REAL ANALYTIC $\boldsymbol{S L}(n, \boldsymbol{R})$ ACTIONS ON SPHERES

Fuichi Uchida*

(Received June 1, 1979)
0. Introduction. Let $\boldsymbol{S L}(n, \boldsymbol{R})$ denote the group of all $n \times n$ real matrices of determinant 1. In the previous paper [12], we classified real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on the standard n-sphere for each $n \geqq 3$. In this paper we study real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on the standard m-sphere for $5 \leqq n \leqq m \leqq 2 n-2$. We shall show that such an action is characterized by a certain real analytic \boldsymbol{R}^{\times}action on a homotopy ($m-n+1$)-sphere. Here \boldsymbol{R}^{\times}is the multiplicative group of all non-zero real numbers.

In Section 1 we construct a real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ action on the standard ($n+k-1$)-sphere from a real analytic \boldsymbol{R}^{\times}action on a homotopy k-sphere satisfying a certain condition for each $n+k \geqq 6$. In Section 3 we state a structure theorem for a real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ action which satisfies a certain condition on the restricted $\boldsymbol{S O}(n)$ action, and in Section 5 we state a decomposition theorem and a classification theorem. In Section 6 we construct real analytic \boldsymbol{R}^{\times}actions on the standard k-sphere. It can be seen that there are infinitely many (at least the cardinality of the real numbers) mutually distinct real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on the standard m-sphere.

1. Construction. Let $\psi: \boldsymbol{R}^{\times} \times \Sigma \rightarrow \Sigma$ be a real analytic \boldsymbol{R}^{\times}action on a real analytic closed manifold Σ which is homotopy equivalent to the k-sphere. Define a real analytic involution T of Σ by $T(x)=\psi(-1, x)$ for $x \in \Sigma$. Put $F=F\left(\boldsymbol{R}^{\times}, \Sigma\right)$, the fixed point set. We say that the action ψ satisfies the condition (P) if
(i) there exists a compact contractible k-dimensional submanifold X of Σ such that $X \cup T X=\Sigma$ and $X \cap T X=F$,
(ii) there exists a real analytic \boldsymbol{R}^{\times}equivariant isomorphism j of $\boldsymbol{R} \times F$ onto an open set of Σ such that $j(0, x)=x$ for $x \in F$. Here \boldsymbol{R}^{\times} acts on \boldsymbol{R} by the scalar multiplication.

Notice that $F=F(T, \Sigma)$, the fixed point set of the involution T by the condition (i), and hence F is a real analytic ($k-1$)-dimensional closed submanifold of Σ. Define a map

[^0]$$
f:\left(\boldsymbol{R}^{n}-0\right) \times F \rightarrow\left(\boldsymbol{R}^{n}-0\right) \underset{\boldsymbol{R}^{\times}}{\times(\Sigma-F)}
$$
by $f(u, x)=(u, j(1, x))$ for $u \in \boldsymbol{R}^{n}-0, x \in F$. Then the map f is a real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ equivariant isomorphism of $\left(\boldsymbol{R}^{n}-0\right) \times F$ onto an open set of $\left(\boldsymbol{R}^{n}-0\right) \times_{\boldsymbol{R}^{\times}}(\Sigma-F)$, where $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ acts naturally on $\boldsymbol{R}^{n}, \boldsymbol{R}^{\times}$acts on \boldsymbol{R}^{n} by the scalar multiplication and \boldsymbol{R}^{\times}acts on Σ by the given action ψ. Here $\left(\boldsymbol{R}^{n}-0\right) \times{ }_{\boldsymbol{R}} \times(\Sigma-F)$ is the quotient of $\left(\boldsymbol{R}^{n}-0\right) \times(\Sigma-F)$ obtained by identifying (u, y) with $\left(t^{-1} u, \psi(t, y)\right.$) for $u \in \boldsymbol{R}^{n}-0, y \in \Sigma-F$, $t \in \boldsymbol{R}^{\times}$. Put
$$
M(\psi, j)=\boldsymbol{R}^{n} \times \underset{f}{\cup} \underset{f}{\cup}\left(\boldsymbol{R}^{n}-0\right) \underset{\boldsymbol{R}^{\star}}{\times}(\Sigma-F),
$$
which is the space formed from the disjoint union of $R^{n} \times F$ and $\left(\boldsymbol{R}^{n}-0\right) \times_{\boldsymbol{R}^{\times}}(\Sigma-F)$ by identifying (u, x) with $f(u, x)$ for $u \in \boldsymbol{R}^{n}-0, x \in F$. By the construction, it can be seen that the space $M(\psi, j)$ is a compact Hausdorff space with $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ action, and $M(\psi, j)$ admits a real analytic structure so that the $\boldsymbol{S L}(n, \boldsymbol{R})$ action is real analytic.

Proposition 1.1. (a) Let $j_{1}: \boldsymbol{R} \times F \rightarrow \Sigma$ be a real analytic \boldsymbol{R}^{\times}equivariant isomorphism of $\boldsymbol{R} \times F$ onto an open set of Σ such that $j_{1}(0, x)=x$ for $x \in F$. Then $M\left(\psi, j_{1}\right)$ is real analytically isomorphic to $M(\psi, j)$ as $\boldsymbol{S L}(n, \boldsymbol{R})$ manifolds.
(b) Suppose $n \geqq 1$ and $n+k \geqq 6$. Then $M(\psi, j)$ is real analytically isomorphic to the standard $(n+k-1)$-sphere.

Proof. It is easy to see that there is a real analytic function $s: F \rightarrow \boldsymbol{R}^{\times}$such that $j_{1}(t, x)=j(s(x) t, x)$ for $t \in \boldsymbol{R}, x \in F$. Let g be a real analytic automorphism of the disjoint union of $\boldsymbol{R}^{n} \times F$ and $\left(\boldsymbol{R}^{n}-0\right) \times_{\boldsymbol{R}^{\times}}(\Sigma-F)$ defined by

$$
\begin{array}{ll}
g(u, x)=(s(x) u, x) \text { for } u \in \boldsymbol{R}^{n}, \quad x \in F \\
g(v, y)=(v, y) \text { for } \quad v \in \boldsymbol{R}^{n}-0, & y \in \Sigma-F
\end{array}
$$

Then it is easy to see that g induces a real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ equivariant isomorphism of $M\left(\psi, j_{1}\right)$ onto $M(\psi, j)$.

To show (b), we consider the restricted $\boldsymbol{S O}(n)$ action on $M(\psi, j)$. We can assume $j([0, \infty) \times F) \subset X$ by the condition (P). Put $X_{1}=X-$ $j([0,1) \times F)$. Let D^{n} denote the closed unit disk of \boldsymbol{R}^{n}. Let ∂Y denote the boundary of a given manifold Y. Then it can be seen that there exists an equivariant diffeomorphism

$$
M(\psi, j)=D^{n} \times F \underset{h}{\cup} \partial D^{n} \times X_{1}
$$

as smooth $S O(n)$ manifolds, where $h: \partial D^{n} \times F \rightarrow \partial D^{n} \times \partial X_{1}$ is a C^{∞} diffeomorphism defined by $h(u, x)=(u, j(1, x))$ for $u \in \partial D^{n}, x \in F$. Hence
$M(\psi, j)$ is C^{∞} diffeomorphic to $\partial\left(\boldsymbol{D}^{n} \times X_{1}\right)$. Here X_{1} is a compact contractible k-manifold; hence $\partial\left(\boldsymbol{D}^{n} \times X_{1}\right)$ is simply connected for $n \geqq 1$. Therefore $M(\psi, j)$ is C^{∞} diffeomorphic to the standard ($n+k-1$)-sphere for $n+k \geqq 6$ by the h-cobordism theorem (cf. Milnor [8, Theorem 9.1]). It is known by Grauert [3] and Whitney [13, Part III] that two real analytic paracompact manifolds are real analytically isomorphic if they are C^{∞} diffeomorphic. Consequently, $M(\psi, j)$ is real analytically isomorphic to the standard ($n+k-1$)-sphere for $n+k \geqq 6$.
q.e.d.

Remark. By the condition (P), it is shown that Σ is real analytically isomorphic to the standard k-sphere for $k \geqq 5$ by the h-cobordism theorem.
2. Certain subgroups of $\boldsymbol{S L}(n, \boldsymbol{R})$. As usual we regard $M_{n}(\boldsymbol{R})$ with the bracket operation $[A, B]=A B-B A$ as the Lie algebra of $\boldsymbol{G} \boldsymbol{L}(n, \boldsymbol{R})$. Let $\mathfrak{g l}(n, \boldsymbol{R})$ and $\mathfrak{n o}(n)$ denote the Lie subalgebras of $M_{n}(\boldsymbol{R})$ corresponding to the subgroups $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ and $\boldsymbol{S O}(n)$ respectively. Then

$$
\begin{aligned}
& \mathfrak{g l}(n, \boldsymbol{R})=\left\{X \in M_{n}(\boldsymbol{R}): \text { trace } X=0\right\} \\
& \mathfrak{S l}(n)=\left\{X \in M_{n}(\boldsymbol{R}): X \text { is skew symmetric }\right\} .
\end{aligned}
$$

Define certain linear subspaces of $\mathfrak{g l}(n, \boldsymbol{R})$ as follows:

$$
\begin{aligned}
& \mathfrak{g l}(n-r, \boldsymbol{R})=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right): A \text { is }(n-r) \times(n-r) \text { matrix of trace } 0\right\}, \\
& \mathfrak{g l}(n-r)=\mathfrak{g l}(n) \cap \operatorname{sl}(n-r, \boldsymbol{R}), \\
& \mathfrak{S y m}(n-1)=\{X \in \mathfrak{I l}(n-1, \boldsymbol{R}): X \text { is symmetric }\}, \\
& \mathfrak{a}=\left\{\left(a_{i j}\right) \in \mathfrak{l l}(n, \boldsymbol{R}): a_{i j}=0 \text { for } i \neq 1\right\}, \\
& \mathfrak{a}^{*}=\left\{\left(a_{i j}\right) \in \mathfrak{g l}(n, \boldsymbol{R}): a_{i j}=0 \text { for } j \neq 1\right\}, \\
& \mathfrak{b}=\left\{\left(a_{i j}\right) \in \mathfrak{l l}(n, \boldsymbol{R}): a_{i j}=0 \text { for } i \neq j, a_{22}=a_{33}=\cdots=a_{n n}\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathfrak{g l}(n, \boldsymbol{R})=\mathfrak{l l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a} \oplus \mathfrak{a}^{*} \oplus \mathfrak{b} \\
& \mathfrak{h l}(n-1, \boldsymbol{R})=\mathfrak{a d}(n-1) \oplus \mathfrak{B y m}(n-1)
\end{aligned}
$$

as direct sums of vector spaces. Moreover we have

$$
\begin{align*}
& {\left[\mathfrak{a}, \mathfrak{a}^{*}\right]=\mathfrak{g l}(n-1, \boldsymbol{R}) \oplus \mathfrak{b},} \\
& {[\mathfrak{a}, \mathfrak{a}]=\left[\mathfrak{a}^{*}, \mathfrak{a}^{*}\right]=[\mathfrak{b}, \mathfrak{b}]=[\mathfrak{b}, \mathfrak{B l}(n-1, \boldsymbol{R})]=0,} \tag{2.1}\\
& {[\mathfrak{a}, \mathfrak{b}]=[\mathfrak{a}, \mathfrak{Z l}(n-1, \boldsymbol{R})]=\mathfrak{a}, \quad\left[\mathfrak{a}^{*}, \mathfrak{b}\right]=\left[\mathfrak{a}^{*}, \mathfrak{g l}(n-1, \boldsymbol{R})\right]=\mathfrak{a}^{*} .}
\end{align*}
$$

Let $\boldsymbol{S L}(n-r, \boldsymbol{R})$ and $\boldsymbol{S O}(n-r)$ denote the connected subgroups of $\boldsymbol{S L}(n, \boldsymbol{R})$ corresponding to the Lie subalgebras $\mathfrak{g l}(n-r, \boldsymbol{R})$ and $\mathfrak{g o}(n-r)$, respectively.

Let $A d: \boldsymbol{S L}(n, \boldsymbol{R}) \rightarrow \boldsymbol{G} \boldsymbol{L}(\mathfrak{g l}(n, \boldsymbol{R}))$ be the adjoint representation defined by $A d(A) X=A X A^{-1}$ for $A \in \boldsymbol{S L}(n, \boldsymbol{R}), X \in \mathfrak{A l}(n, \boldsymbol{R})$. Then the linear subspaces $\mathfrak{L l}(n-1, \boldsymbol{R}), \mathfrak{a}, \mathfrak{a}^{*}$ and \mathfrak{b} are $\operatorname{Ad}(\boldsymbol{S L}(n-1, \boldsymbol{R}))$ invariant, and the linear subspaces $\mathfrak{s o}(n-1)$ and $\mathfrak{y m}(n-1)$ are $\operatorname{Ad}(S O(n-1))$ invariant. Moreover, the linear subspaces $\mathfrak{z y m}(n-1), \mathfrak{a}, \mathfrak{a}^{*}$ and \mathfrak{b} are irreducible $\operatorname{Ad}(\boldsymbol{S O}(n-1))$ spaces respectively for each $n \geqq 3$. Put

$$
\mathfrak{f}(p, q)=\left\{\left(\begin{array}{cccc}
0 & q x_{2} & \cdots & q x_{n} \\
p x_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
p x_{n} & 0 & \cdots & 0
\end{array}\right): x_{i} \in \boldsymbol{R}\right\}
$$

for $p, q \in \boldsymbol{R}$. Then $\mathfrak{f}(p, q)$ is an $\operatorname{Ad}(\boldsymbol{S O}(n-1))$ invariant linear subspace of $\mathfrak{a} \oplus \mathfrak{a}^{*}$, and we have

$$
\begin{align*}
& {[\mathfrak{f}(p, q), \mathfrak{g n m}(n-1)]=[\mathfrak{f}(p, q), \mathfrak{b}]=\mathfrak{f}(p,-q),} \\
& {[\mathfrak{f}(p, q), \mathfrak{f}(p, q)]=\left\{\begin{array}{l}
0 \text { for } p q=0, \\
\mathfrak{g o}(n-1) \text { for } p q \neq 0 .
\end{array}\right.} \tag{2.2}
\end{align*}
$$

Lemma 2.3. Suppose $n \geqq 3$. Let \mathfrak{g} be a proper Lie subalgebra of
 $\mathfrak{j o}(n-1), \mathfrak{s o}(n-1) \oplus \mathfrak{b}, \mathfrak{g o}(n-1) \oplus \mathfrak{a}, \mathfrak{s o}(n-1) \oplus \mathfrak{a}^{*}, \mathfrak{g o}(n-1) \oplus \mathfrak{f}(p, q)$
 $\boldsymbol{R}) \oplus \mathfrak{b}, \mathfrak{B l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a}, \mathfrak{B l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a}^{*}, \mathfrak{B l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a} \oplus \mathfrak{b}, \mathfrak{Z l}(n-1$, $\boldsymbol{R}) \oplus \mathfrak{a}^{*} \oplus \mathfrak{b}$.

Proof. Since \mathfrak{g} contains $\mathfrak{g o}(n-1), \mathfrak{g}$ is an $\operatorname{Ad}(\boldsymbol{S O}(n-1))$ invariant linear subspace of $\mathfrak{s l}(n, \boldsymbol{R})$. Hence we have $\mathfrak{g}=\mathfrak{g o}(n-1) \oplus(\mathfrak{g} \cap \mathfrak{g y m}(n-1)) \oplus$ $\left(\mathfrak{g} \cap\left(\mathfrak{a} \oplus \mathfrak{a}^{*}\right)\right) \oplus(\mathfrak{g} \cap \mathfrak{b})$ as a direct sum of $\operatorname{Ad}(\mathbf{S O}(n-1))$ invariant linear subspaces. Since $\mathfrak{B y m}(n-1)$ is irreducible, we have $\mathfrak{g} \cap \mathfrak{z y m}(n-1)=0$ or $\mathfrak{g y m}(n-1)$. Since \mathfrak{g} is a proper Lie subalgebra of $\mathfrak{l l}(n, \boldsymbol{R}), \mathfrak{g}$ does not contain $\mathfrak{a} \oplus \mathfrak{a}^{*}$ by (2.1). Suppose $n \geqq 4$. Then we derive that $g \cap\left(a \oplus a^{*}\right)$ coincides with certain $\mathfrak{f}(p, q)$. If \mathfrak{g} contains $\mathfrak{g y m}(n-1)$, then (2.2) implies that $\mathfrak{g} \cap\left(\mathfrak{a} \oplus \mathfrak{a}^{*}\right)=0, \mathfrak{a}$ or \mathfrak{a}^{*}. Now we can prove the lemma for $n \geqq 4$ by a routine work from (2.1) and (2.2). The proof for $n=3$ is similar, so we omit the detail.
q.e.d.

