere, and
Rx = NL(n)/L(n) acts naturally on Σ, (ii) F = F(SL(n, R), Sm) is a real
analytic (m — n)-dimensional closed submanifold of Σ, and there exists
a real analytic Rx equivariant isomorphism j of RxF onto an open
set of Σ such that j(0, x) = x for xeF, (iii) there exists an equivariant
decomposition:

Sm = RnxFϋ(Rn - 0)x(Σ - F)
f RX

as a real analytic SL(n, R) manifold, where SL(n, R) acts naturally on
Rn, Rx acts on Rn — 0 by the scalar multiplication, and f is an equi-
variant isomorphism of (Rn — 0)xF onto an open set of (Rn — 0)xRχ(Σ — F)
defined by f{u, x) = (u, j(l, x)) for u e Rn — 0, xe F.

PROOF. Consider the restricted SO(ri) action of φ. By Theorem 4.11,
there exists an equivariant decomposition: Sm = d(DnxY) as a smooth
SO(ri) manifold. Here Y is a compact contractible smooth (m — n + 1)-
manifold. Then Σ = F(SO(n - 1), Sm) is a real analytic (m - n + 1)-
dimensional closed submanifold of Sm which is C°° diffeomorphic to a
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double of Y; hence I7 is a homotopy sphere. By Lemma 3.3, F =
F(SO(n), Sm) is a real analytic (m — ̂ -dimensional closed submanifold
of Sm which is C°° diffeomorphic to dY; hence F is homology equivalent
to a sphere. Moreover, there exists an equivariant decomposition:

Sm - F= SL(n, R)/L(n) x (Σ - F) = (Rn - 0)x{Σ - F)
NL{n)/L{n) RX

as a real analytic SL(n, R) manifold. By Theorem 3.7, there exists a
real analytic left principal Rx bundle p: E —»F and there exists a real
analytic SL(n, R) equivariant isomorphism h of RnxRχE onto an open
set of Sm such that h(0, u) — p{u) for ueE. It is easy to see that the
bundle p: E—>F is trivial as a C°° bundle by the decomposition Sm =

To show that E is trivial as a real analytic Rx bundle, we need the
following.

LEMMA 5.2. Let p\V ^>X be a real analytic vector bundle over a
paracompact real analytic manifold X. Then the bundle V admits
a real analytic Riemannian metric.

PROOF. Let i:X —>V be the zero section. Then it follows from a
calculation of transition functions that there is an isomorphism i*τ(V) =
F0τ(X) as real analytic vector bundles. Here τ{ ) denotes the tangent
bundle. Since V is a paracompact real analytic manifold, there exists
a real analytic embedding /: V'—> RN such that f(V) is a closed real
analytic submanifold of RN (cf. Grauert [3]). It follows that there is
an isomorphism τ{V) 0 v = RNx V as real analytic vector bundles. Here
v denotes the normal bundle. Therefore there is an isomorphism F 0
τ(X) φ i*v = RNxX as real analytic vector bundles. The product bundle
RNxX admits canonically a real analytic Riemannian metric; hence its
real analytic subbundle V admits a real analytic Riemannian metric.

q.e.d.

We now return to the proof of Theorem 5.1. Let RxRχ E —> F be
the line bundle associated to the principal bundle p: E —> F. Then it
has a real analytic Riemannian metric; hence the associated sphere bundle
is a real analytic double covering over F. Since p: E —> F is trivial as
a C°° bundle, the sphere bundle is trivial as a real analytic bundle, and
hence the principal bundle p: E —> F has a real analytic cross-section.
Therefore E is trivial as a real analytic Rx bundle. It follows that
there exists a real analytic SL(n, R) equivariant isomorphism h: Rnx
F —> Sm onto an open set of Sm such that h(0, x) — x for x e F.

Consider the fixed point sets of restricted L(ri) actions. We have
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a real analytic Rx equivariant isomorphism j : RxF-> Σ onto an open
set of Σ = F(L(n), Sm), defined by j(t, x) = h(te, x) for teϊt,xe F. Here
e = (1, 0, •••, 0)eRn, and /ίx acts canonically on Σ through the identi-
fication Rx = NL(n)/L(ri). It is easy to see that there exists an equi-
variant decomposition:

Sm = RnxFΌ(Rn - 0)x(i; - F)

as a real analytic SJL(w, R) manifold. Here / is an equivariant iso-
morphism of (Rn — 0) x F onto an open set of (Rn — 0) x Rχ (Σ — F) de-
fined by f(u, x) — (u, i(l, x)) for u e Rn — 0, x e F. This completes the
proof of Theorem 5.1.

REMARK. By this theorem, the action φ on Sm is completely deter-
mined up to an equivariant isomorphism by Σ = F(L(n), Sm) with Rx

action and an equivariant map j : RxF—> Σ.

