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1. Introduction and preliminaries. Quite recently, the first author
showed that any unital C*-algebra A has a unique injective envelope
I(A) which indeed is an AW *-algebra and contains the regular monotone
completion A of A as an AW*-subalgebra. The injective envelope I(A)
(resp. the regular monotone completion A) reflects closely the structure
of A; e.g., any *-automorphism of A is extended to a unique *-automor-
phism of I(A) (resp. A) ([6]).

AW*-algebras are more tractable than the general C*-algebras.
They have sufficiently many projections and are decomposed uniquely
according to type. Moreover it is known that their derivations are
inner ([10]).

On the other hand, I(A) is an AW?*-factor if and only if A is
prime, and in most cases I(A) becomes a non-W*, AW*-algebra. To
such an algebra the spatial theory of W*-algebras cannot be applicable
and to study it seems to be very interesting.

In this paper we shall consider the following questions: Whether
can each derivation on a C*-algebra be extended to a unique derivation
on its injective envelope and whether can each automorphism (not neces-
sarily *-preserving) of a C*-algebra be extended to a unique automor-
phism of its injective envelope? The answers should be given affirma-
tively to both questions for a general C*-algebra. As an application of
the observation on derivations, we shall be able to introduce, for the
general C*-algebra A, the C*-algebra D(A), as a C*-subalgebra of the
regular monotone completion A of A (note that, if A is separable then
A coincides with the regular g-competion A of A [18] and hence D(A)
is a C*-subalgebra of A). This C*-algebra D(A) must coincide with
Sakai’s derived algebra =7(A) ([14]) if A is factorial (see also Tomiyama
[17]).

This work was done in a seminar at Research Institute for Mathe-
matical Sciences, Kyoto University (R.I.M.S.). The authors would like
to thank R.I.M.S. for financial support for the seminar.
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We assume familiarity with basics of C*-algebras, their derivations
and automorphisms (e.g., [2] and [13]). Before going into discussions,
however, we shall give the definitions, and the constructions of the
injective envelope and the regular monotone completion of a C*-algebra.

DEFINITION 1.1. An extension of a unital C*-algebra A is a pair
(B, £) of a unital C*-algebra B and a unital *-monomorphism £ of A
into B. An extension (B, k) is injective if B is injective, and essential
if for any unital completely positive linear mapping @ of B into a unital
C*-algebra C, @ is completely isometric whenever @ox is. An extension
(B, £) is an injective emvelope of A if it is an injective extension of A
such that the identity mapping id; on B is a unique completely positive
linear mapping of B into itself which fixes each element of £(A).

Let A be a unital C*-algebra. Then there exists an injective C*-
algebra C containing A as a C*-subalgebra (we may take C as the
algebra B(H) of all bounded linear operators on the universal Hilbert
space H of A) and a minimal A-projection on C in the sense that @ is
unital, completely positive, idempotent, satisfies @(a) = a for all ac A
and has a minimal image among the images of all A-projections. One
can check that the image Im@ of ¢ is a uniformly closed *-subspace
of C (not necessarily closed with respect to the multiplication of C).
Introducing a new product in Im @ via a-b = @(ab) (a, b€Im @), we get
that, with respect to this multiplication, Im @ is a C*-algebra and it
contains A as a C*-subalgebra. The injectivity of C and the minimality
of @ imply that (Ime, id,) is an injective envelope of A. It can be
shown that (Im e, id,) is unique in the following sense: If another
injective envelope (B, k) is given, then there exists a unique *-isomor-
phism ¥ of Ime onto B such that void, = k. Moreover, it can be
shown that (Ime, id,) is the largest essential extension of A in the
following sense: An extension (B, k) of A is essential if and only if
there exists a unital *-monomorphism A of B into Im @ such that Aek=
id, ([5; Lemma 4.6]).

In what follows, we regard an extension (B, £) of A as a C*-algebra
B which contains A as a C*-subalgebra by identifying £ with the inclu-
sion, and the injective envelope of A is denoted by I(A). Note that
I(A) is a monotone complete AW *-algebra ([16]).