Remark. Let $G(p, q)$ denote the connected Lie subgroup of $\boldsymbol{S L}(n, \boldsymbol{R})$ corresponding to the Lie subalgebra $\mathfrak{b l}(n-1) \oplus \mathfrak{f}(p, q)$ for $p q \neq 0$. If $p q<0$, then $G(p, q)$ is conjugate to $G(1,-1)=\boldsymbol{S O}(n)$. If $p q>0$, then $G(p, q)$ is conjugate to $G(1,1)$, which is non-compact.

Put $\quad X_{1}=\left(\begin{array}{cc|c}1 & 0 & 0 \\ 1 & 1 & \\ \hline 0 & I_{n-2}\end{array}\right)$.
Lemma 2.4. (i) Assume that g is one of the following:

$$
\begin{aligned}
& \mathfrak{g o}(n-1), \mathfrak{g o}(n-1) \oplus \mathfrak{b}, \mathfrak{g o}(n-1) \oplus \mathfrak{a}, \mathfrak{g o}(n-1) \oplus \mathfrak{a} \oplus \mathfrak{b}, \\
& \mathfrak{s o}(n-1) \oplus \mathfrak{f}(p, q) \quad \text { for } \quad p q \neq 0, \mathfrak{g l}(n-1, \boldsymbol{R}), \mathfrak{g l}(n-1, \boldsymbol{R}) \oplus \mathfrak{b} .
\end{aligned}
$$

Then $\mathfrak{g o v}(n) \cap A d\left(X_{1}\right) \mathfrak{g}=\mathfrak{s p}(n-2)$.
(ii) Assume that \mathfrak{g} is one of the following:

$$
\mathfrak{s p}(n-1) \oplus \mathfrak{a}^{*}, \mathfrak{g o}(n-1) \oplus \mathfrak{a}^{*} \oplus \mathfrak{b}
$$

Then $\mathfrak{s o}(n) \cap A d\left({ }^{t} X_{1}^{-1}\right) \mathfrak{g}=\mathfrak{g o}(n-2)$.
Proof. Since $\mathfrak{g b}(n) \cap A d\left(X_{1}\right) \mathfrak{g}=\left\{A \in \mathfrak{g n}(n): X_{1}^{-1} A X_{1} \in \mathfrak{g}\right\}$, we have the desired equations by a routine work from the following relation:

$$
\left.X_{1}^{-1}\left(a_{i j}\right) X_{1}=\left\lvert\, \begin{array}{ccccc}
a_{11}+a_{12} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21}+a_{22}-a_{11}-a_{12} & a_{22}-a_{12} & a_{23}-a_{13} \cdots & a_{2 n}-a_{1 n} \\
a_{31}+a_{32} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{n 1}+a_{n 2} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right.\right) .
$$

Let $L(n), L^{*}(n), N(n)$ and $N^{*}(n)$ denote the connected Lie subgroups of $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ corresponding to the Lie subalgebras $\mathfrak{g l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a}$, $\mathfrak{H}(n-1, \boldsymbol{R}) \oplus \mathfrak{a}^{*}, \mathfrak{g l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a} \oplus \mathfrak{b}$ and $\mathfrak{h l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a}^{*} \oplus \mathfrak{b}$, respectively. Then these are closed subgroups of $\boldsymbol{S L}(n, \boldsymbol{R})$.

Proposition 2.5. Suppose $n \geqq 3$. Let M be an $\boldsymbol{S L}(n, \boldsymbol{R})$ space. Assume that the restricted $\mathbf{S O}(n)$ action on M has at most two orbit types $\mathbf{S O}(n) / \mathbf{S O}(n-1)$ and $\mathbf{S O}(n) / \mathbf{S O}(n)$. Then the identity component of an isotropy group of the $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ action on M is conjugate to one of the following: $L(n), L^{*}(n), N(n) N^{*}(n)$ and $\boldsymbol{S L}(n, \boldsymbol{R})$.

Proof. Let g be the Lie algebra corresponding to an isotropy group. By the assumption on the restricted $\boldsymbol{S O}(n)$ action, we see that $A d(x) g$ contains $\mathfrak{s o}(n-1)$ for some $x \in \boldsymbol{S L}(n, \boldsymbol{R})$. Such a Lie subalgebra is determined by Lemma 2.3. Moreover, we can derive $\mathfrak{g o}(n) \cap A d(y) \mathfrak{g} \neq$ $\mathfrak{g o}(n-2)$ for any $y \in \boldsymbol{S L}(n, \boldsymbol{R})$ by the assumption on the restricted $\boldsymbol{S O}(n)$ action. Hence we see that g is one of the following up to conjugation: $\mathfrak{l l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a}, \mathfrak{g l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a}^{*}, \mathfrak{B l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a} \oplus \mathfrak{b}, \mathfrak{B l}(n-1, \boldsymbol{R}) \oplus \mathfrak{a}^{*} \oplus \mathfrak{b}$, $\mathfrak{g l}(n, \boldsymbol{R})$ by Lemma 2.3 and Lemma 2.4. On the other hand, it is easy
to see that the restricted $\boldsymbol{S O}(n)$ actions on the homogeneous spaces $\boldsymbol{S L}(n, \boldsymbol{R}) / L(n), \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) / L^{*}(n), \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) / N(n)$ and $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) / N^{*}(n)$ have only one orbit type $\boldsymbol{S O}(n) / \boldsymbol{S O}(n-1)$ respectively.
q.e.d.
3. Structure theorem. Let $\dot{\phi}: G \times M \rightarrow M$ be a real analytic G action. Let \mathfrak{g} be the Lie algebra of all left invariant vector fields on G. Let $L(M)$ denote the Lie algebra of all real analytic vector fields on M. Then we can define a Lie algebra homomorphism $\phi^{+}: \mathfrak{g} \rightarrow L(M)$ as follows (cf. Palais [10, Chapter II, Theorem II]):

$$
\dot{\phi}^{+}(X)_{q}(f)=\lim _{t \rightarrow 0}(f(\dot{\phi}(\exp (-t X), q))-f(q)) / t
$$

for $X \in \mathfrak{g}, q \in M$ and a real analytic function f defined on a neighborhood of q. It is easy to see that $\phi^{+}(X)_{q}=0$ iff q is a fixed point of the oneparameter subgroup $\{\exp t X\}$. For each subgroup H of G, let $F(H, M)$ denote the fixed point set of the restricted H action of ϕ. Then $F(H, M)$ is a closed subset of M.

Lemma 3.1. Let $\phi: \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) \times M \rightarrow M$ be a real analytic action. Let $p \in F(\boldsymbol{S L}(n, \boldsymbol{R}), M)$. Suppose that there exists an analytic system of coordinates $\left(U ; u_{1}, \cdots, u_{m}\right)$ with origin at p, such that

$$
\begin{equation*}
\phi^{+}\left(\left(x_{i j}\right)\right)_{q}=-\sum_{i, j=1}^{n} x_{i j} u_{j}(q)\left(\partial / \partial u_{i}\right) \tag{*}
\end{equation*}
$$

for $\left(x_{i j}\right) \in \mathfrak{B l}(n, \boldsymbol{R}), q \in U$. Then, (i) there exists an open neighborhood V of p in $F(\boldsymbol{S L}(n, \boldsymbol{R}), M)$ and there exists an analytic isomorphism h of $\boldsymbol{R}^{n} \times V$ onto an open set of M such that
(a) $h(0, v)=v$ for $v \in V$,
(b) $h(g u, v)=\phi(g, h(u, v))$ for $g \in \boldsymbol{S L}(n, \boldsymbol{R}), u \in \boldsymbol{R}^{n}, v \in V$.

Moreover, (ii) if pairs $\left(V_{1}, h_{1}\right)$ and $\left(V_{2}, h_{2}\right)$ satisfy the conditions (a), (b), then

$$
h_{1}\left(\boldsymbol{R}^{n} \times V_{1}\right) \cap h_{2}\left(\boldsymbol{R}^{n} \times V_{2}\right)=h_{1}\left(\boldsymbol{R}^{n} \times\left(V_{1} \cap V_{2}\right)\right),
$$

and there exists a unique real analytic real valued function f on $V_{1} \cap V_{2}$ such that $h_{1}(u, v)=h_{2}(f(v) u, v)$ for $u \in \boldsymbol{R}^{n}, v \in V_{1} \cap V_{2}$.

Proof. The assumption (*) implies $F(S L(n, \boldsymbol{R}), M) \cap U=\left\{q \in U: u_{1}(q)=\right.$ $\left.\cdots=u_{n}(q)=0\right\}$. Define a real analytic isomorphism k of U onto an open set of \boldsymbol{R}^{m} by $k(q)=\left(u_{1}(q), \cdots, u_{m}(q)\right)$. There is a positive real number r such that $\boldsymbol{D}_{r}^{n} \times \boldsymbol{D}_{r}^{m-n} \subset k(U)$, namely ($\left.u_{1}, \cdots, u_{m}\right) \in k(U)$ for $\left(u_{1}, \cdots, u_{n}\right) \in \boldsymbol{D}_{r}^{n},\left(u_{n+1}, \cdots, u_{m}\right) \in \boldsymbol{D}_{r}^{m-n}$. Here we denote $\boldsymbol{D}_{r}^{n}=\left\{\left(v_{1}, \cdots, v_{n}\right) \in\right.$ $\left.\boldsymbol{R}^{n}: v_{1}^{2}+\cdots+v_{n}^{2}<r^{2}\right\}$. Consider the following curves

$$
\begin{aligned}
& a(t)=a(t ; X, u, v)=k\left(\phi\left(\exp t X, k^{-1}(u, v)\right)\right), \\
& b(t)=b(t ; X, u, v)=((\exp t X) u, v)
\end{aligned}
$$

for $X \in \mathfrak{l l}(n, \boldsymbol{R}), u \in \boldsymbol{D}_{r}^{n}, v \in \boldsymbol{D}_{r}^{m-n}$. The curve $b(t)$ is defined for each $t \in \boldsymbol{R}$, the curve $a(t)$ is defined on an interval ($-t_{1}, t_{2}$) for some positive real numbers t_{1}, t_{2}. Put $X=\left(x_{i j}\right), a(t)=\left(a_{1}(t), \cdots, a_{m}(t)\right)$ and $b(t)=\left(b_{1}(t), \cdots\right.$, $b_{m}(t)$). Then it follows from the assumption (*) that

$$
\begin{aligned}
& (d / d t) a_{i}(t)=\sum_{j=1}^{n} x_{i j} a_{j}(t) \text { for } 1 \leqq i \leqq n, \\
& (d / d t) a_{i}(t)=0 \text { for } n<i \leqq m
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& (d / d t) b_{i}(t)=\sum_{j=1}^{n} x_{i j} b_{j}(t) \text { for } 1 \leqq i \leqq n, \\
& (d / d t) b_{i}(t)=0 \text { for } n<i \leqq m
\end{aligned}
$$

by the definition of $b(t)$. Since $a(0)=b(0)$, we can derive that

$$
\begin{equation*}
a(t ; X, u, v)=b(t ; X, u, v) \tag{**}
\end{equation*}
$$

on the interval $\left(-t_{1}, t_{2}\right)$. Put $u_{0}=(r / 2,0, \cdots, 0) \in \boldsymbol{D}_{r}^{n}$. Then it follows from the equation (**) that the identity component of an isotropy group at $k^{-1}\left(u_{0}, v\right)$ coincides with $L(n)$ for each $v \in \boldsymbol{D}_{r}^{m-n}$. Hence we can define a map $h^{\prime}: \boldsymbol{R}^{n} \times \boldsymbol{D}_{r}^{m-n} \rightarrow M$ by

$$
h^{\prime}(u, v)=\left\{\begin{array}{l}
k^{-1}(0, v) \quad \text { for } \quad u=0, \\
\phi\left(g, k^{-1}\left(u_{0}, v\right)\right) \text { for } u=g u_{0}, \quad g \in \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) .
\end{array}\right.
$$

First we shall show that $k h^{\prime}=$ identity on $\boldsymbol{D}_{r}^{n} \times \boldsymbol{D}_{r}^{m-n}$. Let $u \in \boldsymbol{D}_{r}^{n}$ and $u \neq 0$. Then u can be expressed as follows: $u=\left(\exp X_{1} \cdot \exp X_{2}\right) u_{0}$ for $X_{1} \in \mathfrak{g} \mathfrak{0}(n)$, and X_{2} is a diagonal matrix with diagonal components $c,-c, 0, \cdots, 0$ for $c \in \boldsymbol{R}$. The equation (**) implies that $k\left(\phi\left(\exp t X_{2}\right.\right.$, $\left.k^{-1}\left(u_{0}, v\right)\right)=\left(\left(\exp t X_{2}\right) u_{0}, v\right)$ for $|t| \leqq 1$ and $k\left(\phi\left(\exp t X_{1}, k^{-1}\left(\left(\exp X_{2}\right) u_{0}, v\right)\right)\right)=$ $\left(\left(\exp t X_{1}\right)\left(\exp X_{2}\right) u_{0}, v\right)$ for $t \in \boldsymbol{R}$. Then we have $k h^{\prime}=$ identity on $\boldsymbol{D}_{r}^{n} \times$ \boldsymbol{D}_{r}^{m-n}. Since $k: U \rightarrow k(U)$ is a real analytic isomorphism, it follows that the restriction of h^{\prime} to $\boldsymbol{D}_{r}^{n} \times \boldsymbol{D}_{r}^{m-n}$ is a real analytic isomorphism of $\boldsymbol{D}_{r}^{n} \times \boldsymbol{D}_{r}^{m-n}$ onto an open set of M. On the other hand, the restriction of h^{\prime} to $\left(\boldsymbol{R}^{n}-0\right) \times \boldsymbol{D}_{r}^{m-n}$ is real analytic by definition. Moreover, the map h^{\prime} is $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ equivariant by definition. Hence the map h^{\prime} is a real analytic local isomorphism at each point of $\boldsymbol{R}^{n} \times \boldsymbol{D}_{r}^{m-n}$.

Now we shall show that h^{\prime} is an injection. Assume that $h^{\prime}\left(g_{1} u_{0}, v_{1}\right)=$ $h^{\prime}\left(g_{2} u_{0}, v_{2}\right)$ for some $g_{i} \in \boldsymbol{S L}(n \in \boldsymbol{R}), v_{i} \in \boldsymbol{D}_{r}^{m-n}$. Since h^{\prime} is equivariant, we have $k^{-1}\left(u_{0}, v_{1}\right)=\phi\left(g_{1}^{-1} g_{2}, k^{-1}\left(u_{0}, v_{2}\right)\right)$. Put $g=g_{1}^{-1} g_{2}$. Let L_{i} be the identity component of the isotropy group at $k^{-1}\left(u_{0}, v_{i}\right)$. Then $L_{1}=g L_{2} g^{-1}$ and $L_{i}=L(n)$ by the assumption (*). Hence $g \in N L(n)$, the normalizer of $L(n)$ in $\boldsymbol{S L}(n, \boldsymbol{R})$. The equation (**) implies that $k\left(\phi\left(\left(x_{i j}\right), k^{-1}\left(u_{0}, v\right)\right)\right)=$
$\left(x_{11} u_{0}, v\right)$ for $v \in D_{r}^{m-n},\left(x_{i j}\right) \in N L(n), 0<\left|x_{11}\right|<2$. We can choose g or g^{-1} as $\left(x_{i j}\right)$ such that $0<\left|x_{11}\right|<2$. It follows that $v_{1}=v_{2}$ and $g=g_{1}^{-1} g_{2} \in$ $L(n)$. Hence $g_{1} u_{0}=g_{2} u_{0}$. Therefore h^{\prime} is an injection. The map $v \rightarrow$ $h^{\prime}(0, v)$ is a real analytic isomorphism of D_{r}^{m-n} onto an open neighborhood V of p in $F(\boldsymbol{S L}(n, \boldsymbol{R}), M)$.

Define a map $h: \boldsymbol{R}^{n} \times V \rightarrow M$ by $h(u, v)=h^{\prime}(u, k(v))$ for $u \in \boldsymbol{R}^{n}, v \in V$. Then it is easy to see that h is a real analytic isomorphism of $\boldsymbol{R}^{n} \times V$ onto an open set of M satisfying the conditions (a), (b).

