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CLASSICAL SOLUTIONS OF THE STEFAN PROBLEM
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Introduction. The purpose of the present paper is to prove the local
(in-time) existence of the classical solutions for the initial value problem
of the one-phase multidimensional Stefan problem, by using Nash's im-
plicit function theorem.

The Stefan problem is a mathematical model for melting of a body
of ice in contact with water. The initial value problem for the one-phase
Stefan problem is formulated as follows:

(S-l) The unknowns are the thermal distribution in water and the
shape of ice. The initial data are prescribed.

(S-2) The temperature of ice is maintained at 0°C. (The problem
in which one considers the thermal distribution in ice is called the two-
phase problem, which is not discussed in this paper.)

(S-3) The thermal distribution u satisfies the heat equation (dt — A)u = 0,
where t is the time variable and A stands for the Laplacian with respect
to the space variables x = (xlf , xn).

(S-4) The body of ice melts, at each point of the interface, with
velocity in proportion to the normal gradient of u. The locus of the
interface in the (x, £)-space is the free boundary to be determined.

(S-5) The region occupied by water has possibly another connected
component of the boundary. This component is fixed as t varies, and
the heat may be supplied through it. The temperature is always non-
negative.
This is a naive and typical free boundary problem, posed by Stefan [36]-
[39].

In the one dimensional case, this problem (and also the two-phase
problem) has been extensively studied. The problem of existence and
uniqueness of the classical solution was settled by Rubinstein [27], [28].
It has also been proved that the classical solutions exist globally in time,
for the initial and boundary data in various classes of function spaces
(Rubinstein [29]; Friedman [10]; Cannon and Hill [5]; Cannon, Hill and
Primicerio [6]; Cannon and Primicerio [7]). An excellent historical survey
for the result before 1967 is provided by a monograph by Rubinstein
[30]. See also Nogi [25] and Yamaguti and Nogi [40].
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On the other hand, in the multidimensional case, as the ice melts, it
may possibly break into two or more pieces in a finite time. This means
that the classical solutions may not exist for all time in general, even
if the given data are sufficiently smooth.

Let us briefly refer to studies in the multidimensional one-phase
Stefan problem. The classical solutions are not expected to exist for all
time. This fact motivates the study of the solutions in a generalized
sense, i.e., the weak solutions. In [17], Kamenomostskaja introduced the
notion of the weak solution of this problem, and proved its global exist-
ense and uniqueness. Her work was generalized by Oleinik [26] and
Friedman [11]. The formulation of the problem as a parabolic variational
inequality was initiated by Duvaut [9]. This method was developed by
Friedman and Kinderlehrer [12], Caffarelli [l]-[3], Caffarelli and Friedman
[4] and Kinderlehrer and Nirenberg [18], [19]. In [l]-[4], the Lipschitz
continuity of the free boundary and the continuity of the thermal dis-
tribution up to the free boundary have been proved. Since the free
boundary of the classical solution should be of C -̂class and the thermal
distribution u of the classical solution should have the derivatives dx.u
which are continuous up to the free boundary, the type of such conclu-
sions as in [l]-[4] is slightly weaker than the required one. In [12]
and [19], a case in which we can obtain the C°° solution is posed. To
formulate the problem as a variational inequality, one needs the posi-
tivity of the initial and boundary data. Further, in order to obtain the
smoothness result in [12] and [19], they need a restrictive geometrical
assumption on the initial and boundary data which assures that the
melting is rapid and free from the breaking (see [12] and [19]). With
assumptions of such kind, one may get around the difficulty, explained
later in this introduction, in the multidimensional Stefan problem. In
the case in [12] and [19], however, the smoothness up to the initial time
was not proved.

What we do in the present paper is to construct the classical solu-
tions in a sufficiently small time interval in general. Our proof has an
advantage in revealing the character of the difficulty in the multidimen-
sional problem.

In order to state our result, we introduce the following notations.
Let Ωo be a bounded domain in Rn, n ^ 2, with C°° boundary. The domain
ΩQ is regarded as a region occupied by water. Suppose the boundary 8Ω0

has two connected components Γo and JQ, where the exterior boundary
Γo is in contact with ice, and the heat is supplied through the interior
boundary Jo. Given 0 < To < oo, we set, for 0 < T < To, Ωτ = Ωo x [0, Γ],
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o
Jτ = j0 x [0, T], Γτ = Γo x [0, JΓ]. AS the ice melts, the interface Γ(

varies and forms a free boundary, which will be diffeomorphic to ΓTy as
long as T is small enough. We shall parametrize this free boundary by
the distance function p from Γo (in Rn), and denote it by ΓPtT. The
corresponding space-time domain in Rn x R, which will be diffeomorphic
to Ωτ, is denoted by ΩPtT. The one-phase Stefan problem is a problem
determining the free boundary ΓPtT and the thermal distribution u in the
region ΩPfT occupied by water. By the preceding formulation (S-l)-(S-5),
we are led to the following equations for (p, u):

(1.) (dt - A)u = 0 in ΩPtT .

( 2 J u\t=Q = aQ .

( 3 J u = b0 on Jτ .

(4 J w = 0 on ΓPtT .

(5 J dtΦp - co<grad Φp, grad u) = 0 on Γ^)Γ .

Here α0 (resp. 60) is a nonnegative function on Ωo (resp. JTQ), ΦP is a
defining function of Γ̂ ,,Γ and c0 is a positive (because of its physical mean-
ing) constant. The equation (5J is the so-called Stefan condition which
makes the problem complicated. Now our result is as follows (for the
precise statement, see Section 1).

THEOREM. // aQ and bQ are sufficiently smooth and satisfy some
compatibility conditions, then, for a sufficiently small T, there exists a
classical solution (p, u) of (1J-(5J.

The above theorem is obtained by using Nash's implicit function
theorem. Recently, several articles have appeared on the applications
of Nash's implicit function theorem (Guillemin [13], in differential geo-
metry; Hamilton [15], in complex analysis; Hormander [16] and Schaeffer
[31]-[33], in free boundary problems; Klainerman [20], in the theory of
nonlinear wave equations; Zehnder [41], in Hamiltonian mechanics). How-
ever, Nash's theorem and its character are not so popular yet. Hence,
before explaining why and how this theorem is used in our proof, let
us sketch the idea of this theorem.

The classical implicit function theorem or the inverse function theo-
rem in the finite dimensional Euclidean space asserts the existence of the
local inverse of a smooth mapping with the nonzero Jacobian determinant.
This theorem extends to a Frechet differentiable, i.e., a linearizable,
mapping between infinine dimensional Banach spaces, provided the Frechet
derivative, i.e., the linearized operator, has the bounded inverse, namely,
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Banach's implicit function theorem. However, it is sometimes possible
that the linearized operator has merely an unbounded inverse. In the
case that the Banach spaces considered are certain function spaces, e.g.,
the set of functions of Cfe-class, and that the given mapping corresponds
to a nonlinear differential equation, such a phenomenon happens when
the operator solving the linearized problem does not gain the differenti-
ability of the same order as that of the equation. In such a case, the
original problem is said to have a derivative loss. Nash encountered
such a problem with derivative loss in his work [23] on the isometric
embedding problem for Riemannian manifolds and overcame this difficulty
by establishing a new method, Nash's implicit function theorem.

The statement of Nash's implicit function theorem is somewhat
complicated. The following is the simplified version due to Moser [22].
Consider two finite scales of Banach spaces EQZD Exz> z> Ek and
Fx z> F2 =) - => Fk, e.g., E, = Cmί+P, Ft = Cmi+q w i t h p > q and m > 0.

Let &~ be a nonlinear operator defined in a neighborhood V of 0 of Ex

into Fx such that *^~(p) eFt for peV Γ\ Et. Nash's theorem asserts that
the equation ^(p) — 0 has a solution peV, provided the following
assumptions are satisfied (for the exact statement, see Section 5):

(N-l) An operator ,9?: Eo —> Ek with parameter θ ̂  1 is defined so
that f or 0 ^ i ^ j ^ jfc,

\Sfef\Bj £ Cθ^\f\Eί , | / - Sή>f\Ei^ Cθ-"-"\f\Ei .

This S^Q is called a smoothing operator.
(N-2) The operator J^ is Frechet differentiable, i.e., &~ is linear-

izable.
(N-3) The linearized equation D^(p)δp — δG can be solved possibly

with derivative loss for each peV, i.e., there exists a linear operator
): Ft —> Ei_! for i ^ 1 and p e V Π Ei9 which is a right inverse to

(N-4) For i ^ 1 and p e V Π Eif

\^(ρ)^(ρ)\Ei^ ^ C(l + I p \ E i ) .

(N-5) The value \^~(0)\Fί is sufficiently small.
The assumptions (N-2, 3, 5) will be in no need of explanation. In

contrast to these, it seems that the assumptions (N-l) and (N-4) are
artificial and indistinct, though it is obvious from the proof of Nash's
theorem ([16]; [22]; [23]; Schwartz [34]; Sergeraert [35]) that they are
essential and indispensable. Later in this introduction, we will give a
short account for (N-l) and (N-4). Further, we add that the present paper
has two mathematical cores, which are to solve the linearized Stefan
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problem and to introduce a logical frame of a general character in which
the assumptions (N-l) and (N-4) can be verified.

Returning to our Stefan problem, let us sketch briefly how the
problem is rewritten as a nonlinear operator equation J^~(p) = 0 and the
essential feature of solving the linearized Stefan problem DJΓ{p)δp = δG.
Regarding the thermal distribution u as an auxiliary unknown determined
from the distance function p with (1J-(4J and introducing an operator
&~ which transforms p to the pull back of the function dtΦp — co<grad ΦP,
grad u) on the free boundary ΓPtT to the function on the flattened bound-
ary Γτ, we are led to a nonlinear equation ^{p) = 0 which is equivalent
to (1J-(5J. This equation can be linearized and the concrete form of
the linearized problem DJ^(p)δp = δG consists of two parts, as follows.
The first part, corresponding to (1J-(4J, is an initial boundary value
problem of the Dirichlet type for a linear second order parabolic equation
in Ωτ, where the unknown is an auxiliary one corresponding to the formal
Frechet derivative of u, and given data are p and δp. The second part,
corresponding to the Stefan condition (5J, is a linear first order equation
of hyperbolic type for δp on the flattend boundary Γτ, with the data
containing the normal derivative of the unknown of the first part. To
solve the above linearized problem, we eliminate δp from the system,
by substituting the solution δp of the latter hyperbolic equation for the
data δp in the former initial boundary value problem of parabolic type.
Then, introducing a new unknown δX for convenience, we find that the
essential point in solving the above system without δp is to solve a
linear parabolic initial boundary value problem for δX in Ωτ whose
boundary condition on Γτ is given by a linear hyperbolic first order
equation. We extend this first order operator to one in the domain Ωτ.
Then, to invert this first order operator, we need the nonnegativity of
the coefficients of the normal derivation in this operator on the boundary
Γτ. In fact, this condition assures that the characteristic curves start-
ing from points on the domain Ωo at the initial time cover the cylinder
Ωτ. In our case, by using the maximum principle of the heat equation,
we can prove the required nonnegativity because the temperature on Ωo

at the initial time and on the fixed boundary Jτ are nonnegative (namely,
this physical requirement has also a natural mathematical meaning). Then,
after a technical deformation, the above problem for δX is solved by
decomposing it to a parabolic initial boundary value problem of Dirichlet
type and an initial value problem for the above first order operator in
Ωτ. Consequently, the solution δp of the linearized Stefan problem

= δG is obtained as a linear combination containing the normal
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derivative of
Since, except in the one-dimensional case, the operator δG i-> δX gains

only the same regularity in the weighted Holder spaces, standard in the
theory of parabolic equations, the linearized Stefan problem can be solved,
but actually with an essential derivative loss. This is the reason why
we need Nash's implicit function theorem.