To state a classification theorem, we introduce the following notions.
Let G be a Lie group, and let φt: GxMt-^Mt be a real analytic G ac-
tion for i = 1, 2. We say that ^ is weakly Cr equivariant to φ2 if there
exists an automorphism h of G and there exists a Cr diffeomorphism
/: Afi —> M2 such that the following diagram is commutative:

(5-a) L x / 1/

GxM2-^M2.

In particular, ^ is said to be Cr equivariant to φ2 if the identity map
of G can be chosen as the automorphism h.

Let h be an automorphism of G, and let φ: GxM-+ M be a real
analytic G action. Define a new real analytic G action ln%φ on M as fol-
lows: (h*φ){g, x) = φ(h(g), x) for g eG, xeM. Then the action h*φ is
weakly Cω equivariant to φ, because the following diagram is commuta-
tive:

(5 'b) Lxid lid

GxM-^M.

Let Ig denote the inner automorphism of G defined by Ia{g') = gg'g~ι for
g, gf e G. Then, for any real analytic G action φ on M, φ is Cω equi-
variant to I*φ, because the following diagram is commutative:
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(5"c) lidx/ 1

where f(x) = φ(g, x) for x e l .

THEOREM 5.3. Suppose 5<Ln<^m<*2n — 2. T%ew ίfeere is α
urαϊ one-to-one correspondence between the weak Cr equivariance class-
es of non-trivial real analytic SL(n, R) actions on the standard
m-sphere and the Cr equivariance classes of real analytic Rx actions
on homotopy (m — n + l)-spheres satisfying the condition (P), for each
r = 0, 1, , cô  a). The correspondence is given by the construction in
Section 1.

PROOF. Let Ar(n, m) denote the weak Cr equivariance classes of
non-trivial real analytic SL(n, R) actions on the standard m-sphere, let
A'r(n, m) denote the Cr equivariance classes of non-trivial real analytic
SL(n, R) actions on the standard m-sphere such that F(SO(n — 1), Sm) =
F(L(ri), Sm), and let Bτ(k) denote the Cr equivariance classes of real
analytic Rx actions on homotopy fc-spheres satisfying the condition (P)
in Section 1.

Let ψ:RxxΣ-^Σ be a real analytic Rx action on a homotopy
fc-sphere Σ satisfying the condition (P). We constructed, in Section 1,
a compact real analytic SL(n, R) manifold M(ψ, j) such that the Cω

equivariance class of M(ψ, j) does not depend on the choice of j ,
F(SO(n - 1), M(f, j)) = F(L(n), M(ψ, j)), and M(ψ, j) is real analytically
isomorphic to the standard (n + k — l)-sphere for n + k ^ 6. The cor-
respondence ψ —> M(ψ, j) defines a mapping cr: Br(k) —> A'r(n, n + k — 1)
for r = 0, 1, , co? a) and each n + k ^ 6. It follows from Theorem 5.1
that cr is a Injection (r = 0, 1, , coy ω) if n ^ 5 and l ^ H w - 1 .

It remains to show that there is a natural one-to-one correspondence
between A'r(n, m) and Ar(n, m). Let φ be a real analytic non-trivial
SL(n, R) action on Sm such that F(S0(n - 1), Sm) = F(L(n), Sm). Then
φ represents a class of A'r(n, m) and a class of Ar{n, m). Hence there
is a natural mapping ir: Ar

r(n, m) —> Ar(n, m).
We shall show that ir is a bisection (r = 0, 1, , <^, ω) if 5 ^ n ^

m ^ 2n — 2. Let σ be the automorphism of SL(n, R) defined by σ(X) =
ίX~1 for XeSL(n, R). Then it is seen that σ is an involution and
σ(L(n)) = L*(n). Let φ be a real analytic non-trivial SL(n, R) action on
Sw. Then, by Lemma 3.3 (c) we have that F(SO(n - 1), Sw) coincides
with F(L(n\ Sm) or F(L*(ri), Sm). Since σ(L{n)) = L*(n), we see that if
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F(SO(n - 1), Sm) = F(L*(n), Sm) for φ, then F(SO(n - 1), Sm) = F(L{n), Sm)
for the induced action σ*φ. By the diagram (5-b), σ*φ is weakly Cω

equivariant to φ; hence the natural mapping ir is surjective.
To show that ίr is injective, we consider the automorphism group

of SL(n, R). Let AutSL(n, R), Inn SL(n, R) denote the automorphism
group and the inner automorphism group of SL(nf R), respectively. De-
fine an automorphism 7 of SL(n, R) by y(X) = YXY'1 for XeSL(n, R),
where Y is the diagonal matrix with diagonal elements —1,1, # , 1 .
Then it is known that σ and 7 generate the quotient group Out SL(n, R) =
Ant SL{n, R)/Inn SL(n, R). In fact