Next, let $h_{i}: \boldsymbol{R}^{n} \times V_{i} \rightarrow M$ be a real analytic into isomorphism satisfying the conditions (a), (b) for $i=1,2$. Put $e=(1,0, \cdots, 0) \in \boldsymbol{R}^{n}$. Assume that $\phi\left(g_{1}, h_{1}\left(\boldsymbol{e}, v_{1}\right)\right)=\phi\left(g_{2}, h_{2}\left(\boldsymbol{e}, v_{2}\right)\right)$ for some $g_{i} \in \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}), v_{i} \in V_{i}$. Then $h_{1}\left(\boldsymbol{e}, v_{1}\right)=\dot{\phi}\left(g_{1}^{-1} g_{2}, h_{2}\left(\boldsymbol{e}, v_{2}\right)\right)$, and hence $g_{1}^{-1} g_{2} \in N L(n)$, because the isotropy group at $h_{i}\left(e, v_{i}\right)$ coincides with $L(n)$. Put x_{t} the diagonal matrix with diagonal components $t, t^{-1}, 1, \cdots, 1$. Then $x_{t} \in N L(n)$. Since $h_{i}\left(t e, v_{i}\right)=\phi\left(x_{t}, h_{i}\left(\boldsymbol{e}, v_{i}\right)\right)$ and $N L(n) / L(n)$ is abelian, it follows that $h_{1}\left(t e, v_{1}\right)=\phi\left(g_{1}^{-1} g_{2}, h_{2}\left(t e, v_{2}\right)\right)$ for $t \neq 0$. Let $t \rightarrow 0$. Then $v_{1}=\phi\left(g_{1}^{-1} g_{2}, v_{2}\right)=$ v_{2}. It follows that $h_{1}\left(\boldsymbol{R}^{n} \times V_{1}\right) \cap h_{2}\left(\boldsymbol{R}^{n} \times V_{2}\right)$ is contained in $h_{i}\left(\boldsymbol{R}^{n} \times V\right)$ for $V=V_{1} \cap V_{2}$. Since $h_{i}\left(\boldsymbol{R}^{n} \times V\right)$ is a smallest open $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ invariant neighborhood of $V=h_{i}(0 \times V)$, we can derive that $h_{1}\left(\boldsymbol{R}^{n} \times V\right)=h_{2}\left(\boldsymbol{R}^{n} \times V\right)$, and hence $h_{1}\left(\boldsymbol{R}^{n} \times V_{1}\right) \cap h_{2}\left(\boldsymbol{R}^{n} \times V_{2}\right)=h_{1}\left(\boldsymbol{R}^{n} \times V\right)$.

From the above argument, there exists a unique real analytic function $f: V \rightarrow \boldsymbol{R}$ such that $h_{1}(\boldsymbol{e}, v)=h_{2}(f(v) \boldsymbol{e}, v)$ for $v \in V$. Then $h_{1}(u, v)=$ $h_{2}(f(v) u, v)$ for $u \in \boldsymbol{R}^{n}, v \in V$, because h_{1} and h_{2} are $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ equivariant. q.e.d.

Remark 3.2. Let M be a real analytic paracompact manifold. Then M admits a real analytic Riemannian metric, because M is real analytically isomorphic to a real analytic closed submanifold of \boldsymbol{R}^{N} (cf. Grauert [3, Theorem 3]). Suppose that M admits a real analytic action of a compact Lie group H. Then M admits a real analytic H invariant Riemannian metric, by averaging a given real analytic Riemannian metric. In particular, each connected component of $F(H, M)$ is a real analytic closed submanifold of M.

Lemma 3.3. Suppose $n \geqq 3$. Let $\phi: \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) \times M \rightarrow M$ be a real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ action on a connected paracompact m-manifold. Suppose that the restricted $\mathbf{S O}(n)$ action of ϕ has just two orbit types $\boldsymbol{S O}(n) / \mathbf{S O}(n-1)$ and $\mathbf{S O}(n) / \mathbf{S O}(n)$. Then
(a) each connected component of $F(\mathbf{S O}(n), M)$ is ($m-n$)-dimensional,
(b) $\quad F(\boldsymbol{S O}(n-1), M)$ is connected and $(m-n+1)$-dimensional,
(c) $\quad F(\mathbf{S O}(n-1), M)$ coincides with either $F(L(n), M)$ or $F\left(L^{*}(n), M\right)$.

Moreover, if $F(\mathbf{S O}(n-1), M)=F(L(n), M)$, then there is an equivariant decomposition:

$$
M-F=S L(n, R) \underset{N L(n)}{\times} F(L(n), M-F),
$$

where $F=F(\boldsymbol{S L}(n, \boldsymbol{R}), M)=F(\boldsymbol{S O}(n), M)$.
Proof. It follows from the assumption that the isotropy representation at a point of $F(\boldsymbol{S O}(n), M)$ is equivalent to $\rho_{n} \oplus$ trivial. Here ρ_{n} is the canonical representation of $\boldsymbol{S O}(n)$. Hence (a) follows. Put $X=$ $F(\boldsymbol{S O}(n-1), M)-F(\boldsymbol{S O}(n), M)$. There is an equivariant decomposition:

$$
M-F=\boldsymbol{S O}(n) / \mathbf{S O}(n-1) \underset{W}{\times} X,
$$

where $W=\operatorname{NSO}(n-1) / \mathbf{S O}(n-1)=\boldsymbol{Z}_{2}$. In particular, $\operatorname{dim} X=m-n+1$. Let $\pi: M \rightarrow M^{*}=\boldsymbol{S O}(n) \backslash M$ be the canonical projection to the orbit space M^{*}. Then $M^{*}=\pi(F(S O(n-1), M))$ by the assumption. Put g_{0} the diagonal matrix with diagonal components $-1,-1,1, \cdots, 1$. Define a map $T: F(S O(n-1), M) \rightarrow F(S O(n-1), M)$ by $T(x)=\phi\left(g_{0}, x\right)$. Then T is an involution on $F(\boldsymbol{S O}(n-1), M)$ and the fixed point set agrees with $F(\boldsymbol{S O}(n), M)$. Then orbit space $T \backslash F(\boldsymbol{S O}(n-1), M)$ is naturally homeomorphic to a connected space M^{*}. Let Y be a connected component of $F(\boldsymbol{S O}(n-1), M)$ such that $Y \cap F(\boldsymbol{S O}(n), M)$ is non-empty. Then $T Y=Y$ and the orbit space $T \backslash Y$ is a connected component of $T \backslash F(\boldsymbol{S O}(n-1), M)$. Hence $Y=F(\mathbf{S O}(n-1), M)$ is connected. Hence (b) follows. By the assumption, Lemma 2.3 and Proposition 2.5, we have the following:

$$
\begin{aligned}
& F(\boldsymbol{S O}(n-1), M)=F(L(n), M) \cup F\left(L^{*}(n), M\right) \\
& F(\boldsymbol{S O}(n), M)=F(L(n), M) \cap F\left(L^{*}(n), M\right)=F(\boldsymbol{S L}(n, \boldsymbol{R}), M)
\end{aligned}
$$

It follows from the above argument that X has at most two connected components. If X is connected, then it is easy to see that $F(\boldsymbol{S O}(n-1), M)$ coincides with either $F(L(n), M)$ or $F\left(L^{*}(n), M\right)$. Suppose that X has two connected components X_{1} and X_{2}. Then $T X_{1}=X_{2}$. Since $g_{0} L(n) g_{0}^{-1}=$ $L(n)$ and $g_{0} L^{*}(n) g_{0}^{-1}=L^{*}(n)$, we see that if X_{1} is contained in $F(L(n), M)$ (resp. $F\left(L^{*}(n), M\right)$), then X_{2} is also contained in $F(L(n), M)$ (resp. $F\left(L^{*}(n), M\right)$. Hence (c) follows.

Suppose now that $F(\boldsymbol{S O}(n-1), M)=F(L(n), M)$. Consider the following commutative diagram:

Here $X=F(\mathbf{S O}(n-1), M)-F(\boldsymbol{S O}(n), M)=F(L(n), M)-F(\boldsymbol{S L}(n, \boldsymbol{R}), M)$; π, π^{\prime} are the natural projections; ϕ_{1}, ϕ_{2} are the restrictions of the map $\phi ; \phi_{1}^{\prime}, \phi_{2}^{\prime}$ are the induced maps. Then $\dot{\phi}_{1}^{\prime}$ is an $\boldsymbol{S O}(n)$ equivariant real analytic isomorphism. Since $\boldsymbol{S L}(n, \boldsymbol{R})=\boldsymbol{S O}(n) \cdot N(n)$, it is easy to see that the map j is a surjection. Here the group $N(n)$ is defined in Section 2. It follows that ϕ_{2}^{\prime} is an $S L(n, \boldsymbol{R})$ equivariant real analytic isomorphism.
q.e.d.

We require the following result due to Guillemin and Sternberg [4]:
Lemma 3.4. Let \mathfrak{g} be a real semi-simple Lie algebra and let $\rho: \mathfrak{g} \rightarrow$ $L(M)$ be a Lie algebra homomorphism of g into a Lie algebra of real analytic vector fields on a real analytic m-manifold M. Let p be a point at which the vector fields in the image $\rho(\mathfrak{g})$ have common zero. Then there exists an analytic system of coordinates $\left(U ; u_{1}, \cdots, u_{m}\right)$, with origin at p, in which all of the vector fields in $\rho(\mathrm{g})$ are linear. Namely, there exists $a_{i j} \in \mathfrak{g}^{*}=\operatorname{Hom}_{\mathbf{R}}(\mathfrak{g}, \boldsymbol{R})$ such that

$$
\rho(X)_{q}=-\sum_{i, j} a_{i j}(X) u_{j}(q)\left(\partial / \partial u_{i}\right) \quad \text { for } \quad X \in \mathfrak{g}, \quad q \in U
$$

REmARK 3.5. The correspondence $X \rightarrow\left(a_{i j}(X)\right)$ defines a Lie algebra homomorphism of \mathfrak{g} into $\mathfrak{g l}(m, \boldsymbol{R})$. Let $P=\left(p_{i j}\right) \in \boldsymbol{G} \boldsymbol{L}(m, \boldsymbol{R})$. Define an analytic system of coordinates ($U ; v_{1}, \cdots, v_{m}$) by $v_{i}(q)=\sum_{j=1}^{m} p_{i j} u_{j}(q), q \in$ U. Then $\rho(X)_{q}=-\sum_{i, j} b_{i j}(X) v_{j}(q)\left(\partial / \partial v_{i}\right)$ for $X \in \mathfrak{g}, q \in U$. Here $\left(b_{i j}(X)\right)=$ $P\left(a_{i j}(X)\right) P^{-1}$.

Lemma 3.6. Suppose $n \geqq 3$. Let $\phi: \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) \times M \rightarrow M$ be a real analytic action on m-manifold. Suppose that the restricted $\mathbf{S O}(n)$ action of ϕ has just two orbit types $\mathbf{S O}(n) / \mathbf{S O}(n-1)$ and $\mathbf{S O}(n) / \mathbf{S O}(n)$. Suppose $F(\mathbf{S O}(n-1), M)=F(L(n), M)$. Then for each $p \in F(S L(n, \boldsymbol{R}), M)$ there exists an analytic system of coordinates $\left(U ; u_{1}, \cdots, u_{m}\right)$, with origin at p, such that

$$
\phi^{+}\left(\left(x_{i j}\right)\right)_{q}=-\sum_{i, j=1}^{n} x_{i j} u_{j}(q)\left(\partial / \partial u_{i}\right) \quad \text { for } \quad\left(x_{i j}\right) \in \mathfrak{l l}(n, \boldsymbol{R}), \quad q \in U
$$

Proof. By Lemma 3.4, there exists an analytic system of coordinates ($U ; v_{1}, \cdots, v_{m}$) with origin at p and there exists $a_{i j} \in \mathfrak{I l}(n, \boldsymbol{R})^{*}$ such that $\phi^{+}(X)_{q}=-\sum_{i, j=1}^{m} a_{i j}(X) v_{j}(q)\left(\partial / \partial v_{i}\right) \quad$ for $\quad X \in \mathfrak{B l}(n, \boldsymbol{R}), q \in U$. Then $F(\boldsymbol{S O}(n), M) \cap U=\left\{q \in U: \phi^{+}(X)_{q}=0\right.$ for $\left.X \in \mathfrak{g}(n)\right\}=\left\{q \in U: \sum_{j=1}^{m} a_{i j}(X) v_{j}(q)=\right.$ 0 for $X \in \mathfrak{g d}(n), 1 \leqq i \leqq m\}$. Since $\operatorname{dim} F(S O(n), M)=m-n$ by Lemma 3.3 (a), we can assume $F(S O(n), M) \cap U=\left\{q \in U: v_{1}(q)=\cdots=v_{n}(q)=0\right\}$ by Remark 3.5. Then $a_{i j}(X)=0$ for $n+1 \leqq j \leqq m, 1 \leqq i \leqq m$ for each $X \in \mathfrak{H}(n, \boldsymbol{R})$, because $F(\boldsymbol{S O}(n), M)=F(\boldsymbol{S L}(n, \boldsymbol{R}), M)$ by Lemma 3.3. There-
fore the representation $X \rightarrow\left(\alpha_{i j}(X)\right)$ of $\mathfrak{\sharp l}(n, \boldsymbol{R})$ has $(m-n)$-dimensional trivial subspace. It is well known that any real representation of $\mathfrak{l l}(n, \boldsymbol{R})$ is completely reducible (cf. Humphreys [6, Section 6]). Hence the representation $X \rightarrow\left(\alpha_{i j}(X)\right)$ is a direct sum of an n-dimensional representation and $(m-n)$-dimensional trivial representation. It is known that an n-dimensional real representation of $\mathfrak{g l}(n, \boldsymbol{R})$ is equivalent to the canonical representation $X \rightarrow X$ or the contragredient representation $X \rightarrow-{ }^{t} X$. By Remark 3.5, there exists an analytic system of coordinates ($U ; u_{1}, \cdots, u_{m}$), with origin at p, such that

$$
\begin{equation*}
\phi^{+}\left(\left(x_{i j}\right)\right)_{q}=-\sum_{i, j=1}^{n} x_{i j} u_{j}(q)\left(\partial / \partial u_{i}\right) \tag{a}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi^{+}\left(\left(x_{i j}\right)\right)_{q}=\sum_{i, j=1}^{n} x_{j i} u_{j}(q)\left(\partial / \partial u_{i}\right) \tag{b}
\end{equation*}
$$

for $\left(x_{i j}\right) \in \mathfrak{ß l}(n, \boldsymbol{R}), q \in U$. The case (b) contradicts the assumption $F(\mathbf{S O}(n-1), M)=F(L(n), M)$. q.e.d.

Theorem 3.7. Suppose $n \geqq 3$. Let $\phi: \boldsymbol{S L}(n, \boldsymbol{R}) \times M \rightarrow M$ be a real analytic action on a connected paracompact m-manifold. Suppose that the restricted $\mathbf{S O}(n)$ action of ϕ has just two orbit types $\mathbf{S O}(n) / \mathbf{S O}(n-1)$ and $\mathbf{S O}(n) / \mathbf{S O}(n)$. Suppose $F(\mathbf{S O}(n-1), M)=F(L(n), M)$. Put $F=$ $F(\boldsymbol{S L}(n, \boldsymbol{R}), M)$. Then (i) there exists a real analytic left principal \boldsymbol{R}^{\times} bundle $p: E \rightarrow F$, and there exists a real analytic isomorphism h of $\boldsymbol{R}^{n} \times{ }_{\boldsymbol{R}} \times E$ onto an open set of M such that
(a) $h(0, u)=p(u)$ for $u \in E$,
(b) $\quad h(g x, u)=\phi(g, h(x, u))$ for $g \in \boldsymbol{S L}(n, \boldsymbol{R}), \quad x \in \boldsymbol{R}^{n}, u \in E$.

Moreover, (ii) if there exists a real analytic left principal \boldsymbol{R}^{\times}bundle $p^{\prime}: E^{\prime} \rightarrow F$ and if there exists a real analytic isomorphism h^{\prime} of $\boldsymbol{R}^{n} \times_{\boldsymbol{R}^{\times}} E^{\prime}$ onto an open set of M such that
(a') $\quad h^{\prime}\left(0, u^{\prime}\right)=p^{\prime}\left(u^{\prime}\right)$ for $u^{\prime} \in E^{\prime}$,
($\left.\mathrm{b}^{\prime}\right) \quad h^{\prime}\left(g x, u^{\prime}\right)=\phi\left(g, h^{\prime}\left(x, u^{\prime}\right)\right) \quad$ for $\quad g \in \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}), \quad x \in \boldsymbol{R}^{n}, u^{\prime} \in E^{\prime}$,
then there exists a real analytic \boldsymbol{R}^{\times}bundle isomorphism $f: E \rightarrow E^{\prime}$ such that $h(x, u)=h^{\prime}(x, f(u))$ for $x \in \boldsymbol{R}^{n}, u \in E$.

