GEOMETRIC QUANTIZATION FOR THE MECHANICS ON SPHERES

Kiyotaka Ii

(Received April 20, 1979, revised October 30, 1980)

1. Introduction. The classical Hamiltonian (kinetic energy) H for the mechanical system consisting of a non-relativistic free particle of unit mass moving on a Riemannian manifold is given by one-half the Riemannian metric. Several authors say that the quantum Hamiltonian \hat{H} corresponding to H is $2^{-1} \hbar^{1} \Delta$, where Δ is the Laplacian acting on functions and $h=(2 \pi)^{-1} h, h=$ Planck's constant. See Blattner [4] and Simms and Woodhouse [20]. However, DeWitt [7] and Cheng [5] used the method of "Feynman's path integrals" to derive a different operator for the quantum Hamiltonian. See also Ben-Abraham and Lonke [1]. Elhadad [9] applied the method of "Maslov pairing" to the geodesic flow on the unit n-sphere S^{n} to obtain a quantum Hamiltonian. Also, Weinstein [21] has shown, in the case of S^{n}, that the N-th quasi-classical eigenvalue for H is $\lambda_{N}=2^{-1} \hbar^{2}\left(N+2^{-1}(n-1)\right)^{2}$, which is not equal to the N-th eigenvalue $\mu_{N}=2^{-1} \hbar^{2} N(N+n-1)$ of the operator $2^{-1} \hbar^{2} \Delta$ on S^{n}. Note that the multiplicity of λ_{N} is equal to that of μ_{N}. See Ii [11]. These results show that $2^{-1} \hbar^{2} \Delta$ may not necessarily be the quantum Hamiltonian corresponding to H. The correct quantum Hamiltonian \hat{H} has to be determined from appropriate general principles. In the present paper, we apply the quantization procedure of Kostant to quantize the mechanical system consisting of a non-relativistic, positive energy free particle of unit mass moving on the unit n-sphere S^{n} ($n \geqq 3$). We construct a polarization which enables us to quantize H. The resulting quantum Hamiltonian \hat{H} has λ_{N} as the N-th eigenvalue. Moreover using the same polarization, we define an operator \widetilde{L}^{2} which has $2 \mu_{N}$ as the N-th eigenvalue and has the same eigenspaces as that of \hat{H}. From the construction \widetilde{L}^{2} may be identified with $\hbar^{2} \Delta$. Under this identification, the correct quantum Hamiltonian \hat{H} on S^{n} is given by $2^{-1} \hbar^{2}\left(\Delta+4^{-1}(n-1)^{2}\right)$. The referee pointed out that the idea of adding $4^{-1}(n-1)^{2}$ to the Laplacian was also found by Y. Akyildiz in