(Z2 for n: odd > 3
Out SL(n, R) =

[Z2 0 Z2 for n: even ^ 4 ,

and 7 is an inner automorphism for n odd (cf. Murakami [9]).
Let φ, φf be real analytic non-trivial SL(n, R) actions on Sm. Suppose

that φf is weakly Cr equivariant to φ. Then by the diagrams (5-a), (5-b),
(5-c) φf is Cr equivariant to one of the following: φ, σ*φ, y*φ, σ*y*φ. Notice
that if F(SO(n - 1), Sm) = F(L(n), Sm) for φ, then F(SO(n - 1), Sm) =
F(L(n), Sm) for 7V, and F(SO(n - 1), Sm) = F(L*(n), Sm) for σ*φ, σ*y*φ.
Therefore, if φ and φf represent classes of A'r(n, m), respectively, and if
φf is weakly Cr equivariant to φ, then φ' is Cr equivariant to φ or y*φ.
To show that ir is injective, it suffices to prove 7V is Cω equivariant
to φ. Consider the real analytic SL(n, R) manifold

, 3) = RnxFU(Rn - 0)x(Σ - F)
f KX

constructed in Section 1. Define a real analytic isomorphism g: M(ψ, j)-+'
M(ψ, j) by

g(u,x) = (Y-u,x) for (u, x) e RnxF ,

g(v, y) = (Y-v, y) for (v, y) e (Rn - 0) x (Σ - F) .

Here the matrix Y is as before. Then the following diagram is com-
mutative:

SL(nf R) x M(ψ, j) — M(ψ, j)

SL(n, R) x

where φ is the natural SL(n, R) action on M(ψ, j). By the diagram
(5-b), we have the following commutative diagram:
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SL(n, R) x M(ψ, j) — M{ψ, j)

hxiά id

SL(n, R) x M{f, j) - ^ M(φ, j) .

Since 72 = 1, it follows that TV *S Cω equivariant to φ; hence the map-
ping ir is- bijective. q.e.d.

6. Rx actions on spheres. In the previous section, we showed that
the classification of real analytic SL(n, R) actions on the m-sphere can
be reduced to that of real analytic Jfίx actions on homotopy (m — n + 1)-
spheres satisfying the condition (P). So we study now Rx actions on
spheres.

Let Sk be the standard A -sphere in Rk+\ k ^ 1. Let T be an involu-
tion of Sk defined by T(xOf xlf , xk) — ( — x0, xlf , xk). Put

k

ζa = xo(l — xl)a(xl)(d/dx0) — xla(xl) Σ %t(d/dXi) ,

where α(ί) is a real analytic function defined on an open neighborhood
of the closed interval [0, 1]. It is easy to see that ξa is a real analytic
tangent vector field on Sk such that T*ξa = ζ\ Let {θt; teR} be the
one-parameter group of real analytic transformations of Sk associated
with the vector field fα It follows from T*ζa = ξa that T θt = Θt-T for
teR. Now we can define a real analytic Rx action ψa on Sfc by

ψa((-l)ne\ x) = T\θt{x)) f o r xeSk , teR , w e Z .

It is easy to see that the Rx action ψa satisfies the condition (P)-(i).

We shall give a sufficient condition for ψa to satisfy the condition (P)-

(ϋ).

PROPOSITION 6.1. // α(0) = 1, then the Rx action ψa satisfies the

condition (P).

PROOF. It is sufficient to construct a real analytic into isomorphism
j: RxF-> Sk satisfying the following conditions:

(1) i(0, χ) = χ,

( 2 ) T(j(t, x)) = j{-t, x) ,

( 3 ) j(e% x) = f \e\ j(t, x))

for xeF t, seR. Here ί7 is the fixed point set of T. It is easy to see
that the condition (3) is equivalent to the following condition:

(30 3 Mm)) = r .
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By the assumption α(0) = 1, there is a real analytic function b(t) such
that α(ί) = 1 + t-b(t). Put F(t, u)=-tu* + tu*b(t2u2) - ίVδ(ίV). Then
there is a unique real analytic function c(t) defined on an interval
( —ε, ε) for a positive real ε such that (d/dt)c(t) = F(t, c(t))f c(0) = 1,

Define a real analytic mapping j \ : ( — ε,ε)xF->Sk by jΊ(ί, x) = (ί c(ί),
(1 - t2c(t)2)1/2x). Then it is easy to see that j\*(t(d/dt)) = ξa at j\(ί, a?).
Since F( — t, u) = —F(t, u), we have c(ί) = c( — t). Therefore the map j \
satisfies the following conditions: (1) j\(Q, x) = (0, x), (2) Γ(ίΊ(ί, x)) =
jά-t, a?), (3') j\*(t(d/dt)) = fβ at j\(ί, a?), for a? e JP, - ε < ί < ε. By the de-
finition of the action ψa, the curve s —> τ/rα(βs, ^Ί(t, x)) is an integral
curve of the vector field ζa. By the condition (3'), the curve s-+j\(e8t, x)
is also an integral curve of ξa. It follows that

( * ) ψa(e% 3i(tf x)) — Jι(eSt> x)

for x e F, —ε<t< ε, —ε < e8t < ε. Define a mapping j : RxF->Sk by

ε, ^(ε/2, x)) for t Φ 0
j{t' X) ~ ((0, x) for ί = 0

Then '̂ is an extension of j \ by (*); hence j is real analytic. By de-
finition, the map j satisfies the conditions (1), (2) and (3).