Proof. From Lemma 3.1 and Lemma 3.6, there exists an open covering $\left\{V_{\alpha}, \alpha \in A\right\}$ of F and there exists a real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ equivariant isomorphism h_{α} of $\boldsymbol{R}^{n} \times V_{\alpha}$ onto an open set of M for each $\alpha \in A$, such that $h_{\alpha}(0, v)=v$ for $v \in V_{\alpha}$. Put $U=\mathbf{U}_{\alpha \in A} h_{\alpha}\left(\boldsymbol{R}^{n} \times V_{\alpha}\right)$. Then U is an $\boldsymbol{S L}(n, \boldsymbol{R})$ invariant open neighborhood of F in M. Put $E=F(L(n)$,
$U-F)$, and define $k_{\alpha}: \boldsymbol{R}^{\times} \times V_{\alpha} \rightarrow E$ by $k_{\alpha}(t, v)=h_{\alpha}(t e, v)$ for $t \in \boldsymbol{R}^{\times}, v \in V_{\alpha}$. Here $\boldsymbol{e}=(1,0, \cdots, 0) \in \boldsymbol{R}^{n}$. The group $N L(n) / L(n)=\boldsymbol{R}^{\times}$acts naturally on E, and the map k_{α} is \boldsymbol{R}^{\times}equivariant. It follows from Lemma 3.1 that $E=\bigcup_{\alpha \in A} k_{\alpha}\left(\boldsymbol{R}^{\times} \times V_{\alpha}\right)$ and $k_{\alpha}\left(\boldsymbol{R}^{\times} \times V_{\alpha}\right) \cap k_{\beta}\left(\boldsymbol{R}^{\times} \times V_{\beta}\right)=k_{\alpha}\left(\boldsymbol{R}^{\times} \times\left(V_{\alpha} \cap V_{\beta}\right)\right)$ for $\alpha, \beta \in A$, and there exists a unique real analytic function $g_{\alpha \beta}: V_{\alpha} \cap$ $V_{\beta} \rightarrow \boldsymbol{R}^{\times}$such that $k_{\beta}(t, v)=k_{\alpha}\left(g_{\alpha \beta}(v) t, v\right)$ for $t \in \boldsymbol{R}^{\times}, v \in V_{\alpha} \cap V_{\beta}$.

Define $p: E \rightarrow F$ by $p k_{\alpha}(t, v)=v$ for $t \in \boldsymbol{R}^{\times}, v \in V_{\alpha}$. This is a desired real analytic left principal \boldsymbol{R}^{\times}bundle. We can define a map $h: \boldsymbol{R}^{n} \times_{\boldsymbol{R}^{\times}} E \rightarrow M$ by $h\left(x, k_{\alpha}(t, v)\right)=h_{\alpha}(t x, v)$ for $x \in \boldsymbol{R}^{n}, t \in \boldsymbol{R}^{\times}, v \in V_{\alpha}$. The map h is a real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ equivariant isomorphism onto U. This is a desired map. Suppose finally that there exists a real analytic left principal \boldsymbol{R}^{\times}bundle $p^{\prime}: E^{\prime} \rightarrow F$ and there exists a real analytic isomorphism h^{\prime} of $\boldsymbol{R}^{n} \times_{R^{\times}} E^{\prime}$ onto an open set of M, satisfying the conditions (a^{\prime}), (b^{\prime}). It is easy to see from Lemma 3.1 (ii) that image $h=U=$ image h^{\prime}. It follows that there exists a unique $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ equivariant real analytic isomorphism

$$
\bar{f}: \underset{\boldsymbol{R}^{\times}}{\boldsymbol{R}^{n}} \times \underset{\boldsymbol{R}^{\times}}{\times} \underset{\boldsymbol{R}^{n}}{\times}
$$

such that $h(x, u)=h^{\prime}(\bar{f}(x, u))$ for $x \in \boldsymbol{R}^{n}, u \in E$. Considering the fixed point sets of the restricted $L(n)$ action, we have a real analytic \boldsymbol{R}^{\times} equivariant isomorphism $f: E \rightarrow E^{\prime}$ such that $\bar{f}(t e, u)=(t e, f(u))$ for $t \in$ $\boldsymbol{R}, u \in E$. Then $f: E \rightarrow E^{\prime}$ is a bundle isomorphism of principal \boldsymbol{R}^{\times}bundles, because $p(u)=h(0, u)=h^{\prime}(\bar{f}(0, u))=h^{\prime}(0, f(u))=p^{\prime}(f(u))$ for $u \in E$.
q.e.d.
4. Smooth $\boldsymbol{S O}(n)$ actions on homotopy spheres. First we state the following two lemmas of which proofs are given in Section 7.

Lemma 4.1. Suppose $n \geqq 5$. Let G be a closed connected proper subgroup of $\boldsymbol{O}(n)$ such that $\operatorname{dim} \boldsymbol{O}(n) / G \leqq 2 n-2$. Then it is one of the following listed in Table 1 up to an inner automorphism of $\boldsymbol{O}(n)$. Here

$$
\rho_{k}: S \boldsymbol{O}(k) \rightarrow \boldsymbol{O}(k), \quad \mu_{k}: \boldsymbol{U}(k) \rightarrow \boldsymbol{O}(2 k), \quad \mu_{k}^{0}: \boldsymbol{S} \boldsymbol{U}(k) \rightarrow \boldsymbol{O}(2 k)
$$

are the canonical inclusions, θ^{k} is the trivial representation of degree k, and $\Delta_{7}, \omega, \beta$ are irreducible representations, respectively.

Lemma 4.2. Suppose $5 \leqq n \leqq k \leqq 2 n-2$. Then an orthogonal nontrivial representation of $\mathbf{S O}(n)$ of degree k is equivalent to $\rho_{n} \oplus \theta^{k-n}$ by an inner automorphism of $\boldsymbol{O}(k)$.

Now we shall prove the following result.
Lemma 4.3. Suppose $5 \leqq n \leqq k \leqq 2 n-2$. Let Σ^{k} be a homotopy k-sphere with a non-trivial smooth $\mathbf{S O}(n)$ action. Then the principal

Table 1

n	G	$i: G \rightarrow \boldsymbol{O}(n)$	$\operatorname{dim} \boldsymbol{O}(n) / G$
n	$\boldsymbol{S O}(n-1)$	$\rho_{n-1} \oplus \theta^{1}$	$n-1$
n	$S O(n-2)$	$\rho_{n-2} \oplus \theta^{2}$	$2 n-3$
n	$\boldsymbol{S O}(\underline{n}-2) \times \mathbf{S O}(2)$	$\rho_{n-2} \oplus \rho_{2}$	$2 n-4$
9	$\boldsymbol{S p i n}(7)$	$\Delta_{7} \oplus \theta^{1}$	$15=2 n-3$
8	$\boldsymbol{S p i n}(7)$	Δ_{7}	$7=n-1$
8	\boldsymbol{G}_{2}	$\omega \oplus \theta^{1}$	$14=2 n-2$
8	$\boldsymbol{U}(4)$	μ_{4}	$12=2 n-4$
8	$\boldsymbol{S U}(4)$	$\mu_{4}{ }^{0}$	$13=2 n-3$
7	\boldsymbol{G}_{2}	ω	$7=n$
7	$\boldsymbol{U}(3)$	$\mu_{3} \oplus \theta^{1}$	$12=2 n-2$
7	$\boldsymbol{S O}(3) \times \mathbf{S O}(4)$	$\rho_{3} \oplus \rho_{4}$	$12=2 n-2$
6	$\mathbf{S O}(3) \times \mathbf{S O}(3)$	$\rho_{3} \oplus \rho_{3}$	$9=2 n-3$
6	$\boldsymbol{U}(3)$	μ_{3}	$6=n$
6	$\boldsymbol{S U}(3)$	$\mu_{3}{ }^{0}$	$7=2 n-5$
6	$\boldsymbol{U}(2) \times \boldsymbol{U}(1)$	$\mu_{2} \oplus \mu_{1}$	$10=2 n-2$
5	$U(2)$	$\mu_{2} \oplus \theta^{1}$	$6=2 n-4$
5	$\boldsymbol{S U}(2)$	$\mu_{2}{ }^{0} \oplus \theta^{1}$	$7=2 n-3$
5	$\boldsymbol{U}(1) \times \boldsymbol{U}(1)$	$\mu_{1} \oplus \mu_{1} \oplus \theta^{1}$	$8=2 n-2$
5	$\boldsymbol{S O}(3)$	β	$7=2 n-3$

isotropy type is $(\mathbf{S O}(n-1))$ and the fixed point set $F\left(\mathbf{S O}(n), \Sigma^{k}\right)$ is nonempty.

Let us start with some observations. In the following, let M be a closed connected k-dimensional manifold with a non-trivial smooth $\boldsymbol{S O}(n)$ action, let (H) be the principal isotropy type, and suppose $5 \leqq n \leqq k \leqq$ $2 n-2$. Denote by H° the identity component of H.

ObSERVATION 4.4. If $F(\boldsymbol{S O}(n), M)$ is non-empty, then $(H)=$ $(S O(n-1))$.

This is a direct consequence of Lemma 4.2 , by considering the isotropy representation at a fixed point.

ObSERVATION 4.5. Suppose that M is 2-connected and the $\boldsymbol{S O}(n)$ action is transitive. Then $M=\mathbf{S O}(n) / \mathbf{S O}(n-2)$ or $M=\boldsymbol{S O}(5) / \beta \boldsymbol{S O}(3)$.

This is a direct consequence of Lemma 4.1.
ObSERVATION 4.6. Suppose that the principal isotropy type (H) is one of the following listed in Table 2. Then M is not 3-connected.

Proof. Since $F(\boldsymbol{S O}(n), M)$ is empty by Observation 4.4 and H^{0} is a proper maximal connected subgroup of $S O(n)$ by Lemma 4.1, there is an equivariant decomposition: $M=\boldsymbol{S O}(n) / H^{0} \times_{W} F\left(H^{0}, M\right)$, where $W=$ $N\left(H^{0}\right) / H^{0}$ is a finite group. If M is simply connected, then $M=\boldsymbol{S O}(n) /$
$H^{0} \times F$ and it is not 3 -connected, where F is a connected component of $F\left(H^{0}, M\right)$.

Table 2

n	H^{0}	$\pi_{i}\left(\boldsymbol{S O}(n) / H^{0}\right)$
n	$\boldsymbol{S O}(n-2) \times \boldsymbol{S O}(2)$	$\pi_{2}=\boldsymbol{Z}$
8	$\boldsymbol{S p i n}(7)$	$\pi_{1}=\boldsymbol{Z}_{2}$
8	$\boldsymbol{U}(4)$	$\pi_{2}=\boldsymbol{Z}$
7	\boldsymbol{G}_{2}	$\pi_{1}=\boldsymbol{Z}_{2}$
7	$\boldsymbol{S O}(3) \times \boldsymbol{S O}(4)$	$\pi_{2}=\boldsymbol{Z}_{2}$
6	$\boldsymbol{S O}(3) \times \boldsymbol{S O}(3)$	$\pi_{2}=\boldsymbol{Z}_{2}$
$\mathbf{6}$	$\boldsymbol{U}(3)$	$\pi_{2}=\boldsymbol{Z}$
$\mathbf{5}$	$\boldsymbol{\beta S O}(3)$	$\pi_{3} \neq \boldsymbol{0}$

Observation 4.7. Suppose that (H) is one of the following:

$$
H^{0}=\boldsymbol{S O}(n-2) \times \boldsymbol{S O}(2) ; \quad \boldsymbol{U}(4), n=8 ; \quad \boldsymbol{U}(3), n=6 ; \quad \boldsymbol{U}(2), n=5 .
$$

Then M is not stably parallelizable.
Proof. If M is stably parallelizable, then the principal orbit $\boldsymbol{S O}(n) / H$ is stably parallelizable; hence $\boldsymbol{S O}(n) / H^{0}$ is also stable parallelizable.

ObSERVATION 4.8. Suppose that $\operatorname{dim} M=2 n-2, \pi_{1}(M)=\{1\}, \chi(M) \neq 0$, and H^{0} is conjugate to $\boldsymbol{S O}(n-2)$. Then $\chi(M) \geqq 4$. Here $\chi(M)$ is the Euler characteristic of M.

Proof. The principal orbit $\boldsymbol{S O}(n) / H$ is of codimension one. Since $\pi_{1}(M)=\{1\}$, there are just two singular orbits (cf. Uchida [11, Lemma 1.2.1]). By Observation 4.4, $F(\mathbf{S O}(n), M)$ is empty. Hence the following are the only possibilities of the singular orbit types:

$$
\begin{aligned}
& \mathbf{S O}(n) / \mathbf{S O}(n-1)=S^{n-1}, \quad \boldsymbol{S O}(n) / \boldsymbol{S}(\boldsymbol{O}(n-1) \times \boldsymbol{O}(1))=P_{n-1}(\boldsymbol{R}), \\
& \mathbf{S O}(n) / \mathbf{S O}(n-2) \times \boldsymbol{S O}(2)=\boldsymbol{Q}_{n-2}, \quad \boldsymbol{S O}(n) / \boldsymbol{S}(\boldsymbol{O}(n-2) \times \boldsymbol{O}(2))=\boldsymbol{Q}_{n-2} / \boldsymbol{Z}_{2} .
\end{aligned}
$$

By the general position theorem and the assumption $\pi_{1}(M)=\{1\}$, it is easy to see that the pair of singular orbits is none of the following: $\left(S^{n-1}, P_{n-1}(\boldsymbol{R})\right), \quad\left(S^{n-1}, Q_{n-2} / \boldsymbol{Z}_{2}\right),\left(P_{n-1}(\boldsymbol{R}), P_{n-1}(\boldsymbol{R})\right),\left(P_{n-1}(\boldsymbol{R}), Q_{n-2} / \boldsymbol{Z}_{2}\right) . \quad$ Since $\chi(M)=\chi$ (singular orbits), we have the desired result.

ObSERvation 4.9. Suppose that $\operatorname{dim} M=2 n-2$ and (H) is one of the following:

$$
H^{\circ}=\boldsymbol{S p i n}(7), n=9 ; \quad \boldsymbol{S U}(4), n=8 ; \quad \boldsymbol{S U}(2), n=5
$$

Then $\pi_{1}(M) \neq\{1\}$ or $\chi(M) \geqq 4$.
This is similarly proved as Observation 4.8.

Observation 4.10. Suppose that $n=6$ and H° is conjugate to $\boldsymbol{S U}(3)$. Then M is not 2-connected.

Proof. By Observation 4.4, $F(\boldsymbol{S O}(6), M)$ is empty. Hence the identity component of an isotropy group is conjugate to $\boldsymbol{S} \boldsymbol{U}(3)$ or $\boldsymbol{U}(3)$ for each point of M. It follows that there is an equivariant decomposition: $\quad M=\boldsymbol{S O}(6) / \boldsymbol{S U}(3) \times_{W} F(\boldsymbol{S U}(3), M)$, where $W=N \boldsymbol{S U}(3) / \boldsymbol{S U}(3)=\boldsymbol{U}(1)$. Then it is seen that M is not 2 -connected by the following homotopy exact sequence:

$$
\pi_{2}(M) \rightarrow \pi_{1}(W) \rightarrow \pi_{1}(\boldsymbol{S O}(6) / \boldsymbol{S U}(3)) \times \pi_{1}(F(\boldsymbol{S U}(3), M)) \rightarrow \pi_{1}(M) .
$$

Proof of Lemma 4.3. It is sufficient to prove that the set $F(\boldsymbol{S O}(n)$, Σ^{k}) is non-empty by Observation 4.4. It is well known that every homotopy sphere is stably parallelizable (cf. Kervaire and Milnor [7, Theorem 3.1]). Let (H) be the principal isotropy type of a non-trivial smooth $\boldsymbol{S O}(n)$ action on a homotopy k-sphere Σ^{k}. Then it follows that H^{0} is conjugate to $\boldsymbol{S O}(n-1)$ by Lemma 4.1 and the above Observations. Suppose that $F\left(\boldsymbol{S O}(n), \Sigma^{k}\right)$ is empty. Then there is an equivariant decomposition: $\quad \Sigma^{k}=\mathbf{S O}(n) / \boldsymbol{S O}(n-1) \times_{W} \boldsymbol{F}\left(\boldsymbol{S O}(n-1), \Sigma^{k}\right)$, where $\quad W=$ $N S O(n-1) / S O(n-1)=\boldsymbol{Z}_{2}$. But this is impossible for $k \geqq n$. q.e.d.