From the above consideration on solving the linearized Stefan problem,
we find that the reason why derivative loss occurs in the multidimen-
sional Stefan problem consists in the following fact: Since the mapping
solving the linear first order equation of hyperbolic type which corresponds
to the Stefan condition (5J gains the regularity only along the charac-
teristic curves, it cannot cover the bad influence of the diffusion effect,
i.e., the normal derivative of δX. This seems to be a new observation
showing why the multidimensional Stefan problem is difficult.

In the one-dimensional case, since direction of the diffusion can be
covered by the characteristic curve, we can solve the linearized problem
without derivative loss. Therefore, the local existence theorem for clas-
sical solutions is obtained by usual Banach's implicit function theorem,
because, in an appropriate setting, the norm | ̂ (0) | can be taken small
if T is sufficiently small.

Now, we account for the remaining assumptions (N-l) and (N-4).
The general principle to verify the assumption (N-4), i.e., the estimate
\^(jp)^(p)\i-x ^ C(l + |/o|i), is as follows: This estimate is automatically
obtained if we prove that each of all mathematical operations constructing
J?" and J ^ is a "balanced" operator. Here the meaning of the term
"balanced" will be illustrated by the following examples. In the weighted
Holder spaces, addition, multiplication, division, composition and to take
the solution u of a parabolic initial boundary value problem

(3* - Σ Aiodxdxj - Σ 4A, ~ A)u = f in Ωτ , u | ί = 0 = a , u\dΩτ = b ,

are balanced operations, because we have estimates of the following type:

1/ + g\M ^ I / L + l0l<r) , IΛLr) ^ C(l/U0l«» + \fUgU ,

l / / f l f | ( r ) ^ C [ | / | ( r ) + ( l + | f l r | ( r ) ) | / | ( 0 ) ] , if int g ^ B > 0 ,

l/oflf | { r, ^ C ( | / | ( r ) + | / U < / U , if r ^ l a n d \g\ω£B,

W ( r + a > ^ C [ ( Σ I A t i | ( r ) + Σ I A t | ( r ) + I A 0 | ( r ) ) ( | / | ( i ) + | α | ( £ + 2 ) + | 6 | ( . + 2 ) )

if r ^ ε > 0 , r and ε are not integers and
I A I 1 4 1 I Δ
l " i i l ( e ) > \'™-i\(ε) f I -Λ O
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where | | ( r ) is the weighted Holder norm of r-th order. Now the preced-
ing "general principle" is an ovbious fact. This "principle" is consciously
used, e.g., in [16] and [31]-[33]. Further, e.g., in [16], in place of the
parabolic boundary value problem and the weighted Holder norm, with
an elliptic boundary value problem and the usual Holder norm, ^~ and
^ are constructed only by operations listed in the above examples.
Then, with the fact that to construct smoothing orerators on a usual
Holder space is not so difficult, the above consideration is sufficient to
apply Nash's theorem to the problem in [16]. Moreover, it seems that
the above consideration is also sufficient for the other applications of
Nash's theorem listed above in this introduction.

Our new trouble on the verification of (N-4) in the Stefan problem
lies in the fact that, to invert the linearized problem, we had to take
the Neumann series to solve linear integral equations of Volterra type
several times. If an operator norm is less than 1 and we can complete
the proof by taking Neumann series only once, then to prove (N-4) is
not so difficult (see [33, Lemma 8.1]); however, both cannot be expected in
our proof. The method adopted in the present paper is as follows. Instead
of the usual weighted Holder spaces C(r), (r denotes the order of regu-
larity), we can use Qr) spaces each of which consists of all C{r) functions
whose derivatives up to r-th order are vanishing at the initial time,
because the considered problem is a linearized one, i.e., a variational

commutes with the norm, i.e.,
0

|\ / ^ \ \f\(r),tdt, where the subscripts T and t denote the width
I JO (r),T JO

of the time intervals. It should be noted that this commutativity does
not hold in C(r) spaces. Now, in C#

(r) spaces, by using the iterated esti-
mate \ ••• I / <ί (tn/nl)\f\ir)f it is obvious from the standard argu-

I JO Jθ (r)

ment that the operator solving a linear integral equation of Volterra
type is a balanced one.

Then, we account for the assumption (N-l) on the existence of smooth-
ing operators. Since we are working in the setting of Q r ) spaces, we
have to construct smoothing operators on Qr) spaces. It is known that
for Cm, m is an integer, Sobolev and usual Holder spaces, smoothing opera-
tors can be constructed as integral operators whose kernels are defined
by using Fourier transform (see, e.g., [16] and [23]). In the same method,
we can construct smoothing operators on C{r) spaces; however, these
operators do not preserve the Qr) property, i.e., the image of a Qr)

function is not necessarily a Q(r) function. Therefore the above method
cannot be used in our setting. On the other hand, in his work on the
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isometric embedding problem for analytic Riemannian manifolds [24], in
order to get smoothing operators which do not shrink the radii of con-
vergence of real analytic functions at each point in the domain, Nash
introduced a new method to construct smoothing operators. In [24],
smoothing operators are constructed as integral operators, but their
kernels are defined not by using Fourier transform, but by taking a
linear combination of functions each of which is obtained from the heat
kernel with an appropriate coordinate transform. (See also Gromov [14,
Section 3] whose exposition may be more precise than that in [24].) Then,
though the appearance of the problem is different from that in [24] and
we must take a C#

(oo) function instead of the heat kernel, we can con-
struct smoothing operators on Qr) spaces by using the method in [24].

The finite scale with C#
(r) spaces and the smoothing operators con-

structed in the above method constitute the logical frame, announced in
this introduction, in which the operator solving a linear integral equa-
tion of Volterra type becomes a balanced one. This frame seems to
be natural and useful in applying Nash's theorem to initial value
problems.

The outline of this paper is as follows. In Section 1, we give the
exact statement of our result and define the weighted Holder spaces
with which our theorem is formulated. In Section 2, we add a technical
assumption to our theorem to simplify the account of the proof and
restate our theorem by using some notations which are also introduced
in this section. The elimination of this technical assumption will be
carried out in Section 10. In Section 3, we collect together some funda-
mental lemmas which assure that multiplication, division, composition
and to take the solution of a parabolic initial boundary value problem
are balanced operators, in the weighted Holder spaces. In Section 4, we
introduce a nonlinear operator &~ by which Theorem' in Section 2 is
restated as the equation ^~(p) = 0. We apply Nash's implicit function
theorem to this operator equation. In Section 5, we state Nash's theorem
and pose two finite scales of Banach spaces on which Nash's theorem is
applied. In Section 6, smoothing operators in our setting are constructed;
in other words, the assumption (N-l) is verified. In Section 7, the Frechet
differentiability of ^ , i.e., the fact that the problem is linearizable, is
proved; in other words, the assumption (N-2) is verified. In Section 8,
we again collect together some technical lemmas, which include two key
lemmas to our proof. One of the two lemmas assures that in Qr) spaces,
the operator solving a linear integral equation of Volterra type is a
balanced one (see Lemma 8.A.4). The other lemma asserts that we can
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solve a linear parabolic initial boundary value problem whose boundary
condition is given by a first order equation such that the coefficient of
the normal derivative is nonnegative. This lemma also asserts that the
operator solving the problem is a balanced one (see Lemma 8.B.9). In
Section 9, by using the lemmas in Section 8, we solve the linearized
problem D^{p)δp = δG and observe that the solution δp satisfies the
assumptions (N-3) and (N-4). Section 9 contains the key fact which en-
ables us to prove the result of this paper, that is, the fact that the
coefficient corresponding to the one in the lemma in Section 8 on the
solvability of a parabolic initial boundary value problem is, in fact, non-
negative (see (9.16)). At the end of Section 9, the assumption (N-5) is
verified, so that the proof of Theorem' in Section 2 is completed. In
Section 10, we sketch how our proof is modified when the technical as-
sumption in Section 2 is replaced by the general compatibility condition
in Theorem in Section 1.

The author would like to thank the referee for his advice on the
style of this paper and on the literature on the Stefan problem.

1. The result. In this section, we state our result. At the begin-
ning, we prepare some notations.

(A) Let n be an integer with n ^ 2. Let Ωo be a bounded domain
in Rn whose boundary consists of the outside component Γo and the inside
one Jo. Suppose Γo and Jo are C°°. Let To be a positive constant. For
Te (0, To], let Ωτ = ΩQ x [0, Γ], Γτ = Γo x [0, T], and Jτ = Jo x [0, Γ].

(B) We define the Holder spaces.

DEFINITION l.B.l. Let d be a positive integer. Let D be a domain
with C°° boundary in Rd or D = Rd. Let r ^ 0. Then Cr(D) is the set
of real-valued functions f on D such that:

( i ) The derivatives 3£/ with | a | ^ [r] are continuously extended
to D, where a = (alf , an) denotes a d-tuple of non-negative integers,
dx = δji 3£», | α | = Σi=i«<» and [r] is the greatest integer not greater
than r.

(ii) The norm \f\r is finite.
Here \f\r is defined by:

( i ) l/lr = Σiαi^rSupseZi \d%f(x)\ if T is an integer.

y\r-w if τ i s n o t a n integer where \x — y\ denotes (Σ<=i \χi ~ vAΎ2-

DEFINITION l.B.2. Let d be a positive integer. Let / be an interval
in R. Let D be a domain with piecewise-C1 boundary in Rd x /. Let
r ^ 0. Then C{r)(D) is the set of real-valued functions f on D such that:
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( i ) The derivatives da

xd
a

tf{x, t) with | a \ + 2a ^ [r] are continuously
extended to D.

(i i) The norm |/ |< r ) is finite.
The norm | / | ( r ) is defined by:

( i ) l/l(r> = ΣΓ=o </>«) if r is an integer.
( ϋ ) l/l(r> = Σ S </>u) + </><„ if r is not an integer.

Here </>«, and </>(r) are defined by:

Σι«ι+2«=<-i sup ( j B f ί ) , (jCf „ ei>

f/(α, ί) - d«dΐf(x, s)\/\t- s\1/2 if ί is an integer,
(i i) </>(r) - Σι β ι + ! .=[r]sup l i p ί ) , ( f l ί ) β 5 I W ( z , t)-da

xdΐf(yf

sup (. i i ) f ( e,# ) e 2 J |3J3f/(a?, ί) - %dΐf(x, β)|/|ί - 8|<'-M+»'a if r i s not an integer.

DEFINITION l.B.3. Let M be a compact C°° manifold (with or with-
out boundary). Let / be an interval in R. Let r ^ 0. Then the set
C{r)(M x /) and the norm | | ( r ) in it are defined by using a finite cover-
ing of M by coordinate neighborhoods and a C°° partition of unity sub-
ordinate to it.

REMARK l.B.4. All the normed spaces in Definitions 1.B.1-1.B.3 are
Banach spaces.

(C) Let nω be the outward unit normal at ω e Γo. Let τ 0 be a posi-
tive constant so small that a mapping x: Γo x [ —70, 70]—>i?w defined by
(ω, λ) H* ft) + Xnω is regular and one-to-one. Let

No = {x(ω, λ); (ft), λ ) G f o x [-τ 0, 70]}

and

Nϊ - {α (ft), λ); (ft), λ) 6 Γo x [-τ 0, 0]} .

