THE FIRST EIGENVALUE OF THE LAPLACIAN ON TORI

KAZUMI TSUKADA

(Received April 25, 1980)

1. Introduction. Let M be an n-dimensional compact connected differentiable manifold. For every Riemannian metric g on M, let Δ_g be the Laplacian acting on differentiable functions on M. We denote the first eigenvalue of Δ_g by $\lambda_1(g)$ and the volume of (M, g) by $\operatorname{Vol}(M, g)$. Berger [1] posed the following problem: Does there exist a positive constant k(M) such that

$$\lambda_{1}(g) \operatorname{Vol}(M, g)^{2/n} \leq k(M) ,$$

for every Riemannian metric g on M? Hersch [4] showed that if M is diffeomorphic to the 2-dimensional sphere S^2 , then for every Riemannian metric g on S^2 ,

$$\lambda_1(g) \operatorname{Vol}(S^2, g) \leq 8\pi$$
.

The equality holds if and only if g is a metric with the constant curvature. On the other hand, recently the following people constructed examples which admit a family of Riemannian metrics g(t) $(0 < t < \infty)$ such that

$$\begin{cases} \lambda_{\scriptscriptstyle \rm I}(g(t)) \ \operatorname{Vol}(M,\, g(t))^{\scriptscriptstyle 2/n} \to \infty & \text{as} \quad t \to \infty \\ \lambda_{\scriptscriptstyle \rm I}(g(t)) \ \operatorname{Vol}(M,\, g(t))^{\scriptscriptstyle 2/n} \to 0 & \text{as} \quad t \to 0 \end{cases}.$$

- (i) Urakawa [8] constructed such a family of metrics on a compact connected Lie group with a non-trivial commutator subgroup.
- (ii) Tanno [7] constructed such on any odd dimensional sphere S^{2n+1} $(n \ge 1)$.
- (iii) Urakawa and Muto [10] constructed such on compact homogeneous spaces which satisfy some conditions.
- (iv) Muto [5] constructed such on any even dimensional sphere S^{2n} $(n \ge 2)$.

For an n-dimensional torus T^n , it is known that there exists a constant $k(T^n)$ such that (*) holds for every "flat" metric (cf. [9]). In this paper we prove that there exists no constant $k(T^n)$ such that (*) holds for any metric on T^n $(n \ge 3)$. Namely we show the following.

THEOREM. On any n-dimensional torus T^n $(n \ge 3)$, there exists a family of metrics g(t) $(0 < t < \infty)$ such that

$$egin{array}{lll} \left\{ \lambda_{\scriptscriptstyle \rm I}(g(t))
ightarrow & \qquad as \quad t
ightarrow & \ \left\{ \lambda_{\scriptscriptstyle \rm I}(g(t))
ightarrow & \qquad as \quad t
ightarrow & \ \end{array}
ight.$$

and $Vol(T^n, g(t)) = constant$.

The author wishes to thank Professor K. Ogiue for his many valuable comments.

2. Some formulas for a Riemannian submersion. In [6] O'Neill studied fundamental equations of a Riemannian submersion. We review some formulas in it which are useful in the sequel. Given a Riemannian submersion $\pi\colon M\to B$, we denote by $\mathscr{C}E$ (resp. $\mathscr{H}E$) a vertical part (resp. a horizontal part) of a vector field E on M. Following O'Neill, we define two tensor fields T and A for arbitrary vector fields E and F by

$$T_{\scriptscriptstyle E}F = \mathscr{H} \widetilde{
abla}_{\scriptscriptstyle \mathscr{V}_{\scriptscriptstyle E}} \mathscr{V} F + \mathscr{V} \widetilde{
abla}_{\scriptscriptstyle \mathscr{V}_{\scriptscriptstyle E}} \mathscr{H} F$$

and

$$A_{\scriptscriptstyle E}F=\mathscr{H}\widetilde{
abla}_{_{\mathscr{U}_{\scriptscriptstyle E}}}\mathscr{V}F+\mathscr{V}\widetilde{
abla}_{_{\mathscr{U}_{\scriptscriptstyle E}}}\mathscr{H}F$$

respectively, where we denote by $\widetilde{\nabla}$ the Riemannian connection on M.

We review some formulas for the tensor field A which will be used in the sequel. The tensor field A is called an integrability tensor associated with the submersion.

DEFINITION. A basic vector field is a horizontal vector field X^* which is π -related to a vector field X on B, i.e., $\pi X_u^* = X_{\pi(u)}$ for all $u \in M$.

LEMMA 2.1. Suppose X^* and Y^* are basic vector fields on M which are related to X and Y on B. Then

- (1) $\mathcal{H}([X^*, Y^*])$ is basic and is π -related to [X, Y].
- (2) $\mathscr{H}\widetilde{\nabla}_{X^*}Y^*$ is basic and π -related to $\nabla_X Y$ where ∇ is the Riemannian connection on B.

LEMMA 2.2. Let \widetilde{X} and \widetilde{Y} be horizontal vector fields on M. Then we have

$$A_{\widetilde{X}}\widetilde{Y} = \mathscr{V}([\widetilde{X},\ \widetilde{Y}])/2$$
.

The proof of these results is found in [6].

3. The Laplacian of a metric g on $M \times S^1$. In this section, in the same way as Vilms [11], we introduce a Riemannian metric g on a product manifold $M \times S^1$ and calculate its Laplacian Δ_g .

