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1. Introduction. The classical Hamiltonian (kinetic energy) H for
the mechanical system consisting of a non-relativistic free particle of
unit mass moving on a Riemannian manifold is given by one-half the
Riemannian metric. Several authors say that the quantum Hamiltonian
H corresponding to H is 27'A4'A, where A is the Laplacian acting on
functions and # = (27)~'h, h = Planck’s constant. See Blattner [4] and
Simms and Woodhouse [20]. However, DeWitt [7] and Cheng [5] used
the method of “Feynman’s path integrals” to derive a different operator
for the quantum Hamiltonian. See also Ben-Abraham and Lonke [1].
Elhadad [9] applied the method of “Maslov pairing” to the geodesic flow
on the unit n-sphere S* to obtain a quantum Hamiltonian. Also, Weins-
tein [21] has shown, in the case of S", that the N-th quasi-classical
eigenvalue for H is Ay = 27'%%%N + 2-'(n — 1))*, which is not equal to
the N-th eigenvalue py = 27'A*’N(N + n — 1) of the operator 27'A’A on
S". Note that the multiplicity of Ay is equal to that of z,. See Ii [11].
These results show that 2-'4°A may not necessarily be the quantum
Hamiltonian corresponding to H. The correct quantum Hamiltonian A
has to be determined from appropriate general principles. In the
present paper, we apply the quantization procedure of Kostant to
quantize the mechanical system consisting of a non-relativistic, positive
energy free particle of unit mass moving on the unit %n-sphere S*
(n = 3). We construct a polarization which enables us to quantize H.
The resulting quantum Hamiltonian H has A\, as the N-th eigenvalue.
Moreover using the same polarization, we define an operator L? which
has 2p, as the N-th eigenvalue and has the same eigenspaces as that
of H. From the construction > may be identified with #*A. Under
this identification, the correct quantum Hamiltonian H on S* is given
by 2-%4*A + 4(n — 1)*). The referee pointed out that the idea of
adding 4-(nm — 1)* to the Laplacian was also found by Y. Akyildiz in

Partly supported by the Grant-in-Aid for Encouragement of Young Scientists, the Ministry
of Education, Science and Culture, Japan.



290 K. II

his Berkeley thesis in connection with the representation of SO(n + 1, 2)
on L*S™).

2. Preliminaries. Let R"™ and T*R"'' be the (n + 1)-space and its
cotangent bundle with coordinates z = (x,, ---, x,,,) and (z, ¥) = (x,, - - -,
Tui1, Yiy **» Ynsr), Tespectively. Let |x|* =X}, |y*= S yjand x-y =
> x;y;, so that the cotangent bundle on the unit n-sphere S* is re-
presented by T*S" = {(z, y) e T*R"**'||x| = 1, -y = 0}. The Hamiltonian
of a free particle of unit mass on S* is given by H(x, y) = 27|y [>. The
phase space of the positive energy free particle of unit mass on S*
is given by M = T*S" — {0-section} = {(x, y) e T*S"||y| > 0} with the
action form w = > y,dx; and the symplectic form Q2 = —dw = 3>, dx; A
dy;. Let C=(M; R) be the space of real-valued smooth functions on M.
Since 2 is real and non-degenerate, we can define for each f ¢ C~(M; R)
a real vector field X, on M by X; | 2 = df. X, is called the Hamiltonian
vector field generated by f. Let us define L, and L*e C=(M; R) by
Lz, y) =2,y —0y; 1=j,k=<n+1) and L*= 3., L%, which are
called angular momenta and square of angular momenta, respectively.
Note that H = 27'L*’. Let us denote X; = o/ox;, Y, = 0/oy;, X =
X, -+, X, and Y = (Y, --+, Y,,,). For the sake of simplicity, we
write u-X instead of > u;X; for w = (u,, ---, u,,,). Then we have X,, =
S WX — YY) =y X — |yPe-Y and X, = X,, = SeH{(—dm, +
0:2)X; + (—0Y, + 04Y;)Y,;, which are complete vector fields on M. X,
is the geodesic flow vector field on M. See Moser [13].