[^0]his Berkeley thesis in connection with the representation of $S O(n+1,2)$ on $L^{2}\left(S^{n}\right)$.
2. Preliminaries. Let \boldsymbol{R}^{n+1} and $T^{*} \boldsymbol{R}^{n+1}$ be the ($n+1$)-space and its cotangent bundle with coordinates $x=\left(x_{1}, \cdots, x_{n+1}\right)$ and $(x, y)=\left(x_{1}, \cdots\right.$, $\left.x_{n+1}, y_{1}, \cdots, y_{n+1}\right)$, respectively. Let $|x|^{2}=\sum x_{j}^{2},|y|^{2}=\sum y_{j}^{2}$ and $x \cdot y=$ $\sum x_{j} y_{j}$, so that the cotangent bundle on the unit n-sphere S^{n} is represented by $T^{*} S^{n}=\left\{(x, y) \in T^{*} \boldsymbol{R}^{n+1}| | x \mid=1, x \cdot y=0\right\}$. The Hamiltonian of a free particle of unit mass on S^{n} is given by $H(x, y)=2^{-1}|y|^{2}$. The phase space of the positive energy free particle of unit mass on S^{n} is given by $M=T^{*} S^{n}-\{0$-section $\}=\left\{(x, y) \in T^{*} S^{n}| | y \mid>0\right\}$ with the action form $\omega=\sum y_{j} d x_{j}$ and the symplectic form $\Omega=-d \omega=\sum d x_{j} \wedge$ $d y_{j}$. Let $C^{\infty}(M ; \boldsymbol{R})$ be the space of real-valued smooth functions on M. Since Ω is real and non-degenerate, we can define for each $f \in C^{\infty}(M ; \boldsymbol{R})$ a real vector field X_{f} on M by $X_{f} \downharpoonleft \Omega=d f . \quad X_{f}$ is called the Hamiltonian vector field generated by f. Let us define $L_{j k}$ and $L^{2} \in C^{\infty}(M ; \boldsymbol{R})$ by $L_{j k}(x, y)=x_{j} y_{k}-x_{k} y_{j} \quad(1 \leqq j, k \leqq n+1)$ and $L^{2}=\sum_{j<k} L_{j k}^{2}$, which are called angular momenta and square of angular momenta, respectively. Note that $H=2^{-1} L^{2}$. Let us denote $X_{j}=\partial / \partial x_{j}, \quad Y_{j}=\partial / \partial y_{j}, \quad X=$ $\left(X_{1}, \cdots, X_{n+1}\right)$ and $Y=\left(Y_{1}, \cdots, Y_{n+1}\right)$. For the sake of simplicity, we write $u \cdot X$ instead of $\sum u_{j} X_{j}$ for $u=\left(u_{1}, \cdots, u_{n+1}\right)$. Then we have $X_{H}=$ $\sum\left(y_{j} X_{j}-|y|^{2} x_{j} Y_{j}\right)=y \cdot X-|y|^{2} x \cdot Y \quad$ and $\quad X_{j k} \equiv X_{L_{j k}}=\sum_{i=1}^{n+1}\left\{\left(-\delta_{i j} x_{k}+\right.\right.$ $\left.\delta_{i k} x_{j}\right) X_{i}+\left(-\delta_{i j} y_{k}+\delta_{i k} y_{j}\right) Y_{i}$, which are complete vector fields on $M . \quad X_{H}$ is the geodesic flow vector field on M. See Moser [13].
3. Quantum bundle L. Since the symplectic form Ω is exact, and M is simply connected ($n \geqq 3$), there exists, up to isomorphism, unique quantum bundle L over M. For quantum bundles, see Kostant [12]. L is a trivial bundle; $\boldsymbol{L}=(M \times \boldsymbol{C}, p, M)$. Let $\Gamma(\boldsymbol{L})$ denote the space of smooth cross-sections of \boldsymbol{L}. Then $\Gamma(\boldsymbol{L})$ is identified with the space $C^{\infty}(M)$ of complex-valued smooth functions on M in a natural manner. The connection form θ on L is given by $\left.\theta\right|_{(x, y, z)}=-\hbar^{-1} p^{*} \omega+i^{-1} z^{-1} d z \quad(z \in$ $C-\{0\})$, where $i=\sqrt{-1}$. The covariant differentiation ∇ corresponding to θ is given by $\nabla_{Z} \varphi=Z \varphi-i \hbar^{-1} \omega(Z) \varphi$ for any tangent vector Z to M and for any $\varphi \in C^{\infty}(M)$.
4. Polarization P. In this section, we construct a polarization of our symplectic manifold (M, Ω), which is invariant under the flows of X_{H} and $X_{j k}$. By means of this polarization, we quantize the "classical observables" H and $L_{j k}$. See Elhadad [8], Gawedzki [10], Kostant [12], Onofri [14], [15], [16], Simms [18], [19] and Simms and Woodhouse [20].

Let $F_{j}(1 \leqq j \leqq n+1)$ be vector fields on $T^{*} \boldsymbol{R}^{n+1}$ defined by
$\left.F_{j}\right|_{(x, y)}=X_{j}-i|y| Y_{j}$. For any $(x, y) \in M$ and for any $v=\left(v_{1}, \cdots, v_{n+1}\right) \in$ \boldsymbol{R}^{n+1}, such that $v \cdot x=v \cdot y=0$, the vector $\left.v \cdot F\right|_{(x, y)}=\left.\sum v_{j} F_{j}\right|_{(x, y)}$ is tangent to M. Let $P_{(x, y)}$ be the complexified tangent space spanned by the vectors $\left.X_{H}\right|_{(x, y)}$ and $\left\{\left.v \cdot \boldsymbol{F}\right|_{(x, y)} \mid v \in \boldsymbol{R}^{n+1}, v \cdot x=v \cdot y=0\right\}$. Then $P:(x, y) \mapsto P_{(x, y)}$ defines a distribution on M, and we have:

Lemma 1. P is a polarization of (M, Ω), which is invariant under the flows of X_{H} and $X_{j k}$.

