THE FIRST EIGENVALUE OF THE LAPLACIAN ON TORI

Kazumi Tsukada

(Received April 25, 1980)

1. Introduction. Let M be an n-dimensional compact connected differentiable manifold. For every Riemannian metric g on M, let Δ_{g} be the Laplacian acting on differentiable functions on M. We denote the first eigenvalue of Δ_{g} by $\lambda_{1}(g)$ and the volume of (M, g) by $\operatorname{Vol}(M, g)$. Berger [1] posed the following problem: Does there exist a positive constant $k(M)$ such that
(*)

$$
\lambda_{1}(g) \operatorname{Vol}(M, g)^{2 / n} \leqq k(M)
$$

for every Riemannian metric g on M ? Hersch [4] showed that if M is diffeomorphic to the 2-dimensional sphere S^{2}, then for every Riemannian metric g on S^{2},

$$
\lambda_{1}(g) \operatorname{Vol}\left(S^{2}, g\right) \leqq 8 \pi
$$

The equality holds if and only if g is a metric with the constant curvature.
On the other hand, recently the following people constructed examples which admit a family of Riemannian metrics $g(t)(0<t<\infty)$ such that

$$
\begin{cases}\lambda_{1}(g(t)) \operatorname{Vol}(M, g(t))^{2 / n} \rightarrow \infty & \text { as } \quad t \rightarrow \infty \\ \lambda_{1}(g(t)) \operatorname{Vol}(M, g(t))^{2 / n} \rightarrow 0 & \text { as } \quad t \rightarrow 0 .\end{cases}
$$

(i) Urakawa [8] constructed such a family of metrics on a compact connected Lie group with a non-trivial commutator subgroup.
(ii) Tanno [7] constructed such on any odd dimensional sphere $S^{2 n+1}$ ($n \geqq 1$).
(iii) Urakawa and Muto [10] constructed such on compact homogeneous spaces which satisfy some conditions.
(iv) Muto [5] constructed such on any even dimensional sphere $S^{2 n}(n \geqq 2)$.

For an n-dimensional torus T^{n}, it is known that there exists a constant $k\left(T^{n}\right)$ such that (*) holds for every "flat" metric (cf. [9]). In this paper we prove that there exists no constant $k\left(T^{n}\right)$ such that (*) holds for any metric on $T^{n}(n \geqq 3)$. Namely we show the following.

Theorem. On any n-dimensional torus $T^{n}(n \geqq 3)$, there exists a family of metrics $g(t)(0<t<\infty)$ such that

$$
\left\{\begin{array}{lll}
\lambda_{1}(g(t)) \rightarrow \infty & \text { as } & t \rightarrow \infty \\
\lambda_{1}(g(t)) \rightarrow 0 & \text { as } & t \rightarrow 0
\end{array}\right.
$$

and $\operatorname{Vol}\left(T^{n}, g(t)\right)=$ constant.
The author wishes to thank Professor K. Ogiue for his many valuable comments.
2. Some formulas for a Riemannian submersion. In [6] O'Neill studied fundamental equations of a Riemannian submersion. We review some formulas in it which are useful in the sequel. Given a Riemannian submersion $\pi: M \rightarrow B$, we denote by $\mathscr{V} E$ (resp. $\mathscr{H} E$) a vertical part (resp. a horizontal part) of a vector field E on M. Following O'Neill, we define two tensor fields T and A for arbitrary vector fields E and F by

$$
T_{E} F=\mathscr{H} \tilde{\nabla}_{\mathscr{V}_{E}} \mathscr{V} F+\mathscr{V} \tilde{\nabla}_{\mathscr{V}_{E}} \mathscr{H} F
$$

and

$$
A_{E} F=\mathscr{H} \tilde{\nabla}_{\mathscr{C} E} \mathscr{V} F+\mathscr{V} \tilde{\nabla}_{\mathscr{H} E} \mathscr{H} F
$$

respectively, where we denote by $\tilde{\nabla}$ the Riemannian connection on M.
We review some formulas for the tensor field A which will be used in the sequel. The tensor field A is called an integrability tensor associated with the submersion.

Definition. A basic vector field is a horizontal vector field X^{*} which is π-related to a vector field X on B, i.e., $\pi X_{u}^{*}=X_{\pi(u)}$ for all $u \in M$.

Lemma 2.1. Suppose X^{*} and Y^{*} are basic vector fields on M which are related to X and Y on B. Then
(1) $\mathscr{H}\left(\left[X^{*}, Y^{*}\right]\right)$ is basic and is π-related to $[X, Y]$.
(2) $\mathscr{H} \widetilde{\nabla}_{X^{*}} Y^{*}$ is basic and π-related to $\nabla_{X} Y$ where ∇ is the Riemannian connection on B.

Lemma 2.2. Let \tilde{X} and \tilde{Y} be horizontal vector fields on M. Then we have

$$
A_{\tilde{X}} \tilde{Y}=\mathscr{Y}([\tilde{X}, \tilde{Y}]) / 2
$$

The proof of these results is found in [6].
3. The Laplacian of a metric g on $M \times S^{1}$. In this section, in the same way as Vilms [11], we introduce a Riemannian metric g on a product manifold $M \times S^{1}$ and calculate its Laplacian Δ_{g}.

Let (M, h) be an n-dimensional ($n \geqq 2$) compact connected Riemannian manifold and ω be a 1 -form on M. We denote $R / 2 \pi \boldsymbol{Z}$ by S^{1} and its
coordinate system by $\{s\}$. We consider a product manifold $M \times S^{1}$ with natural projections $\pi: M \times S^{1} \rightarrow M$ and $\eta: M \times S^{1} \rightarrow S^{1}$. We define a Riemannian metric g on $M \times S^{1}$ by

$$
g=\pi^{*} h+(\omega+d s) \otimes(\omega+d s),
$$

where we simply denote $\pi^{*} \omega$ and $\eta^{*} d s$ by ω and $d s$, respectively. We remark that ($M \times S^{1}, g$) may be regarded as a trivial S^{1}-bundle with a connection $\omega+d s$.