Let (M, h) be an *n*-dimensional $(n \ge 2)$ compact connected Riemannian manifold and ω be a 1-form on M. We denote $R/2\pi Z$ by S^1 and its

coordinate system by $\{s\}$. We consider a product manifold $M \times S^1$ with natural projections $\pi \colon M \times S^1 \to M$ and $\eta \colon M \times S^1 \to S^1$. We define a Riemannian metric g on $M \times S^1$ by

$$g = \pi^*h + (\omega + ds) \otimes (\omega + ds)$$
,

where we simply denote $\pi^*\omega$ and η^*ds by ω and ds, respectively. We remark that $(M\times S^1,g)$ may be regarded as a trivial S^1 -bundle with a connection $\omega+ds$.

We denote by ζ the vector field d/ds which is naturally regarded as a vector field on $M \times S^1$. We denote by ξ a contravariant form of ω on M. We may naturally regard ξ as a vector field on $M \times S^1$. We denote by L_x the Lie derivation with respect to X. We consider the Laplacian Δ_M on (M,h) as a differential operator acting on differentiable functions on $M \times S^1$ in the following sense: For $\varphi \in C^{\infty}(M \times S^1)$, $\Delta_M \varphi(x,s) = \Delta_M \ell_s^* \varphi(x)$ at (x,s), where ℓ_s denotes the natural imbedding $\ell_s \colon M \to M \times S^1$ given by $\ell_s(x) = (x,s)$.

We easily get:

LEMMA 3.1. The metric g on $M \times S^1$ has the following properties:

- (1) The vector field ζ is a unit Killing vector field on $(M \times S^1, g)$.
- (2) The projection π is a Riemannian submersion from $(M \times S^1, g)$ to (M, h) with totally geodesic fibres.

Proposition 3.2. For $\varphi \in C^{\infty}(M \times S^1)$, we have

$$\Delta_{g}arphi=\Delta_{\mathtt{M}}arphi-(1+|\pmb{\omega}|^{2})L_{\mathtt{\zeta}}L_{\mathtt{\zeta}}arphi+2L_{\mathtt{\xi}}L_{\mathtt{\zeta}}arphi-(\delta\pmb{\omega})L_{\mathtt{\zeta}}arphi$$
 ,

where we calculate the norm of ω and the co-differential operator δ with respect to the metric h.

PROOF. For an arbitrary point $x \in M$, let U be a neighborhood of x in M and $\{X_1, X_2, \cdots, X_n\}$ be a local field of orthonormal frames on U. We naturally regard X_j as a vector field on $U \times S^1$ and define a vector field X_j^* on $U \times S^1$ by $X_j^* = X_j - \omega(X_j)\zeta$. Then X_j^* is a basic vector field which is related to X_j . We easily see that $\{X_1^*, X_2^*, \cdots, X_n^*, \zeta\}$ is a local field of orthonormal frames on $U \times S^1$. By the definition of the Laplacian, for $\varphi \in C^\infty(M \times S^1)$ we have

$$-\Delta_g arphi = \sum\limits_{j=1}^n (X_j^* X_j^* arphi - \widetilde{
abla}_{X_j^*} X_j^* arphi) + \zeta \zeta arphi - \widetilde{
abla}_\zeta \zeta arphi \quad ext{on} \quad U imes S^1 \ .$$

We see that $\widetilde{\nabla}_{\zeta}\zeta=0$ since ζ is a unit Killing vector field. By Lemma 2.1 and Lemma 2.2 we have

$$\mathscr{V}(\widetilde{
abla}_{X_j^*}X_j^*) = A_{X_j^*}X_j^* = \mathscr{V}([X_j^*,X_j^*])/2 = 0$$
 $\mathscr{H}(\widetilde{
abla}_{X_i^*}X_j^*) = (
abla_{X_j}X_j)^* =
abla_{X_j}X_j - \omega(
abla_{X_j}X_j)\zeta$,

where $\nabla_{X_j}X_j$ is regarded as a vector field on $U\times S^1$. Hence we get $\widetilde{\nabla}_{X_j^*}X_j^*=\nabla_{X_j}X_j-\omega(\nabla_{X_j}X_j)\zeta$. Noticing that $[X_j,\zeta]=0$ and $\zeta\omega(X_j)=0$, we have

$$\begin{split} X_j^*X_j^*\varphi - \widetilde{\nabla}_{X_j^*}X_j^*\varphi &= (X_j - \omega(X_j)\zeta)(X_j - \omega(X_j)\zeta)\varphi - (\nabla_{X_j}X_j - \omega(\nabla_{X_j}X_j)\zeta)\varphi \\ &= X_jX_j\varphi - X_j\omega(X_j)\cdot\zeta\varphi - \omega(X_j)X_j\zeta\varphi \\ &- \omega(X_j)\zeta X_j\varphi + \omega(X_j)\zeta\cdot\omega(X_j)\cdot\zeta\varphi \\ &+ \omega(X_j)^2\zeta\zeta\varphi - (\nabla_{X_j}X_j)\varphi + \omega(\nabla_{X_j}X_j)\zeta\varphi \\ &= X_jX_j\varphi - (\nabla_{X_j}X_j)\varphi + \omega(X_j)^2\zeta\zeta\varphi \\ &- \{X_i\omega(X_j) - \omega(\nabla_{X_j}X_j)\}\zeta\varphi - 2\omega(X_j)X_j\zeta\varphi \;. \end{split}$$

Therefore we have

$$egin{aligned} -\Delta_{g}arphi &= \sum\limits_{j=1}^{n}{(X_{j}X_{j}arphi} -
abla_{X_{j}}X_{j}arphi) + \Big(1 + \sum\limits_{j=1}^{n}{\omega(X_{j})^{2}}\Big)\!\zeta\zetaarphi \ &- 2\sum\limits_{j=1}^{n}{\omega(X_{j})X_{j}\zetaarphi} - \sum\limits_{j=1}^{n}{(X_{j}\omega(X_{j}) - \omega(
abla_{X_{j}}X_{j}))\zetaarphi} \ &= -\Delta_{M}arphi + (1 + |\omega|^{2})L_{\zeta}L_{\zeta}arphi - 2L_{\xi}L_{\zeta}arphi + \delta\omega L_{\zeta}arphi \;. \end{aligned}$$

Following Tanno [7], we define a family of Riemannian metrics g(t) $(0 < t < \infty)$ by

$$g(t) = t^{-1}g + (t^n - t^{-1})(\omega + ds) \otimes (\omega + ds) \qquad 0 < t < \infty$$
.