Proof. It is easy to see that P is an n-dimensional smooth, complex distribution on $M . \quad \Omega(P, P)=0$ is straightforward. Let $v=\left(v_{1}, \cdots, v_{n+1}\right)$ and $w=\left(w_{1}, \cdots, w_{n+1}\right)$ be \boldsymbol{R}^{n+1}-valued smooth functions on M such that $v \cdot x=v \cdot y=w \cdot x=w \cdot y=0$. Then we have $\left[X_{H}, v \cdot F\right]=\sum\left(X_{H} v_{j}+i|y| v_{j}\right) F_{j}$, $[v \cdot F, w \cdot F]=\sum\left(a_{j}-i|y| b_{j}\right) F_{j}, \quad\left[X_{j k}, X_{H}\right]=0$ and $\left[X_{j k}, v \cdot F\right]=\sum c_{i} F_{i}$, where $a_{j}=(v \cdot X) w_{j}-(w \cdot X) v_{j}, \quad b_{j}=(v \cdot Y) w_{j}-(w \cdot Y) v_{j}$ and $c_{i}=X_{j k} v_{i}+$ $\delta_{i j} v_{k}-\delta_{i k} v_{j} . \quad a_{j}, b_{j}$ and c_{i} are real-valued and satisfy $\sum\left(X_{H} v_{j}\right) x_{j}=$ $\sum\left(X_{H} v_{j}\right) y_{j}=a \cdot x=a \cdot y=b \cdot x=b \cdot y=0, c \cdot x=X_{j_{k}}(v \cdot x)=0$ and $c \cdot y=$ $X_{j_{k}}(v \cdot y)=0$. It follows that P is involutive and invariant under the flows of X_{H} and $X_{j k} . \quad P \cap \bar{P}$ is a one-dimensional complex distribution spanned by $X_{H} . \quad P+\bar{P}$ is a $(2 n-1)$-dimensional involutive complex distribution spanned by X_{H} and the vectors of the form $v \cdot X$ and $v \cdot Y$. Thus we are done.

In the terminology of Gawedzki [10], P is a strongly admissible, positive polarization.
5. Half- P-forms. Let $\alpha=\sum y_{j} d y_{j}$ and $\beta_{j}=d x_{j}-i|y|^{-1} d y_{j}(1 \leqq$ $j \leqq n+1$) be one-forms on M. Choose \boldsymbol{R}^{n+1}-valued (not necessarily continuous) functions $u_{a}=\left(u_{a}^{1}, \cdots, u_{a}^{n+1}\right),(1 \leqq a \leqq n-1)$, on M, such that the matrix ${ }^{t}\left(x,|y|^{-1} y, u_{1}, \cdots, u_{n-1}\right) \in S O(n+1)$ at any point $(x, y) \in M$. Define $\beta=\bigwedge_{a=1}^{n-1} \sum_{1 \leqq j \leqq n+1} u_{a}^{j} \beta_{j}$. Then β is a $\operatorname{smooth}(n-1)$-form on M, which is independent of the choice of $\left\{u_{a}\right\}$. Let \mathscr{L}_{z} denote the Lie derivation with respect to a vector field Z on M.

Lemma 2. $\mu=\alpha \wedge \beta$ is a nowhere-vanishing smooth n-form on M, which satisfies: (1) $Z\lrcorner \mu=0$ for any vector Z from P, (2) $\mathscr{E}_{X_{H}} \mu=$ $i(n-1)|y| \mu$, (3) $\mathscr{L}_{v \cdot F} \mu=0$ for any \boldsymbol{R}^{n+1}-valued smooth function v on M with $v \cdot x=v \cdot y=0$ and (4) $\mathscr{L}_{X_{j k}} \mu=0$.