We denote by ζ the vector field $d / d s$ which is naturally regarded as a vector field on $M \times S^{1}$. We denote by ξ a contravariant form of ω on M. We may naturally regard ξ as a vector field on $M \times S^{1}$. We denote by L_{X} the Lie derivation with respect to X. We consider the Laplacian Δ_{M} on (M, h) as a differential operator acting on differentiable functions on $M \times S^{1}$ in the following sense: For $\varphi \in C^{\infty}\left(M \times S^{1}\right), \Delta_{M} \varphi(x, s)=$ $\Delta_{M} \iota_{s}^{*} \varphi(x)$ at (x, s), where ι_{s} denotes the natural imbedding $\iota_{s}: M \rightarrow M \times S^{1}$ given by $\iota_{s}(x)=(x, s)$.

We easily get:
Lemma 3.1. The metric g on $M \times S^{1}$ has the following properties:
(1) The vector field ζ is a unit Killing vector field on $\left(M \times S^{1}, g\right)$.
(2) The projection π is a Riemannian submersion from $\left(M \times S^{1}, g\right)$ to (M, h) with totally geodesic fibres.

Proposition 3.2. For $\varphi \in C^{\infty}\left(M \times S^{1}\right)$, we have

$$
\Delta_{g} \varphi=\Delta_{m} \varphi-\left(1+|\omega|^{2}\right) L_{\zeta} L_{\zeta} \varphi+2 L_{\xi} L_{\xi} \varphi-(\delta \omega) L_{\xi} \varphi,
$$

where we calculate the norm of ω and the co-differential operator δ with respect to the metric h.

Proof. For an arbitrary point $x \in M$, let U be a neighborhood of x in M and $\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ be a local field of orthonormal frames on U. We naturally regard X_{j} as a vector field on $U \times S^{1}$ and define a vector field X_{j}^{*} on $U \times S^{1}$ by $X_{j}^{*}=X_{j}-\omega\left(X_{j}\right) \zeta$. Then X_{j}^{*} is a basic vector field which is related to X_{j}. We easily see that $\left\{X_{1}^{*}, X_{2}^{*}, \cdots, X_{n}^{*}, \zeta\right\}$ is a local field of orthonormal frames on $U \times S^{1}$. By the definition of the Laplacian, for $\varphi \in C^{\infty}\left(M \times S^{1}\right)$ we have

$$
-\Delta_{g} \varphi=\sum_{j=1}^{n}\left(X_{j}^{*} X_{j}^{*} \varphi-\widetilde{\nabla}_{X_{j}^{*}} X_{j}^{*} \varphi\right)+\zeta \zeta \varphi-\tilde{\nabla}_{\zeta} \zeta \varphi \quad \text { on } \quad U \times S^{1} .
$$

We see that $\tilde{\nabla}_{\zeta} \zeta=0$ since ζ is a unit Killing vector field. By Lemma 2.1 and Lemma 2.2 we have

$$
\begin{aligned}
& \mathscr{Y}\left(\tilde{\nabla}_{X_{j}^{*}} X_{j}^{*}\right)=A_{X_{j}^{*}} X_{j}^{*}=\mathscr{V}\left(\left[X_{j}^{*}, X_{j}^{*}\right]\right) / 2=0 \\
& \mathscr{H}\left(\widetilde{\nabla}_{X_{j}^{*}}^{*} X_{j}^{*}\right)=\left(\nabla_{X_{j}} X_{j}\right)^{*}=\nabla_{X_{j}} X_{j}-\omega\left(\nabla_{X_{j}} X_{j}\right) \zeta,
\end{aligned}
$$

where $\nabla_{X j} X_{j}$ is regarded as a vector field on $U \times S^{1}$. Hence we get $\tilde{\nabla}_{X_{j}^{*}} X_{j}^{*}=\nabla_{X_{j}} X_{j}-\omega\left(\nabla_{X_{j}} X_{j}\right) \zeta$. Noticing that $\left[X_{j}, \zeta\right]=0$ and $\zeta \omega\left(X_{j}\right)=0$, we have

$$
\begin{aligned}
X_{j}^{*} X_{j}^{*} \varphi-\widetilde{\nabla}_{X_{j}^{*}} X_{j}^{*} \varphi= & \left(X_{j}-\omega\left(X_{j}\right) \zeta\right)\left(X_{j}-\omega\left(X_{j}\right) \zeta\right) \varphi-\left(\nabla_{X_{j}} X_{j}-\omega\left(\nabla_{X_{j}} X_{j}\right) \zeta\right) \varphi \\
= & X_{j} X_{j} \varphi-X_{j} \omega\left(X_{j}\right) \cdot \zeta \varphi-\omega\left(X_{j}\right) X_{j} \zeta \varphi \\
& -\omega\left(X_{j}\right) \zeta X_{j} \varphi+\omega\left(X_{j}\right) \zeta \cdot \omega\left(X_{j}\right) \cdot \zeta \varphi \\
& +\omega\left(X_{j}\right)^{2} \zeta \zeta \varphi-\left(\nabla_{X_{j}} X_{j}\right) \varphi+\omega\left(\nabla_{X_{j}} X_{j}\right) \zeta \varphi \\
= & X_{j} X_{j} \varphi-\left(\nabla_{X_{j}} X_{j}\right) \varphi+\omega\left(X_{j}\right)^{2 \zeta \zeta \varphi} \\
& -\left\{X_{j} \omega\left(X_{j}\right)-\omega\left(\nabla_{X_{j}} X_{j}\right)\right\} \zeta \varphi-2 \omega\left(X_{j}\right) X_{j} \zeta \varphi .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
-\Delta_{g} \varphi= & \sum_{j=1}^{n}\left(X_{j} X_{j} \varphi-\nabla_{X_{j}} X_{j} \varphi\right)+\left(1+\sum_{j=1}^{n} \omega\left(X_{j}\right)^{2}\right) \zeta \zeta \varphi \\
& -2 \sum_{j=1}^{n} \omega\left(X_{j}\right) X_{j} \zeta \varphi-\sum_{j=1}^{n}\left(X_{j} \omega\left(X_{j}\right)-\omega\left(\nabla_{X_{j}} X_{j}\right)\right) \zeta \varphi \\
= & -\Delta_{M} \varphi+\left(1+|\omega|^{2}\right) L_{\zeta} L_{\xi} \varphi-2 L_{\xi} L_{\zeta} \varphi+\delta \omega L_{\zeta} \varphi
\end{aligned}
$$

Following Tanno [7], we define a family of Riemannian metrics $g(t)$ ($0<t<\infty$) by

$$
g(t)=t^{-1} g+\left(t^{n}-t^{-1}\right)(\omega+d s) \otimes(\omega+d s) \quad 0<t<\infty .
$$

By ${ }^{(t)} \tilde{\nabla}$ and $\Delta_{g(t)}$, we denote the Riemannian connection and the Laplacian with respect to $g(t)$.