We denote the inverse mapping of x on No onto Γo x [—70, 70] by xt->
(α)(aj), λ(a?)). Clearly the mappings x(ω, λ), α)(a?) and x(x) are C°°. We
often use (ft)i(x), , ft)w_x(x)) as local coordinates of x e No, where ωt is
the i-th component of ft) with respect to local coordinates in Γo.

(D) For peC°(Γτ) with \p\0< y0, let

ΓP.T = {Mω, p(ω, t)), ί); (α>, t) e Γτ)

and let ΩPtT be the domain in Rn x [0, T] bounded by ΓPiT and J Γ . For
p e G\ΓT) with | p\Q < j 0 and for (x, t)eNox [0, T], let

(1.1) ΦP(x, t) - λ(α) - /o(o)(aj), ί) .

Note that

ΓP)T = {(x, t)eNox [0, Γ]; Φ,(a?, ί) = 0} .
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(E) Now our result can be stated as follows.

THEOREM. Let rQ = nQ + ε0 where n0 is an integer with nQ ^ 7 and
0 < ε0 < 1. Suppose that:

(A.I) α 0eC^ 4 3(fl 0) and boeC^+m(JTQ).
(A.2) The pair {α0, δ0} satisfies the compatibility condition up to

order [(r0 + 39)/2] of the Dirichlet problem for the heat equation, on JQ.
(A.3) aQ ^ 0 on Ωo, b0 ^ 0 on JTo and c0 is a positive constant.
(A.4) The function a0 satisfies the compatibility condition up to

order [(r0 + 39)/2] of the Stefan problem (see Remark I.E.4 in the follow-
ing).
Then, for a sufficiently small Te(0, TQ], there exist peC{rQ)(Γτ) with
p\t=Q = 0 and \p\0 < y0 and ueCiro)(Ωp>τ) which satisfy:

(1J (dt — A)u — 0 in ΩPyT .

( 2 J u\t=Q = aQ.

( 3 J u = bQ on Jτ .

(4J u = 0 on ΓP)T .

(5J dtΦp - co<grad Φp, grad u) = 0 o^ Γ^,Γ .

Here A = Σ?=i 32,., grad = (3βl, , 3βiι) and (x, y) = Σ?=i &i2/i /or a j e iίΛ.

REMARK I.E.I. The numbers 43 and 39 appearing in our theorem
have no specific meaning. They come out because we employ Moser's
version of Nash's implicit function theorem [22], which is the most pop-
ular one. Nash's original version [23] or Hormander's version [16] pro-
vides smaller numbers, but such a refinement may not be essential.

REMARK I.E.2. Consider the mixed problem of the heat equation
(3t — A)u — 0 with the initial condition u — a and the boundary condition
u — b (resp. dnu = b where n is the outward unit normal of the boundary).
The compatibility condition up to order i of the above problem requires
that dib = Aja (resp. d(b = dnA

ja) on the boundary at t — 0 for j = 0, , i.
For other mixed problems of parabolic type, analogous definitions are
adopted. (For details, see, e.g., Ladyzenskaja, Solonnikov and Uralceva
[21, p. 319-320].)

REMARK I.E.3. The assumption (A.3), which is natural in the physi-
cal sense, enables us to solve the linearized Stefan problem (see (9.16)).

REMARK I.E.4. Let ΐ be a nonnegative integer and let (p, u) be a
Cm) solution of the above system (1J-(5J with f>|ί=0 = 0. Because of
(4J, on Γo at t = 0, the time variable derivatives up to order i of u
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along ΓPtT vanish. Therefore, we have algebraic relations of u, dtu, ,
d\u and dφ, , dip on Γo at t = 0. On the other hand, in view of (1J,
(2J and (5J, all of the above derivatives are determined only by α0.
Then, we have algebraic relations of the derivatives d%aQ with \a\ ^ 2i
on Γo. These relations constitute the compatibility condition up to order
i of the Stefan problem.

REMARK I.E.5. As is mentioned in Introduction, the uniqueness of
the solution has been established even in the class of weak solutions.

REMARK I.E.6. The author does not know whether we can take
r0=oo in the above theorem. However, when the melting is rapid, our
solution (p, u) is of C°°-class at least for 0 < t < T, according to the
regularity theorem for classical solutions by Kinderlehrer and Nirenberg
[18], [19].

REMARK I.E.7. The width T of the existence interval is determined
only by |αo | r o + 4 3, |6o|(ro+39) and the shape of Γo.

2. Technical assumption. We shall first prove our theorem, assum-
ing the technical assumption

(T) d«ao = O on Γo if a\ ^ [r0 + 39] .

The elimination of this assumption will be carried out in Section 10. In
this section, assuming (T) and introducing a few new notations, we re-
state our result in somewhat different form from that in Section 1.

(A) We introduce a new class of Holder spaces.

DEFINITION 2.A.I. Let d be a positive integer. Let r ^ 0. For
Te(0, TQ] and for a domain D with piecewise-C1 boundary in Rdx[0, T],
we set

C£\D) = {/ e G'\D); (3?/)U = 0 for a = 0, . , [r/2]} .

Further, for T e (0, Γo] and for a compact C°° manifold M (with or without
boundary), Qr)(M x [0, T]) is similarly defined. In these cases, when we
emphasize that the interval of the "time variable" t is [0, Γ], we denote
the norm | / | { r ) by | / | ( r ) f Γ .

REMARK 2.A.2. The above normed spaces are Banach spaces.

(B) For Te(0, To], we set

Vτ = {peCl'°\Γτ);\p\lro) < δ0) ,

where 30 is a positive constant so small that:

( i ) 4 δ o ^ τ o .
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(ii) There is a positive constant σQ such that

tfo-1 Σ ίϊ ^ Σ APtij(x, t)ξ£j ^σo±ξ]

for ^ G F Γ , (x, t) e βΓ, and ζ e Rn. Here A,f<i are the coeίBcients of the
second order derivations in the operator £fp defined in (D) in this section.

(iii) There is a positive constant Bo such that

SP(ω, t) ^ J50-
χ

for peVτ and (α>, t)eΓτ. Here S, is the function defined in (D) in this
section.
This constant δQ is determined only by the shape of Γo.

(C) Choose a function Xo e C™(R) so that:
( i ) χo( λ) = i if | λ | ^ s0.

(ii) Z0(λ) - 0 if | λ | ^ 3δ0.
(iii) 13A(λ) I ̂  3/4δ0 for XeR.

For ^ G Fr, define a diffeomorphism e :̂ iί7* x [0, T]->Rn x [0, T] by:

(2.1.i) ep{x{ωf λ), ί) = (x(ω, λ + X0(\)p(ω, ί)), ί)

for (a?, ί) - (a(α>f λ), t) e No x [0, Γ] .

(2.1.ii) e (̂x, ί) = (x, ί) for (x, ί) e (Rn - No) x [0, T] .

Note that ep(Ωτ) = ΩPiTf ep{Γτ) — ΓPfT, and ep\t=0 is the identity mapping.
Define a function η: R x [ — δ0, δQ] —> iϊ by )̂ (λ, ̂ ) + #oθ7(λ, ^))Λ = λ

for (λ, μ)eR x [-δ0, δ0]. Since \dλX0(X)\ ^ 3/(450), the function η is well-
defined and C°°. We easily observe that:

(2.2.i) ej\x(ω9 λ), t) = (x(ω, η(\, p[ω, t))\ t)

for (x, t) = (x(ω, λ), t)eNox [0, T] .

(2.2.U) e^^a?, ί) = (x, t) for (a?, t) e (β Λ - JV0) x [0, Γ] .

(D) We define the operator J5?P and the function Sp by:

(2.3.i) £fPV = [(dt-4)(Voep-
1)]oep for F e C l 2 ) ( β r ) .

(2.3.U) [(gradΦP,gτad(Voep

1))]oeP = (dλV)SP on ΓΓ

for F e C 1 ^ ) with V\Γτ = 0 .

For the explicit expressions, see Section 4.
(E) Now our restricted and modified theorem is as follows.

THEOREM'. Assume the assumptions (A.1)-(A.3) and (T). Then, there
exist peVτ and ueC{r°\ΩP)T) which satisfy (1J-(5J.

REMARK 2.E.I. When we assume (T), we can replace the assumption
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αoeCro+43(βo) by a weaker one aoeCro+Z9(Ωo).

3. Technical lemmas I. We collect together some lemmas which
are used in the following sections. Throughout this paper, "X is bounded
with Y" means that X is bounded when Y is.

(A) We begin with the following fact. By the term "a manifold",
we mean both one with boundary and one without boundary.

LEMMA 3.A.I. Let M be a compact C°° manifold. Let 7 < δ and
0 ^ p ^ q ^ r. Let f belong to C{r\M x [7, 8]). Then

Here C is a constant bounded with r and (8 — 7)"1.

Lemma 3.A.I can be proved in the same way as [16, Theorem A.5]
or [32, Corollary 1.3] (with [21, Lemma 3.2, p. 80]), which are analogues
for Cr spaces.

COROLLARY 3.A.2. Let g and h belong to Ci9+r)(M x [7, 8]). Then

\9Uh\{r) ^ C(\g\{q+r)\h\0 + \g\0\h\{q+r)) .

Here C is a constant bounded with q + r and (8 — 7)" 1 .

PROOF. From Lemma 3.A.I and the obvious inequality aι~μbμ ^
(1 — μ)a + μb for α, b ^ 0 and μ e [0, 1], the corollary follows immediately.

COROLLARY 3.A.3. Let g and h belong to C{r\M x [7, 8\). Then their
product fg belongs to Cir)(M x [7, S]) and satisfies

\fg\M^C(\f\{r)\g\0+ |/|0 |flr| ( r )).

Here C is a constant bounded with r and (8 — 7)""1.

PROOF. From Definitions 1.B.2, 1.B.3, Leibnitz's formula and Corol-
lary 3.A.2, the corollary follows immediately.

REMARK 3.A.4. Corollary 3.A.3 implies that C{r)(Mx[y, 3]) is a ring
and Qr\M x [0, T]) is an ideal in C{r\M x [0, Γ]).

We introduce a special class of functions.

DEFINITION 3.A.5. Let M be a compact C°° manifold. Let / be a
subset of nonnegative real numbers having the maximal element. Let
G ^ 1. Then, for Γe(0, Γo], E&M x [0, T]) is the set of functions fe
C ί m a x / 1 ( I x [ 0 , Γ ] ) having an extension fe C(max/)(M x [-Γo, Γ]) such
that I f\{q) £ G\f\{q) for q e I. We call the above / an j^-extension of /.

LEMMA 3.A.6. Let M be a compact C°° manifold. Let r ^ 0. Then
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we have:
( i ) C{{\M x [0, T]) c E[°>rXM x [0, T]).
(ii) // r < 2, ίλβw C{r\M x [0, Γ]) - El° r\M x [0, T]).
(iii) // r ^ 2, ίftew

{/ G C(r)(ikf x [0, Γ]); dtf 6 C{{-2\M x [0, Γ])} c E[^\M x [0, ϊ7]) .

PROOF. In the above cases, we can construct an JS'p^-extension /
of / by putting f(x, t) = f(x, 0) for (x, t) e M x [-To, 0]. This proves
the lemma.

LEMMA 3.A.7. Let M be a compact C°° manifold. Let 0 ̂  p, q <; r
and G ̂  1. Let a and β be n-tuples of nonnegative integers. Suppose
that:

( i ) / 6 ^ + l « i + ^+i«l+-i(j|f x [0, Γ]).

(i i) ge E^+{^+b'r+ϊβl+b](M x [0, T]).

