AN ALGEBRAIC THEORY OF LANDAU-KOLMOGOROV INEQUALITIES*

Tosio Kato and Ichiro Satake

(Received February 10, 1981)

1. Introduction. This paper is concerned with the so-called LandauKolmogorov (or Hardy-Littlewood) inequalities

$$
\begin{equation*}
\left\|T^{k} u\right\| \leqq M_{n, k}\left\|T^{n} u\right\|^{k / n}\|u\|^{1-k / n} \quad(0<k<n) \tag{1.1}
\end{equation*}
$$

for linear dissipative operators T in a Hilbert space \mathscr{H}. (T is dissipative if $\operatorname{Re}(T u, u) \leqq 0$ for all $u \in \mathscr{D}(T)$ (domain of T). See Chernoff [1] for a survey of the inequalities for more general operators.) In [1] it was shown that the constants $M_{n, k}$ for the special operator $T=D=d / d t$ in $\mathscr{H}=L^{2}(0, \infty)$ are universal, strengthening older results due to Ljubič [2], Kupcov [3], and Kato [4]. A similar result was recently published by Kwong and Zettl [5]. For related results under somewhat different assumptions, see Protter [6].

Chernoff's proof of (1.1) is extremely simple and elegant, but it is transcendental in the sense that a large "model space" is used. The proof by Kwong-Zettl is relatively elementary but appears more complicated. Here we present a "finite" proof based on an elementary polynomial identity. A merit of this method is that it leads to a simple necessary and sufficient condition for the equality to hold in (1.1), generalizing a condition given in [4] (which is in turn a generalization of the one due to Hardy and Littlewood [7]). It is also shown that the constants $M_{n, k}$ have interesting algebraic properties; they are algebraic units except for certain simple factors, a well-known fact for small values of n (see [5]).

Our main results are summarized in
Theorem. Let n, k be integers such that $0<k<n$. There exist real algebraic integers $c, a_{j}(j=1,2, \cdots, n-1)$, and $a_{i j}=a_{j i}(i, j=0,1, \cdots$, $n-1)$, depending on n and k, with the following properties.
(i) c is an algebraic unit, with $0<c<c_{0}=(k / n)^{-k / n}(1-k / n)^{k / n-1}$.
(ii) All the zeros of the polynomial $1+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n}$ have negative real part (so that $a_{j} \geqq 0$).

[^0](iii) The $n \times n$ symmetric matrix ($\alpha_{i j}$) is positive semi-definite, but not strictly positive-definite.
(iv) For any linear dissipative operator T in any Hilbert space \mathscr{H}, one has
$$
\left\|T^{k} u\right\| \leqq\left(c_{0} / c\right)^{1 / 2}\left\|T^{n} u\right\|^{k / n}\|u\|^{1-k / n} \quad \text { for } \quad u \in \mathscr{D}(T)
$$
(v) Equality holds in (iv) if and only if there is a real number $s>0$ such that
\[

$$
\begin{aligned}
& u+a_{1} s T u+\cdots+a_{n-1} s^{n-1} T^{n-1} u+s^{n} T^{n} u=0 \\
& \sum_{i, j=0}^{n-1} a_{i j} s^{i+j}\left(\left(T^{i+1} u, T^{j} u\right)+\left(T^{i} u, T^{j+1} u\right)\right)=0
\end{aligned}
$$
\]

(vi) The factor $\left(c_{0} / c\right)^{1 / 2}$ in (iv) is the best possible, with the equality attained by the differential operator $T=D=d / d t$ in $\mathscr{H}=L^{2}(0, \infty)$ for certain $u \in \mathscr{S}[0, \infty)$ (the Schwartz space).
2. The inequality. In this section, we prove the theorem except for the algebraic properties of the numbers $c, a_{j}, a_{i j}$.