Lemma 3.3. ($M \times S^{1}, g(t)$) has the following properties.
(1) Volume elements with respect to $g(t)$ and $g(1)=g$ are identical; $d V_{g(t)}=d V_{g}$, and $\operatorname{Vol}\left(M \times S^{1}, g(t)\right)=\operatorname{Vol}\left(M \times S^{1}, g\right)$.
(2) The vector field ζ is a Killing vector field with constant length $t^{n / 2}$.
(3) The projection π is a Riemannian submersion from ($M \times S^{1}$, $g(t))$ to ($M, t^{-1} h$) with totally geodesic fibres.
(4) Horizontal distributions associated with the submersion π : ($M \times$ $\left.S^{1}, g(t)\right) \rightarrow\left(M, t^{-1} h\right)$ and the submersion $\pi:\left(M \times S^{1}, g\right) \rightarrow(M, h)$ are identical.
(5) If \widetilde{X} and \tilde{Y} are horizontal vector fields, then we have ${ }^{(t)} A_{\tilde{X}} \widetilde{Y}=$ $A_{\tilde{X}} \widetilde{Y}$, where ${ }^{(t)} A$ denotes the integrability tensor associated with the submersion $\pi:\left(M \times S^{1}, g(t)\right) \rightarrow\left(M, t^{-1} h\right)$.
(6) Suppose X^{*} and Y^{*} are basic vector fields which are related
to X and Y. Then we get ${ }^{(t)} \tilde{\nabla}_{X^{*}} Y^{*}=\tilde{\nabla}_{X^{*}} Y^{*}$.
Proof. (1), (2), (3), and (4) are easily checked. (5) By Lemma 2.2, we get ${ }^{(t)} A_{\tilde{X}} \tilde{Y}=\mathscr{Y}([\widetilde{X}, \widetilde{Y}]) / 2=A_{\tilde{X}} \tilde{Y}$. (6) By Lemma 2.1 and Lemma 2.2, we have $\mathscr{V}\left({ }^{(t)} \tilde{\nabla}_{X^{*}} Y^{*}\right)={ }^{(t)} A_{X^{*}} Y^{*}=A_{X^{*}} Y^{*}=\mathscr{V}\left(\tilde{\nabla}_{X^{*}} Y^{*}\right), \quad \mathscr{H}\left({ }^{(t)} \tilde{\nabla}_{X^{*}} Y^{*}\right)=$ $\left({ }^{(t)} \nabla_{X} Y\right)^{*}$, where ${ }^{(t)} \nabla$ denotes the Riemannian connection with respect to $\left(M, t^{-1} h\right)$. Since $\left(M, t^{-1} h\right)$ is a homothetic deformation of $(M, h),{ }^{(t)} \nabla$ coincides with ∇. Therefore we have $\left({ }^{(t)} \nabla_{X} Y\right)^{*}=\left(\nabla_{X} Y\right)^{*}=\mathscr{H}\left(\tilde{\nabla}_{X^{*}} Y^{*}\right)$. Hence we get (6).

As for the relation between Δ_{g} and $\Delta_{g(t)}$, we show the following.
Proposition 3.4. For $\varphi \in C^{\infty}\left(M \times S^{1}\right)$, we have $\Delta_{g(t)} \varphi=t \Delta_{g} \varphi+$ $\left(t-t^{-n}\right) L_{\zeta} L_{\zeta} \varphi$.

Proof. We use again a local frame field $\left\{X_{1}^{*}, \cdots, X_{n}^{*}, \zeta\right\}$ given in the proof of Proposition 3.2. By Lemma 3.3 (4), X_{j}^{*} is a basic vector field associated with the submersion $\pi:\left(M \times S^{1}, g(t)\right) \rightarrow\left(M, t^{-1} h\right)$. We easily see that $\left\{t^{1 / 2} X_{1}^{*}, \cdots, t^{1 / 2} X_{n}^{*}, t^{-n / 2} \zeta\right\}$ is an orthonormal frame field on $U \times S^{1}$ with respect to the metric $g(t)$. Noticing that ${ }^{(t)} \tilde{\nabla}_{X_{j}^{*}} X_{j}^{*}=\tilde{\nabla}_{X_{j}^{*}} X_{j}^{*}$, we have

$$
\begin{aligned}
-\Delta_{g(t)} \varphi & =\sum_{j=1}^{n}\left(t^{1 / 2} X_{j}^{*} t^{1 / 2} X_{j}^{*} \varphi-{ }^{(t)} \tilde{\nabla}_{t^{1} / 2 X_{j}^{*}} t^{1 / 2} X_{j \mid}^{*} \varphi\right)+t^{-n / 2} \zeta t^{-n / 2} \zeta \varphi \\
& =t\left\{\sum_{j=1}^{n}\left(X_{j}^{*} X_{j}^{*} \varphi-{ }^{(t)} \tilde{\nabla}_{X_{j}^{*}} X_{j}^{*} \varphi\right)+\zeta \zeta \varphi\right\}-\left(t-t^{-n}\right) \zeta \zeta \varphi \\
& =t\left\{\sum_{j=1}^{n}\left(X_{j}^{*} X_{j}^{*} \varphi-\widetilde{\nabla}_{X_{j}^{*}} X_{j}^{*} \varphi\right)+\zeta \zeta \varphi\right\}-\left(t-t^{-n}\right) \zeta \zeta \varphi \\
& =-t \Delta_{g} \varphi-\left(t-t^{-n}\right) L_{\zeta} L_{\zeta} \varphi
\end{aligned}
$$