3. Quantum bundle L. Since the symplectic form 2 is exact, and
M is simply connected (n = 3), there exists, up to isomorphism, unique
quantum bundle L over M. For quantum bundles, see Kostant [12]. L
is a trivial bundle; L = (M x C, p, M). Let I'(L) denote the space of
smooth cross-sections of L. Then I'(L) is identified with the space C~(M)
of complex-valued smooth functions on M in a natural manner. The
connection form ¢ on L is given by 0|.,,., = —h'p*0 + i7'27'dz (z€
C — {0})), where ¢ = 1V —1. The covariant differentiation V corresponding
to 6 is given by V,p = Zp — ih~'w(Z)p for any tangent vector Z to M _
and for any @€ C~(M).

4. Polarization P. In this section, we construct a polarization of
our symplectic manifold (M, 2), which is invariant under the flows of
X, and X;,. By means of this polarization, we quantize the “classical
observables” H and L,. See Elhadad [8], Gawedzki [10], Kostant [12],
Onofri [14], [15], [16], Simms [18], [19] and Simms and Woodhouse [20].

Let F; (1= j=<mn-+ 1) be vector fields on T*R"" defined by
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F;l,,=X; —1|y|Y;. For any (x, y)€ M and for any v = (v, -+, V,4,) €
R**, such that v-x = v-y = 0, the vectorv-F'|,,,, = > v;F;|.,, is tangent
to M. Let P,,, be the complexified tangent space spanned by the vectors
Xyl and {(v-Fl,,|lveR"*, v-x =v-y=0}. Then P:(x, y)— P,
defines a distribution on M, and we have:

LeMMA 1. P is a polarization of (M, 2), which is invariant under
the flows of Xy and Xj,.

ProOF. It is easy to see that P is an n-dimensional smooth, complex
distribution on M. Q(P, P) = 0is straightforward. Letv = (v, ---, v,.1)
and w = (w,, -, W,,) be R*"-valued smooth functions on M such that
ve=v-y=w-x=w-y=0. Then we have [ X, v-F|= > (Xzv; + 1|y |v,)F};,
[v-F, w-Fl = 3 (a; — ily|b)F;, [Xps, Xl =0 and [X, v-F] = 3 0.F,,
where a; = (v- X)w; — (w-X)v;, b; = w-Y)w; — (w-Y)v; and ¢; = X0, +
0:;V; — 0yv;. aj, b; and ¢, are real-valued and satisfy >, (Xuv;)x; =
S Xpv))y;=ax=ay=b-x=>by=0,¢cx=X;(v-2x)=0 and ¢c-y =
X;,(v-y) =0. It follows that P is involutive and invariant under the
flows of X, and X,;,. PN P is a one-dimensional complex distribution
spanned by X,. P+ P is a (2n — 1)-dimensional involutive complex
distribution spanned by X, and the vectors of the form v-X and »-Y.
Thus we are done.

In the terminology of Gawedzki [10], P is a strongly admissible,
positive polarization.

5. Half-P-forms. Let a = > y,dy; and B; =dx; — t|y|*dy; A=
j < n + 1) be one-forms on M. Choose R"*"'-valued (not necessarily con-
tinuous) functions w, = (ul, ---, ur™), 1 <a <n — 1), on M, such that
the matrix ‘(z, |y|™'y, w, -+, u,_,) €SO(n + 1) at any point (z, y)e M.
Define B8 = Azl Sicjcn #iB;. Then B is a smooth (n — 1)-form on M,
which is independent of the choice of {u,}. Let >, denote the Lie
derivation with respect to a vector field Z on M.

LEMMA 2. ¢ =a A B 18 a nowhere-vanishing smooth m-form on M,
which satisfies: (1) Z 1t =0 for any vector Z from P, (2) &, tt=
in — Dyly, B) FL.pr=0 for any R -valued smooth function v on
M with v-x =v-y =0 and (4) L, = 0.