Finally, we shall show that j is an into isomorphism. Let O(k) be
the orthogonal transformation group of the Euclidean space Rk+1 leaving
fixed the %-coordinate. Then the vector field ξa and the map j \ are
O(k) invariant by definition. Hence we have

(**) A(i(ί, a?)) = i(ί, Ax) for A e O(jk) , (t,x)eRxF .

Since c(0) = 1, the map j is non-singular at each point of OxF. It re-
mains to show that j is injective. Assume j(tlf xx) — j(t2, x2) for some
(ti9 Xi)eRxF. Then j(stlf xt) = j(st2, x2) for any s Φ 0 by the definition
of j . Let s -> 0. Then i(0, a?x) = i(0, x2). Hence we have ^ = x2 and
i(*i, »i) = i(ί2, î) It follows from (**) that i(ί l f a?) = j(ti9 x) for any
xeF. Assume tλ Φ t2. Then ^ induces a real analytic isomorphism of
SλxF onto an open set of Sk. This is a contradiction. Therefore the
map j is injective. q.e.d.

By Proposition 6.1, we can construct many examples of real analytic
Rx actions on the standard Λ-sphere satisfying the condition (P). Let

a = (al9 a2, , aN) eRN for N = 1, 2, ,

and define a real analytic tangent vector field ξa on Sk as follows:
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xoa - xl)(d/dx0) - atΣxtf/dXt)) .

Let ψa be the real analytic Rx action on Sk determined by the vector
field ξa and the involution T. Then the action ψa satisfies the condition
(P).

PROPOSITION 6.2. Let a = (al9 , aN) and α' = (αj, , a'N).

( i ) If ψ1 is C° equivariant to ψa'', then the cardinality of the set
{a5: a5 > 1} is equal to that of the set [a]: a) > 1}.

(ii) Ifψa is C2 equivariant to ψa\ then J[f=1 (1 - a5) = Πf=i (1 ~ O

PROOF. The points a?0=± 1 are isolated zeros of the vector field ξa

f

and the other zeros of fα are the hypersurfaces

x0 — 0 and x0 = ±l/αj/ 2 for aό > 1 .

If there is an equivariant homeomorphism of Sk with the Rx action ψ*
to Sk with the Rx action ψa', then the zeros of the vector field ζa is
homeomorphic to the zeros of the vector field ζa\ Hence the cardinality
of the set {aό\ aό > 1} is equal to that of the set {a'ό\ a'ό > 1}.

Suppose next that there is an equivariant C2 diffeomorphism / of
Sk with the Rx action ψa to Sk with the Rx action <fa>'. We shall show
that there is an equivariant C2 diffeomorphism g of S1 with the Rx ac-
tion ψa to S1 with the Rx action ψa'. Put

A(x) = {(ί, (1 - tψ2x) 6 Sk: - 1 < t < 1} ,

C(x) = {(sin θ, cosθ x)eSk:θeR} ,

for x e f . Then C(x) is the closure of the union A(x)\jA( — x). Since
the map / is equivariant, we have f(A(x)) — A(f(x)) for xeF. Then
we have f(—x)=—f(x) for xeF, by the differentiability of / at x0 = 1.
Hence /(C(&)) = C(f(x)) for α? e F. Since the Λx action ψα is compatible
with the O(k) action (see the "proof of Proposition 6.1), we can assume
f(y) = y for some y e F. Then the restriction /: C(y) —> C{y) can be re-
garded as an equivariant C2 diffeomorphism g of S1 with the Rx action
ψa to S1 with the JBX action ψa'.

Finally we shall show that the existence of g implies Πί=i (1 — %) =
Πf=i (1 — αy). Since g is equivariant, we have g*(ζa) = ξa'. Let π:S1-*R
be a map defined by π(x0, xλ) = &lβ Then TΓ is a local diffeomorphism at
xo=±l, and

^*(ί α )- - ^ ( 1 - xl) Π (1 - α/1 - xD){dldxλ) .

There is a local C2 diffeomorphism h oί R such that fc(0) = 0, π g =
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h-π. Then it follows from h*(π*(ξa)) = π*(ξa') that - ^ ( l - a??) ΠA(1 -
α/1 - xDXdh/dx^xJ^ - ^ ( 1 - »ϊ)Πf=i (1 ~ αjtt ~ 0») for 2/i - Λte). Dif-
ferentiate by x19 and put ^ = 0. Then we have the desired equation,
because dh/dx^O) ̂  0. q.e.d.