4. Proof of Theorem in the 3 -dimensional case. 4.1. The Laplacian of warped product. Ejiri [3] studied the Laplacian of a warped product. Here we review his results. Let (B, g) and (F, h) be Riemannian manifolds and f be a positive differentiable function on B. Consider the product manifold $B \times F$ with projections $\pi: B \times F \rightarrow B$ and $\eta: B \times F \rightarrow$ F. The warped product $M=B \times{ }_{f} F$ is the manifold $B \times F$ furnished with the Riemannian structure \bar{g} defined by

$$
\bar{g}(X, Y)=g\left(\pi_{*} X, \pi_{*} Y\right)+f^{2}(\pi u) h\left(\eta_{*} X, \eta_{*} Y\right)
$$

for tangent vectors $X, Y \in T_{u} M$. We denote by Δ_{M}, Δ_{B}, and Δ_{F} the Laplacians of $(M, \bar{g}),(B, g)$ and (F, h), respectively. By grad f we denote the gradient of f defined by the metric tensor g and we regard grad f as a vector field on M. Ejiri found the following relation among Δ_{B}, Δ_{F} and Δ_{M}.

Lemma 4.1. [3]

$$
\Delta_{M}=\Delta_{B}-(n / f) \operatorname{grad} f+(1 / f)^{2} \Delta_{F},
$$

where n is the dimension of F.
In this note we deal with a warped product $S^{1} \times{ }_{f} S^{1}$, where S^{1} denotes $\boldsymbol{R} / 2 \pi \boldsymbol{Z}$.

Corollary 4.2.

$$
\Delta_{\mathbb{S}^{1} \times f^{S^{1}}}=-\partial^{2} / \partial t^{2}-\left(f^{\prime} / f\right)(\partial / \partial t)-(1 / f)^{2} \partial^{2} / \partial u^{2},
$$

where t (resp. u) is the coordinate for the first (resp. second) S^{1} and $f^{\prime}=d f / d t$.
4.2. A construction of a Riemannian metric on T^{3}. We introduce a Riemannian metric g on T^{3} as follows. We consider T^{3} as $T^{2} \times S^{1}$ and we apply the method in §3. We define $\left(T^{2}, h\right)$ as the warped product $T^{2}=S^{1} \times{ }_{f} S^{1}$, where f is a positive function on S^{1}. By S^{1} we mean $\boldsymbol{R} / 2 \pi \boldsymbol{Z}$ and we use $\{t, u\}$ as the coordinate system on $T^{2}=S^{1} \times{ }_{f} S^{1}$. Put $\xi=\partial / \partial u$. Then its dual 1 -form on $S^{1} \times{ }_{f} S^{1}$ is $f^{2} d u$, which is denoted by ω. Following $\S 3$, we define a Riemannian structure g on $T^{3}=T^{2} \times S^{1}$ by $g=\pi^{*} h+(\omega+d s) \otimes(\omega+d s)$. Then the Riemannian metric is represented as

$$
g=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & f^{2}+f^{4} & f^{2} \\
0 & f^{2} & 1
\end{array}\right)
$$

in terms of the coordinate system $\{t, u, s\}$.
Therefore we get:
Lemma 4.3. The volume element $d V_{g}$ of $\left(T^{3}, g\right)$ is given by $d V_{g}=$ $f d t \wedge d u \wedge d s$.

Now we calculate the Laplacian of ($\left.T^{3}, g\right)$.
Proposition 4.4.

$$
\Delta_{g}=-\partial^{2} / \partial t^{2}-\left(f^{\prime} \mid f\right)(\partial / \partial t)-(1 / f)^{2} L_{\xi} L_{\xi}-\left(1+f^{2}\right) L_{\xi} L_{\xi}+2 L_{\xi} L_{\zeta} .
$$

Proof. It is easily checked that ξ is a Killing vector field. So we have $\delta \omega=\operatorname{div} \xi=0$. Applying Proposition 3.2 and Corollary 4.2 we obtain Proposition 4.4 immediately.
4.3. Eigenvalues and eigenfunctions of $\left(T^{3}, g\right)$. By $C^{\infty}\left(T^{3}\right)$ we denote the space of complex-valued differentiable functions on T^{3}. We define a scalar product on $C^{\infty}\left(T^{3}\right)$ by

$$
\langle\varphi, \psi\rangle_{1}=\int_{T^{3}} \varphi \bar{\psi} d V_{g}=\int_{T^{3}} \varphi \bar{\psi} f d t \wedge d u \wedge d s \quad \text { for } \quad \varphi, \psi \in C^{\infty}\left(T^{3}\right) .
$$

On the other hand, we introduce on T^{3} another Riemannian metric g_{0} which is the natural Riemannian product on $S^{1} \times S^{1} \times S^{1}$. We define a scalar product with respect to g_{0} by

$$
\langle\varphi, \psi\rangle_{0}=\int_{T^{3}} \varphi \bar{\psi} d V_{g_{0}}=\int_{T^{3}} \varphi \bar{\psi} d t \wedge d u \wedge d s .
$$

We denote the minimum of f and the maximum of f by m and M, respectively. Then we have $m\|\varphi\|_{0}^{2} \leqq\|\varphi\|_{1}^{2} \leqq M\|\varphi\|_{0}^{2}$ for $\varphi \in C^{\infty}\left(T^{3}\right)$, where as usual $\left\|\|_{0}\right.$ and $\| \|_{1}$ denote the norms on $C^{\infty}\left(T^{3}\right)$ defined by \langle,\rangle_{0} and \langle,\rangle_{1}, respectively. Therefore we get:

Lemma 4.5. If $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ is a complete basis for $\left(C^{\infty}\left(T^{3}\right),\langle,\rangle_{1}\right)$, then it is also a complete basis for $\left(C^{\infty}\left(T^{3}\right),\langle,\rangle_{0}\right)$, and vice versa.