By the above lemma, it follows that the bundle D of complex n-
forms on M, vanishing after contraction with any vector from P is a
trivial bundle. Let D** = (M x C, p, M) be another complex line bundle
(trivial bundle) over M, and v denote the cross-section (z, y)+— (z, y, 1)
of D'*. Let ¢: DV*@ D> — D be the vector bundle isomorphism defined
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by (v Qv) = pt. We call the pair (D ¢) the square root structure for
P and sections of D'’ half-P-forms on M. See Gawedzki [10] and Simms
and Woodhouse [20]. Since H'M, Z,) =0 (n = 3), the square root
structure is unique. For any smooth vector field Z on M, let us define
a Z-derivation .&7'* acting on the space I'(DY?) of smooth cross-sections
of D'* by the following: ¢(2(~}%)® o) = F, (o ® o)), for any oe
. See Gawedzki [10].

Let &'(M) be the space of generalized functions (distributions or
0-currents) on M. See de Rham [6] and Schwartz [17]. We call the
tensor product 2'(M)Q I'(D'?), taken over the ring C~(M), the space
of generalized half-P-forms on M. See Simms [19]. Finally, we have
the space of generalized L-valued half-P-forms on M, I'=1"(L) ® D'(M)®
I'(D"?). Note that I' is naturally identified with &'(M) by the corres-
pondence 1R TRy — T.

6. Quantum phase space ©>~*. Let I'(P) denote the space of smooth,
complex vector fields on M which belong to P at each point of M. A
complex vector field Z on M is said to preserve the polarization P if
[Z, X]e '(P) for any X e'(P). For each vector field Z, which preserves
P, we define a linear operator 6, on I' by 6,(p QT ® o) = (Vo) X TX®
0+ PpRIZITRo + PR TR F+*0, where ZT is defined by (ZT)A) =
—T(4,A) for any smooth 2n-form A on M of compact support. See
Gawedzki [10] and Simms [19]. A cross-section v e I' is called P-horizontal
if 6,(v) = 0 for all Ze I'(P). Then by Lemma 2, a cross-section 1 ®Q T'X®
ye " is P-horizontal if and only if X, T — i|y|(A'|y] — 27w — 1))T =0
and (v-F)T = 0, for any v as in Lemma 2.

For each integer N, N > 2%n — 1), let us denote », = #(N +
2-%(n — 1)). Define a submanifold: My = {(x, y)e M||y| = ry} of M with
the inclusion py: My — M. Let A?(M) denote the space of smooth g¢-
forms on M. Define 7= |y|(y-Y) 2" A**(M). Then 7 satisfies
(w-Y)In=0,dly) Anp=20"and p}(%,n) = 0. It follows that 7, =
pine N*'(My) is non-vanishing and invariant under the flow of X,
restricted to M. For any Ae A*™(M), A = al" with acC>(M), let
Ay = pian)e A*(My). For any Tye 2'(My), let us define Ty e =2'(M)
by Tw(A) = Ty(Ay), for any Ae A*(M) of compact support. In the
following, we shall determine the subspace 577 of I' composed of P-
horizontal cross-sections of the form 1 & >» Ty R v. If we write 573" =
1R TyRQve#T| Tye 2'(My)}, then S = @S4T.

LEMMA 3. 277 is non-trivial if and only if N is non-negative. In
this case, 577 is given by 5727 = {1 Q Ty @ v| Ty = Dlixi—n Cx?~}, where
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cxelC, z= (21, Tty z'n+1)9 2, =x; — i"'ITllyj eC~(My), K = (kyy -+, kn—l—l) and
K| =3 k;.
Note that
4 o, P
dim 577 = N " 1

which is equal to the multiplicity of the N-th eigenvalue of the Laplacian
A acting on functions on S". See Berger-Gauduchon-Mazet [2].