7. Closed subgroups of O(n). In this section, we shall prove Lem-
mas 4.1 and 4.2. The method used here is essentially due to Dynkin[2].

PROOF OF LEMMA 4.1. Let G be a connected closed subgroup of
O(n). Suppose that

( * ) n ^ 5 , 0 < dimO(ri)/G <, 2n - 2 .

The inclusion map i:G —> O(n) gives an orthogonal faithful representa-
tion of G.

(A) Suppose first that the representation i is irreducible.
(A-l) Suppose that G is not semi-simple. Let T be a one-dimen-

sional closed central subgroup of G. Since i is irreducible, the central-
izer of T in O(n) agrees with U(n/2) by an inner automorphism of O(n)
(cf. Uchida [12, Lemma 5.1]). Put n = 2k. Then it can be assumed
that G is a subgroup of U(k) and the inclusion G -» U(k) is irreducible.
It follows that the center of G is one-dimensional by Schur's lemma.
Moreover the condition (*) implies k(k — 1) = dim O(2k)/U(k) ^ £k — 2.
Hence k = 3, 4. It is easy to see that SU(Z) has no semi-simple proper
subgroup of codimension ^ 4, and S»17(4) has no semi-simple proper sub-
group of codimension ^ 2. Therefore the case (A-l) occurs only when
n = 6, 8; G agrees with U(n/2) up to an inner automorphism of O(%).

(A-2) Suppose that G is semi-simple and the complexification ic of
the representation i is reducible. Then n = 2k, G is isomorphic to a
subgroup (?' of {/(&), and the inclusion G' —> U(k) is irreducible. Hence
k = 3, 4 and G' = SU(k). Calculating the centralizer of the center of G
in O(ri), we can show that G agrees with SU(n/2) up to an inner auto-
morphism of O(n).

(A-3) Suppose that G is semi-simple, non-simple, and ίc is irreduc-
ible. Let G* be the universal covering group of G, and let p:G* —> G
be the projection. Since G is not simple, there are closed semi-simple
normal subgroups Hlf H2 of G* such that G* = H^H^ Consider the
representation icp: G* —> J7(w). Then there are irreducible complex re-
presentations rt: Ht-+ U(nt) for ί = 1, 2 such that the tensor product
rλ0r2 is equivalent to ΐ cp. Since icp has a real form, the representa-
tions rl9 r2 are self-con jugate; hence r1 (resp. r2) has a real form or a
quaternionic structure, but not both (cf. Adams [1, Proposition 3.56]).
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Moreover, if r1 has a real form (resp. quaternionic structure), then r2

has also a real form (resp. quaternionic structure).
Suppose first that rlt r2 have quaternionic structures. Then it fol-

lows that nl9 n2 are even, and dimiJ* ^ άimSp(nt/2) = nt(nt + l)/2 for
t = 1, 2. The condition (*) implies dim O(n) — dim Sp(nJ2) — dim Sp(n2/2) ^
2w - 2, n = %w2. Therefore w2 — 3w + 4 g {nx + ^2)(^i + w2 + 1) g; (2 + w/2) x
(3 + n/2). Hence n ^ 7. But n is a multiple of 4 and w >̂ 5. There-
for r l f r2 cannot have quaternionic structures simultaneously.

Suppose next that rl9 r2 have real forms. Then, since Ht is semi-
simple, it follows that nt ^ 3 for t — 1, 2. Moreover, dimiϊ, ^ dimO(^t) =
nt(nt — l)/2 for t = 1, 2. The condition (*) implies dimθ(w) — dimθ(%) —
dim O(n2) <^ 2n — 2, n = nji^ Therefore n2 — Zn + 4 ^ (^ + /^2)(^1+^2 —
1) ^ (3 + n/3)(2 + n/3). Hence n ^ 5. But n = w ^ ^ 9. Therefore
rlf r2 cannot have real forms simultaneously. Therefore the case (A-3)
does not happen.

(A-4) Suppose finally that G is simple and ic is irreducible. Put
r = rank G, and denote by G* the universal covering group of G. De-
note by Llf L2, , Lr the fundamental weights of G*. Then there is a
one-to-one correspondence between complex irreducible representations of
G* and sequences (al9 •••, ar) of non-negative integers such that aλLλ +
• + arLr is the highest weight of a corresponding representation (cf.
Dynkin [2, Theorems 0.8 and 0.9]; Humphreys [6, Section 21.2]). Denote
by d{ajj + τ + arLr) the degree of the complex irreducible represen-
tation of G* with the highest weight aJL^ + + arLr. The degree can
be computed by WeyFs dimension formula (cf. Dynkin [2, Theorem 0.24,
(0.148)-(0.155)]; Humphreys [6, Section 24.3]). Notice that if a, ^ α for
i = 1, 2, - , r, then d^L, + - + arLr) ^ d{a[Lλ + + a'rLr) and the
equality holds only if at — α for ί = 1, 2, , r.