By ${}^{(t)}\widetilde{\nabla}$ and $\Delta_{g(t)}$, we denote the Riemannian connection and the Laplacian with respect to g(t).

Lemma 3.3. $(M \times S^1, g(t))$ has the following properties.

- (1) Volume elements with respect to g(t) and g(1) = g are identical; $dV_{g(t)} = dV_g$, and $\operatorname{Vol}(M \times S^1, g(t)) = \operatorname{Vol}(M \times S^1, g)$.
- (2) The vector field ζ is a Killing vector field with constant length $t^{n/2}$.
- (3) The projection π is a Riemannian submersion from $(M \times S^1, g(t))$ to $(M, t^{-1}h)$ with totally geodesic fibres.
- (4) Horizontal distributions associated with the submersion π : $(M \times S^1, g(t)) \rightarrow (M, t^{-1}h)$ and the submersion π : $(M \times S^1, g) \rightarrow (M, h)$ are identical.
- (5) If \widetilde{X} and \widetilde{Y} are horizontal vector fields, then we have ${}^{(t)}A_{\widetilde{X}}\widetilde{Y} = A_{\widetilde{X}}\widetilde{Y}$, where ${}^{(t)}A$ denotes the integrability tensor associated with the submersion $\pi: (M \times S^1, g(t)) \to (M, t^{-1}h)$.
 - (6) Suppose X* and Y* are basic vector fields which are related

to X and Y. Then we get $(t)\widetilde{\nabla}_{X^*}Y^* = \widetilde{\nabla}_{X^*}Y^*$.

PROOF. (1), (2), (3), and (4) are easily checked. (5) By Lemma 2.2, we get ${}^{(t)}A_{\widetilde{X}}\widetilde{Y}=\mathscr{V}([\widetilde{X},\ \widetilde{Y}])/2=A_{\widetilde{X}}\widetilde{Y}.$ (6) By Lemma 2.1 and Lemma 2.2, we have $\mathscr{V}({}^{(t)}\widetilde{\nabla}_{X^*}Y^*)={}^{(t)}A_{X^*}Y^*=A_{X^*}Y^*=\mathscr{V}(\widetilde{\nabla}_{X^*}Y^*),\ \mathscr{H}({}^{(t)}\widetilde{\nabla}_{X^*}Y^*)=({}^{(t)}\nabla_XY)^*,$ where ${}^{(t)}\nabla$ denotes the Riemannian connection with respect to $(M,\ t^{-1}h).$ Since $(M,\ t^{-1}h)$ is a homothetic deformation of $(M,\ h),{}^{(t)}\nabla$ coincides with $\nabla.$ Therefore we have $({}^{(t)}\nabla_XY)^*=(\nabla_XY)^*=\mathscr{H}(\widetilde{\nabla}_{X^*}Y^*).$ Hence we get (6).

As for the relation between Δ_g and $\Delta_{g(t)}$, we show the following.

PROPOSITION 3.4. For $\varphi \in C^{\infty}(M \times S^1)$, we have $\Delta_{g(t)}\varphi = t\Delta_g \varphi + (t-t^{-n})L_{\xi}L_{\xi}\varphi$.

PROOF. We use again a local frame field $\{X_1^*, \cdots, X_n^*, \zeta\}$ given in the proof of Proposition 3.2. By Lemma 3.3 (4), X_j^* is a basic vector field associated with the submersion $\pi: (M \times S^1, g(t)) \to (M, t^{-1}h)$. We easily see that $\{t^{1/2}X_1^*, \cdots, t^{1/2}X_n^*, t^{-n/2}\zeta\}$ is an orthonormal frame field on $U \times S^1$ with respect to the metric g(t). Noticing that $(t) \widetilde{\nabla}_{X_j^*} X_j^* = \widetilde{\nabla}_{X_j^*} X_j^*$, we have

$$egin{aligned} &-\Delta_{g(t)}arphi &= \sum_{j=1}^n (t^{1/2} X_j^* t^{1/2} X_j^* arphi - {}^{(t)} \widetilde{
abla}_{t^{1/2} X_j^*} t^{1/2} X_{j^{arphi}}^* arphi) + t^{-n/2} \zeta t^{-n/2} \zeta arphi \ &= t \left\{ \sum_{j=1}^n (X_j^* X_j^* arphi - {}^{(t)} \widetilde{
abla}_{X_j^*} X_j^* arphi) + \zeta \zeta arphi
ight\} - (t - t^{-n}) \zeta \zeta arphi \ &= t \left\{ \sum_{j=1}^n (X_j^* X_j^* arphi - \widetilde{
abla}_{X_j^*} X_j^* arphi) + \zeta \zeta arphi
ight\} - (t - t^{-n}) \zeta \zeta arphi \ &= -t \Delta_g arphi - (t - t^{-n}) L_{\zeta} L_{\zeta} arphi \ . \end{aligned}$$