Then the product (da

xd
a

t f){dβ

xd\g) belongs to C{r\M x [0, T]) and satisfies

\(dfflf)(dβ

xd
h

tg)\{r) ^ C ( | / | ( r + , β , + β ) | f l F | ( β + , ^ , + 6 , + | / | ( p + ι β ι + α ) l f l r | ( r + ι ^ ι + 6 ) ) -

Here C is a constant bounded with r, |a\ + α, \β\ + b, and G.

PROOF. From Corollary 3.A.3 and Definition 3.A.5, the lemma fol-
lows immediately.

REMARK 3.A.8. In Lemma 3.A.7, the constant C is independent of
Γe(0, Γo], when G is.

LEMMA 3.A.9. Let dγ and d2 be positive integers. Let Dγ (resp. D2)
be a bounded domain with C°° boundary in Rdι (resp. Rd2). Let r ^ 1
and G ̂  1. Suppose that:

( i i ) The components glf " 9gdl of a mapping g: D2 x [0, T]—>D1

belong to E£>r)(D2 x [0, Γ]).

(in) ΣίiilΛlω^B-
Then the composed function (x, t) \-+f(g(x, t), t) belongs to C{r)(D2 x [0, T])
and satisfies

\f(9(x,t),t)\{r) rg C(\f\lr) + |/ | ( 1,ΣlΛl(r,) .

Here C is a constant bounded with r, G, and B.

Lemma 3.A.9 can be proved in the same way as [16, Theorem A.8]
or [32, Lemma 1.6], which are analogues for Cr spaces.

Finally we state the following fact, which follows immediately from
Definitions 1.B.2 and l.B.3.



312 E.-I. HANZAWA

LEMMA 3.A. 10. Let M be a compact C°° manifold. Let 7 < δ and
r ^ 0. Let B > 0. Suppose that:

( i ) feClr)(Mx [<γ,δ]).
(ii) |/(α?, t) I ̂  S-1 for (x, t) e M x [7, δ].

Λe function (x, t) H-> l//(#, ί) belongs to C{r)(M x [7, §]) and satisfies

Here C is a constant bounded with r and B.

(B) Throughout (B), let £f be a differential operator on Ωτ of the
form

n n
C~Z? 7^ ^ * A (/γ f \rf ^ \ ' Λ (/γ /Λ^ A (sy φ\ f rvy //y» -f-\ c. (~)

DEFINITION 3.B.I. Let 0 <; A; ^ r. Let σ and S be positive constants.
We say that J^f is a (ft, r, σ, i?)-#-parabolic operator if:

( i ) Aih A<, Λ e στ\Sτ) for i,j = l, , n.

( i i ) I f r ^ 2 , t h e n ^ A ^ , dtAt, dtA0 e ^ ' - " ( f l , . ) f o r i, j = 1, ••-,%.

(ft) I-"0 !(*) =

ί = 0)| r + Σ?=i I(ΛU)Ir + I(Λlί=o)|r

( i ϋ )

( i v )

( v ) tf-1 Σ ? = i f? ^ Σ ? . i = i ^ ϋ ( » , t)ζi£i ^ ^ Σ ? = i f ί f o r (x,t)eΩτ a n d

LEMMA 3.B.2. Let i be a nonnegative integer. Let σ and B be posi-
tive constants. Suppose that:

( i ) The operator S^ is (s0, ε0 + i, σ, B)-$-parabolic.
(ii) feCϊ°+i)(Ωτ).
(iii) u e C{εo+ί+2)(Ωτ).
(iv) ^ ' ^ = f in Ωτ.

Then u belongs to £^'£o+Mo+3> •'f0+ΐ+2}(βΓ). Here G is a constant bounded
with i, σ, and B.

PROOF. Let Άgh, Άg, and Άo be extensions of Agh\t=0, Ag\t=0, and i o | ί = o

to Rn, respectively, such that:
( i ) Agh,Ag,AoeC*o+i(R»).
( i i ) I Άgh | e o + , rg Cx\ (Agh | ί = 0 ) | . 0 + i, I Άg \εo+j ^ Cx\ (Ag \ t = 0 ) |.0 + y, | Άo \εo+j ^

C±\(A0\t=o)\εo+jf for j = 0, , i.

Here g, h = 1, - , n and Cx is a constant bounded with i. (This is possible
by the Hestenes-Whitney technique. See, e.g., [21, p. 296-297].) Let Ω,
be a domain with C°° boundary in Rn such that:

( i ) fl.cft.
(ii) (2a*)"1 Σ*=i ίϊ ^ Σα=i Agh(x)ζgξh ^ 2σ Σ?=i ί§ for a? e Ωγ and f e Jf2Λ.

The domain Ωx is determined only by Ωo, σ, and J5. Let a be an extension
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of u\t=0 to Ωλ such that:
( i ) supp a c Ωx.
(ii) aeC^^Ω,).
(iii) | α | £ o + i + 2 ^ C2\(u\t=Q)\εo+j+2 for j = 0, , i.

Here C2 is a constant bounded with i, <τ, and i?. Let 3 ^ be the boundary
of Ωγ. Let w be the solution of the mixed problem:

( 1 ) (dt - Σ Ai3 (x)dxdxj - Σ A(x)dXi - ΆQ(x))w = 0 in Ω, x [0, Γo] .

( 2 ) w\t=0 = a.

( 3 ) w = 0 on dΩ, x [0, Γo] .

It is known that w exists in C^+i+2\Ω1 x [0, Γo]) and satisfies \w\{q) ^
C 3 |α| g for ^ = 0, ε0 + 2, ε0 + 3, , ε0 + i + 2. Here C3 is a constant
bounded with i. (See [21, Theorem 2.3, p. 16-17] and [21, Theorem 5.2,
p. 320].) We easily observe that:

( i ) 0 ί w ) U - (diu)\t=0 on £ 0 for i = 0, - , [(i + 2)/2].
(ii) |w|(ff,,Γo ^ C2C3 |^| ( g ) > Γ for g = 0, ε0 + 2, ε0 + 3, •••, ε0 + i + 2.

Let w be the Hestenes-Whitney extension of w to Ωλx[ — To, To] Now
we can construct an Eί?>εo+2'εo+3>'~>εo+i+2]-extension u of ^ by setting S(a?, ί) =
w(a?f ί) for (x, t) efi0 x [ — Γo, 0]. This proves the lemma.

LEMMA 3.B.3. Let ί be a nonnegative integer. Let σ and B be posi-
tive constants. Suppose that:

( i ) The operator £f is (ε0, ε0 + i, σ, B)-#-parabolic.
(ii) /eCr(f l_ Γ ) .
(iii) αe
(iv) b^
(v) b2 e C(εo+i+2)(ΓΓ) (resp. b2eC{ε°+ί+1\Γτ)).

Consider the following mixed problem:

( 2 ) u\t=0 = a.

( 3 ) u = b1 on Jτ .

( 4 ) u = b2 (resp. dλu = b2) on Γτ .

{Here dλ is the partial differentiation with respect to λ in the (ωl9 ,
ωM_i, λ) coordinates.) Suppose that:

( i ) The set {α, 6J satisfies the compatibility condition of order
[(i + 2)/2] of the Dirichlet problem for the equation ^fu — f on Jo at
t = 0.
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(ii) The set {α, b2} satisfies the compactibility condition of order
[(ί + 2)/2] (resp. [(i + l)/2]) of the Dirichlet (resp. Neumann) problem
for the equation Sfu — f on Γo at t = 0.
Then the problem (l)-(4) has a unique solution u in Ciεo+i+2)(Ωτ) which
satisfies

K n n

Σ \Agh\{e0+i) + Σ \Ag \{εo+i) + | A ) | ( ε o
g,h—l g=i

x (l/l(«o) + I a 1-0+2 + |δil(.0+2) + | δ 2 | ( ε o + 2 ) )

(resp. \u\

I 6l | (.0+2) + l&2l<εo+l>) + ( l/ lco + O + I α k + W + |δl |(« 0 + ί + 2) + I &2 |(eo+i+l))]). HβVβ C

is a constant bounded with i, σ, and B.

For the proof, refer to [16, Theorem A. 14] which is an analogue for
the elliptic boundary value problem. With the aid of [21, Theorems 5.2,
5.3, p. 320-321], [21, Theorem 2.3, p. 16-17], Lemmas 3.A.6, 3.A.7 and
Lemma 3.B.2, we can prove Lemma 3.B.3 in a manner similar to the
proof of [16, Theorem A.14].

4. Reformulation of the problem. In order to apply Nash's implicit
function theorem, we reformulate Theorem' (in Section 2).

(A) For peVτ, by using the notations £f9 and Sp introduced in
Section 2 and by setting U — u°ep, we can reformulate (1J-(5J as follows:

(lu) ^fPU=0 in Ωτ .

(2σ) U\t=0 = a0.

(3c) U = δ0 on Jτ .

(4r) U=0 on Γτ.

(5tf) dφ + co(dλU)Sp = 0 on Γτ .

Let us express £f9 as

£?P = dt - Σ A^.^α?, ί)3β<3βi - Σ APti(x, t)dβt

for (x,t)eΩτ with APfij = Ap>ji. By (2.1)-(2.3), a routine calculation

gives us:

(4.1.i) APtii(x, t) = Aiy(a?, /θ(α)(a?), ί), dωιp(ω(x), t)f , dn%^p{ω{x\ t))

for i, i = 1, , w and (a?, ί) 6 iV0~ x [0, T], where (α^, , ft>w_i) are local
coordinates in Γo.
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(4.1.U) APtiS(x, t) = δiS

for i, j = 1, , n and (a?, ί) 6 (Ωo — No~) x [0, T], where δ o is Kronecker's
delta.

(4.1-iii) A,fi(a?, ί) = At(xf p(ω(x), ί), dωιp(ω(x), ί), , dω%^p{ω{x\ t),

dφ(ω(x), ί ) , d ^ ( α > ( a θ , ί ) , 3 ω i d ω 2 l o ( ω ( z ) , * ) , • • • ,

^ . ^ ( © ( a ? ) , ί))

for i = 1, - , w and (a;, ί) e JV0~ x [0, Γ].

(4.1.iv) APιi(x, ί) = 0 for i = 1, , w and (a;, ί) 6 (β 0 - No~) x [0, Γ] .

Here A<y (resp. A<) are C°° functions on ΛΓ0~ x [ — δ09 δ0] x Λ9*"1 (resp.
iVo" x[-δo, SQ] x Λ(li8+")/8). We easily observe that if p e F Γ Π Q r )(ΓΓ) for
^ ^ τ09 then ^ is an (r0 — 2, r — 2, σ0, jB)-#-parabolic operator (see (B) in
Section 2). Here B is a positive constant.

On the other hand, express Sp as

(4.2) S,(α>, t) = S(ω, p{ω, t\ dωip{ω, * ) , . . - , S ^ ^ ω , ί))

for (α>, t)eΓτ. By (1.1), a routine calculation gives us

S(o), p(ω, t), 3^(0), «),-•-, dω^piω, «))

- Σ {δ.Λ^^, ^(o), «))) - g [3«y/o(fi>, O l ^ ω ^ α ) , p(ω, ί)))]}*

for (ω, ί) 6 TV As is assumed in Section 1, the function Sp has a positive
constant BQ1 as a lower bound. Note that grad λ ^ 0 on Γτ because Γ
is embedded in Rn without critical points. We easily observe that if
peVτΓ\ Q r )(ΓΓ) for r ^ r0, then 3,(5,) e C{{-Z\ΓT).

(B) Define a mapping ^\VT-^ Qr°-2)(ΓT) by

(4.3) ^~(p) = dφ + cQ[(dλU)\λ=0]SP for p e F Γ .