(A-4-1) Suppose that G is an exceptional Lie group. Then we have
Table 3. Here m(G) is the least degree of non-trivial complex irreduci-

TABLE 3

G* fc = dimG m=m(G)

EΊ

ble representations of G* (cf. Dynkin [2, p. 378, Table 30]). The condi-
tion (*) implies that dim G ^ dimθ(w) — (2n — 2) = (n — ΐ)(n — 4)/2. Hence
(m — l)(m — 4) ^ 2A;. The possibility remains only when G* = G2 and

14
52
78
133
248

7
26
27
56
248
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n ^ 8. Since d(Lx) = 7, d(L2) = 14, d(2Zr1) = 27 for G* - 6?2, there is no
complex irreducible representation of G2 of degree 8. The complex ir-
reducible representation of G2 of degree 7 has a real form. Therefore the
case (A-4-1) occures only when n = 7 and G = G2, where the inclusion
G2 —> 0(7) is uniquely determined up to an inner automorphism of 0(7).

(A-4-2) Suppose that G* is isomorphic to SU(r + 1) for r *z 1.
Since rank G ^ rank£O(%), it follows that

(a) 2r ^ n .

The condition (*) implies that

(b) (n - ϊ)(n - 4)/2 ^ r(r + 2) ^ Λ(W - l)/2 , n ^ 5 .

It is easy to see from (a), (b) that n <̂  13. If the pair (n, r) satisfies
the conditions (a), (b), then it is one of the following: (12, 6), (11, 5),
(10, 5), (9, 4), (8, 4), (8, 3), (7, 3), (6, 2), (5, 2), (5, 1). Notice that d(Lt) =

r + A d(L, + Lr) = r(r + 2), d(2L1) = d(2Lr) = (r + l)(r + 2)/2. Hence there
is no complex irreducible representation of SU(r + 1) of degrees 2r and
2r + 1 for r ^ 4. If r = 3, then d{Lx) = d(L3) - 4, d(L2) = 6, d{2Lι) =
d(2Lb) = 10, d(2L2) - d(Lx + L2) - d(L2+ L8) = 20, d(Lλ + L3) = 15. Hence
there is no complex irreducible representation of SU(4) of degrees 7 and
8. If r = 2, then d(Lλ) = d(L2) = 3, d(2Lλ) = d(2L2) = 6, 0(1^ + L2) = 8.
Hence there is no complex irreducible representation of SU(β) of degree
5. There are just two complex irreducible representations of SU(2) of
degree 6 which are not self-con jugate. Therefore there is no possibility
for r ^ 2. Finally there is only one complex irreducible representation
of SU(2) of degree 5 which has a real form. Therefore the case (A-4-2)
occurs only when n = 5 and G — £0(3), where the inclusion 50(3) —> 0(5)
is an irreducible representation uniquely determined up to an inner
automorphism of 0(5).

(A-4-3) Suppose that G* is isomorphic to Sp(r) for r ^ 2. The con-
dition (*) implies that (n - l)(n - 4)/2 ^ r(2r + 1) < n(n - l)/2. Hence
n = 2r + 2 or n = 2r + 3. Notice that d(Lt) = 2r+ιCι - 2r+iCi-ι, d(2L1) =
r(2r + 1). If r ^ 3, then d(LJ < d(L2) < < d(L8) ^ d(La+1) > >
d(Lr) for some s. It is easy to see that there is no complex irreducible
representation of Sp(r) of degrees 2r + 2 and 2r + 3 for r ^ 3. If
r = 2, then ώ(Lx) = 4, d(L8) = 5, d(2Lx) = 10, d(2L2) = 14, d{L, + L2) = 16.
Hence there is no complex irreducible representation of Sp(r) of de-
grees 2Ύ + 2 and 2r + 3 for r ^ 2. Therefore the case (A-4-3) does not
happen.

(A-4-4) Suppose that G* is isomorphic to Spin(k) for k :> 5. The
condition (*) implies that (n — ΐ)(n — 4) ^ fc(fc — 1) < w(w — 1). Hence
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n = k + 1 or n = k + 2. If k = 2r, then eZ(L,) = 2rC« for 1 ^ i ^ r - 2,

L) = ( r + i)(2r - 1), d ^ L ^ ) = d(2Lr) = a^C,,
Λ + Lr-X) - <2(LX + Lr) = 2r~\2r - 1), dίL,-! + Lr) = ^ C ^ . Hence there

is no complex irreducible representation of Spin(2r) of degrees 2r + 1
and 2r + 2. If & = 2r + 1, then d(Lt) = 2r+1Ci for 1 ^ i ^ r - 1, d(Lr) =
2% d(2L1) = r(2r + 3), d(Lx + Lr) = 2r+1r, d(2Lr) = 22r. Hence there is no
complex irreducible representation of Spin(2r + 1) of degrees 2r + 2 and
2r + 3 for r =£ 3, there is no complex irreducible representation of
Spin(7) of degree 9, but there is only one complex irreducible represen-
tation of Spin(7) of degree 8 which has a real form. Therefore the
case (A-4-4) occurs only when n = 8 and G = Spin(7), the inclusion
Spin(7) —> 0(8) is a real spin representation uniquely determined up to
an inner automorphism of 0(8).