4. Proof of Theorem in the 3-dimensional case. 4.1. The Laplacian of warped product. Ejiri [3] studied the Laplacian of a warped product. Here we review his results. Let (B,g) and (F,h) be Riemannian manifolds and f be a positive differentiable function on B. Consider the product manifold $B \times F$ with projections $\pi \colon B \times F \to B$ and $\eta \colon B \times F \to F$. The warped product $M = B \times_f F$ is the manifold $B \times F$ furnished with the Riemannian structure \overline{g} defined by

$$ar{g}(X, Y) = g(\pi_* X, \pi_* Y) + f^{\scriptscriptstyle 2}(\pi u) h(\eta_* X, \eta_* Y)$$

for tangent vectors $X, Y \in T_uM$. We denote by Δ_M, Δ_B , and Δ_F the Laplacians of $(M, \bar{g}), (B, g)$ and (F, h), respectively. By grad f we denote the gradient of f defined by the metric tensor g and we regard grad f as a vector field on M. Ejiri found the following relation among Δ_B, Δ_F and Δ_M .

LEMMA 4.1. [3]

$$\Delta_{\scriptscriptstyle M} = \Delta_{\scriptscriptstyle B} - (n/f) \, \operatorname{grad} f + (1/f)^2 \Delta_{\scriptscriptstyle F}$$
 ,

where n is the dimension of F.

In this note we deal with a warped product $S^1 \times_f S^1$, where S^1 denotes $R/2\pi Z$.

COROLLARY 4.2.

$$\Delta_{S^1 imes_f S^1} = -\partial^2\!/\partial t^2 - (f'\!/f)(\partial/\partial t) - (1\!/f)^2\!\partial^2\!/\partial u^2$$
 ,

where t (resp. u) is the coordinate for the first (resp. second) S^1 and f' = df/dt.

4.2. A construction of a Riemannian metric on T^3 . We introduce a Riemannian metric g on T^3 as follows. We consider T^3 as $T^2 \times S^1$ and we apply the method in §3. We define (T^2, h) as the warped product $T^2 = S^1 \times_f S^1$, where f is a positive function on S^1 . By S^1 we mean $R/2\pi Z$ and we use $\{t, u\}$ as the coordinate system on $T^2 = S^1 \times_f S^1$. Put $\xi = \partial/\partial u$. Then its dual 1-form on $S^1 \times_f S^1$ is $f^2 du$, which is denoted by ω . Following §3, we define a Riemannian structure g on $T^3 = T^2 \times S^1$ by $g = \pi^*h + (\omega + ds) \otimes (\omega + ds)$. Then the Riemannian metric is represented as

$$g = egin{pmatrix} 1 & 0 & 0 \ 0 & f^2 + f^4 & f^2 \ 0 & f^2 & 1 \end{pmatrix}$$

in terms of the coordinate system $\{t, u, s\}$.

Therefore we get:

LEMMA 4.3. The volume element dV_g of (T^3,g) is given by $dV_g=fdt\wedge du\wedge ds$.

Now we calculate the Laplacian of (T^3, g) .

Proposition 4.4.

$$\Delta_{\it g} = -\partial^{\it z}/\partial t^{\it z} - (f'/f)(\partial/\partial t) - (1/f)^{\it z} L_{\it x} L_{\it x} - (1+f^{\it z}) L_{\it z} L_{\it z} + 2 L_{\it x} L_{\it z} \;.$$

PROOF. It is easily checked that ξ is a Killing vector field. So we have $\delta \omega = \text{div } \xi = 0$. Applying Proposition 3.2 and Corollary 4.2 we obtain Proposition 4.4 immediately.

4.3. Eigenvalues and eigenfunctions of (T^3, g) . By $C^{\infty}(T^3)$ we denote the space of complex-valued differentiable functions on T^3 . We define a scalar product on $C^{\infty}(T^3)$ by

$$\langle arphi,\,\psi
angle_1=\int_{T^3}\!\!arphiar{\psi}\,d\,V_{\scriptscriptstyle g}=\int_{T^3}\!\!arphiar{\psi}fdt\,\wedge\,du\,\wedge\,ds\qquad ext{for}\quad arphi,\,\psi\in C^\infty\!(T^3)\;.$$

On the other hand, we introduce on T^3 another Riemannian metric g_0 which is the natural Riemannian product on $S^1 \times S^1 \times S^1$. We define a scalar product with respect to g_0 by

$$\langlearphi,\,\psi
angle_{\scriptscriptstyle 0}=\int_{\scriptscriptstyle T^3}\!\!arphiar{\psi}d\,V_{s_0}=\int_{\scriptscriptstyle T^3}\!\!arphiar{\psi}dt\,\wedge\,du\,\wedge\,ds\;.$$

We denote the minimum of f and the maximum of f by m and M, respectively. Then we have $m \|\varphi\|_0^2 \le \|\varphi\|_1^2 \le M \|\varphi\|_0^2$ for $\varphi \in C^{\infty}(T^3)$, where as usual $\|\cdot\|_0$ and $\|\cdot\|_1$ denote the norms on $C^{\infty}(T^3)$ defined by $\langle \cdot, \cdot \rangle_0$ and $\langle \cdot, \cdot \rangle_1$, respectively. Therefore we get:

LEMMA 4.5. If $\{\varphi_j\}_{j=1}^{\infty}$ is a complete basis for $(C^{\infty}(T^3), \langle , \rangle_1)$, then it is also a complete basis for $(C^{\infty}(T^3), \langle , \rangle_0)$, and vice versa.