By the above lemma, it follows that the bundle \boldsymbol{D} of complex n forms on M, vanishing after contraction with any vector from P is a trivial bundle. Let $\boldsymbol{D}^{1 / 2}=(M \times \boldsymbol{C}, p, M)$ be another complex line bundle (trivial bundle) over M, and ν denote the cross-section $(x, y) \mapsto(x, y, 1)$ of $\boldsymbol{D}^{1 / 2}$. Let $\iota: \boldsymbol{D}^{1 / 2} \otimes \boldsymbol{D}^{1 / 2} \rightarrow \boldsymbol{D}$ be the vector bundle isomorphism defined
by $\iota(\nu \otimes \nu)=\mu$. We call the pair $\left(D^{1 / 2}, \iota\right)$ the square root structure for P and sections of $\boldsymbol{D}^{1 / 2}$ half- P-forms on M. See Gawedzki [10] and Simms and Woodhouse [20]. Since $H^{1}\left(M, \boldsymbol{Z}_{2}\right)=0(n \geqq 3)$, the square root structure is unique. For any smooth vector field Z on M, let us define a Z-derivation $\mathscr{L}_{Z}^{1 / 2}$ acting on the space $\Gamma\left(\boldsymbol{D}^{1 / 2}\right)$ of smooth cross-sections of $\boldsymbol{D}^{1 / 2}$ by the following: $\iota\left(2\left(\mathscr{L}_{Z}^{1 / 2} \sigma\right) \otimes \sigma\right)=\mathscr{L}_{z}(\iota(\sigma \otimes \sigma))$, for any $\sigma \in$ $\Gamma\left(\boldsymbol{D}^{1 / 2}\right)$. See Gawedzki [10].

Let $\mathscr{D}^{\prime}(M)$ be the space of generalized functions (distributions or 0 -currents) on M. See de Rham [6] and Schwartz [17]. We call the tensor product $\mathscr{D}^{\prime}(M) \otimes \Gamma\left(D^{1 / 2}\right)$, taken over the ring $C^{\infty}(M)$, the space of generalized half- P-forms on M. See Simms [19]. Finally, we have the space of generalized \boldsymbol{L}-valued half- P-forms on $M, \Gamma=\Gamma(\boldsymbol{L}) \otimes D^{\prime}(M) \otimes$ $\Gamma\left(\boldsymbol{D}^{1 / 2}\right)$. Note that Γ is naturally identified with $\mathscr{D}^{\prime}(M)$ by the correspondence $1 \otimes T \otimes \nu \leftrightarrow T$.
6. Quantum phase space \mathscr{C}^{P}. Let $\Gamma(P)$ denote the space of smooth, complex vector fields on M which belong to P at each point of M. A complex vector field Z on M is said to preserve the polarization P if $[Z, X] \in \Gamma(P)$ for any $X \in \Gamma(P)$. For each vector field Z, which preserves P, we define a linear operator δ_{Z} on Γ by $\delta_{z}(\varphi \otimes T \otimes \sigma)=\left(\nabla_{z} \varphi\right) \otimes T \otimes$ $\sigma+\varphi \otimes Z T \otimes \sigma+\varphi \otimes T \otimes \mathscr{L}_{Z}^{1 / 2} \sigma$, where $Z T$ is defined by $(Z T)(A)=$ $-T\left(\mathscr{L}_{Z} A\right)$ for any smooth $2 n$-form A on M of compact support. See Gawedzki [10] and Simms [19]. A cross-section $\gamma \in \Gamma$ is called P-horizontal if $\delta_{Z}(\gamma)=0$ for all $Z \in \Gamma(P)$. Then by Lemma 2, a cross-section $1 \otimes T \otimes$ $\nu \in \Gamma$ is P-horizontal if and only if $X_{H} T-i|y|\left(h^{-1}|y|-2^{-1}(n-1)\right) T=0$ and $(v \cdot F) T=0$, for any v as in Lemma 2.