In what follows n and k are fixed. We introduce a polynomial

$$
\begin{equation*}
p_{c}(x, y)=1-c x^{k} y^{k}+x^{n} y^{n} \tag{2.1}
\end{equation*}
$$

where c is a real parameter and x, y are noncommuting indeterminates.
Lemma 2.1. If $c<c_{0}$ (see the Theorem), there is a unique real polynomial $f_{c}(x)$ such that (the a_{j} depend on c)

$$
\begin{equation*}
f_{c}(x)=1+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n} \tag{2.2}
\end{equation*}
$$

all the zeros of f_{c} have negative real part,

$$
\begin{equation*}
p_{c}(x,-x)=f_{c}(x) f_{c}(-x) \tag{2.3}
\end{equation*}
$$

Proof. It is easy to see that if $c<c_{0}, p_{c}(x,-x)$ has no zeros on the imaginary axis. Since these zeros are symmetrically distributed with respect to the real and imaginary axes, $p_{c}(x,-x)$ admits a unique factorization of the form (2.4) with all the zeros of f_{c} having negative real part.

Lemma 2.2. Set

$$
\begin{equation*}
g_{c}(x, y)=f_{c}(x) f_{c}(y)-p_{c}(x, y) \tag{2.5}
\end{equation*}
$$

Then there is a real symmetric matrix $\left(a_{i j}\right), i, j=0, \cdots, n-1$, depending on c, such that

$$
\begin{equation*}
g_{c}(x, y)=\sum_{i, j=0}^{n-1} a_{i j} x^{i}(x+y) y^{j} \tag{2.6}
\end{equation*}
$$

Proof. In the proof one may assume that x and y commute, since x 's stand to the left of y 's in each term in (2.5) and (2.6). Then (2.6) follows by long division by $x+y$ because $g_{c}(x,-x)=0$ by (2.4). The symmetry of ($a_{i j}$) follows from that of $g_{c}(x, y)$ in x, y.

Lemma 2.3. Let \mathscr{H} be a Hilbert space. Given any $n+1$ vectors $u_{0}, u_{1}, \cdots, u_{n}$ of \mathscr{H}, one has

$$
\begin{align*}
&\left\|u_{0}\right\|^{2}-c\left\|u_{k}\right\|^{2}+\left\|u_{n}\right\|^{2}=\left\|u_{0}+a_{1} u_{1}+\cdots+a_{n-1} u_{n-1}+u_{n}\right\|^{2} \tag{2.7}\\
&-\sum_{i, j=0}^{n-1} a_{i j}\left(\left(u_{i+1}, u_{j}\right)+\left(u_{i}, u_{j+1}\right)\right) .
\end{align*}
$$

Proof. One may assume, without loss of generality, that \mathscr{H} has dimension $n+1$ and u_{0}, \cdots, u_{n} form a basis of \mathscr{H}. Define a linear operator T on \mathscr{H} by $T u_{j}=u_{j+1}$ for $j=0,1, \cdots, n-1$ and $T u_{n}=0$, so that $T^{j} u_{0}=u_{j}, 0 \leqq j \leqq n$. Then (2.7) may be written

$$
\left(p_{c}\left(T^{*}, T\right) u_{0}, u_{0}\right)=\left(f_{c}\left(T^{*}\right) f_{c}(T) u_{0}, u_{0}\right)-\left(g_{c}\left(T^{*}, T\right) u_{0}, u_{0}\right)
$$

But this is true because of the identity (2.5).
Lemma 2.4. For any $u \in H^{n}(0, \infty)$ (the Sobolev space), one has

$$
\begin{equation*}
\|u\|^{2}-c\left\|D^{k} u\right\|^{2}+\left\|D^{n} u\right\|^{2}=\left\|f_{c}(D) u\right\|^{2}+\sum_{i, j=0}^{n-1} a_{i j} D^{i} u(0) \overline{D^{j} u(0)} \tag{2.8}
\end{equation*}
$$

where $D=d / d t$ and $\left\|\|\right.$ denotes the $L^{2}(0, \infty)$-norm.
Proof. Apply Lemma 2.3 with $\mathscr{H}=L^{2}(0, \infty), u_{j}=D^{j} u$, noting that

$$
\left(D^{i+1} u, D^{j} u\right)+\left(D^{i} u, D^{j+1} u\right)=-D^{i} u(0) \overline{D^{j} u(0)} .
$$