Consequently, the case (A) occurs only when G is one of the fol-
lowing listed in Table 4 up to an inner automorphism of 0(n). Here

TABLE 4

n G i:G-+0(n) dim O(n)/G

μ, 12=2n-4

ω Ί=n
μz 6=n

μk: U(k)->0(2k), μ\: SU(k)-^0(2k) are the canonical inclusions, and z/7,
a), β are irreducible representations uniquely determined up to an inner
automorphism of 0(n)f respectively.

(B) Suppose next that the representation i: G —> O(ri) is reducible.
Then, by an inner automorphism of O(ri), G is isomorphic to a subgroup
Gf of 0(k) x 0(n - k) for some k such that 0 < k <: n/2. The condition
(*) implies that

(c) k(n - k) = dimO(w)/O(fc) x 0(w - fc) ^ 2^ - 2 .

8
8
8
7
6
6
5

#(4)
SU(4)
G2

17(3)
517(3)
50(3)

Hence A; = 1, 2 or A; = 3 and n = 6, 7. If fc = 3 and n = 6, 7, then it is
easy to see that G' = SO(3)x5O(3), G' - SO(3)xSO(4), respectively. Sup-
pose fc = 2. Then the inequality (c) implies 2 + dimG' ^ dimθ(2) x 0(^-2).
Since S0(n — 2) is semi-simple for n ^ 5, 50(w — 2) has no closed sub-
group of codimension one. Therefore G' = 50(^ - 2), 90(2)xS0(n - 2)
or G' = S0(2) x G", where G" is a closed subgroup of 0(n - 2) of codi-
mension 2. If the inclusion G" -> 0(n — 2) is irreducible, then n = 5, 6
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by the case (A). Hence n = 6 and G" = ί/(2). If the inclusion G" ->
O(n — 2) is reducible, then n = 5 and G" is a maximal torus of SO(2>).
Suppose fc = 1. Then G' is a closed subgroup of O(n — 1), and the in-
equality (c) implies dimθ(n — 1)/G' ^ n — 1. It can be assumed that
the inclusion G' —> O(n — 1) is irreducible. By the case (A), G' is one of
the following listed in Table 5. Consequently, the case (B) occurs only
when G is one of the following listed in Table 6 up to an inner auto-
morphism of O(n). Here pk: SO(k) —> 0{k) is the canonical inclusion, and
Θk is the trivial representation of degree k. This completes the proof
of Lemma 4.1.

TABLE 5

n-1 G' G'-^O{n-ϊ) άimO(n-l)IG'

n—1 SO(n—l) pn-ι 0
8 Spin(7) ΔΊ 7
7 6?2 ω 7
6 ί^(3) μt 6
4 ^7(2) μ 2 2
4 SU(2) μ2

0 3

TABLE 6

dim 0{n)/G

n SO(n—l) pn-i®^1 n—1
n S0(n—2) pn-2®θ2 2n—S
n SO(n-2)xSO(2) pn-2®p2 2w-4

8 G2 ω®θ1 14=2n-2
7 U$) μz®θι \2=2n-2
7 5O(3)x5O(4) pι®p± \2=2n-2
6 5O(3)x5O(3) ps®ps 9=2^-3
6 U(2) x U(ϊ) μίφμi 10=2n - 2
5 U(2) μ2®θx 6=2n-4:
5 SU(2) μ2

Q®θι Ί=2n-S
5 U(ϊ)xU(l) JWIΘ^IΘ^ 1 8=2w—2

PROOF OF LEMMA 4.2. It is sufficient to prove that there is no
irreducible real representation of S0(n) of degree m for 5 ̂  n < m <;
2% — 2, and a non-trivial orthogonal representation of S0(n) of degree
n is equivalent to the canonical representation pn up to an inner auto-
morphism of 0(n). The second half is well known and a proof is given
in our previous paper [12, Section 5]. To prove the first half, suppose
that there is an irreducible real representation σ of SO(ri) of degree m
for 5^n<m^2n — 2. Then it is easy to see that the complexifica-
tion σc of σ is irreducible. Let p: Spin(n) -> S0(n) be the covering pro-
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jection. Then the composition σcp is an irreducible complex representa-
tion of Spin(n), which has a real form. Suppose n = 2r. Then d(Lt) =

2rCt for 1 ^ i ^ r - 2, d(Lr^) = d{Lr) = 2r~\ d(2L1) = (r + l)(2r - 1),
d(2Lr-1) = d{2Lr) = ,„-£„ dfa + Lr-J = d(Lλ + Lr) = 2"-1(2r - 1), d(Lr_x +
Lr) = 2rCr_!. Therefore the following are the only possibilities for the
irreducible complex representation of Spin(2r) of degree m (2r < m <̂
4r - 2):

Airy Aϊr: Spin(2r) -* f/(2r-1) for r = 5 ,

τ, τ*: 5pm(6) = 517(4) -• 17(10) .