DEFINITION 1.2. A regular monotone completion of a unital C*-
algebra A is a monotone complete C*-algebra A which contains A as a
C*-subalgebra and satisfies the following properties:

(i) A, itself is the smallest monotone closed subspace of A, which
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contains A,; and
(ii) Each z in A, is the supremum in A, of the set {a e 4,:a < 2}.

Let us introduce the following notations: For xze A4, and & c A4,,
& <« means that y <z for all ye &, and Sup,.&# = x means that
the supremum of % in A exists and it is equal to #. For an extension
B of A and xz € B,, we denote the set {a € A4;,: a < 2} by (— o, x],.

Keeping these notations in mind, we shall describe briefly a way to
construct A ([6]). Let 4, = {x € I(A);: ¢ = Sup,, (—oo, ]} and 4 = 4, +
iA,. Then, the first author showed that A is a monotone complete C*-
subalgebra of I(A) which contains A as a C*-subalgebra (it becomes a
maximal regular extension of A). Define A as the monotone closure of
A in A. Then it can be shown to be the regular monotone completion
of A.

In this connection, A which is defined as the monotone o-closure of
A in A is nothing but the regular o-completion of A introduced by
Wright [18] because it is uniquely determined by A.

We have the following inclusions

AcAcAcAcI
(respective inclusions are supremum preserving [6]) and moreover
ZACZA\CZ‘; = ZA' = ZI(A) 9

where Z; means, in general, the center of a C*-algebra B.

In what follows, we suppose that the C*-algebra A in consideration
acts on its universal Hilbert space H, to simplify the arguments without
any loss of generality.

For a non unital C*-algebra A, we can consider I(4,), 4,, A, and
A,, where A, =C *(A4, 1), the C*-algebra generated by A and the
identity operator 1, on H. In what follows, we employ the notations
I(A), A and A instead of I(4,), A, and A,, respectively (see also [15])
when A is non unital.

2. Extension of derivations from A to I(4). Let B be a C*-
algebra (not necessarily unital). We denote by Der (B) the Lie algebra
of all derivations on B and by Der (B; C) the Lie subalgebra of Der (B),
of all derivations on B which leave a C*-subalgebra C of B invariant.

For 6eDer (B), 6* means the derivation on B defined via 6*(x) =
ox*)* (xeB). 0 is said to be skew-adjoint if it satisfies that 6* = —g.

(A,)™ denotes the set of all elements in I(A), each of which can be
obtained as a supremum of an inceasing net from A, (note that (4,)"c A4).
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The following theorem plays a key role for the later discussions.

THEOREM 2.1. (1) For any d&e€Der (I(A); A), ||o|| = ||0]4ll and
there is an element g in (A,)™ + ©(A4,)™ such that 6 = ad g.

(2) For any o0€Der(A), we can get a unique I(0) € Der (I(A); A)
such that I(0)|, = 0; and the mapping Der (A)s 6 — I(0) € Der (I(A); A) is
an isometric Lie isomorphism of Der (A) onto Der (I(A); A).

(38) I(0) is skew-adjoint if and only tf so is o.

LEMMA 2.1 ([1]). Let A be a unital C*-algebra acting on its uni-
versal Hilbert space H. Let @ be any A-projection on B(H). Then ¢
18 an A-module homomorphism, that is, P(ax) = ap(x) and P(ra) = P(x)a
hold for all x € B(H) and ac A.

If a C*-algebra A is non unital, then by Kadison [7], each deriva-
tion § on A can be extended to a unique derivation 4, on A, and in
fact o6,(a + AM1,) = 6(a) for all ac€ A and neC (the complex numbers).
The mapping 6 — 0, is an isometric Lie isomorphism of Der (4) onto
Der (A)), and 4, is skew-adjoint if and only if so is 6. Hence, to prove
Theorem 2.1, we may assume that A is unital. As was mentioned
before, we may suppose that I(4) = Im @ for some minimal A-projection
on B(H) and the multiplication in it is: a-b = @(ab) (a, b € Im ).

LEMMA 2.2. Keeping the notations as above, for any x,, x, in B(H),,
x, <, in B(H), implies px,) < P, wn I(A),. If x, x,€I(A),, then
the comverse implication also holds.