Lemma 2.5. Suppose the matrix $\left(a_{i j}\right)$ is positive semi-definite. For any dissipative operator T in any Hilbert space, one has

$$
\begin{gather*}
c\left\|T^{k} u\right\|^{2} \leqq\|u\|^{2}+\left\|T^{n} u\right\|^{2}, \tag{2.9}\\
c\left\|T^{k} u\right\|^{2} \leqq c_{0}\left\|T^{n} u\right\|^{2 k / n}\|u\|^{2(1-k / n)} \quad \text { for } \quad u \in \mathscr{D}\left(T^{n}\right) . \tag{2.10}
\end{gather*}
$$

Proof. If T is dissipative, the (Hermitian) matrix with elements $\left(T^{i+1} u, T^{j} u\right)+\left(T^{i} u, T^{j+1} u\right)$ is negative semi-definite. Thus we see that the right member of (2.7) is nonnegative if $u_{j}=T^{j} u$. (The second term in (2.7) is nonnegative, being the trace of the product of two positive semi-definite matrices.) This proves (2.9). Then (2.10) follows by replacing T with $s T$ and optimizing in $s>0$.

Lemma 2.6. Suppose ($a_{i j}$) is not (strictly) positive-definite. Then there is $u \in \mathscr{S}[0, \infty), u \neq 0$, such that

$$
\begin{equation*}
c\left\|D^{k} u\right\|^{2} \geqq\|u\|^{2}+\left\|D^{n} u\right\|^{2} \tag{2.11}
\end{equation*}
$$

Note that D is dissipative in $L^{2}(0, \infty)$.
Proof. There is a nontrivial real n-vector (s_{0}, \cdots, s_{n-1}) such that $\sum a_{i j} s_{i} s_{j} \leqq 0$. Solve the n-th order differential equation $f_{c}(D) u=0$ on $[0, \infty)$, with the initial conditions $D^{j} u(0)=s_{j}, j=0, \cdots, n-1$. The solution u exists, is nontrivial, and belongs to $\mathscr{S}[0, \infty)$ because all the zeros of f_{c} have negative real part. Thus (2.11) follows from (2.8), of which the right member is nonpositive.

Lemma 2.7. There is a unique positive number $\gamma<c_{0}$ such that ($a_{i j}$) is (strictly) positive-definite if and only if $c<\gamma .\left(a_{i j}\right)$ is positive semidefinite for $c=\gamma$.

Proof. Let Γ be the set of all $c<c_{0}$ such that $\left(a_{i j}\right)$ is positive definite. Γ is not empty, since Lemma 2.6 shows that $c=0$ belongs to Γ. In view of Lemmas 2.5, 2.6, it is obvious that Γ is an open interval of the form $(-\infty, \gamma)$. It remains to show that $\gamma<c_{0}$. Otherwise, one would have, on letting $c \rightarrow c_{0}$ in (2.10),

$$
\left\|T^{k} u\right\|^{2} \leqq\left\|T^{n} u\right\|^{2 k / n}\|u\|^{2(1-k / n)} \quad\left(u \in \mathscr{D}\left(T^{n}\right)\right)
$$

for any dissipative operator T in any Hilbert space \mathscr{H}. But this is not true, as is seen from the example

$$
\mathscr{H}=C^{2}, \quad T=-\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \quad u=\binom{0}{1}, \quad\left\|T^{j} u\right\|^{2}=1+4 j^{2}
$$

because $1+4 k^{2}>\left(1+4 n^{2}\right)^{k / n}$.
Proof of the Theorem (up to the algebraic properties of $c, a_{i}, a_{i j}$). It suffices to set $c=\gamma$ and take the corresponding values of a_{j} and $a_{i j}$.
3. The integrality. In this section, we prove that the $a_{i}, a_{i j}$ determined above are algebraic integers and c is an algebraic unit. We put $a_{0}=a_{n}=1$ and $a_{i}=0$ for $i<0$ or $i>n$. From (2.1), (2.2), (2.4), one obtains