By $C^{\infty}(S^1)$, we denote the space of complex-valued differentiable functions on S^1 with a scalar product $\langle \varphi, \psi \rangle = \int_{S^1} \varphi \overline{\psi} f dt$. For integers k and l, we define a differential operator acting on $C^{\infty}(S^1)$ by

$$L(k;\,l)arphi = -d^2arphi/dt^2 - (f'/f)(darphi/dt) + (l/f - kf)^2arphi + k^2arphi \;.$$

LEMMA 4.6. L(k; l) is a strongly elliptic self-adjoint operator acting on $C^{\infty}(S^1)$.

PROOF. We will show that it is a self-adjoint operator. For φ , $\psi \in C^{\infty}(S^1)$, we have

$$egin{aligned} \langle L(k;\,l)arphi,\,\psi
angle\ &=\int_{\mathcal{S}^1}\!f\{-d^2arphi/dt^2-(f'/f)(darphi/dt)+(l/f-kf)^2arphi+k^2arphi\}ar\psi dt\ &=\int_{\mathcal{S}^1}\!\left\{\!-rac{d}{dt}\!\left(frac{darphi}{dt}ar\psi
ight)+rac{df}{dt}rac{darphi}{dt}ar\psi+frac{darphi}{dt}rac{dar\psi}{dt}-rac{df}{dt}rac{darphi}{dt}ar\psi\ &+f(l/f-kf)^2arphiar\psi+fk^2arphiar\psi
ight\}\!dt\ &=\int_{\mathcal{S}^1}\!\left\{\!frac{darphi}{dt}rac{dar\psi}{dt}+f(l/f-kf)^2arphiar\psi+fk^2arphiar\psi
ight\}\!dt\;. \end{aligned}$$

Similarly we have

$$\langlearphi,\,L(k;\,l)\psi
angle=\int_{S^1}\Bigl\{frac{darphi}{dt}\,rac{dar{\psi}}{dt}\,+\,f(l/f\,-\,kf)^2arphiar{\psi}\,+\,fk^2arphiar{\psi}\Bigr\}dt\;.$$

Let $\{\mu_i(k; l) \leq \mu_i(k; l) \leq \cdots\}$ be the eigenvalues of L(k; l), and $\varphi_i(k; l)$ be the eigenfunction such that $L(k; l)\varphi_i(k; l) = \mu_i(k; l)\varphi_i(k; l)$. By Lemma

4.6, for each pair (k, l), $\{\varphi_j(k; l)\}_{j=1}^{\infty}$ is a complete basis of $C^{\infty}(S^1)$. As is well known, e^{iks} $(k \in \mathbb{Z})$ is an eigenfunction of $-d^2/ds^2$ on S^1 . We write $\theta_k(s) = e^{iks}$ and $\psi_l(u) = e^{ilu}$ for $k, l \in \mathbb{Z}$.

LEMMA 4.7. $\varphi_j(k; l)\psi_l\theta_k$ is an eigenfunction of Δ_g and its eigenvalue is $\mu_j(k; l)$:

$$\Delta_{q}\varphi_{i}(k; l)\psi_{l}\theta_{k} = \mu_{i}(k; l)\varphi_{i}(k; l)\psi_{l}\theta_{k}$$
.

PROOF. We see that $L_{\xi}\psi_{l}=il\psi_{l}$ and $L_{\zeta}\theta_{k}=ik\theta_{k}$. Applying Proposition 4.4, we obtain the result.

Next we have:

PROPOSITION 4.8. $\{\varphi_j(k;\ l)\psi_l\theta_k,\ k,\ l\in \mathbf{Z},\ j=1,\ 2,\ \cdots\}$ is a complete basis for $(C^\infty(T^3),\ \langle\ ,\ \rangle_1)$ and hence $\{\mu_j(k;\ l);\ k,\ l\in \mathbf{Z},\ j=1,\ 2,\ \cdots\}$ is the spectrum of $(T^3,\ g)$.

PROOF. Let $u_h(t)=e^{iht}$, $h\in \mathbb{Z}$, be an eigenfunction of $-d^2/dt^2$ on S^1 . Since for each (k,l), $\{\varphi_j(k;l)\}_{j=1}^{\infty}$ is a complete basis for $C^{\infty}(S^1)$, for u_h there exist $a_j\in C$, $j=1,2,\cdots$, such that $\lim_{p\to\infty}\|u_h-\sum_{j=1}^pa_j\varphi_j(k;l)\|=0$, where $\|\ \|$ denotes the norm on $C^{\infty}(S^1)$ defined by the scalar product $\langle\ ,\ \rangle$ with respect to the measure fdt. Therefore we have

$$egin{aligned} \left\|u_h\psi_l heta_k-\sum_{j=1}^pa_jarphi_j(k;\,l)\,\psi_l heta_k
ight\|_1\ &=\left\|\left(u_h-\sum_{j=1}^pa_jarphi_j(k;\,l)
ight)\psi_l heta_k
ight\|_1\ &=\left\|u_h-\sum_{j=1}^pa_jarphi_j(k;\,l)
ight\|\left\{\int_{\mathbb{S}^1}\!\psi_lar{\psi}_ldu
ight\}^{1/2}\left\{\int_{\mathbb{S}^1}\! heta_kar{ heta}_kds
ight\}^{1/2}, \end{aligned}$$

from which it follows that $\lim_{p\to\infty}\|u_h\psi_l\theta_k-\sum_{j=1}^pa_j\varphi_j(k;l)\psi_l\theta_k\|_1=0$, where $\|\cdot\|_1$ denotes the norm on $C^\infty(T^3)$ defined by $\langle\cdot,\cdot\rangle_1$. On the other hand, it is well known that $\{u_h\psi_l\theta_k;\,h,\,l,\,k\in \mathbb{Z}\}$ is a complete basis for $(C^\infty(T^3),\langle\cdot,\cdot\rangle_0)$ (cf. [2]). By Lemma 4.5 $\{u_h\psi_l\theta_k;\,h,\,l,\,k\in \mathbb{Z}\}$ is also a complete basis for $(C^\infty(T^3),\langle\cdot,\cdot\rangle_1)$. The above arguments imply that $\{\varphi_j(k;\,l)\psi_l\theta_k;\,k,\,l\in \mathbb{Z}\}$ is a complete basis for $(C^\infty(T^3),\langle\cdot,\cdot\rangle_1)$.