__2N+n——1<N+n—2>

7. Kostant quantization for H and L;. Following the Kostant
quantization prescription, we shall assign for H and L,, linear operators
H=i"hdy, + H and Ly = i'hd,,, + Ly on 5. We call L the
angular momentum operators. Furthermore, we define L* = >, (L)
which we call the square of angular momentum operators.

LEMMA 4. (1) Hlor = 27N + 27 (n — 1)) (multiplication operator).
2) Lyl®2zQ@v) =1Q i7'h(awr® — a,;2°) Qv, where z = (2, -+, Zui),
;=% — Wy'Ye A =(ay, -+, Qpi), 2, a; = N, Y =20 .- z:{ffl: B = (a,,
e+ L e —1, o a,,) and C=(ay oo, a;— 1, oo, @, + 1, e,
@) (3) LI* |t = W'N(N + n — 1) (multiplication operator).

PROOF. Since 8y, =0 on S#7, we have H|,r = H|,r = 2""%(N +
2%(n — 1))>. Thus (1) is proved. To prove (2), it is sufficient to note
Vil = —ihi~Ly and % v = 0, which follow from Lemma 2. To prove
(3), it is sufficient to note z-z = 0 on M,.

Summing up, we have the following:

THEOREM. There exists a polarization P on M = T*S™ — {0-section},
which 1s invariant under the geodesic flow and wunder the natural
SO(n + 1)-action on M. By means of this polarization, the classical
Hamiltonian H and the functions L;,’s are geometrically quantized. For
n = 3, the corresponding quantum Hamiltonian H has 2-F(N + 27 (n—1))
as the N-th eigenvalue (N = 0) with the eigenspace S#F of dimension

2N+n~1<N+n—2>

N n—1 )

Moreover, an operator L?, defined by Z,Kk(f/,-k)?, has #*N(N +n — 1) as
the N-th eigenvalue with the eigenspace S77 .

As “classical observables”, energy H and one-half the square of
angular momenta, 2-' > L%, are equal, but as “quantum observables”,
H and 2‘15_‘,(IA,,-,,)2 are different by an additive constant; H = 2-'(I* +
fi*(27 (n — 1))).
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A similar observation may be possible for such manifolds as compact
symmetric spaces of rank one. See Besse [3].

8. Appendix. Let @ be the restriction to M of the vertical polari-
zation of p: T*S"—S", and E the bundle of complex n-forms on M,
vanishing after contraction with any vector from Q. In the following,
we use the same letter p for the restriction of p to M. FE is a trivial
bundle and p*g¢ is a nowhere-vanishing cross-section of E, where pe
A*(S™ is the volume form on S*. Let (E'? ¢) be the square root structure
for Q and v the cross-section of the trivial bundle E** such that (v Q v) =
p*1t. For each vector field Z on M, which preserves the polarization Q,
we define a linear operator 6, on I'(L)Q I'(E) by 6,(p ®v) = (V)R
vy + & . Q-horizontal sections are similarily defined, which are
of the form (fop) ®v for feC=(S™). The space 5#? of Q-horizontal
sections is naturally identified with C=(S") by the correspondence (fop)®
vy — f. Since X, preserves @, we can define a linear operator ﬁjk by
L, = 70y, + Ly on 527%  We also call Ly, theA angular momentum
operator. Furthermore, if we define L*= >};., (L;)’, then we have
LN(fop) ®v) = (h*Af)op) ®v. Thus, under the identification of ¢
with C=(S™), I* is nothing but %® times the Laplacian A acting on func-
tions on S*, (the Casimir operator). Since X, does not preserve @, we
cannot quantize H in the same way as above as a linear operator on
579, But, by Lemma 4 and the above calculation, it is reasonable to say
that if we quantize the classical Hamiltonian H as an operator on 579,
then we should have the operator H = 2-'(I* + %2 (n — 1))* as the
corresponding quantum Hamiltonian. If we identify ©57¢ with C=(S"),
then H is given by 27'%*A + (2-'(n — 1))).
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