For each integer $N, N>2^{-1}(n-1)$, let us denote $r_{N}=\hbar(N+$ $2^{-1}(n-1)$). Define a submanifold: $M_{N}=\left\{(x, y) \in M| | y \mid=r_{N}\right\}$ of M with the inclusion $p_{N}: M_{N} \rightarrow M$. Let $\Lambda^{q}(M)$ denote the space of smooth q forms on M. Define $\left.\eta=|y|^{-1}(y \cdot Y)\right\rfloor \Omega^{n} \in \Lambda^{2 n-1}(M)$. Then η satisfies $(y \cdot Y) \downharpoonleft \eta=0, d(|y|) \wedge \eta=\Omega^{n}$ and $p_{N}^{*}\left(\mathscr{L}_{X_{H}} \eta\right)=0$. It follows that $\eta_{N}=$ $p_{N}^{*} \eta \in \Lambda^{2 n-1}\left(M_{N}\right)$ is non-vanishing and invariant under the flow of X_{H} restricted to M_{N}. For any $A \in \Lambda^{2 n}(M), A=a \Omega^{n}$ with $a \in C^{\infty}(M)$, let $A_{N}=p_{N}^{*}(a \eta) \in \Lambda^{2 n-1}\left(M_{N}\right)$. For any $T_{N} \in \mathscr{D}^{\prime}\left(M_{N}\right)$, let us define $\widetilde{T}_{N} \in \mathscr{D}^{\prime}(M)$ by $\widetilde{T}_{N}(A)=T_{N}\left(A_{N}\right)$, for any $A \in \Lambda^{2 n}(M)$ of compact support. In the following, we shall determine the subspace \mathscr{H}^{P} of Γ composed of P horizontal cross-sections of the form $1 \otimes \sum_{N} \widetilde{T}_{N} \otimes \nu$. If we write $\mathscr{H}_{N}^{P}=$ $\left\{1 \otimes \widetilde{T}_{N} \otimes \nu \in \mathscr{H}^{P} \mid T_{N} \in \mathscr{D}^{\prime}\left(M_{N}\right)\right\}$, then $\mathscr{H}^{P}=\bigoplus \mathscr{H}_{N}^{P}$.

Lemma 3. \mathscr{H}_{N}^{P} is non-trivial if and only if N is non-negative. In this case, \mathscr{H}_{N}^{P} is given by $\mathscr{H}_{N}^{P}=\left\{1 \otimes \widetilde{T}_{N} \otimes \nu \mid T_{N}=\sum_{|K|=N} c_{K} z^{K}\right\}$, where
$c_{K} \in \boldsymbol{C}, \quad z=\left(z_{1}, \cdots, z_{n+1}\right), z_{j}=x_{j}-i r_{N}^{-1} y_{j} \in C^{\infty}\left(M_{N}\right), \quad K=\left(k_{1}, \cdots, k_{n+1}\right)$ and $|K|=\sum k_{j}$.

Note that

$$
\operatorname{dim} \mathscr{\mathscr { C }}_{N}^{P}=\frac{2 N+n-1}{N}\binom{N+n-2}{n-1},
$$

which is equal to the multiplicity of the N-th eigenvalue of the Laplacian Δ acting on functions on S^{n}. See Berger-Gauduchon-Mazet [2].
7. Kostant quantization for H and $L_{j k}$. Following the Kostant quantization prescription, we shall assign for H and $L_{j k}$ linear operators $\hat{H}=i^{-1} \hbar \delta_{X_{H}}+H$ and $\hat{L}_{j k}=i^{-1} \hbar \delta_{X_{j k}}+L_{j k}$ on \mathscr{H}^{P}. We call $\hat{L}_{j k}$ the angular momentum operators. Furthermore, we define $\widetilde{L}^{2}=\sum_{i<k}\left(\hat{L}_{j k}\right)^{2}$, which we call the square of angular momentum operators.

Lemma 4. (1) $\left.\hat{H}\right|_{\mathscr{C}_{N}^{P}}=2^{-1} \hbar^{2}\left(N+2^{-1}(n-1)\right)^{2}$ (multiplication operator). (2) $\hat{L}_{j k}\left(1 \otimes z^{A} \otimes \nu\right)=1 \otimes i^{-1} \hbar\left(a_{k} z^{B}-a_{j} z^{c}\right) \otimes \nu$, where $z=\left(z_{1}, \cdots, z_{n+1}\right)$, $z_{j}=x_{j}-i r_{N}^{-1} y_{k}, \quad A=\left(a_{1}, \cdots, a_{n+1}\right), \sum a_{j}=N, z^{A}=z_{1}^{a_{1}} \cdots z_{n+1}^{a_{n+1}}, \quad B=\left(a_{1}\right.$, $\left.\cdots, a_{j}+1, \cdots, a_{k}-1, \cdots, a_{n+1}\right)$ and $C=\left(a_{1}, \cdots, a_{j}-1, \cdots, a_{k}+1, \cdots\right.$, a_{n+1}). (3) $\left.\widetilde{L}^{2}\right|_{\mathscr{e}_{N}^{P}}=\hbar^{2} N(N+n-1)$ (multiplication operator).