4.4. Estimates of eigenvalues of the operator L(k; l). In this part, making use of the minimum principle we estimate eigenvalues of L(k; l) from below. First of all, we apply the minimum principle to the self-adjoint operator L(k; l). Then we have

$$egin{aligned} \mu_{_{\! 1}}(k;\,l) &= \inf_{_{\!arphi}} ra{L(k;\,l)arphi,\,arphi}/{\langlearphi,\,arphi
angle} \ &= \inf \int_{S^1} \{farphi'ararphi' + f(l/f-kf)^2arphiararphi + fk^2arphiararphi\}dt \left/\int_{S^1} \!\!farphiararphi dt \end{aligned}$$

$$=\inf\int_{\mathcal{S}^1}\Bigl\{farphi'ararphi'+f(l/f-kf)^2arphiararphi\}dt\left/\int_{\mathcal{S}^1}\!\!farphiararphi dt+k^2$$
 ,

where $\varphi'=d\varphi/dt$ and $\bar{\varphi}'=d\bar{\varphi}/dt$ and the infimum is taken over all non-zero φ in $C^{\infty}(S^1)$.

LEMMA 4.9. If f is not constant on S^1 and at least one of k and l is not zero, then there exists a positive constant $\varepsilon > 0$ which does not depend on k and l such that

$$\inf_{arphi} \left\{ \int_{S^1} \!\! f arphi' ar{arphi}' dt \, + \, \int_{S^1} \!\! f (l/f \, - \, kf)^2 \! arphi ar{arphi} dt
ight\} \Big/ \int_{S^1} \!\! f arphi ar{arphi} dt \geqq arepsilon \; ,$$

where the infimum is taken over all φ as above.

PROOF. Let m and M be the minimum and the maximum of f, respectively. In the proof of this lemma, for simplicity we omit S^1 in the integral sign. We have

$$egin{aligned} ig(**) & \left\{ \int \!\! f arphi' \overline{arphi}' dt + \int \!\! f (l/f - kf)^2 arphi \overline{arphi} dt
ight\} \left/ \int \!\! f arphi \overline{arphi} dt
ight. \ & \geq rac{m}{M} \left\{ \int \!\! arphi' \overline{arphi}' dt + rac{1}{Mm} \!\! \int \!\! (l - kf^2)^2 arphi \overline{arphi} dt
ight\} \left/ \int \!\! arphi \overline{arphi} dt
ight. \end{aligned}$$

When k = 0, since l is not zero, we have

$$egin{aligned} &rac{m}{M}\left\{\int\!arphi'ararphi'dt + rac{1}{Mm}l^2\!\!\int\!arphiararphi'dt
ight\}\left/\int\!arphiararphi'dt
ight. \ & \geq rac{m}{M}\left\{\intarphi'ararphi'dt + rac{1}{Mm}\!\!\int\!arphiararphi'dt
ight\}\left/\int\!arphiararphi'dt
ight. \end{aligned}$$

$$(**) \geq m \varepsilon_{\scriptscriptstyle \rm I}/M$$
 for any $\varphi \in C^{\scriptscriptstyle \infty}(S^{\scriptscriptstyle 1})$, $\varphi \not\equiv 0$.

When $k \neq 0$, we have

$$egin{aligned} (**) &\geqq rac{m}{M} \Big\{\!\! \int \!\! arphi' ar{arphi}' dt + rac{k^2}{Mm} \int \!\! (f^2 - l/k)^2 \! arphi ar{arphi} dt \Big\} \left/ \int \!\! arphi ar{arphi} dt
ight. \ &\geqq rac{m}{M} \Big\{\!\! \int \!\! arphi' ar{arphi}' dt + rac{1}{Mm} \int \!\! (f^2 - l/k)^2 \! arphi ar{arphi} dt \Big\} \left/ \int \!\! arphi ar{arphi} dt
ight. \end{aligned}$$

We put $\alpha = (M^2 - m^2)/2$. Since f is not constant, α is positive. Let t_1 be a point which attains the maximum of f. Then there exists a positive number $\delta > 0$ such that $f^2(t) - \alpha > 0$ for $t \in (t_1 - \delta, t_1 + \delta)$. There exists a non-negative differentiable function g_1 such that $\sup(g_1) \subset (t_1 - \delta, t_1 + \delta)$,