By $C^{\infty}\left(S^{1}\right)$, we denote the space of complex-valued differentiable functoins on S^{1} with a scalar product $\langle\varphi, \psi\rangle=\int_{S^{1}} \varphi \bar{\psi} f d t$. For integers k and l, we define a differential operator acting on $C^{\infty}\left(S^{1}\right)$ by

$$
L(k ; l) \varphi=-d^{2} \varphi / d t^{2}-\left(f^{\prime} \mid f\right)(d \varphi / d t)+(l / f-k f)^{2} \varphi+k^{2} \varphi .
$$

Lemma 4.6. $L(k ; l)$ is a strongly elliptic self-adjoint operator acting on $C^{\circ}\left(S^{1}\right)$.

Proof. We will show that it is a self-adjoint operator. For $\varphi, \psi \in$ $C^{\infty}\left(S^{1}\right)$, we have

$$
\begin{aligned}
& \langle L(k ; l) \varphi, \psi\rangle \\
& =\int_{S^{1}} f\left\{-d^{2} \varphi / d t^{2}-\left(f^{\prime} \mid f\right)(d \varphi / d t)+(l / f-k f)^{2} \varphi+k^{2} \varphi\right\} \bar{\psi} d t \\
& =\int_{S^{1}}\left\{-\frac{d}{d t}\left(f \frac{d \varphi}{d t} \bar{\psi}\right)+\frac{d f}{d t} \frac{d \varphi}{d t} \bar{\psi}+f \frac{d \varphi}{d t} \frac{d \bar{\psi}}{d t}-\frac{d f}{d t} \frac{d \varphi}{d t} \bar{\psi}\right. \\
& \left.\quad+f(l / f-k f)^{2} \varphi \bar{\psi}+f k^{2} \varphi \bar{\psi}\right\} d t \\
& =\int_{S^{1}}\left\{f \frac{d \varphi}{d t} \frac{d \bar{\psi}}{d t}+f(l / f-k f)^{2} \varphi \bar{\psi}+f k^{2} \varphi \bar{\psi}\right\} d t .
\end{aligned}
$$

Similarly we have

$$
\langle\varphi, L(k ; l) \psi\rangle=\int_{S^{1}}\left\{f \frac{d \varphi}{d t} \frac{d \bar{\psi}}{d t}+f(l / f-k f)^{2} \varphi \bar{\psi}+f k^{2} \varphi \bar{\psi}\right\} d t .
$$

Let $\left\{\mu_{1}(k ; l) \leqq \mu_{2}(k ; l) \leqq \cdots\right\}$ be the eigenvalues of $L(k ; l)$, and $\varphi_{j}(k ; l)$ be the eigenfunction such that $L(k ; l) \varphi_{j}(k ; l)=\mu_{j}(k ; l) \varphi_{j}(k ; l)$. By Lemma
4.6, for each pair $(k, l),\left\{\varphi_{j}(k ; l)\right\}_{j=1}^{\infty}$ is a complete basis of $C^{\infty}\left(S^{1}\right)$. As is well known, $e^{i k s}(k \in \boldsymbol{Z})$ is an eigenfunction of $-d^{2} / d s^{2}$ on S^{1}. We write $\theta_{k}(s)=e^{i k s}$ and $\psi_{l}(u)=e^{i l u}$ for $k, l \in \boldsymbol{Z}$.

Lemma 4.7. $\varphi_{j}(k ; l) \psi_{l} \theta_{k}$ is an eigenfunction of Δ_{g} and its eigenvalue is $\mu_{j}(k ; l)$:

$$
\Delta_{g} \varphi_{j}(k ; l) \psi_{l} \theta_{k}=\mu_{j}(k ; l) \varphi_{j}(k ; l) \psi_{l} \theta_{k}
$$

Proof. We see that $L_{\xi} \psi_{l}=i l \psi_{l}$ and $L_{\zeta} \theta_{k}=i k \theta_{k}$. Applying Proposition 4.4, we obtain the result.

Next we have:
Proposition 4.8. $\left\{\varphi_{j}(k ; l) \psi_{l} \theta_{k}, k, l \in Z, j=1,2, \cdots\right\}$ is a complete basis for $\left(C^{\infty}\left(T^{3}\right),\langle,\rangle_{1}\right)$ and hence $\left\{\mu_{j}(k ; l) ; k, l \in \boldsymbol{Z}, j=1,2, \cdots\right\}$ is the spectrum of $\left(T^{3}, g\right)$.

Proof. Let $u_{h}(t)=e^{i h t}, h \in \boldsymbol{Z}$, be an eigenfunction of $-d^{2} / d t^{2}$ on S^{1}. Since for each $(k, l),\left\{\varphi_{j}(k ; l)\right\}_{j=1}^{\infty}$ is a complete basis for $C^{\infty}\left(S^{1}\right)$, for u_{h} there exist $a_{j} \in \boldsymbol{C}, j=1,2, \cdots$, such that $\lim _{p \rightarrow \infty}\left\|u_{h}-\sum_{j=1}^{p} a_{j} \varphi_{j}(k ; l)\right\|=0$, where || || denotes the norm on $C^{\infty}\left(S^{1}\right)$ defined by the scalar product \langle,$\rangle with respect to the measure f d t$. Therefore we have

$$
\begin{aligned}
& \left\|u_{h} \psi_{l} \theta_{k}-\sum_{j=1}^{p} a_{j} \varphi_{j}(k ; l) \psi_{l} \theta_{k}\right\|_{1} \\
& \quad=\left\|\left(u_{h}-\sum_{j=1}^{p} a_{j} \varphi_{j}(k ; l)\right) \psi_{l} \theta_{k}\right\|_{1} \\
& \quad=\left\|u_{h}-\sum_{j=1}^{p} a_{j} \varphi_{j}(k ; l)\right\|\left\{\int_{S_{1}} \psi_{l} \bar{\psi}_{l} d u\right\}^{1 / 2}\left\{\int_{S^{1}} \theta_{k} \bar{\theta}_{k} d s\right\}^{1 / 2}
\end{aligned}
$$