Proor. Since, for any z € B(H), Spzum® () D Sp;.,P(x), where Sp,(x)
is the spectrum of an element 2 of a C*-algebra A, x, <, in B(H),
implies @(x,) < @(x,) in I(A),. Conversely if =z, x,€I(4), and z, < x, in
I(A),, then z, — x, = y*oy = @(y*y) for some ye I(A), thus z, — 2, =0
in B(H),. This completes the proof.

PrROOF OF THEOREM 2.1. For any o6eDer (4) it can be shown by
[7] that the bitranspose ¢” of & is a o-weakly continuous derivation on
the bidual A” of A, which is the o-weak closure of A in B(H), and it
is an extension of 6 with ||6”|| = |d||. Then by [13] (see also [7]),
there is a generator g, for ¢” in A” such that ||"”| = 2||g,||. Let g =
?(g,) and 0 =adg (where adg(x) = gox — xog for xeI(A)). Then,
for any a in A,

0% (a) = P(gy)ca — ap(g,)
= 9(P(g0)a — ap(g,) = P*(g@ — ag,) (by Lemma 2.1)
= @(0"(a)) = P(d(a)) = d(a) (because @[, = id,) .
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Thus 6" is an extension of 6 to I(A) and 6" e Der (I(4); A). Moreover,
since |67 = 2(gll S 2]lgoll 10" | =[6]|=||6“ ], it follows that [|o||=
o]l

If 0 is skew-adjoint, then Olesen and Pedersen’s theorem ([11]) tells
us that the above g, can be taken to be the minimal positive generator
h for 8, which is a strong limit in B(H) of an increasing net {s,} from
A,. We can show that @(h) is the supremum of {#,} in (I(4)),. In fact,
h,<h in B(H), for any a implies that h, = o(h,) < ®(h) in I(A), for
any a. On the other hand, if h, < x for any a in I(A),, then by Lemma
2.2, h, <z in B(H), for any « and so h <z in B(H),. Hence, again by
Lemma 2.2, ¢(h) < x in I(A),. Thus we have @(h) = Sup,;h, ([16; Th.
7.1]). Therefore (k) is in (4,)™.

Let 6 be an extension of 6 to I(A). Then, to show that ¢ = ¢,
we may assume that 4, 0© and 6 are skew-adjoint, by considering the
respective Cartesian decompositions. Let us consider the uniformly
continuous one-parameter groups a® = exp (it o6*) and a® = exp (¢t 6?)
(—oo<t < o) of *-automorphisms of I(4). Since B, =a'a® is a
completely isometric mapping of I(A) into I(A) such that g,|, = id,, we
have B, = id;, by Definition 1.1. Thus, a{” = af® for any ¢; and this
implies that 6 = 6". Let us define I(§) to be the unique extension of
0 to I(A). It is obvious that the mapping 6 — I(6) is a Lie isomorphism
of Der (A) onto Der (I(A); A). What was proved above shows that this
mapping is isometric and that I(6) is skew-adjoint if and only if so is 4.
Therefore all the statements in Theorem 2.1 are proved.

REMARK 2.1. Since Z,,, = Z;, we can eagily show by Theorem 2.1
(1) that any generator of I(5) is found in A. Therefore, 6 = I(9)|; is a
derivation on A, which is a unique extension of § to A, In fact, the
above argument which shows that the extension of 6 to I(A4) is unique
can be applied if we observe that I(4A) = I(A) and replace A by A.

3. Derived algebra D(A) of A. Given a derivation on an AW*-
algebra, Olesen proved that it is inner, and Halpern proved that it has
a unique minimal gemerator ([10], [4]):

THEOREM 3.1 ([10], [4]). Let B be an AW *-algebra with the center
Zy and 0 a derivation on B. Then there is a unique generator h(0)
(called the minimal generator) for 6 in B such that

161,511/2 = || R(d)P]|
for each projection p in Zgz, where 0|,5 18 the derivation restricted to pB.