Theorem 4.11. Suppose $5 \leqq n \leqq k \leqq 2 n-2$. Let Σ^{k} be a homotopy k-sphere with a non-trivial smooth $\mathbf{S O}(n)$ action. Then there is an equivariant decomposition: $\quad \Sigma^{k}=\partial\left(\boldsymbol{D}^{n} \times Y\right)$ as a smooth $\boldsymbol{S O}(n)$ manifold. Here Y is a compact contractible $(k-n+1)$-manifold with trivial $\boldsymbol{S O}(n)$ action, and \boldsymbol{D}^{n} is the standard n-disk with the canonical $\mathbf{S O}(n)$ action.

Proof. Put $F=F\left(\boldsymbol{S O}(n), \Sigma^{k}\right)$. By Lemma 4.3, F is non-empty. It follows from Lemma 4.2 that each connected component of F is of ($k-n$)-dimension. Let U be a closed $\boldsymbol{S O}(n)$ invariant tubular neighborhood of F in Σ^{k}. Then U is regarded as an n-disk bundle over F with a smooth $\boldsymbol{S O}(n)$ action as bundle isomorphisms. It follows that there is an equivariant decomposition: $U=D^{n} \times{ }_{W} F(\boldsymbol{S O}(n-1), \partial U)$, where $W=N S O(n-1) / \boldsymbol{S O}(n-1)=\boldsymbol{Z}_{2}$. Put $E=\Sigma^{k}-\operatorname{int} U$. Then there is an equivariant decomposition: $\quad E=S O(n) / \mathbf{S O}(n-1) \times{ }_{W} F(S O(n-1), E)$. Notice that $F(\boldsymbol{S O}(n-1), \partial U)=\partial F(\boldsymbol{S O}(n-1), E)$. It is easy to see that $\pi_{1}(E)=\{1\}$ by the general position theorem. Hence $F(\boldsymbol{S O}(n-1), E)$ has just two connected components. Let Y be a connected component of $F(\boldsymbol{S O}(n-1), E)$. Then Y is a compact simply connected ($k-n+1$)manifold with non-empty boundary, and there is an equivariant decomposition: $\quad \Sigma^{k}=U \cup E=\partial\left(D^{n} \times Y\right)$.

It remains to prove that Y is contractible. By the Poincare Lefschetz duality, $H_{i}\left(\boldsymbol{D}^{n} \times Y, \Sigma^{k} ; \boldsymbol{Z}\right)=H^{k+1-i}\left(\boldsymbol{D}^{n} \times Y ; \boldsymbol{Z}\right)=\{0\}$ for each $i<n$. Consider the homology exact sequence: $\quad H_{i+1}\left(\boldsymbol{D}^{n} \times Y, \Sigma^{k} ; \boldsymbol{Z}\right) \rightarrow H_{i}\left(\Sigma^{k} ; \boldsymbol{Z}\right) \rightarrow$ $H_{i}\left(\boldsymbol{D}^{n} \times Y ; \boldsymbol{Z}\right) \rightarrow H_{i}\left(\boldsymbol{D}^{n} \times Y, \Sigma^{k} ; \boldsymbol{Z}\right)$. Then $H_{i}(Y ; \boldsymbol{Z})=\{0\}$ for $0<i \leqq n-2$. On the other hand, Y is a compact simply connected manifold with nonempty boundary, and $\operatorname{dim} Y \leqq n-1$ by the assumption $k \leqq 2 n-2$. It follows that Y is contractible.
q.e.d.

Remark. Theorem 4.11 for $n \geqq 9$ has been proved already by Hsiang [5, Theorem III].
5. Decomposition and classification. Suppose $5 \leqq n \leqq m \leqq 2 n-2$. Let ϕ be a non-trivial real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ action on S^{m}. Consider the restricted $\boldsymbol{S O}(n)$ action of ϕ. By Theorem 4.11, there exists an equivariant decomposition: $S^{m}=\partial\left(\boldsymbol{D}^{n} \times Y\right)$ as a smooth $\boldsymbol{S O}(n)$ manifold. In particular, the $\boldsymbol{S O}(n)$ action has just two orbit types $\boldsymbol{S O}(n) / \boldsymbol{S O}(n-1)$ and $\boldsymbol{S O}(n) / \boldsymbol{S O}(n)$. Then, by Lemma 3.3, $F\left(\boldsymbol{S O}(n-1), S^{m}\right)$ coincides with either $F\left(L(n), S^{m}\right)$ or $F\left(L^{*}(n), S^{m}\right)$. We shall show first the following decomposition theorem.

Theorem 5.1. Suppose $5 \leqq n \leqq m \leqq 2 n-2$. Let ϕ be a non-trivial real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ action on S^{m}. Suppose

$$
F\left(\mathbf{S O}(n-1), S^{m}\right)=F\left(L(n), S^{m}\right)
$$

Then, (i) $\Sigma=F\left(L(n), S^{m}\right)$ is a real analytic $(m-n+1)$-dimensional closed submanifold of S^{m} which is homotopy equivalent to a sphere, and $\boldsymbol{R}^{\times}=N L(n) / L(n)$ acts naturally on Σ, (ii) $F=F\left(\boldsymbol{S L}(n, \boldsymbol{R}), S^{m}\right)$ is a real analytic $(m-n)$-dimensional closed submanifold of Σ, and there exists a real analytic \boldsymbol{R}^{\times}equivariant isomorphism j of $\boldsymbol{R} \times F$ onto an open set of Σ such that $j(0, x)=x$ for $x \in F$, (iii) there exists an equivariant decomposition:

$$
S^{m}=\boldsymbol{R}^{n} \times F \underset{f}{\cup}\left(\boldsymbol{R}^{n}-0\right) \underset{\boldsymbol{R}^{\times}}{\times}(\Sigma-F)
$$

as a real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ manifold, where $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ acts naturally on $\boldsymbol{R}^{n}, \boldsymbol{R}^{\times}$acts on $\boldsymbol{R}^{n}-0$ by the scalar multiplication, and f is an equivariant isomorphism of $\left(\boldsymbol{R}^{n}-0\right) \times F$ onto an open set of $\left(\boldsymbol{R}^{n}-0\right) \times_{\boldsymbol{R}^{\times}}(\Sigma-F)$ defined by $f(u, x)=(u, j(1, x))$ for $u \in \boldsymbol{R}^{n}-0, \quad x \in F$.

Proof. Consider the restricted $\boldsymbol{S O}(n)$ action of ϕ. By Theorem 4.11, there exists an equivariant decomposition: $S^{m}=\partial\left(\boldsymbol{D}^{n} \times Y\right)$ as a smooth $\boldsymbol{S O}(n)$ manifold. Here Y is a compact contractible smooth $(m-n+1)$ manifold. Then $\Sigma=F\left(S O(n-1), S^{m}\right)$ is a real analytic $(m-n+1)$ dimensional closed submanifold of S^{m} which is C^{∞} diffeomorphic to a
double of Y; hence Σ is a homotopy sphere. By Lemma 3.3, $F=$ $F\left(\boldsymbol{S O}(n), S^{m}\right)$ is a real analytic $(m-n)$-dimensional closed submanifold of S^{m} which is C^{∞} diffeomorphic to ∂Y; hence F is homology equivalent to a sphere. Moreover, there exists an equivariant decomposition:

$$
S^{m}-F=\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R}) / L(n) \underset{N L(n) / L(n)}{\times}(\Sigma-F)=\left(\boldsymbol{R}^{n}-0\right) \times \underset{\boldsymbol{R}^{\times}}{\times}(\Sigma-F)
$$

as a real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ manifold. By Theorem 3.7, there exists a real analytic left principal \boldsymbol{R}^{\times}bundle $p: E \rightarrow F$ and there exists a real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ equivariant isomorphism h of $\boldsymbol{R}^{n} \times_{\boldsymbol{R}^{\times}} E$ onto an open set of S^{m} such that $h(0, u)=p(u)$ for $u \in E$. It is easy to see that the bundle $p: E \rightarrow F$ is trivial as a C^{∞} bundle by the decomposition $S^{m}=$ $\partial\left(\boldsymbol{D}^{n} \times Y\right)$.

To show that E is trivial as a real analytic \boldsymbol{R}^{\times}bundle, we need the following.

Lemma 5.2. Let $p: V \rightarrow X$ be a real analytic vector bundle over a paracompact real analytic manifold X. Then the bundle V admits a real analytic Riemannian metric.

Proof. Let $i: X \rightarrow V$ be the zero section. Then it follows from a calculation of transition functions that there is an isomorphism $i^{*} \tau(V)=$ $V \bigoplus \tau(X)$ as real analytic vector bundles. Here $\tau()$ denotes the tangent bundle. Since V is a paracompact real analytic manifold, there exists a real analytic embedding $f: V \rightarrow \boldsymbol{R}^{N}$ such that $f(V)$ is a closed real analytic submanifold of \boldsymbol{R}^{N} (cf. Grauert [3]). It follows that there is an isomorphism $\tau(V) \oplus \nu=\boldsymbol{R}^{N} \times V$ as real analytic vector bundles. Here ν denotes the normal bundle. Therefore there is an isomorphism $V \oplus$ $\tau(X) \oplus i^{*} \nu=\boldsymbol{R}^{N} \times X$ as real analytic vector bundles. The product bundle $\boldsymbol{R}^{N} \times X$ admits canonically a real analytic Riemannian metric; hence its real analytic subbundle V admits a real analytic Riemannian metric.
q.e.d.

We now return to the proof of Theorem 5.1. Let $\boldsymbol{R} \times_{\boldsymbol{R}^{\times}} E \rightarrow F$ be the line bundle associated to the principal bundle $p: E \rightarrow F$. Then it has a real analytic Riemannian metric; hence the associated sphere bundle is a real analytic double covering over F. Since $p: E \rightarrow F$ is trivial as a C^{∞} bundle, the sphere bundle is trivial as a real analytic bundle, and hence the principal bundle $p: E \rightarrow F$ has a real analytic cross-section. Therefore E is trivial as a real analytic \boldsymbol{R}^{\times}bundle. It follows that there exists a real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ equivariant isomorphism $h: \boldsymbol{R}^{n} \times$ $F \rightarrow S^{m}$ onto an open set of S^{m} such that $h(0, x)=x$ for $x \in F$.

Consider the fixed point sets of restricted $L(n)$ actions. We have
a real analytic \boldsymbol{R}^{\times}equivariant isomorphism $j: \boldsymbol{R} \times F \rightarrow \Sigma$ onto an open set of $\Sigma=F\left(L(n), S^{m}\right)$, defined by $j(t, x)=h(t e, x)$ for $t \in \boldsymbol{R}, x \in F$. Here $\boldsymbol{e}=(1,0, \cdots, 0) \in \boldsymbol{R}^{n}$, and \boldsymbol{R}^{\times}acts canonically on Σ through the identification $\boldsymbol{R}^{\times}=N L(n) / L(n)$. It is easy to see that there exists an equivariant decomposition:

$$
S^{m}=\boldsymbol{R}^{n} \times F \underset{f}{\cup}\left(\boldsymbol{R}^{n}-\underset{\boldsymbol{R}^{\times}}{0) \times(\Sigma-F)}\right.
$$

as a real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ manifold. Here f is an equivariant isomorphism of $\left(\boldsymbol{R}^{n}-0\right) \times F$ onto an open set of $\left(\boldsymbol{R}^{n}-0\right) \times_{\boldsymbol{R}^{\times}}(\Sigma-F)$ defined by $f(u, x)=(u, j(1, x))$ for $u \in \boldsymbol{R}^{n}-0, x \in F$. This completes the proof of Theorem 5.1.

Remark. By this theorem, the action ϕ on S^{m} is completely determined up to an equivariant isomorphism by $\Sigma=F\left(L(n), S^{m}\right)$ with \boldsymbol{R}^{\times} action and an equivariant map $j: \boldsymbol{R} \times F \rightarrow \Sigma$.

To state a classification theorem, we introduce the following notions. Let G be a Lie group, and let $\phi_{i}: G \times M_{i} \rightarrow M_{i}$ be a real analytic G action for $i=1,2$. We say that ϕ_{1} is weakly C^{r} equivariant to ϕ_{2} if there exists an automorphism h of G and there exists a C^{r} diffeomorphism $f: M_{1} \rightarrow M_{2}$ such that the following diagram is commutative:

In particular, ϕ_{1} is said to be C^{r} equivariant to ϕ_{2} if the identity map of G can be chosen as the automorphism h.

Let h be an automorphism of G, and let $\phi: G \times M \rightarrow M$ be a real analytic G action. Define a new real analytic G action $h^{\#} \phi$ on M as follows: $\left(h^{\sharp} \phi\right)(g, x)=\dot{\phi}(h(g), x)$ for $g \in G, x \in M$. Then the action $h^{\sharp} \phi$ is weakly C^{ω} equivariant to ϕ, because the following diagram is commutative:

Let I_{g} denote the inner automorphism of G defined by $I_{g}\left(g^{\prime}\right)=g g^{\prime} g^{-1}$ for $g, g^{\prime} \in G$. Then, for any real analytic G action ϕ on M, ϕ is C^{ω} equivariant to $I_{g}^{\sharp} \phi$, because the following diagram is commutative:

where $f(x)=\phi(g, x)$ for $x \in M$.
THEOREM 5.3. Suppose $5 \leqq n \leqq m \leqq 2 n-2$. Then there is a natural one-to-one correspondence between the weak C^{r} equivariance classes of non-trivial real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on the standard m-sphere and the C^{r} equivariance classes of real analytic \boldsymbol{R}^{\times}actions on homotopy $(m-n+1)$-spheres satisfying the condition (P), for each $r=0,1, \cdots, \infty, \omega$. The correspondence is given by the construction in Section 1.

Proof. Let $A_{r}(n, m)$ denote the weak C^{r} equivariance classes of non-trivial real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ actions on the standard m-sphere, let $A_{r}^{\prime}(n, m)$ denote the C^{r} equivariance classes of non-trivial real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on the standard m-sphere such that $F\left(\boldsymbol{S O}(n-1), S^{m}\right)=$ $F\left(L(n), S^{m}\right)$, and let $B_{r}(k)$ denote the C^{r} equivariance classes of real analytic \boldsymbol{R}^{\times}actions on homotopy k-spheres satisfying the condition (P) in Section 1.

Let $\psi: \boldsymbol{R}^{\times} \times \Sigma \rightarrow \Sigma$ be a real analytic \boldsymbol{R}^{\times}action on a homotopy k-sphere Σ satisfying the condition (P). We constructed, in Section 1 , a compact real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ manifold $M(\psi, j)$ such that the C^{ω} equivariance class of $M(\psi, j)$ does not depend on the choice of j, $F(S O(n-1), M(\psi, j))=F(L(n), M(\psi, j))$, and $M(\psi, j)$ is real analytically isomorphic to the standard ($n+k-1$)-sphere for $n+k \geqq 6$. The correspondence $\psi \rightarrow M(\psi, j)$ defines a mapping $c_{r}: B_{r}(k) \rightarrow A_{r}^{\prime}(n, n+k-1)$ for $r=0,1, \cdots, \infty, \omega$ and each $n+k \geqq 6$. It follows from Theorem 5.1 that c_{r} is a bijection $(r=0,1, \cdots, \infty, \omega)$ if $n \geqq 5$ and $1 \leqq k \leqq n-1$.

It remains to show that there is a natural one-to-one correspondence between $A_{r}^{\prime}(n, m)$ and $A_{r}(n, m)$. Let ϕ be a real analytic non-trivial $\boldsymbol{S L}(n, \boldsymbol{R})$ action on S^{m} such that $F\left(\boldsymbol{S O}(n-1), S^{m}\right)=F\left(L(n), S^{m}\right)$. Then ϕ represents a class of $A_{r}^{\prime}(n, m)$ and a class of $A_{r}(n, m)$. Hence there is a natural mapping $i_{r}: A_{r}^{\prime}(n, m) \rightarrow A_{r}(n, m)$.

We shall show that i_{r} is a bijection $(r=0,1, \cdots, \infty, \omega)$ if $5 \leqq n \leqq$ $m \leqq 2 n-2$. Let σ be the automorphism of $\boldsymbol{S L}(n, \boldsymbol{R})$ defined by $\sigma(X)=$ ${ }^{t} X^{-1}$ for $X \in \boldsymbol{S L}(n, \boldsymbol{R})$. Then it is seen that σ is an involution and $\sigma(L(n))=L^{*}(n)$. Let ϕ be a real analytic non-trivial $\boldsymbol{S L}(n, \boldsymbol{R})$ action on S^{m}. Then, by Lemma 3.3 (c) we have that $F\left(\boldsymbol{S O}(n-1), S^{m}\right.$) coincides with $F\left(L(n), S^{m}\right)$ or $F\left(L^{*}(n), S^{m}\right)$. Since $\sigma(L(n))=L^{*}(n)$, we see that if
$F\left(\boldsymbol{S O}(n-1), S^{m}\right)=F\left(L^{*}(n), S^{m}\right)$ for ϕ, then $F\left(\mathbf{S O}(n-1), S^{m}\right)=F\left(L(n), S^{m}\right)$ for the induced action $\sigma^{\#} \phi$. By the diagram (5-b), $\sigma^{\#} \phi$ is weakly C^{ω} equivariant to ϕ; hence the natural mapping i_{r} is surjective.