from which it follows that $\lim _{p \rightarrow \infty}\left\|u_{h} \psi_{l} \theta_{k}-\sum_{j=1}^{p} a_{j} \varphi_{j}(k ; l) \psi_{l} \theta_{k}\right\|_{1}=0$, where $\left\|\|_{1}\right.$ denotes the norm on $C^{\infty}\left(T^{3}\right)$ defined by \langle,\rangle_{1}. On the other hand, it is well known that $\left\{u_{h} \psi_{l} \theta_{k} ; h, l, k \in Z\right\}$ is a complete basis for $\left(C^{\infty}\left(T^{3}\right)\right.$, \langle,\rangle_{0}) (cf. [2]). By Lemma $4.5\left\{u_{h} \psi_{l} \theta_{k} ; h, l, k \in \boldsymbol{Z}\right\}$ is also a complete basis for $\left(C^{\infty}\left(T^{3}\right),\langle,\rangle_{1}\right)$. The above arguments imply that $\left\{\varphi_{j}(k ; l) \psi_{l} \theta_{k} ; k, l \in \boldsymbol{Z}\right.$ $j=1,2, \cdots\}$ is a complete basis for $\left(C^{\infty}\left(T^{3}\right),\langle,\rangle_{1}\right)$.
4.4. Estimates of eigenvalues of the operator $L(k ; l)$. In this part, making use of the minimum principle we estimate eigenvalues of $L(k ; l)$ from below. First of all, we apply the minimum principle to the selfadjoint operator $L(k ; l)$. Then we have

$$
\begin{aligned}
\mu_{1}(k ; l) & =\inf _{\varphi}\langle L(k ; l) \varphi, \varphi\rangle /\langle\varphi, \varphi\rangle \\
& =\inf _{S^{1}}\left\{f \varphi^{\prime} \bar{\varphi}^{\prime}+f(l / f-k f)^{2} \varphi \bar{\varphi}+f k^{2} \varphi \bar{\varphi}\right\} d t / \int_{S^{1}} f \varphi \bar{\varphi} d t
\end{aligned}
$$

$$
=\inf \int_{S^{1}}\left\{f \varphi^{\prime} \bar{\varphi}^{\prime}+f(l / f-k f)^{2} \varphi \bar{\varphi}\right\} d t / \int_{S^{1}} f \varphi \bar{\varphi} d t+k^{2}
$$

where $\varphi^{\prime}=d \varphi / d t$ and $\bar{\varphi}^{\prime}=d \bar{\varphi} / d t$ and the infimum is taken over all non-zero φ in $C^{\infty}\left(S^{1}\right)$.

Lemma 4.9. If f is not constant on S^{1} and at least one of k and l is not zero, then there exists a positive constant $\varepsilon>0$ which does not depend on k and l such that

$$
\inf _{\varphi}\left\{\int_{S^{1}} f \varphi^{\prime} \bar{\varphi}^{\prime} d t+\int_{S^{1}} f(l / f-k f)^{2} \varphi \bar{\varphi} d t\right\} / \int_{S^{1}} f \varphi \bar{\varphi} d t \geqq \varepsilon,
$$

where the infimum is taken over all φ as above.
Proof. Let m and M be the minimum and the maximum of f, respectively. In the proof of this lemma, for simplicity we omit S^{1} in the integral sign. We have
$(* *) \quad\left\{\int f \varphi^{\prime} \bar{\varphi}^{\prime} d t+\int f(l / f-k f)^{2} \varphi \bar{\varphi} d t\right\} / \int f \varphi \bar{\varphi} d t$

$$
\geqq \frac{m}{M}\left\{\int \varphi^{\prime} \bar{\varphi}^{\prime} d t+\frac{1}{M m} \int\left(l-k f^{2}\right)^{2} \varphi \bar{\varphi} d t\right\} / \int \varphi \bar{\varphi} d t
$$

When $k=0$, since l is not zero, we have

$$
\begin{aligned}
& \frac{m}{M}\left\{\int \rho^{\prime} \bar{\varphi}^{\prime} d t+\frac{1}{M m} l^{2} \int \varphi \bar{\varphi} d t\right\} / \int \varphi \bar{\varphi} d t \\
& \quad \geqq \frac{m}{M}\left\{\int \rho^{\prime} \bar{\varphi}^{\prime} d t+\frac{1}{M m} \int \varphi \bar{\varphi} d t\right\} / \int \rho \bar{\varphi} d t
\end{aligned}
$$

Let $\varepsilon_{1}=\inf _{\varphi}\left\{\int \rho^{\prime} \bar{\varphi}^{\prime} d t+(1 / M m) \int \rho \bar{\varphi} d t\right\} / \int \rho \bar{\varphi} d t . \quad \varepsilon_{1}$ is positive. Then, in the case $k=0$, we have

$$
(* *) \geqq m \varepsilon_{1} / M \quad \text { for any } \quad \varphi \in C^{\infty}\left(S^{1}\right), \quad \varphi \not \equiv 0 .
$$

When $k \neq 0$, we have

$$
\begin{aligned}
(* *) & \geqq \frac{m}{M}\left\{\int \varphi^{\prime} \bar{\varphi}^{\prime} d t+\frac{k^{2}}{M m} \int\left(f^{2}-l / k\right)^{2} \varphi \bar{\varphi} d t\right\} / \int \varphi \bar{\varphi} d t \\
& \geqq \frac{m}{M}\left\{\int \rho^{\prime} \bar{\varphi}^{\prime} d t+\frac{1}{M m} \int\left(f^{2}-l / k\right)^{2} \varphi \bar{\varphi} d t\right\} / \int \varphi \bar{\varphi} d t .
\end{aligned}
$$

We put $\alpha=\left(M^{2}-m^{2}\right) / 2$. Since f is not constant, α is positive. Let t_{1} be a point which attains the maximum of f. Then there exists a positive number $\delta>0$ such that $f^{2}(t)-\alpha>0$ for $t \in\left(t_{1}-\delta, t_{1}+\delta\right)$. There exists a non-negative differentiable function g_{1} such that $\operatorname{supp}\left(g_{1}\right) \subset\left(t_{1}-\delta, t_{1}+\delta\right)$,
$\left(f^{2}-\alpha\right)^{2} \geqq g_{1}^{2}$ on S^{1}, and g_{1} is not identically zero. Let t_{2} be a point which attains the minimum of f. Then there exists a positive number $\delta^{\prime}>0$ such that $\alpha-f^{2}(t)>0$ for $t \in\left(t_{2}-\delta^{\prime}, t_{2}+\delta^{\prime}\right)$. Similarly there exists a non-negative function g_{2} on S^{1} such that $\operatorname{supp}\left(g_{2}\right) \subset\left(t_{2}-\delta^{\prime}, t_{2}+\delta^{\prime}\right)$, $\left(\alpha-f^{2}\right)^{2} \geqq g_{2}^{2}$ on S^{1}, and g_{2} is not identically zero. If l / k is not greater than α, then we have $\left(f^{2}-l / k\right)^{2} \geqq g_{1}^{2}$. When l / k is not less than α, then we have $\left(f^{2}-l / k\right)^{2} \geqq g_{2}^{2}$. We put