Given a 6 € Der (A), since I(6) is a derivation on the AW*-algebra
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I(A), Theorem 2.1 and Remark 2.1 tell us that the minimal generator
h(®) for I®) is in A. We shall show that A(5) is also the minimal
generator of . Since, for each projection p in Zz (=Z,,,) the injective
envelope of pA coincides with pI(A) by [6], putting 6, = 6|,,, we have
I(6,) = I(0) |pI(A) and ”51»” = I|I(3,,)H = || 1(0) ‘pI(A)” by Theorem 2.1. More-
over, pl(A)DpADpADpA implies that [0, = [[100)lprew |l Z 191,21l =
I|6,]] and hence || I(0)|,rs | = |0l,z]|. Therefore we have

100p3 ]| = 1 L) [prea || = 2] R@)p | Z || (@d k() |7) 3]l = (61,21l ,
and hence [|6],7] = 2[2(0)p||. '
Summing this consideration up, we get:

LEmMMA 3.1. Fov'_ any 0 €Der (A), the minimal generator h(0) for
I(6) is contained in A and it is also the minimal generator for o.

DErFINITION 3.1. Keeping the notations as above, D(A), with A4
unital, denotes the C*-algebra generated by the system {4, h(0):6¢
Der (A)}. When A is non unital, the notation D(A) means D(A,).

THEOREM 3.2. D(A) has the following properties:

(1) D(A) is a C*-subalgebra of A.

(2) For each o€Der (A), there is an h(0) im D(A) such that 6 =
ad h(3)|, and [|3])/2 = | 1(3)].

(8) For any closed ideal J of D(A), J N A={0} implies that J={0}.

(4) If A is factorial, then D(A) is the derived algebra for A in
the sense of Sakai [14] (see also [17]).

To prove this theorem, we need the following lemma.

LEMMA 3.2. Let B be a C*-subalgebra of I(A) which contains A, as
a C*-subalgedbra. Then, for any closed two-sided ideal I of B, ANI=
{0} implies that I = {0}.

ProorF. If A is non unital, then AN I = {0} if and only if A, NI=
{0}. Thus, to prove the lemma, we may assume that A is unital. Let
I be any closed two-sided ideal of B with AN I = {0} and ¢, the canoni-
cal quotient mapping from B onto B/I. Since Ac Bc I(A), B is an
essential extension of A. Thus ¢, is completely isometric because ¢,|,
is completely isometric (in fact, it is a *-monomorphism). It follows
that ¢, is one-to-one and so I = {0}. Thus the lemma follows.

PrOOF OF THEOREM 3.2. (1) and (2) Obvious.
(3) Immediate from Lemma 3.2.
(4) We can claim actually that if = is a faithful pseudo-factorial
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*-representation of a C*-algebra A (thus A is pseudo-factorial and hence
prime), then it can be extended to a unique *-isomorphism 7 of D(A)
onto the C*-algebra D, generated by {7w(4), 1, h(wdéz™); & € Der (4)},
where 1, is the identity operator on the representation space H, of x.
In fact, since A is pseudo-factorial and A is an AW*-factor, it follows
that #(0) and A(zdéz~') can be determined uniquely by the equality

[R@) | = [6]l/2 = ||wéx*||/2 = ||h(xéz™")|| (Theorem 3.1).

Thus, in the same way as in [17] we get, by Lemma 3.2, the desired
extension # which is determined uniquely by 7. The details may be
omitted.

REMARK 3.1. For an arbitrary C*-algebra A, the C*-algebra D(A)
considered to be its derived algebra and, by the above theorem, Sakai’s
derived algebra =(A4) with A factorial, can be realized as a C *-subal-
gebra D(A) of A.

If A is separable then A = A, and hence D(A) is a C*-subalgebra
of A. However, in general, D(A) ¢ A. In fact, let H be a non separa-
ble Hilbert space and A the algebra C(H) of all compact operators on
H. Then one can easily check that 4 = S(H) + Cl,, where S(H) is the
algebra of operators on H with separable ranges, and A = I(4) = B(H).
Let p be a projection on H such that p and 1 — p¢ S(H). Then the
minimal generator of the derivation adp|, is not in A. Therefore
D(4) ¢ A.