$$
1-(-1)^{k} c x^{2 k}+(-1)^{n} x^{2 n}=\left(\sum_{i=0}^{n} a_{i} x^{i}\right)\left(\sum_{i=0}^{n}(-1)^{i} a_{i} x^{i}\right),
$$

which gives the relation:

$$
\sum_{i=0}^{n}(-1)^{i} a_{i} a_{j-i}= \begin{cases}1 & \text { if } j=0 \tag{3.1}\\ (-1)^{k+1} c & \text { if } j=2 k \\ (-1)^{n} & \text { if } j=2 n \\ 0 & \text { otherwise }\end{cases}
$$

For $j=2 l(1 \leqq l \leqq n-1)$, this can be rewritten as

$$
\begin{equation*}
\delta_{k, l} c+a_{l}^{2}=2 \sum_{i=1}^{\infty}(-1)^{i+1} a_{l-i} a_{l+i} \tag{3.2}
\end{equation*}
$$

(All other relations in (3.1) are trivial.) From (2.1) \sim (2.5), one has

$$
\sum_{i, j=0}^{n-1} a_{i j} x^{i}(x+y) y^{j}=\sum_{1 \leqq i+j \leqq 2 n-1} a_{i} a_{j} x^{i} y^{j}+c x^{k} y^{k}
$$

which gives, for $0 \leqq i \leqq n-1$,

$$
a_{i, 0}=a_{0, i}=a_{i+1}, \quad a_{i, n-1}=a_{n-1, i}=a_{i}
$$

and, for $i, j=1, \cdots, n-1$,

$$
a_{i-1, j}+a_{i, j-1}= \begin{cases}a_{k}^{2}+c & \text { if } i=j=k \tag{3.3}\\ a_{i} a_{j} & \text { otherwise }\end{cases}
$$

Let A denote the $n \times n$ matrix $\left(a_{i j}\right)$ and set

$$
\boldsymbol{a}_{i}=\left[\begin{array}{c}
a_{1-t} \\
\vdots \\
a_{n-i}
\end{array}\right] \quad(i \in \boldsymbol{Z}), \quad A_{j}=\left[\begin{array}{c}
a_{0, j-1} \\
\vdots \\
a_{n-1, j-1}
\end{array}\right] \quad(1 \leqq j \leqq n),
$$

($a_{i}=0$ for $i>n$ or $i<1-n$); A_{j} is the j-th column vector of the matrix A.

Lemma 3.1. One has

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i} a_{i} a_{i-j}=e_{-j}+(-1)^{k+1} c e_{2 k-j}+(-1)^{n} e_{2 n-j}, \tag{3.4}
\end{equation*}
$$

where \boldsymbol{e}_{l} denotes the l-th (standard) unit vector in \boldsymbol{R}^{n} and we set $\boldsymbol{e}_{l}=0$ if $l \leqq 0$ or $l>n$.

This follows from (3.1).
Lemma 3.2. One has

Proof. Set

$$
P=\left[\begin{array}{llll}
0 & . & & 0 \\
1 & . & & \\
& \ddots & \\
0 & \cdot & \cdot \\
0 & 1 & 0
\end{array}\right], \quad P^{*}=\left[\begin{array}{lll}
0 & 1 & \\
\ddots & & 0 \\
& \ddots & \\
& \ddots & 1 \\
0 & & \\
0
\end{array}\right] .
$$