Here C/̂  is the solution U of (l^)-(4^). This is possible by Lemma 3.B.3
and the assumptions (A.2) and (T) in theorem.

Clearly Theorem' (in Section 2) is reformulated as:

THEOREM' (reformulated form). Under the same assumptions as in
Theorem' in Section 2, for a sufficiently small T e ( 0 , JΓO], there exists
peVτ with ^(p) = 0.

Here we suppose p is the only unknown of the problem because u
is obtained once p is determined.

(C) By Lemmas 3.A.9 and 3.B.3, we have

(4.4) \UP\{ro+i)^C(l + \p\{ro+ί)) f o r i = 0, - - . , 3 9

a n d peVτnQr°+ί)(Γτ) .

o
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Here C is a constant bounded with | α o | r o + 3 9 and |ί>0|(r0+39). β y (4.3), (4.4)
and Lemma 3.A.7, we have:

(4.5.i) ^(Vτ Π Q r o + ί )(ΓΓ)) Q σp+ί~2\Γτ) for i = 0, . , 40 .

(4.5.U) \J^(p)\{ro+ί-2) ^ C(l + |<o|(ro+<)) for i = 0, , 40

and |0 6 7

Here C is a constant bounded with |α o | r o + 3 9 and |60|(r0+39)

5. Nash's implicit function theorem. (A) We recall the well-known
version of Nash's implicit function theorem due to Moser [22]. For the
proof, refer to [22], [34, Chapter 2] and [35].

NASH'S IMPLICIT FUNCTION THEOREM. Let EQ, Eu •••, and En (resp.
Fi, F2f , and Fn) be real Banach spaces such that:

( i ) Eo 3 E, 3 . D En (resp. Fx 3 F2 3 . . 3 F u )
( ϋ ) Ix|i ̂  Ix | i + i /or i = 0, •••,11 and xεEί+1 (resp. \y\t^\y\i+1

for ί = 1, , 11 α^d 2/ e Fi+1).
Here \ \t denotes the norm in Et (resp. Fx). Let δ be a positive constant
and let V = {x eE^ 1̂ 1 < δ}. Let ^ \ F—>JF\ be a mapping such that
^(V ΓΊ E<) QFifori = l,->., 11.

Suppose that:
( I ) There exists a "smoothing" linear operator J?ζ: EQ -> ̂ u for

θ JΞ> 1 which satisfies:

(Li) l^α? |, ^ C^'-'l a? I, /or i, j with 0 ̂  ΐ ^ j ^ 11 α^d a e J^ .

(I.ii) |x - ^ ? ^ | , ̂  C^-^-^lxl,- /or i, j with 0 ̂  i ^ j ^ 11

and xeEj .

( I I ) There exists a "Frechet derivative" linear operator Dj^"(x):
E1 —> Fλ for xeV which satisfies:

(ILi) I DJ^(x)h \λ ^ C2\ h \, for heEt.

(Π.ii) I J^"(x + h) - JT(χ) - B^(x)h \λ ^ C2\ h |? /or fe e ^

'M ίίfe x + heV.

( I I I ) ΓΛerβ e^sίs α "right inverse" linear operator
for xeV which satisfies:

(IILi) J^(x)F, Q Et_x for i = 1, , 1 1 and x e F n ^

( I Π . i i ) D^(x)^(x)y = y for xeV Π E2 and y e F2

(IΠ.iii) \^(x)y\o^Cs\y\1 for yeFt.

(IΠ.iv) \^(x)^(x)\ί_1^ C8(l + | x | J /or i = l , ---,11
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Here C19 C2, and C3 are constants.
Then there is a positive constant ε determined by C19 C2, C3 and δ

such that: If \^r(0)\ι < ε, then there exists xeV with ^(x) = 0.

(B) We prove Theorem' (in Section 4) by using Nash's implicit func-
tion theorem. The setting in which we apply Nash's implicit function
theorem is:

( i ) Et = C{p-Mί\Γτ) for i = 0, - , 11.
(ϋ) Ft = Qr°-6-(εo/2)+4i)(ΓΓ) for i = 1, , 11.
(iϋ) s = δ0 (so that V = Vτ).
(iv) The mapping J^ is the one defined by (4.3) (see (4.5.i)).

In the following sections, we show that the mapping ά^ and the spaces
Eif Ft together with 8 satisfy the conditions in Nash's implicit function
theorem.

6. Smoothing operators. We verify the condition (I) in Nash's

theorem. Choose a function ζ0 on Rnl x R so that:

( i ) ζoGCo-CR*-1 XB).

(ϋ) ζo(a, t) = 0 f or x e Rnl and t ^ 0.

(iii) 1 ζo(α?, t)dxdt = 1, where dx = Π?=ί dxt .

Define a sequence of functions {ζ0, ζl9 } by

ζt(x, t) = (1 - 2i)-1[ζi_1(^, t) - 2i+»+ίζU2x, 4ί)]

for ΐ = 1, 2, and (x, t) e Rnl x R. For ΐ = 0, 1, , we can easily
verify that:

( i ) ZtβCo^R^x R).
(ii) ζ,(x, ί) = 0 f or x e Rnl and t ^ 0.

(iii) \ ζJtx, t)dxdt = 1.

(iv) ί xataζi(x, t)dxdt = 0 if 0 < \a\ + 2a ̂  ΐ .

Let i0 = [r0] + 40. For θ ̂  1, define a linear operator

JiiCPίB*-1 x [0, T]) -> C^iR"-1 x [0, Γ])

by

for / e C^iR"'1 x [0, ϊ7]) and (x, t)eRn~λ x [0, Γ] .

The fact that S^f is in QίQ) follows from the property (ii) of ζ<β We
can verify that:

( i ) l^f/l(r) ^ C^r-9 |/lω f o r real numbers q, r with 0 ^ g ^ r <:
r0 + 40 and for feCf{Rn-1 x [0, Γ]).
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(i i) | / - Sif\{q) ^ Cθ-{r-q)\f\{r) for real numbers q, r with 0 ̂  q ̂
r ^ r0 + 40 and for fe C^iR*-1 x [0, T]).
Here C is a constant determined by ζ<0. For the proof, refer to [16,
Theorem A. 10] where analogous inequalities are proved for Cr spaces.
The above inequalities (i) and (ii) can be proved similarly.

Set θ = θυ\ Consider a finite covering of Γo by coordinate neigh-
borhoods and a C°° partition of unity subordinate to it. Then, for 0 ^ 1 ,
we can construct a linear operator £fB\ Qr°-4)(ΓΓ) -• Qro+m(Γτ) which
satisfies:

( i ) \^f\iro-^^Cθ^\f\{ro_4+u) f o r i,j w i t h O r g ΐ r g i ^ l l a n d
/ e Q ^ « ( Γ Γ ) .

(ii) | / - ^/|(ro-4+«, ^ Cθ-^\f\{r^+φ for i, i with 0 ̂  i ^ i rg 11
and feCir°-Mi)(Γτ).
Here C is a constant. This proves (I).

7. Frechet differentiability of ^ 7 We verify the condition (II) in
Nash's implicit function theorem.

(A) Let g7, = 3, - j ^ . For p e F Γ and δpeQr°\Γτ), let δif, -
Σ?,y-i (8APtij)dΛtd9j + Σ?=i (^P.OS., on Ωτ. Here ίΛ^<y and δA,,έ are de-
fined by:

(7.1.i) δAPΛά^[{dldP)Aij\dpΛ-±{[dKdωhp)]Aί5}dωhδp on No~ x [0, T] .
h=l

(7.1.ii) 8APtti = 0 on (β 0 - JVo") x [0, Γ] .

(7.1.iii) 8AP,< = [{Bldp)At]δp + Σ {[3(aβt|θ)]il(}3.4ίli> + { [ 3 / 3 ( 3 ^ ) ] ^ } ^
fi = 1

+ ^ Σ ^ {[dMd.ldaiιp)]At}d.βdβhδp on JV," x [0, Γ] .

(7.1.iv) δAPιi = 0 on JV<r X [0, T] .

(See (4.1).)

Let δUp be the solution of the problem:

(lδu) ^fp(δUp) = (δξfP)Up in Ωτ.

(2δU) δUP\t=0 = 0.

(3δu) δUP = 0 on JT .

(4ίl7) δUP = 0 on Γ Γ .

Since δ̂ o belongs to Q r o )(ΓΓ), the compatibility condition of order [ro/2]
of (lδu)-(4:δU) is satisfied. Then, by Lemmas 3.A.7, 3.B.2 and 3.B.3 and
(4.4), the function δUP is well-defined in Qr°\Ωτ) and satisfies

(7.2) \8UP\{ro)^C\δp\{ro).
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Here C is a constant bounded with |α o | r o and |δo |( r o ).
Further we observe that if p + δp belongs to VT9 then

(7.3) \UP+δP- UP-δUP\{ro)£C\δp\lQ).

Here C is a constant bounded with |α o | r o and |δ o | ( r o , . In fact we have:

( 1 ) J^P+δP(UP+δP - UP-δUP)

= {&P+δP - &p- dϊ?P)UP + (gVw - &p)δUP on Ωτ .

( 2 ) (UP+δP- UP - δ ! 7 , ) U = 0 .

( 3 ) £ / ^ - UP-δUP = 0 on J Γ .

( 4 ) ϊ7,+ ί, - E7, -- SET, = 0 on Γ Γ .

By Lemmas 3.A.7, 3.B.2 and 3.B.3 and by (4.4), (7.1) and (7.2), we ob-
tain (7.3).

(B) For p e Vτ, define a linear operator D^(ρ): Q r o )(ΓΓ) -> Cίr°-2)(ΓΓ) by

(7.4) D^(p)δp = dtδp + co[(3, UP) \λ^δSp + co{[dλ(δ UP)] \Xss0}SP

for δpeC^\Γτ) (see (4.3)). Here

(7.5) δSP = [(d/dp)S]δp + Σ {[d/d(dUip)S}dωiδp .

(See (4.2).) By (4.4), (7.2), (7.3) and (7.4), we have
( i ) I Djr(p)dp I (ro_2) ^ C| δp I (ro) for δp e C£«\ΓT).
(ii) l^^ + δ ^ - ^ ^ - D ^ ^ ^ I ^ ^ C I δ p l ^ for δpeC^(Γτ)

with p + δpe Vτ.
Here C is a constant bounded with |α o | r o and |δ 0 | ( r o). This proves (II).

8. Technical lemmas II. We prove some lemmas which are used to
verify (III). As in Section 3, by "a manifold", we mean both one with
boundary and one without boundary.

(A) We begin with the following fact.

LEMMA 8.A.I. Let M be a compact C°° manifold. Let r ^ 0. Let f

f(x, τ)dτ belongs

to C{{\M x [0, T}) and satisfies

I Jo
f(x,τ)dτ for t e [0, T] .

(r),ί

PROOF. Extend / to M x ( - <*>, T] by setting f(x, t) = 0 for (x, t) e
M x (— °o, 0). Since feC{{\ we have:

( i ) The C(r) norm of / is preseved in the above extension.

(i i) a;5?(J* f(x, τ)dτj = ̂  da

xdΐf(x, τ)dτ if | a \ + 2a ̂  [r] .
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( i i i ) [da

xdΐf(x, τ)dτ = Γ % d i f ( x , τ - t + s)dτ i f \a\ + 2 a ^ [ r ] a n d
JO Jθ

0 ^ 8 ^ t ^ T.
By (ii) and (iii)

- s
μ/2

^ Γ (I W ( α , T) - 3ί3?/(α?, τ - t + β) I/I * - s\^)dτ
Jo

if \a\ + 2α ^ [r], 0 ^ s ^ £ ^ T a n d 0 < μ < 2 . Then the lemma follows
from (i).