Proof. Since $\delta_{X_{H}}=0$ on $\mathscr{\mathscr { C }}^{P}$, we have $\left.\hat{H}\right|_{\notin{ }_{N}^{P}}=\left.H\right|_{\mathscr{x}_{N}^{P}}=2^{-1} \hbar^{2}(N+$ $\left.2^{-1}(n-1)\right)^{2}$. Thus (1) is proved. To prove (2), it is sufficient to note $\nabla_{X_{j k}} 1=-i \hbar^{-1} L_{j k}$ and $\mathscr{L}_{X_{j k}}^{1 / 2} \nu=0$, which follow from Lemma 2. To prove (3), it is sufficient to note $z \cdot z=0$ on M_{N}.

Summing up, we have the following:
Theorem. There exists a polarization P on $M=T^{*} S^{n}-\{0-$ section $\}$, which is invariant under the geodesic flow and under the natural $\mathrm{SO}(n+1)$-action on M. By means of this polarization, the classical Hamiltonian H and the functions $L_{j k}$'s are geometrically quantized. For $n \geqq 3$, the corresponding quantum Hamiltonian \hat{H} has $2^{-1} \hbar^{2}\left(N+2^{-1}(n-1)\right)^{2}$ as the N-th eigenvalue ($N \geqq 0$) with the eigenspace \mathscr{C}_{N}^{P} of dimension

$$
\frac{2 N+n-1}{N}\binom{N+n-2}{n-1} .
$$

Moreover, an operator \widetilde{L}^{2}, defined by $\sum_{j<k}\left(\hat{L}_{j k}\right)^{2}$, has $\hbar^{2} N(N+n-1)$ as the N-th eigenvalue with the eigenspace \mathscr{H}_{N}^{P}.

As "classical observables", energy H and one-half the square of angular momenta, $2^{-1} \sum L_{j k}^{2}$, are equal, but as "quantum observables", \hat{H} and $2^{-1} \sum\left(\hat{L}_{j k}\right)^{2}$ are different by an additive constant; $\hat{H}=2^{-1}\left(\widetilde{L}^{2}+\right.$ $\left.\hbar^{2}\left(2^{-1}(n-1)\right)^{2}\right)$.

A similar observation may be possible for such manifolds as compact symmetric spaces of rank one. See Besse [3].
8. Appendix. Let Q be the restriction to M of the vertical polarization of $p: T^{*} S^{n} \rightarrow S^{n}$, and E the bundle of complex n-forms on M, vanishing after contraction with any vector from Q. In the following, we use the same letter p for the restriction of p to M. E is a trivial bundle and $p^{*} \mu$ is a nowhere-vanishing cross-section of \boldsymbol{E}, where $\mu \in$ $\Lambda^{n}\left(S^{n}\right)$ is the volume form on S^{n}. Let $\left(\boldsymbol{E}^{1 / 2}\right.$, c) be the square root structure for Q and ν the cross-section of the trivial bundle $E^{1 / 2}$ such that $\iota(\nu \otimes \nu)=$ $p^{*} \mu$. For each vector field Z on M, which preserves the polarization Q, we define a linear operator δ_{Z} on $\Gamma(\boldsymbol{L}) \otimes \Gamma(\boldsymbol{E})$ by $\delta_{Z}(\mathscr{\mathcal { Q }} \otimes \nu)=\left(\nabla_{Z} \varphi\right) \otimes$ $\nu+\varphi \otimes \mathscr{L}_{Z}^{1 / 2} \nu$. Q-horizontal sections are similarily defined, which are of the form $(f \circ p) \otimes \nu$ for $f \in C^{\infty}\left(S^{n}\right)$. The space \mathscr{H}^{Q} of Q-horizontal sections is naturally identified with $C^{\infty}\left(S^{n}\right)$ by the correspondence $(f \circ p) \otimes$ $\nu \leftrightarrow f$. Since $X_{j k}$ preserves Q, we can define a linear operator $\hat{L}_{j k}$ by $\hat{L}_{j k}=i^{-1} \hbar \delta_{X_{j k}}+L_{j k}$ on $\mathscr{L}{ }^{Q}$. We also call $\hat{L}_{j k}$ the angular momentum operator. Furthermore, if we define $\widetilde{L}^{2}=\sum_{j<k}\left(\hat{L}_{j k}\right)^{2}$, then we have $\widetilde{L}^{2}((f \circ p) \otimes \nu)=\left(\left(\hbar^{2} \Delta f\right) \circ p\right) \otimes \nu$. Thus, under the identification of \mathscr{H}^{a} with $C^{\infty}\left(S^{n}\right), \widetilde{L}^{2}$ is nothing but \hbar^{2} times the Laplacian Δ acting on functions on S^{n}, (the Casimir operator). Since X_{H} does not preserve Q, we cannot quantize H in the same way as above as a linear operator on $\mathscr{H}^{\text {a }}$. But, by Lemma 4 and the above calculation, it is reasonable to say that if we quantize the classical Hamiltonian H as an operator on \mathscr{H}^{Q}, then we should have the operator $\hat{H}=2^{-1}\left(\widetilde{L}^{2}+\hbar^{2}\left(2^{-1}(n-1)\right)^{2}\right)$ as the corresponding quantum Hamiltonian. If we identify \mathscr{H}^{Q} with $C^{\infty}\left(S^{n}\right)$, then \hat{H} is given by $2^{-1} \hbar^{2}\left(\Delta+\left(2^{-1}(n-1)\right)^{2}\right)$.