Then, by the definition, one has $\boldsymbol{a}_{i+1}=P^{i} \boldsymbol{a}_{1}, \boldsymbol{a}_{-i}=P^{* i} \boldsymbol{a}_{0}$ for $i>0$. From (3.3) one has

$$
A_{j}+P A_{j+1}=a_{j} \boldsymbol{a}_{1}, \quad P^{*} A_{j}+A_{j+1}=a_{j} \boldsymbol{a}_{0}
$$

for $1 \leqq j \leqq n-1, j \neq k$. We prove (3.5) for $1 \leqq j \leqq k$ by induction on j. For $j=1, A_{1}=a_{0}$ is trivial. Assuming the validity of (3.5) for $j(<k)$, one has

$$
A_{j+1}=a_{j} a_{0}-P^{*} A_{j}=a_{j} a_{0}-\sum_{i=0}^{j-1}(-1)^{i-j+1} a_{i} \boldsymbol{a}_{i-j}=\sum_{i=0}^{j}(-1)^{i-j} a_{i} a_{i-j}
$$

which proves (3.5) for $j+1$. The case $k+1 \leqq j \leqq n$ can be treated similarly, starting from the case $j=n$, where (3.5) reduces to $A_{n}=\boldsymbol{a}_{1}$. q.e.d.
(In view of Lemma 3.1, we see that both expressions in (3.5) are valid for all $j, 1 \leqq j \leqq n$, if one replaces $a_{k} \boldsymbol{a}_{k-j+1}$ by $a_{k} \boldsymbol{a}_{k-j+1}+c \boldsymbol{e}_{2 k-j+1}$.)

Now from our choice of c (Lemma 2.7) we have

$$
\begin{equation*}
\operatorname{det}(A)=0 \tag{3.6}
\end{equation*}
$$

We will show that the relations (3.2), (3.4), (3.6) imply the integrality of the a_{i} 's. It is known that, under these conditions, the a_{i} 's are algebraic. (See the remark below.) Let K be an algebraic number field of finite degree containing all $a_{i}(1 \leqq i \leqq n-1)$ and let \mathfrak{p} be any prime ideal in K. Put

$$
\nu_{0}=\operatorname{Min}_{0 \leq i \leq n} \nu_{p}\left(a_{i}\right),
$$

where ν_{p} denotes the (exponential) valuation defined by \mathfrak{p}.
Lemma 3.3. If $\nu_{0}<0$, one has $\nu_{p}\left(a_{k}\right)=\nu_{0}$ and $\nu_{p}\left(a_{l}\right)>\nu_{0}$ for $l \neq k$.
Proof. Let $I_{0}=\left\{i \mid \nu_{p}\left(a_{i}\right)=\nu_{0}, i \neq k\right\}$. Suppose $\nu_{0}<0$ and $I_{0} \neq \varnothing$. Then there exists either a maximal element l in I with $k<l<n$ or a minimal element l in I_{0} with $0<l<k$. In (3.2) one has for any $i>0$

$$
\nu_{p}\left(2 a_{l-i} a_{l+i}\right)=\nu_{p}(2)+\nu_{p}\left(a_{l-i}\right)+\nu_{p}\left(a_{l+i}\right) \geqq 2 \nu_{0}=\nu_{p}\left(a_{l}^{2}\right) .
$$

Hence there must be at least one $i>0$ such that $\nu_{p}\left(a_{l-i}\right)=\nu_{p}\left(a_{l+i}\right)=\nu_{0}$. If $l>k$ (resp. $<k$), then $l+i$ (resp. $l-i) \in I_{0}$, which is absurd. q.e.d.

Now we prove that a_{1}, \cdots, a_{n-1} are algebraic integers and c is an algebraic unit. By (3.6) the vectors A_{1}, \cdots, A_{n} are linearly dependent. By Lemma 3.2, this is equivalent to saying that the $\boldsymbol{a}_{i}(1-k \leqq i \leqq$ $n-k$) are linearly dependent. Thus one has

Suppose $\nu_{0}<0$. Then, by Lemma 3.3, one has

$$
a_{k}^{-n} \Delta \equiv\left|\begin{array}{ll}
1 & \\
\ddots & 0 \\
0 & \\
0 & 1
\end{array}\right| \equiv 1 \quad(\bmod \mathfrak{p})
$$

which is absurd. Thus one should have $\nu_{0} \geqq 0$ for all prime ideals \mathfrak{p} in K. This proves that a_{1}, \cdots, a_{n-1} are integral. By (3.1), (3.5), c and $a_{i j}$ are also integral.