We introduce a special class of operators..

DEFINITION 8.A.2. Let M and Mf be compact C°° manifolds. Let
0 ^ k ^ r. Let C and JV be positive constants. We say that a linear
operator JίT: Qr)(Λί x [0, T]) -> Qr)(Λf' x [0, Γ]) is (&, r, C, ΛΓ)-balanced
(resp. (fc, r, C, iV)-integral-balanced) if:

( i ) | ^ y | ( * M ^ C | / | ( t M ( r e s p . | ^ 7 l ( f c M ^ Cjj/| ( J f c ) p Γdr)fort6[O f Γ].

l | r ) , t ^ C|/ | ( r ) i t + CiV|/| ( f e M(resp. \Jrf\wht ^ c [ \f\{rhτdτ +
for ίe[0, T].

LEMMA 8.A.3. Let M and Mf be compact C°° manifolds. Let 0 <:
k ^ r. Let C and N be positive constants. Let

J Γ : Qr)(Λf x [0, Γ]) -> Qr)(M' x [0, T])

be a (fc, r, C, N)-balanced linear operator. Define a linear operator

^ : C{{\M x [0, Γ]) — CΠikf' x [0, Γ])

by

(J'fXx, t) = Γ (J3r/)(s, τ)dτ /or (x, t) 6 M' x [0, Γ] .
Jo

Then ^ is (k, r, C, N)-integral-balanced.

PROOF. The lemma follows immediately from Lemma 8.A.I.

LEMMA 8.A.4. Let M and Mf be compact C°° manifolds. Let 0 <;
k ^ r. Let C and N be positive constants. Let SΓ: C{{\M x [0, T])'—>
C,(r)(Jlfx.[0, T]) α^d 3ίT'\ C?\M'x[0, T])->Qr)(Mx [0, Γ]) be {k, r, C, N)-
integral-balanced linear operators. Let g belong to Qr)(ikί'x [0, T]). Then
the equation u — 3tίu = 3^rg has a unique solution ueC£\Mx [0, T]).
Further the linear operator {I-^T)-1^''. Qr)(M'x [0, Γ])->Qr)(Mx [0, T])
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is (k, r, C, N)-integral-balanced, where I denotes the identity operator
and C" is a constant bounded with C.

PROOF. By induction on i, we have:

( i ) |J5r*Jir'βr|(fcM ^ Ci+1(ίVϋ) [iglω.rdτ for i = 0, 1, - - - and te
Jo

[o, n
( i i) \^ri^rtg\,r)Λ ^ Ci+\tηi\) £ |^ | ( r ) , r dr + (ΐ + l)C i + 1(Γ/ί! W jjflr|(Jk),rdr

for i = 0, 1, - and ΐ 6 [0, T].
Then, from the estimates of the Neumann series u — JίΓ'g + J%Γ3ίΓfg + ,
the lemma follows.

(B) Throughout (B), we use the following notations.
(a) {Ulf , Uκ} is a finite covering of Γo by coordinate neighbor-

hoods and let (ωl9 , ft)M_i) be local coordinates.
(b) {Vi> m"tV*} is a £°° partition of unity subordinate to {Uu , ί7J.
(c) (JVO-)V = {̂  6 iV0-; ω(x) 6 C7J for y - 1, . . . , K.

(d) Let ^ ? be a differential operator on Γ Γ of the form ^[ — dt +

Σ?=ί •Hv.ίίω, <)3β< for v = 1, , /c and (α>, t) e Uvjx [0, Γ].
(e) Let ^ be a differential operator on ΩT of the form:

for v = 1, , K and (x, t) e (Nϊ~)v x [0, T]. Here Xo is the function intro-
duced in Section 1 and dωi is the partial differentiation with respect to
ft)* in the (ωlf , o)n_lf λ) coordinates.

(e.ii) ^ = dt for (a?, ί) 6 (Ωo - No~) x [0, T] .

DEFINITION 8.B.I. Let r ^ 0. Then |jff | ( r ) = Σί=i Σ?=ix I VM^Λ \W\*

where τ]vHVti is regarded as a function on R"-1 x [0, Γ] in the canonical
manner.

DEFINITION 8.B.2. Let 0 <: k ^ r. Let £ be a positive constant.
We say that <%t is a (&, r, ί?)-fine operator if:

( i ) ηvH,tί e Q{\Rn-1 x [0, T]) for v = 1, . , /c and i = 1, - , n - 1.
(ii) |JEΓI<Jb, ^B.

We say that ^ is a (&, r, ^-λ-fine operator if:
( i ) Ύ]vHVti e C^CR—1 x [0, T]) for v = 1, , K and i = 1, , ^ - 1.
(ii) Hχ G CJr (i r)
(iii) |jHΊ(Jfc) + |fli|(fc) ^ B.
(iv) £Γj(ft), ί ) ^ 0 for fa, t) 6 /V

Here ηjl^i is regarded as a function on Rnl x [0, T] in the canonical
manner.



322 E.-I. HANZAWA

DEFINITION 8.B.3. Let / be a mapping of Γτ into Γo. Then, for
i = 1, , n, a function ft on Γτ is the ί-th component of / when it is
regarded as a mapping of Γτ into Rn. Further, let r ^ 0 and let
Λ,/2, •••,/• belong to C^\ΓT). Then | / | ( r ) = Σ?=i IΛIw

DEFINITION 8.B.4. Let / be an interval in R. Let D be a domain
with piecewise-C1 boundary in Rn x /. Let r ^ 0. Let / be a mapping
of D into Rn whose components /x,/2, •••,/, belong to C{r\D). Then

l/|(r) — Σ?=l l/i l(r)

LEMMA 8.B.5. Let 2 ̂  k ̂  r. Let B be a positive constant. Suppose
that Jgt is a (k, r, B)-fine operator. Define a mapping φ: ΓT-^ΓO so that
the mapping t H* (φ((t), t), t) is the characteristic curve of j^l starting
from ω e ΓQ at t = 0. Define a mapping ψ: Γτ -* Γo by Φ(ψ(a), f), t) = ω
for (α>, t) e Γτ. {Since Γo is a compact C°° manifold without boundary,
φ and ψ are well-defined.) Then we have:

( i ) Φu •• , Λ . e C < ' ) ( Γ Γ ) .
(ϋ) dtφl9 •• ,dtΦ«eClr-2)(Γτ).
(iii) \Φ\M£C(1 + \H\M).

Here C is a constant bounded with r and B. Further, suppose that
0 < T £Ξ CB1 -where CB is a constant determined by B. Then we have:

( i ' ) Ψu •• ,ψ»eCίrKΓτ).
(ii') dtψu •••,dtψneCΓ2)(Γτ).
(iii') \*\M£C'0. + \H\M).

Here Cf is a constant bounded with r and B.

PROOF. Let ΰ be a bounded domain in Rn with Γo c D. Extend
2Z{ to D x [0, T] so that:

( i ) The extended operator ^ is of the form ^ = dt + Σ?=i Ht{x9 t)dx.
with βteQr)φx [0, T]).

(ii) supp Hi c D for i = 1, , n.
(iii) lίtlω^CAH^ for ?e[0,r] .

Here CΊ is a constant bounded with r and |ff|(ff) = Σ?=i l-^ilw Define a
mapping p x [0, Γ] ->/2Λ by:

(*.l) dt$t(x, t) = ̂ ( f e ί), *)

for i = 1, , n and (x, t) e D x [0, T], where φt is the i-th component
of φ.

(*.2) ^(α, 0) = x for cceD .

Clearly φ is an extension of φ with ^(5 x [0, T]) = D. Since Ht e C1,
the mapping φ is C1. By (*.l), we easily observe that: Ii 2 ̂  q ^ r
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and φu • • , φn e C«>(5 x [0, Γ]), then dtφu ••-, dtφn e Q ' - 2 ' ( 5 x [0, T]).
Differentiating (*.l) and (*.2) wi th respect to xs, we have:

( 1 ) dt[dτjUx, ί)] = Σ [d.β<($(x, t), t)][djh(x, t)] .
At = 1

( 2 ) d X J $ i ( x 9 0 ) = δij.

Hence we have

(**) 3.,-ta 0 = Stj + Σ [ [d.hHMx, τ\ τ)][dxjφh(x, τ)]dτ

for ΐ, y = 1, , w and (a;, t)eD x [0, 21].
Let TF be the vector space of continuous mappings of D x [0, T] into

ΛΛ. Define a linear operator 5f:W—>Wby

x, τ\ τ)][fh(x, τ)]dτ

for i = 1, , n and (x, t) eD x [0, Γ], For ΐ = 1, , n, define a mapping
<5, in ΐ ^ by δt(x9 t) = (δil9 , δ,J for (x9 t)eDx [0, Γ]. Then, by (**),
we have dx.φ = δt + ^ δ , + ^δ, + . This and (*.l) give |^ | ( 1 ) ^ C2.
Here C2 is a constant bounded with B. Further, by Lemma 3.A.9 and
an argument similar to that in the proof of Lemma 8.A.4, we observe
that_if 1 ^ q ^ r - 1 and φu - - , φn e C{q\D x [0, T])9 then dx.φu , dx.φn e
σ«\D x [0, T]) and \dj\[q) S C8(l + |JΪ | ( f f + 1 ) + | ^ | ( f f ) ) . Here C3 is a con-
stant bounded with r and i3.

Note that if /, dβlf9 ., 3^/, 9,/ 6 ( ^ ( 5 x [0, T]), then / 6 C^+ 1 )(5 x
[0, T]) and | / | ( ί + 1 ) ^ CA(\f\{q) + Σ?=i l ^ / | ( g ) + \dtf\{q)). Consequently, with
the aid of (*.l), we have: If 1 ^ q ^ r - 1 and φu - , φn e C(9)(D x [0, Γ]),
then $l9 -9$ne C«+1)(Dx [0, Γ]) and |^| ( f f + 1 ) ^ C5(l + |ίΓ| ( f f+1) + | ^ | ( f f ) ) . Here
C5 is a constant bounded with r and I?. From this, we obtain (i)-(iii) in
the lemma at once.

Define a mapping ψ\ D x [0, T] —> 5 by

(***) ί£(t<X ί), *) = α for (cc, t)eRn x [0, Γ] .

Clearly ^ is well-defined and is an extension of ψ. Since iJi is C1, the
mapping ^ is C1.

Hi(φ{x, τ), τ)dτ for i =
0

1, - —,n and (a?, t)eRn x [0, Γ]. Hence there is a positive constant CB

determined by B such that if 0 < T ^ C*1, then | det [d9jls(x9 t)] \ ̂  1/2
for (x9 t)eD x [0, Γ], On the other hand, by (***), we have:

( i ) Σ5U [3.ΛΛ(^(a?f ί), ί)][3.^»(»f *)] = δtj for i, i = 1, • •, n and (a?, t) e
i) x [0, T].
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(ϋ) ΣUi ld.J*Mχ> *)> t)][dt$k(x, t)] + dt$t(ψ(x, t), t) = 0 for i = 1, -.., n
and (x, t)eD x [0, T].
Further, note that dtφi{ψ{x, t\ t) = Ht($(φ(x, t\ ί), t). Then, with the aid
of Lemmas 3.A.9 and 3.A.10, by an argument similar to that in the proof
of (i)-(iii) in the lemma, we obtain (i')-(iii') in the lemma. This com-
pletes the proof of Lemma 8.B.5.