 $(f^2-\alpha)^2 \geq g_1^2$ on S^1 , and g_1 is not identically zero. Let t_2 be a point which attains the minimum of f. Then there exists a positive number $\delta'>0$ such that $\alpha-f^2(t)>0$ for $t\in (t_2-\delta',\,t_2+\delta')$. Similarly there exists a non-negative function g_2 on S^1 such that $\sup(g_2)\subset (t_2-\delta',\,t_2+\delta')$, $(\alpha-f^2)^2 \geq g_2^2$ on S^1 , and g_2 is not identically zero. If l/k is not greater than α , then we have $(f^2-l/k)^2 \geq g_1^2$. When l/k is not less than α , then we have $(f^2-l/k)^2 \geq g_2^2$. We put

$$arepsilon_{_2}=\inf_{_{arphi}}\left\{\intarphi'ar{arphi}'dt+rac{1}{Mm}\!\!\int\!\!g_{_1}^{_2}\!arphiar{arphi}dt
ight\}\left/\intarphiar{arphi}dt
ight.$$
 ,

and

$$arepsilon_{\scriptscriptstyle 3} = \inf_c \left\{ \!\! \left[arphi' ar{arphi}' dt + rac{1}{Mm} \!\! \left[g_{\scriptscriptstyle 2}^{\scriptscriptstyle 2} \! arphi ar{arphi} dt
ight\} \left/ \!\! \left[\!\! arphi ar{arphi} dt
ight.
ight.$$

where the infimum is taken over all non-zero φ in $C^{\infty}(S^1)$. Since g_1 and g_2 are not identically zero, we have $\varepsilon_2>0$ and $\varepsilon_3>0$. Therefore, when $l/k\leq \alpha$, we have

$$(**) \geq m\varepsilon_{\circ}/M$$
 for any $\varphi \in C^{\infty}(S^{1})$, $\varphi \not\equiv 0$.

Similarly, when $l/k \ge \alpha$, we have

$$(**) \geq m \varepsilon_3/M$$
 for any $\varphi \in C^{\infty}(S^1)$, $\varphi \not\equiv 0$.

By putting $\varepsilon =$ the minimum of $\{m\varepsilon_1/M, m\varepsilon_2/M, m\varepsilon_3/M\}$, we get Lemma 4.9.

When k=l=0, we see that $\mu_1(0; 0)=0$ and its eigenfunction is constant. Moreover, we have $\mu_2(0; 0)>0$.

PROPOSITION 4.10. Let $\tilde{\varepsilon}$ be the minimum of $\mu_2(0; 0)$ and ε in Lemma 4.9. We have $\mu_j(k; l) - k^2 \geq \tilde{\varepsilon} > 0$ for any j when at least one of k and l is not zero, and for $j \geq 2$ when k = l = 0.

4.5. Proof of Theorem in the 3-dimensional case. Following §3, we define a family of Riemannian metrics on T^3 by

$$g(t) = t^{-1}g + (t^2 - t^{-1})(\omega + ds) \otimes (\omega + ds)$$
 , $0 < t < \infty$.

By Proposition 3.4, we have $\Delta_{g(t)}\varphi = t\Delta_g\varphi + (t-t^{-2})L_{\zeta}L_{\zeta}\varphi$. We put $\Psi_{jkl} = \varphi_j(k; l)\psi_l\theta_k$, $k, l \in \mathbb{Z}, j = 1, 2, \cdots$. Then we have

$$\Delta_{g(t)} \Psi_{jkl} = \{ t(\mu_j(k;\,l)\,-\,k^2)\,+\,t^{-2}k^2 \} \Psi_{jkl} \;.$$

By Lemma 3.3 (1), $\{\Psi_{jkl}; k, l \in \mathbb{Z}, j=1, 2, \cdots\}$ is a complete basis with respect to g(t) for the space of differentiable functions on T^3 . So $\{t(\mu_j(k; l) - k^2) + t^{-2}k^2; k, l \in \mathbb{Z}, j=1, 2, \cdots\}$ is the spectrum of $(T^3, g(t))$.

When k=l=0 and j=1, $\Psi_{1,0,0}$ is a constant function with 0 as its eigenvalue. By Proposition 4.10, for a non-zero eigenvalue of $\Delta_{g(t)}$ we have $t(\mu_j(k;l)-k^2)+t^{-2}k^2 \geq t\tilde{\varepsilon}$. Therefore we obtain $\lambda_1(g(t))\to\infty$ as $t\to\infty$. We easily get $\lambda_1(g(t))\to 0$ as $t\to 0$. On the other hand, by Lemma 3.3 (1) we see that $\operatorname{Vol}(T^3,g(t))=\operatorname{Vol}(T^3,g)$. Thus Theorem in the 3-dimensional case is proved.

- 5. Proof of Theorem for T^n $(n \ge 4)$. When $n \ge 5$, we can prove Theorem by following the same process as in the 4-dimensional case. So we will prove Theorem only in the 4-dimensional case in this section.
- 5.1. A construction of a Riemannian metric g on T^4 . Following §3 again, we define a Riemannian metric g on T^4 . We consider T^4 as a product manifold $T^3 \times S^1$ with the natural projection $\tilde{\pi} \colon T^3 \times S^1 \to T^3$. T^3 is furnished with the Riemannian metric g given in §4. By $\tilde{\omega}$ we denote the 1-form dual to the vector field ζ in (T^3, g) . Then we have $\tilde{\omega} = \omega + ds$. We define \tilde{g} on T^4 by

$$\widetilde{g}=\widetilde{\pi}^*g+(\widetilde{\pmb{\omega}}+d\widetilde{\pmb{s}})igotimes(\widetilde{\pmb{\omega}}+d\widetilde{\pmb{s}})$$
 ,

where $\{\tilde{s}\}$ is a normal coordinate system in S^1 . By $\tilde{\zeta}$ we denote the vector field $\partial/\partial \tilde{s}$ in T^4 .

Noticing that ζ is a unit Killing vector field in (T^3, g) , by Proposition 3.2 we easily get:

Proposition 5.1. For $\varphi \in C^{\infty}(T^4)$ we have

$$\Delta_{\widetilde{g}}arphi = \Delta_{g}arphi - 2L_{\widetilde{\zeta}}L_{\widetilde{\zeta}}arphi + 2L_{\zeta}L_{\widetilde{\zeta}}arphi$$
 .