To show that i_{r} is injective, we consider the automorphism group of $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$. Let $A u t \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$, Inn $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ denote the automorphism group and the inner automorphism group of $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$, respectively. Define an automorphism γ of $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ by $\gamma(X)=Y X Y^{-1}$ for $X \in \boldsymbol{S L}(n, \boldsymbol{R})$, where Y is the diagonal matrix with diagonal elements $-1,1, \cdots, 1$. Then it is known that σ and γ generate the quotient group Out $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})=$ Aut $\boldsymbol{S L}(n, \boldsymbol{R}) /$ Inn $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$. In fact

$$
\text { Out } \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})=\left\{\begin{array}{l}
\boldsymbol{Z}_{2} \text { for } n: \text { odd } \geqq 3 \\
\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \quad \text { for } n: \text { even } \geqq 4,
\end{array}\right.
$$

and γ is an inner automorphism for n odd (cf. Murakami [9]).
Let ϕ, ϕ^{\prime} be real analytic non-trivial $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on S^{m}. Suppose that ϕ^{\prime} is weakly C^{r} equivariant to ϕ. Then by the diagrams (5-a), (5-b), (5-c) ϕ^{\prime} is C^{r} equivariant to one of the following: $\phi, \sigma^{\sharp} \phi, \gamma^{\sharp} \phi, \sigma^{\sharp} \gamma^{\sharp} \phi$. Notice that if $F\left(\boldsymbol{S O}(n-1), S^{m}\right)=F\left(L(n), S^{m}\right)$ for ϕ, then $F\left(S O(n-1), S^{m}\right)=$ $F\left(L(n), S^{m}\right)$ for $\gamma^{*} \phi$, and $F\left(\boldsymbol{S O}(n-1), S^{m}\right)=F\left(L^{*}(n), S^{m}\right)$ for $\sigma^{*} \phi, \sigma^{*} \gamma^{*} \phi$. Therefore, if ϕ and ϕ^{\prime} represent classes of $A_{r}^{\prime}(n, m)$, respectively, and if ϕ^{\prime} is weakly C^{r} equivariant to ϕ, then ϕ^{\prime} is C^{r} equivariant to ϕ or $\gamma^{*} \phi$. To show that i_{r} is injective, it suffices to prove $\gamma^{\sharp} \phi$ is C^{ω} equivariant to ϕ. Consider the real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ manifold

$$
M(\dot{\psi}, j)=\boldsymbol{R}^{n} \times F \underset{f}{\cup}\left(\boldsymbol{R}^{n}-\underset{\boldsymbol{R}^{\times}}{0)} \times(\Sigma-F)\right.
$$

constructed in Section 1. Define a real analytic isomorphism $g: M(\psi, j) \rightarrow$ $M(\psi, j)$ by

$$
\begin{array}{ll}
g(u, x)=(Y \cdot u, x) & \text { for } \quad(u, x) \in \boldsymbol{R}^{n} \times F, \\
g(v, y)=(Y \cdot v, y) & \text { for } \quad(v, y) \in\left(\boldsymbol{R}^{n}-0\right) \underset{\boldsymbol{R}^{x}}{\times}(\Sigma-F) .
\end{array}
$$

Here the matrix Y is as before. Then the following diagram is commutative:

where $\dot{\phi}$ is the natural $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ action on $M(\psi, j)$. By the diagram (5-b), we have the following commutative diagram:

Since $\gamma^{2}=1$, it follows that $\gamma^{\#} \phi$ is C^{ω} equivariant to ϕ; hence the mapping i_{r} is bijective.
q.e.d.
6. \boldsymbol{R}^{\times}actions on spheres. In the previous section, we showed that the classification of real analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ actions on the m-sphere can be reduced to that of real analytic \boldsymbol{R}^{\times}actions on homotopy ($m-n+1$)spheres satisfying the condition (P). So we study now \boldsymbol{R}^{\times}actions on spheres.

Let S^{k} be the standard k-sphere in $\boldsymbol{R}^{k+1}, k \geqq 1$. Let T be an involution of S^{k} defined by $T\left(x_{0}, x_{1}, \cdots, x_{k}\right)=\left(-x_{0}, x_{1}, \cdots, x_{k}\right)$. Put

$$
\xi^{a}=x_{0}\left(1-x_{0}^{2}\right) a\left(x_{0}^{2}\right)\left(\partial / \partial x_{0}\right)-x_{0}^{2} \alpha\left(x_{0}^{2}\right) \sum_{i=1}^{k} x_{i}\left(\partial / \partial x_{i}\right),
$$

where $a(t)$ is a real analytic function defined on an open neighborhood of the closed interval $[0,1]$. It is easy to see that ξ^{a} is a real analytic tangent vector field on S^{k} such that $T_{*} \xi^{a}=\xi^{a}$. Let $\left\{\theta_{t} ; t \in \boldsymbol{R}\right\}$ be the one-parameter group of real analytic transformations of S^{k} associated with the vector field ξ^{a}. It follows from $T_{*} \xi^{a}=\xi^{a}$ that $T \cdot \theta_{t}=\theta_{t} \cdot T$ for $t \in \boldsymbol{R}$. Now we can define a real analytic \boldsymbol{R}^{\times}action ψ^{a} on S^{k} by

$$
\psi^{a}\left((-1)^{n} e^{t}, x\right)=T^{n}\left(\theta_{t}(x)\right) \quad \text { for } \quad x \in S^{k}, \quad t \in \boldsymbol{R}, \quad n \in \boldsymbol{Z} .
$$

It is easy to see that the \boldsymbol{R}^{\times}action ψ^{a} satisfies the condition (P)-(i). We shall give a sufficient condition for ψ^{a} to satisfy the condition (P)(ii).

Proposition 6.1. If $a(0)=1$, then the \boldsymbol{R}^{\times}action ψ^{a} satisfies the condition (P).

Proof. It is sufficient to construct a real analytic into isomorphism $j: \boldsymbol{R} \times F \rightarrow S^{k}$ satisfying the following conditions:

$$
\begin{gather*}
j(0, x)=x, \tag{1}\\
T(j(t, x))=j(-t, x), \tag{2}\\
j\left(e^{s} t, x\right)=\psi^{a}\left(e^{s}, j(t, x)\right) \tag{3}
\end{gather*}
$$

for $x \in F ; t, s \in \boldsymbol{R}$. Here F is the fixed point set of T. It is easy to see that the condition (3) is equivalent to the following condition:

$$
j_{*}(t(\partial / \partial t))=\xi^{a}
$$

By the assumption $a(0)=1$, there is a real analytic function $b(t)$ such that $a(t)=1+t \cdot b(t)$. Put $F(t, u)=-t u^{3}+t u^{3} b\left(t^{2} u^{2}\right)-t^{3} u^{5} b\left(t^{2} u^{2}\right)$. Then there is a unique real analytic function $c(t)$ defined on an interval $(-\varepsilon, \varepsilon)$ for a positive real ε such that $(d / d t) c(t)=F(t, c(t)), c(0)=1$, $-1<t \cdot c(t)<1$.

Define a real analytic mapping $j_{1}:(-\varepsilon, \varepsilon) \times F \rightarrow S^{k}$ by $j_{1}(t, x)=(t \cdot c(t)$, $\left.\left(1-t^{2} c(t)^{2}\right)^{1 / 2} x\right)$. Then it is easy to see that $j_{1 *}(t(\partial / \partial t))=\xi^{a}$ at $j_{1}(t, x)$. Since $F(-t, u)=-F(t, u)$, we have $c(t)=c(-t)$. Therefore the map j_{1} satisfies the following conditions: (1) $j_{1}(0, x)=(0, x)$, (2) $T\left(j_{1}(t, x)\right)=$ $j_{1}(-t, x),\left(3^{\prime}\right) j_{1 *}(t(\partial / \partial t))=\xi^{a}$ at $j_{1}(t, x)$, for $x \in F,-\varepsilon<t<\varepsilon$. By the definition of the action ψ^{a}, the curve $s \rightarrow \psi^{a}\left(e^{s}, j_{1}(t, x)\right)$ is an integral curve of the vector field ξ^{a}. By the condition (3^{\prime}), the curve $s \rightarrow j_{1}\left(e^{s} t, x\right)$ is also an integral curve of ξ^{a}. It follows that
(*)

$$
\psi^{a}\left(e^{s}, j_{1}(t, x)\right)=j_{1}\left(e^{s} t, x\right)
$$

for $x \in F,-\varepsilon<t<\varepsilon,-\varepsilon<e^{s} t<\varepsilon$. Define a mapping $j: \boldsymbol{R} \times F \rightarrow S^{k}$ by

$$
j(t, x)=\left\{\begin{array}{l}
\psi^{a}\left(2 t / \varepsilon, j_{1}(\varepsilon / 2, x)\right) \text { for } t \neq 0 \\
(0, x) \text { for } t=0 .
\end{array}\right.
$$

Then j is an extension of j_{1} by (*); hence j is real analytic. By definition, the map j satisfies the conditions (1), (2) and (3).

Finally, we shall show that j is an into isomorphism. Let $\boldsymbol{O}(k)$ be the orthogonal transformation group of the Euclidean space \boldsymbol{R}^{k+1} leaving fixed the x_{0}-coordinate. Then the vector field ξ^{a} and the map j_{1} are $\boldsymbol{O}(k)$ invariant by definition. Hence we have

$$
\begin{equation*}
A(j(t, x))=j(t, A x) \quad \text { for } \quad A \in \boldsymbol{O}(k), \quad(t, x) \in \boldsymbol{R} \times F \tag{**}
\end{equation*}
$$

Since $c(0)=1$, the map j is non-singular at each point of $0 \times F$. It remains to show that j is injective. Assume $j\left(t_{1}, x_{1}\right)=j\left(t_{2}, x_{2}\right)$ for some $\left(t_{i}, x_{i}\right) \in \boldsymbol{R} \times F$. Then $j\left(s t_{1}, x_{1}\right)=j\left(s t_{2}, x_{2}\right)$ for any $s \neq 0$ by the definition of j. Let $s \rightarrow 0$. Then $j\left(0, x_{1}\right)=j\left(0, x_{2}\right)$. Hence we have $x_{1}=x_{2}$ and $j\left(t_{1}, x_{1}\right)=j\left(t_{2}, x_{1}\right)$. It follows from (**) that $j\left(t_{1}, x\right)=j\left(t_{2}, x\right)$ for any $x \in F$. Assume $t_{1} \neq t_{2}$. Then j induces a real analytic isomorphism of $S^{1} \times F$ onto an open set of S^{k}. This is a contradiction. Therefore the map j is injective. q.e.d.

By Proposition 6.1, we can construct many examples of real analytic \boldsymbol{R}^{\times}actions on the standard k-sphere satisfying the condition (P). Let

$$
\boldsymbol{a}=\left(a_{1}, a_{2}, \cdots, a_{N}\right) \in \boldsymbol{R}^{N} \quad \text { for } \quad N=1,2, \cdots,
$$

and define a real analytic tangent vector field ξ^{a} on S^{k} as follows:

$$
\xi^{a}=\left(\prod_{i=1}^{N}\left(1-a_{i} x_{0}^{2}\right)\right) \cdot\left(x_{0}\left(1-x_{0}^{2}\right)\left(\partial / \partial x_{0}\right)-x_{0}^{2} \sum_{i=1}^{k} x_{i}\left(\partial / \partial x_{i}\right)\right) .
$$

Let ψ^{a} be the real analytic \boldsymbol{R}^{\times}action on S^{k} determined by the vector field ξ^{a} and the involution T. Then the action ψ^{a} satisfies the condition (P).

Proposition 6.2. Let $\boldsymbol{a}=\left(a_{1}, \cdots, a_{N}\right)$ and $\boldsymbol{a}^{\prime}=\left(a_{1}^{\prime}, \cdots, a_{N}^{\prime}\right)$.
(i) If ψ^{a} is C^{0} equivariant to $\psi^{a^{\prime}}$, then the cardinality of the set $\left\{a_{j}: a_{j}>1\right\}$ is equal to that of the set $\left\{a_{j}^{\prime}: a_{j}^{\prime}>1\right\}$.
(ii) If ψ^{a} is C^{2} equivariant to $\psi^{\alpha^{\prime}}$, then $\prod_{j=1}^{N}\left(1-a_{j}\right)=\prod_{j=1}^{N}\left(1-a_{j}^{\prime}\right)$.

Proof. The points $x_{0}= \pm 1$ are isolated zeros of the vector field ξ^{a}, and the other zeros of ξ^{a} are the hypersurfaces

$$
x_{0}=0 \quad \text { and } \quad x_{0}= \pm 1 / a_{j}^{1 / 2} \quad \text { for } \quad a_{j}>1
$$

If there is an equivariant homeomorphism of S^{k} with the \boldsymbol{R}^{\times}action ψ^{a} to S^{k} with the \boldsymbol{R}^{\times}action $\psi^{a^{\prime}}$, then the zeros of the vector field ξ^{a} is homeomorphic to the zeros of the vector field $\xi^{a^{\prime}}$. Hence the cardinality of the set $\left\{a_{j}: a_{j}>1\right\}$ is equal to that of the set $\left\{a_{j}^{\prime}: a_{j}^{\prime}>1\right\}$.

Suppose next that there is an equivariant C^{2} diffeomorphism f of S^{k} with the \boldsymbol{R}^{\times}action ψ^{a} to S^{k} with the \boldsymbol{R}^{\times}action $\psi^{a^{\prime}}$. We shall show that there is an equivariant C^{2} diffeomorphism g of S^{1} with the \boldsymbol{R}^{\times}action ψ^{a} to S^{1} with the \boldsymbol{R}^{\times}action $\psi^{a^{\prime}}$. Put

$$
\begin{aligned}
& A(x)=\left\{\left(t,\left(1-t^{2}\right)^{1 / 2} x\right) \in S^{k}:-1<t<1\right\}, \\
& C(x)=\left\{(\sin \theta, \cos \theta \cdot x) \in S^{k}: \theta \in R\right\}
\end{aligned}
$$

for $x \in F$. Then $C(x)$ is the closure of the union $A(x) \cup A(-x)$. Since the $\operatorname{map} f$ is equivariant, we have $f(A(x))=A(f(x))$ for $x \in F$. Then we have $f(-x)=-f(x)$ for $x \in F$, by the differentiability of f at $x_{0}=1$. Hence $f(C(x))=C(f(x))$ for $x \in F$. Since the \boldsymbol{R}^{\times}action ψ^{a} is compatible with the $\boldsymbol{O}(k)$ action (see the proof of Proposition 6.1), we can assume $f(y)=y$ for some $y \in F$. Then the restriction $f: C(y) \rightarrow C(y)$ can be regarded as an equivariant C^{2} diffeomorphism g of S^{1} with the \boldsymbol{R}^{\times}action ψ^{a} to S^{1} with the \boldsymbol{R}^{\times}action $\psi^{q^{\prime}}$.

Finally we shall show that the existence of g implies $\prod_{j=1}^{N}\left(1-a_{j}\right)=$ $\prod_{j=1}^{N}\left(1-a_{j}^{\prime}\right)$. Since g is equivariant, we have $g_{*}\left(\xi^{a}\right)=\xi^{a^{\prime}}$. Let $\pi: S^{1} \rightarrow \boldsymbol{R}$ be a map defined by $\pi\left(x_{0}, x_{1}\right)=x_{1}$. Then π is a local diffeomorphism at $x_{0}= \pm 1$, and

$$
\pi_{*}\left(\xi^{a}\right)=-x_{1}\left(1-x_{1}^{2}\right) \prod_{j=1}^{N}\left(1-a_{j}\left(1-x_{1}^{2}\right)\right)\left(d / d x_{1}\right)
$$

There is a local C^{2} diffeomorphism h of \boldsymbol{R} such that $h(0)=0, \pi \cdot g=$
$h \cdot \pi$. Then it follows from $h_{*}\left(\pi_{*}\left(\xi^{a}\right)\right)=\pi_{*}\left(\xi^{a^{a}}\right)$ that $-x_{1}\left(1-x_{1}^{2}\right) \prod_{j=1}^{N}(1-$ $\left.a_{j}\left(1-x_{1}^{2}\right)\right)\left(d h / d x_{1}\right)\left(x_{1}\right)=-y_{1}\left(1-y_{1}^{2}\right) \prod_{j=1}^{N}\left(1-a_{j}^{\prime}\left(1-y_{1}^{2}\right)\right)$ for $y_{1}=h\left(x_{1}\right)$. Differentiate by x_{1}, and put $x_{1}=0$. Then we have the desired equation, because $d h / d x_{1}(0) \neq 0$.
q.e.d.
7. Closed subgroups of $\boldsymbol{O}(n)$. In this section, we shall prove Lemmas 4.1 and 4.2. The method used here is essentially due to Dynkin[2].