LEMMA 8.B.6. Let 2 ^ k ^ r. Let B be a positive constant. Suppose
that 0 < T ^ CB1 where GB is a constant determined by B. Suppose that
^ is a {k, r, B)-X-fine operator. Define a mapping φ: Ωτ -> Ωo so that:

( i ) The mapping t \-+ (φ(x, t), t) is the characteristic curve of ^
starting from x e ΩQ at t = 0.

(ii) Ωτ = {(x, ί); xeΩ0 and t e [0, Tx]}.
Here Tx is the largest number in [0, T] such that φ(x, t) can be defined
on [0, TJ. {We may assume that the boundary of Ωτ in Rn x [0, T] is
C1.) Define a mapping ψ: Ωτ —> Ωo by φ(ψ(x, t), t) — x for (x, t) e Ωτ. {Since
Hλ{ω, t) ̂ > 0 for {ω, t) e Γτ, the mapping ψ is well-defined.) Then we have:

( i ) Φ» "'fφneσr\Ωτ).
(ϋ) dtφu ~,dtφ%eσr*\Ωτ).

(iv) ψί9 ...
(v) dtψlf .
(vi) \φ\{r)

Here C is a constant bounded with r and B.

PROOF. By an argument similar to the proof of Lemma 8.B.5, the
lemma is proved.

LEMMA 8.B.7. Let 2 ^ k S r. Let B, C, and N be positive constants.
Suppose that:

{ i ) The operator Sff^ is (fc, r, By fine.
(ii) A linear operator 5ίΓ: Qr){Γτ) —> Qr){Γτ) is {k, r, C, N)-balanced.
(iii) geCΐ\Γτ).
(iv) 0 < T £ CB1.

Here CB is the constant introduced in Lemma 8.B.5. Consider the Cauchy
problem:

{1) β^u = SΓu + g on Γτ .

(2) 4 » = 0.

Then the problem (l)-(2) has a unique solution ueQr){Γτ). Further the
linear operator {§£\ - ST)~U. C{{\ΓT) -> Qr)(ΓΓ) is {k, τ9C\l + N+ |H| ( r,)-
integral-balanced. Here C is a constant bounded with r, B, and C.



STEFAN PROBLEM 325

PROOF. We use the notations in Lemma 8.B.5. For {ω,t)eφ{Uv x
[0, T]), we call the w-tuple {ψ1{(ύ9 t)f , ψn_λ(ω, t), t) the characteristic
coordinates of (α>, t). Here ψi is the i-th component of the mapping
ψ: φ(Uv x [0, T]) —> Z7V with respect to the local coordinates in Uυ. As is
well known, in the characteristic coordinates, (1) in the lemma is an
ordinary differential equation. Then, from Lemmas 3.A.9, 8.A.3, 8.A.4
and 8.B.5, the lemma follows immediately.

LEMMA 8.B.8. Let 2 <* k t=* r. Let B, C, and N be positive constants.
Suppose that:

( i ) The operator ^ is (k, r, B)-X-fine.
(ii) A linear operator 3T: Q r )(βΓ) -> Cf\Ωτ) is (k, r, C, N)-balanced.
(iii) g e C{{\ΩT).
(iv) 0 < T ^ CB1.

Here CB is the constant introduced in Lemma 8.B.6. Consider the Cauchy
problem:

(1) ^u = 3ίίu + g in Ωτ .

(2) N U = 0 .

Then the problem (l)-(2) has a unique solution u e C{{\ΩT). Further, the
linear operator {0>x - 3ίΓYu. G£\ΩT) -> C£\ΩT) is (fc, r, C", 1 + N + |2ϊ| ( r, +
\Hλ\{r)yintegral-balanced. Here C is a constant bounded with r, B, and C.

PROOF. We can easily obtain modifications of Lemmas 8.A.3 and
8.A.4 for the C({\ΩT) case. Then, by using Lemma 8.B.6 in place of
Lemma 8.B.5, the lemma is proved as in Lemma 8.B.7.

LEMMA 8.B.9. Let £f be a differential operator on Ώτ which is ex-
pressed as in (B) in Section 3. Let k and i be integers with 2 5g k ^ i.
Let σ, B, C, and N be positive constants. Suppose that:

( i ) The operator Jίf is (e0 + k, ε0 + i, σ, B)-%-parabolic.
(ii) The operator &x is (ε0 + k, ε0 + ΐ, B)-X-fine.
(iii) A linear operator 3ίT\ Qεo+ί\Ωτ) -> Qεo+ί)(βΓ) is (ε0 + k, ε0 + ΐ,

C, N)-balanced.
(iv) g e Q ε ( r H )(ΓΓ).
( v ) 0 < T ^ Cj 1 .

Here C5 is a constant introduced in Lemma 8.B.6. Consider the problem:

(1) Sfu = 0 in Ωτ .

(2) « U = 0.

( 3 ) u = 0 on Jτ .

( 4 ) ^ ^ = <_%^ + ^ o^ .ΓΓ .
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Then the problem (l)-(4) has a solution ueC($ε°+ί)(Ωτ). Further, the
mapping gt-*u, where u is the obtained solution o/(l)-(4), is an (ε0 + k,
e0 + i,C',l + N + |A|(β0+i, + \H\{£o+ί) + \Hλ\{εQ+i))-integral-balanced linear
operator on C^+i\Γτ) into C^0+i)(Ωτ). Here C is a constant bounded with

i, σ, B, and C and |A|(.0+<) = Σ?,*=i |A,*|(.0+i) + Σ U | A , | ( . 0 + < Ϊ + \Ao\{εo+ί).

PROOF. If u belongs to C£°+i)(Ωτ), then u satisfies (l)-(4) if and only
if it satisfies:

(1') &&>& = [5f, && in Ωτ .

(2') (Λ)U = 0.

(3') &>& = 0 on Jτ .

(4') &*& = ^ Γ ^ + £ on Γ Γ .

Here [£f, ^ ] denotes the commutator, i.e., [ ^ ^ ί ] = ^ ^ — ^ lβ2f. By
Lemma 8.B.3, we observe that «^u is expressed as ^xu — ^ u + Λ^g.
Here ^ ^ : Q£ 0 + ί )(βΓ) -> C^+ί)(Ωτ) (resp. ^ T : Q e o + ί )(ΓΓ)-> q ε o + ί ) (β Γ )) is an
(e0 + &, ε0 + ΐ, Cx, N+ \A\{εo+i) + |JEΓ|(.0+<, + |JTJ(.0+<))-balanced (resp. (e0 + k,
ε0 + if C2, |A|(eo+ί))-balanced) linear operator where d (resp. C2) is a con-
stant bounded with i, σ, B and C (resp. ΐ, σ and B). Then, the lemma
is proved by Lemma 8.B.8.

9. Inversion of D^{p). Finally we verify the condition (III) in
Nash's implicit function theorem.

We solve the equation D^(p)8p = δG where p and δG are given
and δp is unknown. By the definition of D^{p)y the above equation
means:

(lδU) ^fP(δUP) = (δξ?p)UP in Ωτ .

(2δϋ) δUP\t=0 = 0.

( 3 W ) δUP = 0 on Jτ .

(4^) δUP = 0 on Γτ.

(Pm) Stδp + cQ{(βλUP)δSp + [dλ(δUp)]Sp} = δG on Γτ .

Throughout this section, suppose that :
( i ) i = l, . . . , 1 1 .
(ii) peVF

(iii) δGeCϊ
Under these hypotheses, we seek δp e C^°~8+iί)(Γτ) which satisfies
(5δU) when i ^ 2 and set ^(ρ)δG = fy>.

(A) We eliminate δ̂ o from the problem.
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For δpeCfo)(Γτ), define a mapping δep:Ωτ-+Rn x [0, T] by:

(9.1.i) δep(x(ω, λ), ί) = (dλx(ω, λ + X0(\)p(ωf t))δρ(ω, t), 0)

for (x, t) = (x(ω, λ), *) e No~ x [0, T] .

(9.1.ii) δβ,(», ί) = (0, 0) for (x, t) e (Ωo - No~) x [0, T] .

(See (1.2).) Let

(9.2) up = Upoe-1 .

Let

(9.3) δV = δUP - <(grad uP) o ep, δep) .

First we show that

(9.4) £fpδV = 0 in Ωτ .

Fix ^ and δp. Let Z) be a relatively compact subdomain with C°° boundary
in Ωτ. Let ε be a sufficiently small positive number. By (7.3), (9.2),
and (9.3), up+εsp°ep+εδp — Upoep — εδV — ε((gγa,άup)oep,δep)=:e2Rε, where Rε

is bounded in C{rQ\Ωτ). Hence, by (9.1),

(9.5) up+tδp © ep+εδp — Up o ep+εδp — εδV

= - [ l ί ^ ^ -. UpOep — ε((gradup)oep, δep)]

= ε2i2: on 5 ,

where R[ is bounded in C(r°~2)(D). Note that S^+ββp(tt,+βίί, © ^+ ε 3 i 0) =
^fP+eδp(uPoep+εδp) = 0 on 5 . Hence, by (9.5), ^ + ε δ ί ,<5F = εi?ε' on 5 , where
R" is bounded in C(r°-4)(5). Taking ε->0, we obtain (9.4).

Secondly we eliminate δp from the boundary condition on Γτ. In
a neighborhood of ΓΓ, we have Up(x(ω, λ), ί) = up(ep(x(ω, λ), ί), ί) =
up(x(ω9 X + p(ω, t)), t), so that <(grad^)o^, δ^) = [(dχup)°ep]δp = (dλUp)δp.
Hence (4βl7) and (5δσ) can be rewritten in the form:

(4Jl7) « F + ( 3 , 1 ^ ) ^ = 0 on Γ Γ

(5ίl7) . ^ δ ^ + c0SpdxδV = δG on

Here

(9.6) ^ P = 3t + cQ[(d>UP) \U

(See (7.5).) For geC\Γτ), define ^ - ^ by:

( l ) 2erP(βerP-
χg) = g on rτ

( 2 )
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Then, by (5}U), we have

(9.7) δp = -c^-^SfdJV) +

Inserting this in (Aw), we eliminate dp from the boundary condition on Γτ.
Consequently we have:

(hv) :5fPδV = 0 in Ωτ .

(2tv) δV\t=0 = 0.

(3,F) δV = 0 on Jτ .

{AiV) δV - iφιUf)Sef,-\S^V) = -(dλUP),sefl,-
1δG on Γτ .

This completes the elimination of δp.
(B) Extend Sp to ΩΓ by:

(9.8.i) S,(x(ω, λ), t) = Xo(\)SP(ω, t) + 1 - Z0(λ)

for (», ί) = (x(ω, λ), ί) e No~ x [0, Γ] .

(9.8.H) SP(x, t) = 1 for (x, ί) e (Ωo - No~) x [0, T] .

Note that the extended Sp also has a positive constant lower bound.
Extend SίfP to Ωτ by:

{[d/d(βmip)]S}daJΣ

on Nt- x [0, Γ] .

(9.9.U) SίT, = dt on (S, - No~) x [0, Γ ] .

(See (9.6).) For geC\Ωτ), define β?yιg by:

( 1) ^f9{Sίfp-
χg) = g in Ωτ .

( 2 ) (^?-1fi')|i=o = O.

Set

(9.10) δX = ^ff\S9δV) .