References

[1] S. I. Ben-Abraham and A. Lonke, Quantization of a general dynamical system, J. Math. Phys. 14 (1973), 1935-1937.
[2] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math. 194, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
[3] A. L. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
[4] R. J. Blattner, Quantization and representation theory, Proc. Symp. Pure Math. 26 (1974), 147-165.
[5] K. S. Cheng, Quantization of a general dynamical system by Feynman's path integration formulation, J. Math. Phys. 13 (1972), 1723-1726.
[6] G. de Rham, Variétés différentiables, Hermann, Paris, 1955.
[7] B. S. DeWitr, Dynamical theory in curved spaces. I, A review of the classical and quantum action principles, Rev. Mod. Phys. 26 (1957), 377-397.
[8] J. Elhadad, Sur l'interprétation en géométrie symplectique des états quantiques de
l'atome d'hydrogène, Symposia Math. 24 (1974), 259-291.
[9] J. Elhadad, Quantification du flot géodésique de la sphère S^{n}, C. R. Acad. Sci. Paris 285 (1977), 961-964.
[10] K. Gawedzki, Fourier-like kernels in geometric quantization, Diss. Math. 128 (1976).
[11] K. II, On the multiplicities of the spectrum for quasi-classical mechanics on spheres, Tôhoku Math. J. 30 (1978), 517-524.
[12] B. Kostant, Quantization and unitary representations, Lecture Notes in Math. 170, Springer-Verlag, Berlin-Heidelberg-New York, 1970, 87-208.
[13] J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm, Pure Appl. Math. 23 (1970), 609-636.
[14] E. Onofri, $S O(n, 2)$-singular orbits and their quantization, Colloques Internat. du CNRS 237 (1975), 155-161.
[15] E. Onofri, Dynamical quantization of the Kepler manifold, J. Math. Phys. 17 (1976), 401-408.
[16] E. Onofri, V. Fock, 40 years later, Lecture Notes in Math. 570, Springer-Verlag, Berlin-Heidelberg-New York, 1977, 72-75.
[17] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
[18] D. J. Simms, Geometric quantization of energy levels in the Kepler problem, Symposia Math. 24 (1974), 125-137.
[19] D. J. Simms, Metalinear structure and a geometric quantization of the harmonic oscillator, Colloques Internat. du CNRS 237 (1975), 163-174.
[20] D. J. Simms and N. M. J. Woodhouse, Lectures on geometric quantization, Lecture Notes in Phys. 53, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[21] A. Weinstein, Quasi-classical mechanics on spheres, Symposia Math. 24 (1974), 25-32.
Department of Mathematics
Yamagata University
Yamagata, 990
Japan

[^0]: Partly supported by the Grant-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.