Proof of Lemma 4.1. Let G be a connected closed subgroup of $\boldsymbol{O}(n)$. Suppose that

$$
\begin{equation*}
n \geqq 5, \quad 0<\operatorname{dim} O(n) / G \leqq 2 n-2 \tag{*}
\end{equation*}
$$

The inclusion map $i: G \rightarrow \boldsymbol{O}(n)$ gives an orthogonal faithful representation of G.
(A) Suppose first that the representation i is irreducible.
(A-1) Suppose that G is not semi-simple. Let T be a one-dimensional closed central subgroup of G. Since i is irreducible, the centralizer of T in $\boldsymbol{O}(n)$ agrees with $\boldsymbol{U}(n / 2)$ by an inner automorphism of $\boldsymbol{O}(n)$ (cf. Uchida [12, Lemma 5.1]). Put $n=2 k$. Then it can be assumed that G is a subgroup of $\boldsymbol{U}(k)$ and the inclusion $G \rightarrow \boldsymbol{U}(k)$ is irreducible. It follows that the center of G is one-dimensional by Schur's lemma. Moreover the condition (*) implies $k(k-1)=\operatorname{dim} \boldsymbol{O}(2 k) / \boldsymbol{U}(k) \leqq 4 k-2$. Hence $k=3,4$. It is easy to see that $\boldsymbol{S} \boldsymbol{U}(3)$ has no semi-simple proper subgroup of codimension $\leqq 4$, and $\boldsymbol{S U}(4)$ has no semi-simple proper subgroup of codimension $\leqq 2$. Therefore the case (A-1) occurs only when $n=6,8 ; G$ agrees with $\boldsymbol{U}(n / 2)$ up to an inner automorphism of $O(n)$.
(A-2) Suppose that G is semi-simple and the complexification i^{c} of the representation i is reducible. Then $n=2 k, G$ is isomorphic to a subgroup G^{\prime} of $\boldsymbol{U}(k)$, and the inclusion $G^{\prime} \rightarrow \boldsymbol{U}(k)$ is irreducible. Hence $k=3,4$ and $G^{\prime}=\boldsymbol{S} \boldsymbol{U}(k)$. Calculating the centralizer of the center of G in $\boldsymbol{O}(n)$, we can show that G agrees with $\boldsymbol{S} \boldsymbol{U}(n / 2)$ up to an inner automorphism of $\boldsymbol{O}(n)$.
(A-3) Suppose that G is semi-simple, non-simple, and i^{c} is irreducible. Let G^{*} be the universal covering group of G, and let $p: G^{*} \rightarrow G$ be the projection. Since G is not simple, there are closed semi-simple normal subgroups H_{1}, H_{2} of G^{*} such that $G^{*}=H_{1} \times H_{2}$. Consider the representation $i^{c} p: G^{*} \rightarrow \boldsymbol{U}(n)$. Then there are irreducible complex representations $r_{t}: H_{t} \rightarrow \boldsymbol{U}\left(n_{t}\right)$ for $t=1,2$ such that the tensor product $r_{1} \otimes r_{2}$ is equivalent to $i^{c} p$. Since $i^{c} p$ has a real form, the representations r_{1}, r_{2} are self-conjugate; hence r_{1} (resp. r_{2}) has a real form or a quaternionic structure, but not both (cf. Adams [1, Proposition 3.56]).

Moreover, if r_{1} has a real form (resp. quaternionic structure), then r_{2} has also a real form (resp. quaternionic structure).

Suppose first that r_{1}, r_{2} have quaternionic structures. Then it follows that n_{1}, n_{2} are even, and $\operatorname{dim} H_{t} \leqq \operatorname{dim} \boldsymbol{S p}\left(n_{t} / 2\right)=n_{t}\left(n_{t}+1\right) / 2$ for $t=1$, 2. The condition (*) implies $\operatorname{dim} \boldsymbol{O}(n)-\operatorname{dim} \boldsymbol{S p}\left(n_{1} / 2\right)-\operatorname{dim} \boldsymbol{S p}\left(n_{2} / 2\right) \leqq$ $2 n-2, n=n_{1} n_{2}$. Therefore $n^{2}-3 n+4 \leqq\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}+1\right) \leqq(2+n / 2) \times$ $(3+n / 2)$. Hence $n \leqq 7$. But n is a multiple of 4 and $n \geqq 5$. Therefor r_{1}, r_{2} cannot have quaternionic structures simultaneously.

Suppose next that r_{1}, r_{2} have real forms. Then, since H_{t} is semisimple, it follows that $n_{t} \geqq 3$ for $t=1,2$. Moreover, $\operatorname{dim} H_{t} \leqq \operatorname{dim} \boldsymbol{O}\left(n_{t}\right)=$ $n_{t}\left(n_{t}-1\right) / 2$ for $t=1,2$. The condition (*) implies $\operatorname{dim} \boldsymbol{O}(n)-\operatorname{dim} \boldsymbol{O}\left(n_{1}\right)-$ $\operatorname{dim} \boldsymbol{O}\left(n_{2}\right) \leqq 2 n-2, n=n_{1} n_{2}$. Therefore $n^{2}-3 n+4 \leqq\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-\right.$ $1) \leqq(3+n / 3)(2+n / 3)$. Hence $n \leqq 5$. But $n=n_{1} n_{2} \geqq 9$. Therefore r_{1}, r_{2} cannot have real forms simultaneously. Therefore the case (A-3) does not happen.
(A-4) Suppose finally that G is simple and i^{c} is irreducible. Put $r=\operatorname{rank} G$, and denote by G^{*} the universal covering group of G. Denote by $L_{1}, L_{2}, \cdots, L_{r}$ the fundamental weights of G^{*}. Then there is a one-to-one correspondence between complex irreducible representations of G^{*} and sequences (a_{1}, \cdots, a_{r}) of non-negative integers such that $a_{1} L_{1}+$ $\cdots+a_{r} L_{r}$ is the highest weight of a corresponding representation (cf. Dynkin [2, Theorems 0.8 and 0.9]; Humphreys [6, Section 21.2]). Denote by $d\left(a_{1} L+{ }^{\top} \cdots+a_{r} L_{r}\right)$ the degree of the complex irreducible representation of G^{*} with the highest weight $a_{1} L_{1}+\cdots+a_{r} L_{r}$. The degree can be computed by Weyl's dimension formula (cf. Dynkin [2, Theorem 0.24, (0.148)-(0.155)]; Humphreys [6, Section 24.3]). Notice that if $a_{i} \geqq a_{i}^{\prime}$ for $i=1,2, \cdots, r$, then $d\left(a_{1} L_{1}+\cdots+a_{r} L_{r}\right) \geqq d\left(a_{1}^{\prime} L_{1}+\cdots+a_{r}^{\prime} L_{r}\right)$ and the equality holds only if $a_{i}=a_{i}^{\prime}$ for $i=1,2, \cdots, r$.
(A-4-1) Suppose that G is an exceptional Lie group. Then we have Table 3. Here $m(G)$ is the least degree of non-trivial complex irreduci-

Table 3

G^{*}	$k=\operatorname{dim} G$	$m=m(G)$
\boldsymbol{G}_{2}	14	7
\boldsymbol{F}_{4}	52	26
\boldsymbol{E}_{6}	78	27
\boldsymbol{E}_{7}	133	56
\boldsymbol{E}_{8}	248	248

ble representations of G^{*} (cf. Dynkin [2, p. 378, Table 30]). The condition (*) implies that $\operatorname{dim} G \geqq \operatorname{dim} O(n)-(2 n-2)=(n-1)(n-4) / 2$. Hence $(m-1)(m-4) \leqq 2 k$. The possibility remains only when $G^{*}=\boldsymbol{G}_{2}$ and
$n \leqq 8$. Since $d\left(L_{1}\right)=7, d\left(L_{2}\right)=14, d\left(2 L_{1}\right)=27$ for $G^{*}=G_{2}$, there is no complex irreducible representation of G_{2} of degree 8. The complex irreducible representation of G_{2} of degree 7 has a real form. Therefore the case (A-4-1) occures only when $n=7$ and $G=\boldsymbol{G}_{2}$, where the inclusion $\boldsymbol{G}_{2} \rightarrow \boldsymbol{O}(7)$ is uniquely determined up to an inner automorphism of $\boldsymbol{O}(7)$.
(A-4-2) Suppose that G^{*} is isomorphic to $S U(r+1)$ for $r \geqq 1$. Since $\operatorname{rank} G \leqq \operatorname{rank} \boldsymbol{S O}(n)$, it follows that
(a)

$$
2 r \leqq n
$$

The condition (*) implies that

$$
\begin{equation*}
(n-1)(n-4) / 2 \leqq r(r+2) \leqq n(n-1) / 2, \quad n \geqq 5 \tag{b}
\end{equation*}
$$

It is easy to see from (a), (b) that $n \leqq 13$. If the pair (n, r) satisfies the conditions (a), (b), then it is one of the following: $(12,6),(11,5)$, $(10,5),(9,4),(8,4),(8,3),(7,3),(6,2),(5,2),(5,1)$. Notice that $d\left(L_{i}\right)=$ ${ }_{r+1} C_{i}, d\left(L_{1}+L_{r}\right)=r(r+2), d\left(2 L_{1}\right)=d\left(2 L_{r}\right)=(r+1)(r+2) / 2$. Hence there is no complex irreducible representation of $\boldsymbol{S} \boldsymbol{U}(r+1)$ of degrees $2 r$ and $2 r+1$ for $r \geqq 4$. If $r=3$, then $d\left(L_{1}\right)=d\left(L_{3}\right)=4, d\left(L_{2}\right)=6, d\left(2 L_{1}\right)=$ $d\left(2 L_{3}\right)=10, d\left(2 L_{2}\right)=d\left(L_{1}+L_{2}\right)=d\left(L_{2}+L_{3}\right)=20, d\left(L_{1}+L_{3}\right)=15$. Hence there is no complex irreducible representation of $\boldsymbol{S U}(4)$ of degrees 7 and 8. If $r=2$, then $d\left(L_{1}\right)=d\left(L_{2}\right)=3, d\left(2 L_{1}\right)=d\left(2 L_{2}\right)=6, d\left(L_{1}+L_{2}\right)=8$. Hence there is no complex irreducible representation of $\boldsymbol{S U}(3)$ of degree 5. There are just two complex irreducible representations of $S U(3)$ of degree 6 which are not self-conjugate. Therefore there is no possibility for $r \geqq 2$. Finally there is only one complex irreducible representation of $\boldsymbol{S U (2)}$ of degree 5 which has a real form. Therefore the case (A-4-2) occurs only when $n=5$ and $G=\boldsymbol{S O}(3)$, where the inclusion $\boldsymbol{S O}(3) \rightarrow \boldsymbol{O}(5)$ is an irreducible representation uniquely determined up to an inner automorphism of $O(5)$.
(A-4-3) Suppose that G^{*} is isomorphic to $\boldsymbol{S p}(r)$ for $r \geqq 2$. The condition (*) implies that $(n-1)(n-4) / 2 \leqq r(2 r+1)<n(n-1) / 2$. Hence $n=2 r+2$ or $n=2 r+3$. Notice that $d\left(L_{i}\right)={ }_{2 r+1} C_{i}-{ }_{2 r+1} C_{i-1}, d\left(2 L_{1}\right)=$ $r(2 r+1)$. If $r \geqq 3$, then $d\left(L_{1}\right)<d\left(L_{2}\right)<\cdots<d\left(L_{s}\right) \geqq d\left(L_{s+1}\right)>\cdots>$ $d\left(L_{r}\right)$ for some s. It is easy to see that there is no complex irreducible representation of $S p(r)$ of degrees $2 r+2$ and $2 r+3$ for $r \geqq 3$. If $r=2$, then $d\left(L_{1}\right)=4, d\left(L_{2}\right)=5, d\left(2 L_{1}\right)=10, d\left(2 L_{2}\right)=14, d\left(L_{1}+L_{2}\right)=16$. Hence there is no complex irreducible representation of $\boldsymbol{S p}(r)$ of degrees $2 r+2$ and $2 r+3$ for $r \geqq 2$. Therefore the case (A-4-3) does not happen.
(A-4-4) Suppose that G^{*} is isomorphic to $\operatorname{Spin}(k)$ for $k \geqq 5$. The condition ($*$) implies that $(n-1)(n-4) \leqq k(k-1)<n(n-1)$. Hence
$n=k+1$ or $n=k+2$. If $k=2 r$, then $d\left(L_{i}\right)={ }_{2 r} C_{i}$ for $1 \leqq i \leqq r-2$, $d\left(L_{r-1}\right)=d\left(L_{r}\right)=2^{r-1}, d\left(2 L_{1}\right)=(r+1)(2 r-1), d\left(2 L_{r-1}\right)=d\left(2 L_{r}\right)={ }_{2 r-1} C_{r}$, $d\left(L_{1}+L_{r-1}\right)=d\left(L_{1}+L_{r}\right)=2^{r-1}(2 r-1), d\left(L_{r-1}+L_{r}\right)={ }_{2 r} C_{r-1}$. Hence there is no complex irreducible representation of $\operatorname{Spin}(2 r)$ of degrees $2 r+1$ and $2 r+2$. If $k=2 r+1$, then $d\left(L_{i}\right)={ }_{2 r+1} C_{i}$ for $1 \leqq i \leqq r-1, d\left(L_{r}\right)=$ $2^{r}, d\left(2 L_{1}\right)=r(2 r+3), d\left(L_{1}+L_{r}\right)=2^{r+1} r, d\left(2 L_{r}\right)=2^{2 r}$. Hence there is no complex irreducible representation of $\operatorname{Spin}(2 r+1)$ of degrees $2 r+2$ and $2 r+3$ for $r \neq 3$, there is no complex irreducible representation of $\operatorname{Spin}(7)$ of degree 9 , but there is only one complex irreducible representation of $\operatorname{Spin}(7)$ of degree 8 which has a real form. Therefore the case (A-4-4) occurs only when $n=8$ and $G=\operatorname{Spin}(7)$, the inclusion $\boldsymbol{S p i n}(7) \rightarrow \boldsymbol{O}(8)$ is a real spin representation uniquely determined up to an inner automorphism of $O(8)$.

Consequently, the case (A) occurs only when G is one of the following listed in Table 4 up to an inner automorphism of $\boldsymbol{O}(n)$. Here

Table 4

n	G	$i: G \rightarrow \boldsymbol{O}(n)$	$\operatorname{dim} \boldsymbol{O}(n) / G$
8	$\boldsymbol{S p i n}(7)$	Δ_{7}	$7=n-1$
8	$\boldsymbol{U}(4)$	μ_{4}	$12=2 n-4$
8	$\boldsymbol{S} \boldsymbol{U}(4)$	$\mu_{4}{ }^{0}$	$13=2 n-3$
7	\boldsymbol{G}_{2}	ω	$7=n$
6	$\boldsymbol{U}(3)$	μ_{3}	$6=n$
6	$\boldsymbol{S} \boldsymbol{U}(3)$	$\mu_{3}{ }^{0}$	$7=2 n-5$
5	$\boldsymbol{S O}(3)$	β	$7=2 n-3$

$\mu_{k}: \boldsymbol{U}(k) \rightarrow \boldsymbol{O}(2 k), \mu_{k}^{0}: \boldsymbol{S} \boldsymbol{U}(k) \rightarrow \boldsymbol{O}(2 k)$ are the canonical inclusions, and Δ_{7}, ω, β are irreducible representations uniquely determined up to an inner automorphism of $O(n)$, respectively.
(B) Suppose next that the representation $i: G \rightarrow \boldsymbol{O}(n)$ is reducible. Then, by an inner automorphism of $O(n), G$ is isomorphic to a subgroup G^{\prime} of $\boldsymbol{O}(k) \times \boldsymbol{O}(n-k)$ for some k such that $0<k \leqq n / 2$. The condition (*) implies that

$$
\begin{equation*}
k(n-k)=\operatorname{dim} \boldsymbol{O}(n) / \boldsymbol{O}(k) \times \boldsymbol{O}(n-k) \leqq 2 n-2 \tag{c}
\end{equation*}
$$

Hence $k=1,2$ or $k=3$ and $n=6,7$. If $k=3$ and $n=6,7$, then it is easy to see that $G^{\prime}=\boldsymbol{S O}(3) \times \boldsymbol{S O}(3), G^{\prime}=\boldsymbol{S O}(3) \times \boldsymbol{S O}(4)$, respectively. Suppose $k=2$. Then the inequality (c) implies $2+\operatorname{dim} G^{\prime} \geqq \operatorname{dim} \boldsymbol{O}(2) \times \boldsymbol{O}(n-2)$. Since $S O(n-2)$ is semi-simple for $n \geqq 5, S O(n-2)$ has no closed subgroup of codimension one. Therefore $G^{\prime}=S O(n-2), \boldsymbol{S O}(2) \times S O(n-2)$ or $G^{\prime}=S O(2) \times G^{\prime \prime}$, where $G^{\prime \prime}$ is a closed subgroup of $\boldsymbol{O}(n-2)$ of codimension 2. If the inclusion $G^{\prime \prime} \rightarrow \boldsymbol{O}(n-2)$ is irreducible, then $n=5,6$
by the case (A). Hence $n=6$ and $G^{\prime \prime}=\boldsymbol{U}(2)$. If the inclusion $G^{\prime \prime} \rightarrow$ $O(n-2)$ is reducible, then $n=5$ and $G^{\prime \prime}$ is a maximal torus of $S O(3)$. Suppose $k=1$. Then G^{\prime} is a closed subgroup of $\boldsymbol{O}(n-1)$, and the inequality (c) implies $\operatorname{dim} O(n-1) / G^{\prime} \leqq n-1$. It can be assumed that the inclusion $G^{\prime} \rightarrow \boldsymbol{O}(n-1)$ is irreducible. By the case (A), G^{\prime} is one of the following listed in Table 5. Consequently, the case (B) occurs only when G is one of the following listed in Table 6 up to an inner automorphism of $\boldsymbol{O}(n)$. Here $\rho_{k}: \quad \boldsymbol{S O}(k) \rightarrow \boldsymbol{O}(k)$ is the canonical inclusion, and θ^{k} is the trivial representation of degree k. This completes the proof of Lemma 4.1.