We transform (lδΓ)-(4JF) into a problem for δX.
First we transform (l,v) into an equation for δX. By (2JF), we have

(£fpδX)\t=o = 0. Hence, by (l,v), we have

(9.11)

Σ
,h=l
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Clearly

(9.12) dXh\S;\^fPδX)\ = -SϊΊdn

+ sP\[d.k, ^

Let 3ίfPΛ be the homogeneous part of the first order of £ίf9. By the
obvious formula gέfP{fg) = (,^fPtlf)g + i.^Ί>9), we obtain

(9.13) £έfp-\FG) = FiβtffVΪ) -

By (9.11), (9.12) and (9.13), we have

(9.14)

+ 2

- 2 Σ [&lΛAP..h(3.,(Sf)Xdn(Sf))Sp-')]δX
g,h=l 9 n

- 2 ± AP,,h[dmι(SP)]Sp-\[d.h, J&fiδX)
gh=l

This is the equation for δX.

Denote the left-hand side (resp. right-hand side) of (9.14) by
(resp. &pδX). Define a differential operator &p on Ωτ by

(9.15-i) ^ P = ^> - c0XQ(X)[(dλUP)\λ=0]SPdλ on No~ x [0, Γ ] .

(9.15.U) &P = dt on (Ωo - No~) x [0, Γ] .

From (9.8) and (9.9), we observe that in a neighborhood of Γτ:
( i ) dχ(SPf) = Sptfif).
( ϋ ) dx^e;-1 = έe -Vx.

Then the problem (lδV)-(^δv) is transformed into the problem:

^ X in Ωτ .

- 0 .

(3δx) δX = 0 on Jτ .

δG on Γ Γ .

This is the problem for
(C) By the assumption (A.3) in Theorem and the maximum principle

of the heat equation,
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(9.16) -co(dλUP)SP = -eJ[(dχUP)oep]SP ^ 0 on Γτ .

Now we can easily observe that:
( i ) On Γτ, if i Φ 11 (resp. ί = 11), then 3f?PΛ is an (r0 — 1, r 0 - 5 +

4i, 2?)-fine (resp. (r0 — 1, r0 + 38, i?)-fine) operator. See (9.6) and the as-
sumption (T).

(i i) On Ωτ, if i Φ 11 (resp. i = 11), then SίfPΛ is an (r0 — 1, r0 — 5 +
4i, J3)-λ-fine (resp. (r0 - 1, r0 + 38, 2?)-λ-fine) operator. See (9.9).

(iii) The operator g?p is (r0 — 3, r0 — 7 + 4i, σ0, .BO-tt-parabolic. See
(9.14).

(iv) The composition £ίfp&p is a spatial differential operator of the
second order whose coefficients belong to Qr°~9+ii\Ωτ). See (9.14).

( v ) If i Φ 11 (resp. i = 11), then the homogeneous part of the first
order of &p is an (r0 — 1, r0 — 5 + 4ΐ, l?)-λ-fine (resp. (r0 — 1, r0 + 38, B)-
λ-fine) operator (see (9.15) and (9.16)).
Here B' is a constant and JB is a constant bounded with | α o | r o and |&0|<r0>-

(D) Note that we can apply Lemma 8.B.9 to ( l ί z )-(4 ί x ) if the right-
hand side of (lδz) is replaced by 0. To realize this idea, we introduce
three linear operators as follows. The compatibility of these definitions
is verified in (E).

Define a linear operator WP\ C^-7+iί)(Ωτ) -> Qr°-τ+4ΐ)(βΓ) by:

in Ωτ .

= 0 on J r .

= 0 on Γ Γ .

Here δX belongs to Q r°-7 + 4 ί )(βΓ). Define a linear operator
C{^-7+iί)(Ωτ) by:

^ = 0 in Ωτ.

=0 on J Γ .

X on

Here dX belongs to C^-Ί+U)(ΩT). Define a linear operator £p\
Cfr>-™(Ωr) by:

^ = 0 in flΓ .

= 0 on Jτ
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P { P ) -{dxUP)SP^p-^G on Γ Γ .

Here δG belongs to C{p-7+iί\Γτ).
Clearly, for δX in Qr°-7+4iϊ(βΓ), the problem (lδ x)-(4δ x) is equivalent

to the equation

(9.17) δx = %

(E) Let Γ be so small that:
( i ) For Sίf9Λ> we can use Lemmas 8.B.7 and 8.B.8.
(ii) For ̂  and the homogeneous part of the first order of ^ > ,

we can use Lemma 8.B.9.
First we consider (l y )-(4 y ). By Lemma 8.B.8,

(9.18) \^PδX\{rQ_9+iiht £ C[\δX\{ro_7+u)>t + (1 + |/θ|(ro_4+«),Γ)|δ-3:|(ro-8).*]

for te[0, T], Here C is a constant bounded with |α o | r o + 3 9 and |&0|(r0+39)
By Lemma 3.B.3 and (9.18), the operator ^/p is well-defined and satisfies

( 9 . 1 9 ) \ ^ P δ X \ { r o _ W i ) f t ^ C [ \ δ X \ { r o _ 7 + u h t + ( 1 + l ί > | ( r o o

for t e [0, Γ]. The operator ^ is (r0 - 3, r0 - 7 + 4i, C, 1 + liθ|(ro_4+4i),Γ)-
balanced. Here C is a constant bounded with |α o | r o + 3 9 and |60|(r0+39) From
(l?/)-(4,/) we obtain:

P { P P ) [ p , P\P i n Ω τ .

( 2 ) (J%*p2/pδX)\t=0 = 0 .

( 3 ) Sίfp^/pδX = 0 on Jτ .

( 4 ) d , ( ^ ^ X ) = 0 on Γτ.

Hence, by Lemma 3.B.3 and (9.19),

(9.20) \β^P^Pδx\{rQ_7+iί))t ^ c[ |δX| { r o_ 7 +«M + a + i/o|(ro-4+«,iΓ)|3-a:i(ro-8),t]

for ί e [0 , T]. Here C is a constant bounded with |α o | r o + 3 9 and |60|(r0+39)
By Lemma 8.B.8 and (9.20),

(9.21) \^PδX\{ro_7+u)>t ^

+ ( 1 +

for t e [0, Γ]. The operator %/p is (r0 ~ 3, r0 - 7 + 4i, C, 1 + | |θ| ( r o_4 + 4 i ),Γ)-
integral-balanced. Here C is a constant bounded with |α o | r o + 3 9 and

l&θl(ro+39)

Secondly we consider (l^)-(4 j r) and (l^)-(4^). By Lemma 8.B.9 and
(9.20), the operator %?p is well-defined and satisfies



332 E.-I. HANZAWA

(9.22) I ^βδX\ir0-7+w,t ύ C [ £ I dX\{ro_7+w>τdτ

for te[0, T]. Here C is a constant bounded with |α o | r o + 3 9 and |δo|(ro+39)

By Lemmas 8.B.7 and 8.B.9, the operator ^p is well-defined and satisfies

(9.23)

for te[0, T]. Here C is a constant bounded with |α o | r o + 4 9 and |&o|(ro+39).
Hence, by Lemma 8.A.4, (9.21), (9.22) and (9.23), we obtain the solu-

tion δX of (9.17) which satisfies

(9.24) \δX\irQ_7+m,τ ^ C[\δG\(ro_7+w>τ + (1 + \p\{ro-Mi),τ)\δG\{ro_shτ] .

Here C is a constant bounded with |α o | r o + 3 9 and |60|(r0+39)
(F) Define a linear operator ^(p): Qr°-7+iί\Γτ) ->Q r°-8+4i)(ΓΓ) by

(9.25) J?{ρ)δG = -codλδX + Zίf^δG ,

where δXis the solution of (9.17) in view of (9.7) and (9.10). By (9.24),
(9.25) and (4.5.U), we easily observe that:

( i ) D^{p)^{ρ)δG = δG when i ^ 2.
(i i) \^(p)δG\{ro_8+iί) ^ C[\δG\{ro_7+w + (1 + |/o| ( r o_4 + 4 < ))|δG| ( r o_8 )].
(iii) \~r(p)^(p)\<ro-8+«) ^ C(i + | ^ | ( r o _ 4 + 4 ί ) ) .

Here C is a constant bounded with |αo|ro+39 a n ( i i&ol(ro+39) This proves
(III). On the condition i ^ 2 in (i), remember that we assume δ^ belongs
to C{p\Γτ) in (A).

REMARK. The "right inverse" ^(p) thus constructed is also the
"left inverse" of DJ^(p).

(G) We have proved the conditions (I)-(III) in Nash's implicit func-
tion theorem for our setting. On the other hand, it is easy to see that

where C is a constant. Hence, by Nash's implicit function theorem,
Theorem' is proved.

10. Elimination of the technical assumption. Finally, in this sec-
tion, we show how our proof is modified when the assumption (T) in
Section 2 is replaced by the assumption (A.4) in Theorem in Section 1.
Let α0 be a Hestenes-Whitney extension of α0 to Rn. Define a function
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uQ on Rn x [0, TQ) by solving

(3, - A)uQ = 0

and uo\t=Q = α0. Observe that the definitions of eP9 Sp and £f9 in Sections
2 and 4 can be extended for peC{ro)(Γτ) with small \p\0. Recall that
α oeC r o + 4 3(β o). By the theory of nonlinear first-order equations (see e.g.,
Courant and Hubert [8, Chapter 2]) and the weighted Holder estimate
for characteristic coordinate transforms (refer to Lemma 8.B.5), taking
T sufficiently small, we get poeC{ro+i0)(Γτ) with small \po\o such that
Po\t=o = 0 a n d

3 ^ 0 + co[dλ(uo o ePo)]SPo = 0 on Γτ ,

because the right-hand side of the characteristic system (see [8, p. 97])
consists of C(ro+4O) functions. Then our problem is to seek p e Vτ and
UeClro)(Ωτ) which satisfy:

( 1 ) J^PQ+PU=0 in Ωτ

( 2 )

( 3 )

( 4 )

( 5 ) dt(p0 + p) + cQ(dλU)SPo+P = 0 on Γτ .

Here p0 + p corresponds to p in Theorem in Section 1. Taking T and δ0

sufficiently small, we can suppose that =5^0+|0 is parabolic and SPo+p has a
positive lower bound for p e Vτ. The assumption (A.4) implies that there
exists a solution UeC{ro+m(Ωτ) of the above parabolic system (l)-(4) for
p e Vτ Π Q r o + 3 9 )(ΓΓ). Now we can define a mapping ^:VT-^ C{p-2)(ΓT) by

J^(p) = dt(p0 + p) + φλU)SPo+P ,

where ί7 is the solution of the system (l)-(4). In this setting, replacing
the heat operator by SιfPςs and modifying the technical definitions and
lemmas slightly, the rest of the proof can be developed in the same
manner as in the case of the technical assumption (T).

NOTE ADDED IN PROOF. The author recently learned from the referee
and a few other persons that there exist two announcements "On the
classical solutions of the Stefan multidimensional problem, by B. M. Budak
and M. Z. Moskal, Dokl. Akad. Nauk SSSR Tom, 184 (1969), 1263-1266=
Soviet Math. Dokl., Vol. 10 (1969), 219-223" and "On classical solvability
of the multidimensional Stefan problem, by A. M. Meirmanov, Dokl. Akad.
Nauk SSSR Tom, 249 (1979)=Soviet Math. Dokl., Vol. 20 (1979), 1426-1429."

U--

U:

u
[

0

0

on

on

in

Λ/Q .

eJT
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The former claims the local (-in-time) existence of the classical solutions
for the initial value problem of the two-phase multidimensional Stefan
problem, provided that the free boundary can be parametrized by flat
space variables. However, no proofs are given. Furter it seems that
the detailed proof has not been published yet. The latter claims that,
for the initial value problem of the two-phase multidimensional Stefan
problem, the local (-in-time) existence of the classical solutions can be
proved by parabolic regularization method, provided that the initial
normal gradient of the thermal distribution on the interface between
ice and water has a positive lower bound. Also no detailed proofs are
given.
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