Here the representation space of τ is the second symmetric product of
the canonical representation space C4 of SU(jί), and τ* is the dual re-
presentation. Hence τ, τ* have no real form. It is known that the
half spin representations J2+, J2~ are not induced from a representation
of SO(2r). Suppose n = 2r + 1. Then d(Lt) = ir+1Ct for 1 ^ i ^ r - 1,
d(Lr) = 2r, d(2Lx) = r(2r + 3), d(Lx + Lr) = 2r+1r, d(2Lr) = 22r. Therefore
the following is the only possibility for the irreducible complex repre-
sentation of Spin(2r + 1) of degree m (2r + 1 < m <̂  4r):

4,+i: Spin(2r + 1) -> ί7(2r) for r = 3, 4 .

It is known that the spin representation J2 r + 1 is not induced from a re-
presentation of SO(2r + 1). Consequently, we have the desired result.

q.e.d.

8. Concluding remark. If 5 ^ n ^ m ^ 2n — 2, then there exists
only one linear SO(n) action pn 0 θm~n+1 on the standard m-sphere (see
Theorem 4.11). This action is the restriction of a linear SL(n, R)
action. We shall show a counterexample for n = 4.

Recall that there is a surjective homomorphism π: SO(A) —• SO(3).
Through this homomorphism, £0(4) acts on JB3 and the action is transi-
tive on the unit sphere S2 with the isotropy group U(2). Also 50(4)
acts naturally on JB4 and the action is transitive on the unit sphere S3

with the isotropy group S 0(3). Thus we have the diagonal action of
50(4) on the unit sphere S6 of R*®R\ This action is a linear 50(4)
action on S6, the principal orbit type is 50(4)/50(2) and there are just
two singular orbit types 50(4)/50(3) and 50(4)/ U(2).

PROPOSITION 8.1. The above 50(4) action on S6 is not extendable to
any continuous 5L(4, jβ) action on S6.

PROOF. Suppose that there exists a continuous SL(4, JB) action on
S6 which is an extension of the 50(4) action. Let x e S6 be a point such
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that S0(4)x = 17(2). Then
(1) ί7(2)c5L(4, R)x Φ 5L(4, R) ,
( 2) dim5L(4, R)/SL(4, R)x ^ 6.

Here we shall show first the following result.

LEMMA 8.2. Let u(2) be the Lie algebra of 17(2). Let g be a proper
Lie subalgebra of 31(4, R) which contains u(2). Then dim g = 4, 6, 7 or
10.

PROOF. Recall

17(2) - \lA B) 6 ΛΓ,(Λ): Λ*A + B*B = J2, A'5 = BΆ

Put

»(2)= j ( y ^ )

J F " " ^ j 2 Γ = t X , Γ + *Y=0, trace X=Of ,

Then §1(4, R) = u(2)©^(2)φαφb as a direct sum of Ad(t7(2)) invariant
linear subspaces. Here §(2), α and b are irreducible, respectively, and
dim §(2) = 3, dimα = 6, dimb = 2. Moreover, we have [f)(2\ a] = b,
»(2), b] - α, [α, b] - $(2), [α, α] cu(2), [b, b] c u(2), R(2), ή(2)] c u(2). There-
fore g is one of the following: u(2), u(2) © α, u(2) 0 b, u(2) φ §(2). Then
dimg = 4, 10, 6 or 7, respectively. q.e.d.

We now return to the proof of Proposition 8.1. By the condition
(1), (2), it follows from Lemma 8.2 that dim SL(4, R)x = 10. Therefore
the orbit SL(£,R)-x contains the orbit SO(4) 05 as a proper subset.
Since the orbit 50(4) x is isolated, the orbit 51/(4, R) x must intersect
a principal orbit of the SO(4) action. Hence there is an element g e
5L(4, R) such that SO(4)gx = 50(2). Put y = gx. Then there is an em-
bedding 50(4) y c SL(4, R)-y = 5Z,(4, Λ) a?. But dim 50(4) y = dim
5Z,(4, R) x = 5. Hence 50(4)-y = 5L(4, Λ)-a>. Since 50(4)-y is a
principal orbit, we have x i SO(A)-y, This is a contradiction. Therefore
there is no continuous 5L(4, R) action on S6 which is an extension of
the 50(4) action. q.e.d.
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