Remark. By a similar argument, one can show that, for any generalized valuation ϕ (with values in a linearly ordered abelian group) of any field containing a_{1}, \cdots, a_{n-1}, one has $\phi\left(a_{i}\right) \geqq 0$. This proves that the α_{i} are algebraic.

Next, we prove that c is a unit. Since the constant c is unchanged if we replace k by $n-k$, we may assume that $k \leqq n / 2$. By Lemma 3.1, one has for $1 \leqq j \leqq k$

$$
\begin{align*}
& \sum_{i=0}^{n}(-1)^{i} a_{i} a_{j-k+i}=(-1)^{k+1} c e_{j+k}, \tag{*}\\
& \sum_{i=1}^{j}(-1)^{n-j+i} a_{n-j+i} a_{-n+i}=(-1)^{n} e_{j} . \tag{**}
\end{align*}
$$

Applying (-1$)^{n-k} c P^{k}$ on (**) and adding it to (*), one obtains

$$
\begin{equation*}
\sum_{i=0}^{n-j}(-1)^{i} a_{i} \boldsymbol{a}_{j-k+i}+\sum_{i=1}^{j}(-1)^{n-j+i} a_{n-j+i} \boldsymbol{a}_{n-k+i}^{\prime}=0 \quad(1 \leqq j \leqq k), \tag{3.8}
\end{equation*}
$$

where $\boldsymbol{a}_{n-k+i}^{\prime}=\boldsymbol{a}_{n-k+i}+(-1)^{n-k} c P^{k} \boldsymbol{a}_{-n+i}$. Since $\boldsymbol{a}_{1-k}, \cdots, \boldsymbol{a}_{n-k}$ are linearly dependent, this implies that $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n-k}, \boldsymbol{a}_{n-k+1}^{\prime}, \cdots, \boldsymbol{a}_{n}^{\prime}$ are also linearly dependent. From $\left|\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n-k}, \boldsymbol{a}_{n-k+1}^{\prime}, \cdots, \boldsymbol{a}_{n}^{\prime}\right|=0$, one obtains a relation of the form

$$
c g\left(c, a_{1}, \cdots, a_{n-1}\right)+1=0
$$

where g is a polynomial with coefficients in Z. Hence c^{-1} is integral, and so c is an algebraic unit.

References

[1] P. R. Chernoff, Optimal Landau-Kolmogorov inequalities for dissipative operators in Hilbert and Banach spaces, Advances in Math. 34 (1979), 137-144.
[2] Ju. I. Ljubič, On inequalities between the powers of a linear operator, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 825-864; Amer. Math. Soc. Transl. 40 (1964), 39-84.
[3] N. P. Kupcov, Kolmogorov estimates for derivatives in $L_{2}(0, \infty)$, Proc. Steklov Inst. Math. 138 (1975), 101-125 (English Transl.).
[4] T. Kato, On an inequality of Hardy, Littlewood, and Polya, Advances in Math. 7 (1971), 217-218.
[5] M. K. Kwong and A. Zettl, Norm inequalities for dissipative operators on inner product spaces, Houston J. Math. 5 (1979), 543-557.
[6] M. H. Protter, Inequalities for powers of unbounded operators, Manuscripta Mathematica 28 (1979), 71-79.
[7] G. H. Hardy and J. E. Littlewood, Some integral inequalities connected with the calculus of variations, Quart. J. Math. Oxford 3 (1932), 241-252.

Department of Mathematics
University of California
Berkeley, California 94720
U.S.A.
and Mathematical Institute
Tôhoku University
Sendai, 980
Japan

[^0]: * This work was partially supported by NSF Grants MCS-79-02578 and 79-06626.