Table 5

$n-1$	G^{\prime}	$G^{\prime} \rightarrow \boldsymbol{O}(n-1)$	$\operatorname{dim} \boldsymbol{O}(n-1) / G^{\prime}$
$n-1$	$\boldsymbol{S O}(n-1)$	ρ_{n-1}	0
8	$\boldsymbol{S p i n}(7)$	Δ_{7}	7
7	\boldsymbol{G}_{2}	ω	7
6	$\boldsymbol{U}(3)$	μ_{3}	6
4	$U(2)$	μ_{2}	2
4	$\boldsymbol{S U}(2)$	$\mu_{2}{ }^{0}$	3
Table 6			
n	G	$i: G \rightarrow \boldsymbol{O}(n)$	$\operatorname{dim} \boldsymbol{O}(n) / G$
n	$\boldsymbol{S O}(n-1)$	$\rho_{n-1} \oplus \theta^{1}$	$n-1$
n	SO(n-2)	$\rho_{n-2} \oplus \theta^{2}$	$2 n-3$
n	$\mathbf{S O}(n-2) \times \mathbf{S O}(2)$	$\rho_{n-2} \oplus \rho_{2}$	$2 n-4$
9	$\boldsymbol{S p i n}(7)$	$\Delta_{7} \oplus \theta^{1}$	$15=2 n-3$
8	\boldsymbol{G}_{2}	$\omega \oplus \theta^{1}$	$14=2 n-2$
7	$\boldsymbol{U}(3)$	$\mu_{3} \oplus \theta^{1}$	$12=2 n-2$
7	$\boldsymbol{S O}(3) \times \mathbf{S O}(4)$	$\rho_{3} \oplus \rho_{4}$	$12=2 n-2$
6	$\boldsymbol{S O}(3) \times \boldsymbol{S O}(3)$	$\rho_{3} \oplus \rho_{3}$	$9=2 n-3$
6	$\boldsymbol{U}(2) \times \boldsymbol{U}(1)$	$\mu_{2} \oplus \mu_{1}$	$10=2 n-2$
5	$U(2)$	$\mu_{2} \oplus \theta^{1}$	$6=2 n-4$
5	$\boldsymbol{S U}(2)$	$\mu_{2}{ }^{0} \oplus \theta^{1}$	$7=2 n-3$
5	$\boldsymbol{U}(1) \times \boldsymbol{U}(1)$	$\mu_{1} \oplus \mu_{1} \oplus \theta^{1}$	$8=2 n-2$

Proof of Lemma 4.2. It is sufficient to prove that there is no irreducible real representation of $\boldsymbol{S O}(n)$ of degree m for $5 \leqq n<m \leqq$ $2 n-2$, and a non-trivial orthogonal representation of $\boldsymbol{S O}(n)$ of degree n is equivalent to the canonical representation ρ_{n} up to an inner automorphism of $\boldsymbol{O}(n)$. The second half is well known and a proof is given in our previous paper [12, Section 5]. To prove the first half, suppose that there is an irreducible real representation σ of $\boldsymbol{S O}(n)$ of degree m for $5 \leqq n<m \leqq 2 n-2$. Then it is easy to see that the complexification σ^{c} of σ is irreducible. Let $p: \boldsymbol{S p i n}(n) \rightarrow \boldsymbol{S O}(n)$ be the covering pro-
jection. Then the composition $\sigma^{c} p$ is an irreducible complex representation of $\operatorname{Spin}(n)$, which has a real form. Suppose $n=2 r$. Then $d\left(L_{i}\right)=$ ${ }_{2 r} C_{i} \quad$ for $\quad 1 \leqq i \leqq r-2, d\left(L_{r-1}\right)=d\left(L_{r}\right)=2^{r-1}, d\left(2 L_{1}\right)=(r+1)(2 r-1)$, $d\left(2 L_{r-1}\right)=d\left(2 L_{r}\right)={ }_{2 r-1} C_{r}, d\left(L_{1}+L_{r-1}\right)=d\left(L_{1}+L_{r}\right)=2^{r-1}(2 r-1), d\left(L_{r-1}+\right.$ $\left.L_{r}\right)={ }_{2 r} C_{r-1}$. Therefore the following are the only possibilities for the irreducible complex representation of $\operatorname{Spin}(2 r)$ of degree $m(2 r<m \leqq$ $4 r-2):$

$$
\begin{aligned}
& \Delta_{2 r}^{+}, \Delta_{2 r}^{-}: \boldsymbol{S p i n}(2 r) \rightarrow \boldsymbol{U}\left(2^{r-1}\right) \text { for } \quad r=5, \\
& \tau, \tau^{*}: \boldsymbol{S p i n}(6)=\boldsymbol{S} \boldsymbol{U}(4) \rightarrow \boldsymbol{U}(10) .
\end{aligned}
$$

Here the representation space of τ is the second symmetric product of the canonical representation space \boldsymbol{C}^{4} of $\boldsymbol{S} \boldsymbol{U}(4)$, and τ^{*} is the dual representation. Hence τ, τ^{*} have no real form. It is known that the half spin representations $\Delta_{2 r}^{+}, \Delta_{2 r}^{-}$are not induced from a representation of $\boldsymbol{S O}(2 r)$. Suppose $n=2 r+1$. Then $d\left(L_{i}\right)={ }_{2 r+1} C_{i}$ for $1 \leqq i \leqq r-1$, $d\left(L_{r}\right)=2^{r}, d\left(2 L_{1}\right)=r(2 r+3), d\left(L_{1}+L_{r}\right)=2^{r+1} r, d\left(2 L_{r}\right)=2^{2 r}$. Therefore the following is the only possibility for the irreducible complex representation of $\operatorname{Spin}(2 r+1)$ of degree $m(2 r+1<m \leqq 4 r)$:

$$
\Delta_{2 r+1}: \boldsymbol{S p i n}(2 r+1) \rightarrow \boldsymbol{U}\left(2^{r}\right) \text { for } r=3,4
$$

It is known that the spin representation $\Delta_{2 r+1}$ is not induced from a representation of $\mathbf{S O}(2 r+1)$. Consequently, we have the desired result.
q.e.d.
8. Concluding remark. If $5 \leqq n \leqq m \leqq 2 n-2$, then there exists only one linear $\boldsymbol{S O}(n)$ action $\rho_{n} \oplus \theta^{m-n+1}$ on the standard m-sphere (see Theorem 4.11). This action is the restriction of a linear $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ action. We shall show a counterexample for $n=4$.

Recall that there is a surjective homomorphism $\pi: S O(4) \rightarrow \boldsymbol{S O}(3)$. Through this homomorphism, $\boldsymbol{S O}(4)$ acts on \boldsymbol{R}^{3} and the action is transitive on the unit sphere S^{2} with the isotropy group $\boldsymbol{U}(2)$. Also $\boldsymbol{S O}(4)$ acts naturally on R^{4} and the action is transitive on the unit sphere S^{3} with the isotropy group $\boldsymbol{S O}(3)$. Thus we have the diagonal action of $\boldsymbol{S O}(4)$ on the unit sphere S^{6} of $\boldsymbol{R}^{3} \oplus \boldsymbol{R}^{4}$. This action is a linear $\boldsymbol{S O}(4)$ action on S^{6}, the principal orbit type is $\boldsymbol{S O}(4) / \boldsymbol{S O}(2)$ and there are just two singular orbit types $\boldsymbol{S O}(4) / \boldsymbol{S O}(3)$ and $\boldsymbol{S O}(4) / \boldsymbol{U}(2)$.

Proposition 8.1. The above $\operatorname{SO}(4)$ action on S^{6} is not extendable to any continuous $\boldsymbol{S L}(4, \boldsymbol{R})$ action on S^{6}.

Proof. Suppose that there exists a continuous $\boldsymbol{S L}(4, \boldsymbol{R})$ action on S^{6} which is an extension of the $\boldsymbol{S O}(4)$ action. Let $x \in S^{6}$ be a point such
that $\boldsymbol{S O}(4)_{x}=\boldsymbol{U}(2)$. Then
(1) $U(2) \subset S L(4, R)_{x} \neq \boldsymbol{S L}(4, R)$,
(2) $\operatorname{dim} S L(4, R) / S L(4, R)_{x} \leqq 6$.

Here we shall show first the following result.
Lemma 8.2. Let $\mathfrak{t}(2)$ be the Lie algebra of $\boldsymbol{U}(2)$. Let \mathfrak{g} be a proper Lie subalgebra of $\mathfrak{i l}(4, \boldsymbol{R})$ which contains $\mathfrak{t}(2)$. Then $\operatorname{dim} \mathfrak{g}=4,6,7$ or 10.

Proof. Recall

$$
\boldsymbol{U}(2)=\left\{\left(\begin{array}{rr}
A & -B \\
B & A
\end{array}\right) \in M_{4}(\boldsymbol{R}): A^{t} A+B^{t} B=I_{2}, A^{t} B=B^{t} A\right\} .
$$

Put

$$
\begin{aligned}
& \mathfrak{u}(2)=\left\{\left(\begin{array}{rr}
X & -Y \\
Y & X
\end{array}\right) \in M_{4}(\boldsymbol{R}): X+{ }^{t} X=0, Y={ }^{t} Y\right\}, \\
& \mathfrak{h}(2)=\left\{\left(\begin{array}{lr}
X & -Y \\
Y & X
\end{array}\right) \in M_{4}(\boldsymbol{R}): X={ }^{t} X, Y+{ }^{t} Y=0, \text { trace } X=0\right\}, \\
& \mathfrak{a}=\left\{\left(\begin{array}{lr}
X & Y \\
Y & -X
\end{array}\right) \in M_{4}(\boldsymbol{R}): X={ }^{t} X, Y={ }^{t} Y\right\}, \\
& \mathfrak{b}=\left\{\left(\begin{array}{lr}
X & Y \\
Y & -X
\end{array}\right) \in M_{4}(\boldsymbol{R}): X+{ }^{t} X=Y+{ }^{t} Y=0\right\} .
\end{aligned}
$$

Then $\mathfrak{g l}(4, R)=\mathfrak{u}(2) \oplus \mathfrak{h}(2) \oplus \mathfrak{a} \oplus \mathfrak{b}$ as a direct sum of $\operatorname{Ad}(\boldsymbol{U}(2))$ invariant linear subspaces. Here $\mathfrak{h}(2), \mathfrak{a}$ and \mathfrak{b} are irreducible, respectively, and $\operatorname{dim} \mathfrak{h}(2)=3, \quad \operatorname{dim} \mathfrak{a}=6, \quad \operatorname{dim} \mathfrak{b}=2$. Moreover, we have $[\mathfrak{h}(2), \mathfrak{a}]=\mathfrak{b}$, $[\mathfrak{h}(2), \mathfrak{b}]=\mathfrak{a},[\mathfrak{a}, \mathfrak{b}]=\mathfrak{b}(2),[\mathfrak{a}, \mathfrak{a}] \subset \mathfrak{u}(2),[\mathfrak{b}, \mathfrak{b}] \subset \mathfrak{u}(2),[\mathfrak{h}(2), \mathfrak{b}(2)] \subset \mathfrak{u}(2)$. Therefore \mathfrak{g} is one of the following: $\mathfrak{u t}(2), \mathfrak{u}(2) \oplus \mathfrak{a}, \mathfrak{u}(2) \oplus \mathfrak{b}, \mathfrak{u}(2) \oplus \mathfrak{h}(2)$. Then $\operatorname{dim} \mathfrak{g}=4,10,6$ or 7 , respectively.
q.e.d.

We now return to the proof of Proposition 8.1. By the condition (1), (2), it follows from Lemma 8.2 that $\operatorname{dim} S L(4, R)_{x}=10$. Therefore the orbit $\boldsymbol{S L}(4, \boldsymbol{R}) \cdot x$ contains the orbit $\boldsymbol{S O}(4) \cdot x$ as a proper subset. Since the orbit $\boldsymbol{S O}(4) \cdot x$ is isolated, the orbit $\boldsymbol{S L}(4, \boldsymbol{R}) \cdot x$ must intersect a principal orbit of the $\boldsymbol{S O}(4)$ action. Hence there is an element $g \in$ $\boldsymbol{S L}(4, \boldsymbol{R})$ such that $\boldsymbol{S O}(4)_{g x}=\boldsymbol{S O}(2)$. Put $y=g x$. Then there is an embedding $\quad \boldsymbol{S O}(4) \cdot y \subset \boldsymbol{S} \boldsymbol{L}(4, \boldsymbol{R}) \cdot y=\boldsymbol{S} \boldsymbol{L}(4, \boldsymbol{R}) \cdot x$. But $\quad \operatorname{dim} \boldsymbol{S O}(4) \cdot y=\operatorname{dim}$ $\boldsymbol{S L}(4, \boldsymbol{R}) \cdot x=5$. Hence $\boldsymbol{S O}(4) \cdot y=\boldsymbol{S} \boldsymbol{L}(4, \boldsymbol{R}) \cdot x$. Since $\boldsymbol{S O}(4) \cdot y$ is a principal orbit, we have $x \notin \boldsymbol{S O}(4) \cdot y$. This is a contradiction. Therefore there is no continuous $\boldsymbol{S L}(4, \boldsymbol{R})$ action on S^{6} which is an extension of the $\boldsymbol{S O}(4)$ action.

References

[1] J. F. Adams, Lectures on Lie groups, Benjamin Inc., New York, 1969.
[2] E. B. Dynkin, The maximal subgroups of the classical groups, Amer. Math. Soc. Translations 6 (1957), 245-378.
[3] H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Ann. of Math. 68 (1958), 460-472.
[4] V. W. Guillemin and S. Sternberg, Remarks on a paper of Hermann, Trans. Amer. Math. Soc. 130 (1968), 110-116.
[5] W. Y. Hsiang, On the classification of differentiable $\boldsymbol{S O}(n)$ actions on simply connected π-manifolds, Amer. J. Math. 88 (1966), 137-153.
[6] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math. 9, Springer-Verlag, 1972.
[7] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres I, Ann. of Math. 77 (1963), 504-537.
[8] J. W. Milnor, Lectures on the h-cobordism theorem, Princeton Univ. Press, 1965.
[9] S. Murakami, On the automorphisms of a real semi-simple Lie algebra, J. Math. Soc. Japan 4 (1952), 103-133.
[10] R. S. Palais, A global formulation of the Lie theory of transformation groups, Memoirs of Amer. Math. Soc. 22 (1957).
[11] F. Uchida, Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits, Japanese J. Math. 3 (1977), 141-189.
[12] F. Uchida, Classification of real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on n-sphere, Osaka J. Math. 16 (1979), 561-579.
[13] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.

Department of Mathematics
Faculty of Science
Yamagata University
Yamagata, 990
Japan

[^0]: * Supported by Grant-in-Aid for Scientific Research.