$$
\varepsilon_{2}=\inf _{\varphi}\left\{\int \varphi^{\prime} \bar{\varphi}^{\prime} d t+\frac{1}{M m} \int g_{1}^{2} \varphi \bar{\varphi} d t\right\} / \int \varphi \bar{\varphi} d t
$$

and

$$
\varepsilon_{3}=\inf _{\varphi}\left\{\int \rho^{\prime} \bar{\varphi}^{\prime} d t+\frac{1}{M m} \int g_{2}^{2} \varphi \bar{\varphi} d t\right\} / \int \varphi \bar{\varphi} d t
$$

where the infimum is taken over all non-zero φ in $C^{\infty}\left(S^{1}\right)$. Since g_{1} and g_{2} are not identically zero, we have $\varepsilon_{2}>0$ and $\varepsilon_{3}>0$. Therefore, when $l / k \leqq \alpha$, we have

$$
(* *) \geqq m \varepsilon_{2} / M \quad \text { for any } \quad \varphi \in C^{\infty}\left(S^{1}\right), \quad \varphi \not \equiv 0 .
$$

Similarly, when $l / k \geqq \alpha$, we have

$$
(* *) \geqq m \varepsilon_{3} / M \quad \text { for any } \quad \varphi \in C^{\infty}\left(S^{1}\right), \quad \varphi \not \equiv 0
$$

By putting $\varepsilon=$ the minimum of $\left\{m \varepsilon_{1} / M, m \varepsilon_{2} / M, m \varepsilon_{3} / M\right\}$, we get Lemma 4.9.

When $k=l=0$, we see that $\mu_{1}(0 ; 0)=0$ and its eigenfunction is constant. Moreover, we have $\mu_{2}(0 ; 0)>0$.

Proposition 4.10. Let $\tilde{\varepsilon}$ be the minimum of $\mu_{2}(0 ; 0)$ and ε in Lemma 4.9. We have $\mu_{j}(k ; l)-k^{2} \geqq \tilde{\varepsilon}>0$ for any j when at least one of k and l is not zero, and for $j \geqq 2$ when $k=l=0$.
4.5. Proof of Theorem in the 3-dimensional case. Following §3, we define a family of Riemannian metrics on T^{3} by

$$
g(t)=t^{-1} g+\left(t^{2}-t^{-1}\right)(\omega+d s) \otimes(\omega+d s), \quad 0<t<\infty
$$

By Proposition 3.4, we have $\Delta_{g(t)} \varphi=t \Delta_{g} \varphi+\left(t-t^{-2}\right) L_{\xi} L_{\zeta} \varphi$. We put $\Psi_{j k l}=\varphi_{j}(k ; l) \psi_{l} \theta_{k}, k, l \in \boldsymbol{Z}, j=1,2, \cdots$. Then we have

$$
\Delta_{g(t)} \Psi_{j k l}=\left\{t\left(\mu_{j}(k ; l)-k^{2}\right)+t^{-2} k^{2}\right\} \Psi_{j k l}
$$

By Lemma 3.3 (1), $\left\{\Psi_{j k l} ; k, l \in Z, j=1,2, \cdots\right\}$ is a complete basis with respect to $g(t)$ for the space of differentiable functions on T^{3}. So $\left\{t\left(\mu_{j}(k ; l)-k^{2}\right)+t^{-2} k^{2} ; k, l \in Z, j=1,2, \cdots\right\}$ is the spectrum of ($\left.T^{3}, g(t)\right)$.

When $k=l=0$ and $j=1, \Psi_{1,0,0}$ is a constant function with 0 as its eigenvalue. By Proposition 4.10, for a non-zero eigenvalue of $\Delta_{g(t)}$ we have $t\left(\mu_{j}(k ; l)-k^{2}\right)+t^{-2} k^{2} \geqq t \tilde{\varepsilon}$. Therefore we obtain $\lambda_{1}(g(t)) \rightarrow \infty$ as $t \rightarrow \infty$. We easily get $\lambda_{1}(g(t)) \rightarrow 0$ as $t \rightarrow 0$. On the other hand, by Lemma 3.3 (1) we see that $\operatorname{Vol}\left(T^{3}, g(t)\right)=\operatorname{Vol}\left(T^{3}, g\right)$. Thus Theorem in the 3 -dimensional case is proved.
5. Proof of Theorem for $T^{n}(n \geqq 4)$. When $n \geqq 5$, we can prove Theorem by following the same process as in the 4 -dimensional case. So we will prove Theorem only in the 4 -dimensional case in this section.
5.1. A construction of a Riemannian metric g on T^{4}. Following $\S 3$ again, we define a Riemannian metric g on T^{4}. We consider T^{4} as a product manifold $T^{3} \times S^{1}$ with the natural projection $\tilde{\pi}: T^{3} \times S^{1} \rightarrow T^{3}$. T^{3} is furnished with the Riemannian metric g given in §4. By $\tilde{\omega}$ we denote the 1 -form dual to the vector field ζ in $\left(T^{3}, g\right)$. Then we have $\tilde{\omega}=\omega+d s$. We define \tilde{g} on T^{4} by

$$
\widetilde{g}=\tilde{\pi}^{*} g+(\tilde{\omega}+d \widetilde{s}) \otimes(\tilde{\omega}+d \widetilde{s})
$$

where $\{\tilde{s}\}$ is a normal coordinate system in S^{1}. By $\tilde{\zeta}$ we denote the vector field $\partial / \partial \widetilde{s}$ in T^{4}.