Since A is prime if and only if A is a factor ([6]), we see easily
that A is prime if and only if so is D(A).

If A is separable, then A is primitive if and only if D(A) is primi-
tive and A is NGCR if and only if D(A) is NGCR ([15]).

4. Extensions of automorphisms of A to I(4). Let 7 be a positive
automorphism of a C*-algebra A in the following sense:

DEFINITION 4.1 ([9]). An automorphism % (not necessarily *-preserv-
ing) of a C*-algebra B is said to be positive if 7 = 7" (where 7’ is the
automorphism of B defined via 7'(x)* = »'(2*) (x € B)) and the spectrum
Sp (9) of 7 is on the positive half axis [0, + o).

Then, according to [9; Theorems 8.1 and 8.3], there is an invertible
positive element # in A” such that » = Ad h|,, where Ad & is the auto-
morphism implemented by k. Since both Sp () and Sp(Adh) are on
(0, + o), the principal branch Log of the logarithm can be applied to 7
and to Adh, and Logn = Log Adh|, holds. Thus, the formula Log Ad h=
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ad Log i ([9; Lemma 5.3 (b)]) implies that
Logn =adLogh|, .

Let us put 6 = Log %, extend it via Theorem 2.1 to a derivation I(9)
on I(A) and put I(n) = exp I(§). Then I(n) is an automorphism of I(A)
which is an extension of 7. Moreover, it turns out to be implemented
by an invertible positive element in I(4A) and hence to be positive. In
fact, by the proof of Theorem 2.1,

I(0) = ad p(Log h) ,
where @ is, as in the preceding sections, a minimal A-projection; so that
I(m) = exp ad p(Log k) = Ad exp p(Log k) .

(e.g., [9; Lemma 5.3 (a)]).

Let ' be a positive automorphism of I(A4), which is an extension
of 7. Since Log 7™ is a derivation on I(4A) which is an extension of 9,
we have Log %™ = I(9) by Theorem 2.1. Thus we know that n® =
exp I(6) = I(n).

Now we proved the following:

LEMMA 4.1. Any positive automorphism 7 of a C*-algebra A can
be extended to a unmique positive automorphism I(n) of I(A).

We denote by Aut (4) the group of all automorphisms (not necessarily
*_preserving) of a C*-algebra A and by Aut(A4; B) the subgroup of
Aut (4), of all automorphisms of A of which restrictions to a C*-subal-
gebra B of A become automorphisms of B.

Any automorphism p of a C*-algebra A has the polar decomposition:

Q=77
with a unique pair of a *-automorphism 7 and a positive automorphism
7 of A ([9; Theorem 7.1], cf. [8]). We obtain the following:

THEOREM 4.1. (1) For any pcAut(4), we get a unique I(p)c
Aut (I(A); A) such that I(p)|, = o; and the mapping p— I(p) is a
uniformly bicontinuous group isomorphism of Aut (4) onto Aut (I(A4); A).

(2) I(o) is *-preserving (resp. positive) if and only if o is *-pre-
serving (resp. positive).

(8) I(p,) (—oo <t < o0) is @ uniformly continuous one-parameter
group if and only if 0, (—oo <t < o) is a uniformly continuous omne-
parameter group; in this case I(o,) has the form

I(o,) = Adexptg  for all t (—c <t< ),



C*-ALGEBRAS 285
with ge A.

Proor. (1) Let p have the polar decomposition o = n7. By [5;
Corollary 4.2], 7 can be extended to a unique *-automorphism I(z) of
I(A). Let us put I(o) = I(w)I(n). Then this is an automorphism of I(A)
which is an extension of p. Let o™ be an automorphism of I(A) which
is an extension of p, and have the polar decomposition p" = z®Wn",
Since o"'|, = p’, we have p"'p"|, = p’0 and hence

7](1) |A — (p(l)’p(l))l/zlA — (plp)l/z — n ,

because, in general, the polar decomposition p = 77 of an automorphism
o of a C*-algebra implies that 7 = (0'p)"%, the square root of p'p with
its spectrum on (0, + ) ([9]). Therefore, by Lemma 4.1, we have
7" = I(n). Moreover, it follows that

0|, = (pu),?u)—l)lA =opt==x
and hence 7 = I(x). Thus we have
o =z = ImI(n) = Ip) .