Contrary to the arguments in §4, we denote by λ_j $(0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots)$ the *j*-th eigenvalue of (T^s, g) with its eigenspace $V(\lambda_j)$. Since ζ is a unit Killing vector field on (T^s, g) , L_{ζ} and Δ_g commute, which implies that L_{ζ} is a linear transformation of $V(\lambda_j)$. By the results in §4, the following is clear.

LEMMA 5.2. For each eigenvalue λ_j of Δ_g , $V(\lambda_j)$ has the orthogonal decomposition:

$$V(\lambda_j) = \sum\limits_{k \,\in\, \mathbf{Z}} V_k(\lambda_j)$$
 ,

where $L_{\zeta}\varphi=ik\varphi$ for $\varphi\in V_k(\lambda_j)$ $k\in \mathbb{Z}$. (Here we do not care if some $V_k(\lambda_j)$ is trivial or not.) Moreover, the above decomposition has the following property. If λ_j is not zero and $V_k(\lambda_j)$ is not trivial, then there exists a positive number $\tilde{\varepsilon}>0$ such that $\lambda_j-k^2\geqq \tilde{\varepsilon}$ and $\tilde{\varepsilon}$ does not depend on j and k.

By ϕ_h , $h \in \mathbb{Z}$, we denote an eigenfunction $e^{ih\tilde{s}}$ on S^1 . By Proposition 5.1, we have:

PROPOSITION 5.3. If $V_k(\lambda_j)$ is not trivial, $\varphi\phi_h$ is an eigenfunction of (T^4, \widetilde{g}) with its eigenvalue $\lambda_j + 2h^2 - 2kh$ for $\varphi \in V_k(\lambda_j)$ and ϕ_h . The set of eigenfunctions of this form is a complete basis for $C^{\infty}(T^4)$ with respect to \widetilde{g} .

5.2. Proof of Theorem. Following §3, we define a family of Riemannian metrics $\tilde{g}(t)$ by

$$\widetilde{g}(t) = t^{\scriptscriptstyle -1} \widetilde{g} \, + (t^{\scriptscriptstyle 3} - t^{\scriptscriptstyle -1}) (\widetilde{\omega} + d \widetilde{s}) \otimes (\widetilde{\omega} + d \widetilde{s}) \qquad 0 < t < \, \infty \,\, .$$

By Proposition 3.4, we have $\Delta_{\widetilde{g}(t)}\Phi = t\Delta_{\widetilde{g}}\Phi + (t-t^{-3})L_{\widetilde{\zeta}}L_{\widetilde{\zeta}}\Phi$. Then we have $\Delta_{\widetilde{g}(t)}\varphi\phi_h = \{t(\lambda_j + h^2 - 2kh) + t^{-3}h^2\}\varphi\phi_h$. By the same arguments as in §4, each eigenvalue of $(T^4, \widetilde{g}(t))$ has the above form, i.e., $t(\lambda_j + h^2 - 2kh) + t^{-3}h^2$. If $j \neq 0$, by Lemma 5.2 we have

$$t(\lambda_j + h^2 - 2kh) + t^{-3}h^2 \ge t(k^2 + \tilde{\varepsilon} + h^2 - 2kh) \ge t(\tilde{\varepsilon} + (k-h)^2) \ge t\tilde{\varepsilon}$$
.

If j=0, then k=0 and we have $t(\lambda_0+h^2-2kh)+t^{-3}h^2=th^2+t^{-3}h^2$. Therefore for every positive eigenvalue λ of $(T^4,\widetilde{g}(t))$ we have $\lambda \geq t\varepsilon'$, where ε' is the minimum of 1 and $\widetilde{\varepsilon}$. So we have $\lambda_1(\widetilde{g}(t)) \to \infty$ as $t \to \infty$. We easily get $\lambda_1(\widetilde{g}(t)) \to 0$ as $t \to 0$. On the other hand, by Lemma 3.3 (1) we see that $\operatorname{Vol}(T^4,\widetilde{g}(t)) = \operatorname{Vol}(T^4,\widetilde{g})$.

REFERENCES

- [1] M. Berger, Sur les premières valeurs propres des variétés riemanniennes, Compositio Math. 26 (1973), 129-149.
- [2] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math. 194 (1971), Springer-Verlag, Berlin-Heidelberg-New York.
- [3] N. EJIRI, A construction of non-flat, compact irreducible Riemannian manifolds which are isospectral but not isometric, Math. Z. 168 (1979), 207-212.
- [4] J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris 270 (1970), 1645-1648.
- [5] H. Muto, The first eigenvalue of the Laplacian on even dimensional spheres, Tohoku Math. J. 32 (1980), 427-432.
- [6] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
- [7] S. TANNO, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J. 31 (1979), 179-185.
- [8] H. URAKAWA, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), 209-226.
- [9] H. URAKAWA, On the least positive eigenvalue of the Laplacian for the compact quotient of a certain Riemannian symmetric space, Nagoya Math. J. 78 (1980), 137-152.
- [10] H. URAKAWA AND H. MUTO, On the least positive eigenvalue of Laplacian for compact homogeneous spaces, Osaka J. Math. 17 (1980), 471-484.

[11] J. VILMS, Totally geodesic maps, J. Differential Geometry, 4 (1970), 73-79.

DEPARTMENT OF MATHEMATICS TOKYO METROPOLITAN UNIVERSITY SETAGAYA, TOKYO 158 JAPAN