Noticing that ζ is a unit Killing vector field in $\left(T^{3}, g\right)$, by Proposition 3.2 we easily get:

Proposition 5.1. For $\varphi \in C^{\infty}\left(T^{4}\right)$ we have

$$
\Delta_{\tilde{g}} \varphi=\Delta_{g} \varphi-2 L_{\tilde{\zeta}} L_{\tilde{\zeta}} \varphi+2 L_{\zeta} L_{\tilde{\zeta}} \varphi
$$

Contrary to the arguments in $\S 4$, we denote by $\lambda_{j}\left(0=\lambda_{0}<\lambda_{1}<\right.$ $\lambda_{2}<\cdots$) the j-th eigenvalue of (T^{3}, g) with its eigenspace $V\left(\lambda_{j}\right)$. Since ζ is a unit Killing vector field on (T^{3}, g), L_{ζ} and Δ_{g} commute, which implies that L_{ζ} is a linear transformation of $V\left(\lambda_{j}\right)$. By the results in §4, the following is clear.

Lemma 5.2. For each eigenvalue λ_{j} of $\Delta_{g}, V\left(\lambda_{j}\right)$ has the orthogonal decomposition:

$$
V\left(\lambda_{j}\right)=\sum_{k \in Z} V_{k}\left(\lambda_{j}\right)
$$

where $L_{\zeta} \varphi=i k \varphi$ for $\varphi \in V_{k}\left(\lambda_{j}\right) k \in \boldsymbol{Z}$. (Here we do not care if some $V_{k}\left(\lambda_{j}\right)$ is trivial or not.) Moreover, the above decomposition has the following property. If λ_{j} is not zero and $V_{k}\left(\lambda_{j}\right)$ is not trivial, then there exists a positive number $\tilde{\varepsilon}>0$ such that $\lambda_{j}-k^{2} \geqq \tilde{\varepsilon}$ and $\tilde{\varepsilon}$ does not depend on j and k.

By $\phi_{h}, h \in \boldsymbol{Z}$, we denote an eigenfunction $e^{i \check{ } \check{s}}$ on S^{1}. By Proposition 5.1, we have:

Proposition 5.3. If $V_{k}\left(\lambda_{j}\right)$ is not trivial, $\varphi \phi_{h}$ is an eigenfunction of $\left(T^{4}, \tilde{g}\right)$ with its eigenvalue $\lambda_{j}+2 h^{2}-2 k h$ for $\varphi \in V_{k}\left(\lambda_{j}\right)$ and ϕ_{h}. The set of eigenfunctions of this form is a complete basis for $C^{\infty}\left(T^{4}\right)$ with respect to \widetilde{g}.
5.2. Proof of Theorem. Following §3, we define a family of Riemannian metrics $\widetilde{g}(t)$ by

$$
\widetilde{g}(t)=t^{-1} \widetilde{g}+\left(t^{3}-t^{-1}\right)(\tilde{\omega}+d \widetilde{s}) \otimes(\tilde{\omega}+d \widetilde{s}) \quad 0<t<\infty
$$

By Proposition 3.4, we have $\Delta_{\tilde{g}(t)} \Phi=t \Delta_{\tilde{g}} \Phi+\left(t-t^{-3}\right) L_{\tilde{\xi}} L_{\tilde{\zeta}} \Phi$. Then we have $\Delta_{\tilde{g}(t)} \varphi \phi_{h}=\left\{t\left(\lambda_{j}+h^{2}-2 k h\right)+t^{-3} h^{2}\right\} \varphi \phi_{h}$. By the same arguments as in $\S 4$, each eigenvalue of ($T^{4}, \widetilde{g}(t)$) has the above form, i.e., $t\left(\lambda_{j}+h^{2}-2 k h\right)+$ $t^{-3} h^{2}$. If $j \neq 0$, by Lemma 5.2 we have

$$
t\left(\lambda_{j}+h^{2}-2 k h\right)+t^{-3} h^{2} \geqq t\left(k^{2}+\tilde{\varepsilon}+h^{2}-2 k h\right) \geqq t\left(\tilde{\varepsilon}+(k-h)^{2}\right) \geqq t \tilde{\varepsilon} .
$$

If $j=0$, then $k=0$ and we have $t\left(\lambda_{0}+h^{2}-2 k h\right)+t^{-3} h^{2}=t h^{2}+t^{-3} h^{2}$. Therefore for every positive eigenvalue λ of ($T^{4}, \widetilde{g}(t)$) we have $\lambda \geqq t \varepsilon^{\prime}$, where ε^{\prime} is the minimum of 1 and $\tilde{\varepsilon}$. So we have $\lambda_{1}(\widetilde{g}(t)) \rightarrow \infty$ as $t \rightarrow \infty$. We easily get $\lambda_{1}(\widetilde{g}(t)) \rightarrow 0$ as $t \rightarrow 0$. On the other hand, by Lemma 3.3 (1) we see that $\operatorname{Vol}\left(T^{4}, \widetilde{g}(t)\right)=\operatorname{Vol}\left(T^{4}, \widetilde{g}\right)$.

References

[1] M. Berger, Sur les premières valeurs propres des variétés riemanniennes, Compositio Math. 26 (1973), 129-149.
[2] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math. 194 (1971), Springer-Verlag, Berlin-Heidelberg-New York.
[3] N. Ejiri, A construction of non-flat, compact irreducible Riemannian manifolds which are isospectral but not isometric, Math. Z. 168 (1979), 207-212.
[4] J. HERSCH, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris 270 (1970), 1645-1648.
[5] H. Muto, The first eigenvalue of the Laplacian on even dimensional spheres, Tohoku Math. J. 32 (1980), 427-432.
[6] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[7] S. Tanno, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J. 31 (1979), 179-185.
[8] H. Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), 209-226.
[9] H. Urakawa, On the least positive eigenvalue of the Laplacian for the compact quotient of a certain Riemannian symmetric space, Nagoya Math. J. 78 (1980), 137-152.
[10] H. Urakawa and H. Muto, On the least positive eigenvalue of Laplacian for compact homogeneous spaces, Osaka J. Math. 17 (1980), 471-484.
[11] J. Vilms, Totally geodesic maps, J. Differential Geometry, 4 (1970), 73-79.
Department of Mathematics
Tokyo Metropolitan University
Setagaya, Tokyo 158
Japan