Next, suppose that a sequence {0,} of automorphisms of A converges
uniformly to an automorphism o of A. Then

|07 — id4|l = [[(0n — @07 | = [l 0. — Oll|07* ]| = 0 (n — o).

Therefore, for all n sufficiently large, Sp (0,07 lies in the open half
plane 2 = {A e C: Rex > 0}. This implies that 4, = Log (0,07 is a deri-

vation of A (e.g., [13; 4.1.18]). Thus, for all » sufficiently large, we
have

I L)y = Lp.p™) = exp I0,) = iy + 3 10,)/k!

to obtain
110 — T}l = | @I Kp)™ = idr )@ S £ 16,7011 10)]

< (S 18,147k ) Z@) | (by Theorem 2.1)
= (exp [|8,] — DI L) >0 (n— o).

Then we conclude that || I(p,) — I(0)]| = 0 (n — <o), as required.

(2) Obvious from what was mentioned above.

(8) It is obvious that if I(p,) (—e <t < o) is a uniformly con-
tinuous one-parameter group then so is p, (—oo <t < o0).

Suppose that p, (—o <t < ) is a uniformly continuous one-para-
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meter group of automorphisms of A. Then p, = exp td with a derivation
6 on A. Thus by Theorem 2.1, there is an element g in A such that
I(6) = ad g. It follows immediately that for all ¢ (—o <t < ),

I(p,) = exp tI(6) = Adexptg .
Now we proved all the statements in Theorem 4.1.

5. Concluding remarks. In Sections 2 and 4 we considered how to
extend derivations and automorphisms (not necessarily *-preserving) of
a C*-algebra A to its injective envelope I(A4). In this closing section,
we discuss questions whether each derivation on (resp. automorphism
of) A can be extended to a unique derivation on (resp. automorphism of)
a C*-subalgebra B of I(A) which contains A.

(1) A derivation 6 on A can be extended to a derivation on B if
and only if I(6)(B) C B; in this case, I(d)|; is the unique extension of o
to B. Indeed, suppose that there is an extension 6, of 6 to B. Then
the extension I(6,) of 0, to I(B) coincides with 6 on A. Since I(B) =
I(A), we have I(5,) = I(0) by Theorem 2.1 (2). Therefore 06, = I(d,)|s =
I(0) |-

(2) We may apply a similar argument to show that an automor-
phism o of A can be extended to an automorphism of B if and only if
I(p)(B) = B; in this case I(p)|; is the unique extension of p to B.

(8) If B contains D(A), then the condition stated in (1) is satisfied
by each derivation § on A, and the condition stated in (2) is satisfied
by each positive automorphism p of A (because p is of the form p =
exp o = Log p). Therefore, when B contains D(A), an automorphism p
of A satisfies I(0)(B) = B if and only if the *-preserving part I(z) of
I(p) in its polar decomposition satisfies that I(z)(B) = B.

(4) Each automorphism p of A can be extended to a unique auto-
morphism g of A and Theorem 4.1 holds when I(A) and I(p) are replaced
by A and P, respectively. To see this it is sufficient to observe that A
contains D(A) and I(n)(A) = A and that I(0)| A = p.

(5) In general, the condition stated in (2) cannot hold for a C*-
algebra A, a C*-subalgebra B of I(A) which contains A and a *-auto-
morphism a of A. We give here such an example. Let A be the
C*-algebra of all complex continuous functions on the one-dimensional
torus T. Then I(A) turns out to be B(T)/m(T) where B(T) is the algebra
of all bounded Baire functions on 7T and m(T) is the ideal of all meager
functions in B(T). Let p be the projection in I(A) defined by the
characteristic function of {exp 27i6: 0 < 6 < 1/4} and, B the C *-subalgebra
of I(A) generated by A and p. And, let @ be the *-automorphism of A



C*-ALGEBRAS 287

defined by the rotation on 7 with angle #. Then I(a) is the *-automor-

phism

of I(A) canonically induced from « and I(a)(p) ¢ B.
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