EXTENSIONS OF DERIVATIONS AND AUTOMORPHISMS FROM C*-ALGEBRAS TO THEIR INJECTIVE ENVELOPES

MASAMICHI HAMANA, TAKATERU OKAYASU AND KAZUYUKI SAITÔ

(Received April 13, 1981)

1. Introduction and preliminaries. Quite recently, the first author showed that any unital C^* -algebra A has a unique injective envelope I(A) which indeed is an AW^* -algebra and contains the regular monotone completion \overline{A} of A as an AW^* -subalgebra. The injective envelope I(A)(resp. the regular monotone completion \overline{A}) reflects closely the structure of A; e.g., any *-automorphism of A is extended to a unique *-automorphism of I(A) (resp. \overline{A}) ([6]).

 AW^* -algebras are more tractable than the general C^* -algebras. They have sufficiently many projections and are decomposed uniquely according to type. Moreover it is known that their derivations are inner ([10]).

On the other hand, I(A) is an AW^* -factor if and only if A is prime, and in most cases I(A) becomes a non- W^* , AW^* -algebra. To such an algebra the spatial theory of W^* -algebras cannot be applicable and to study it seems to be very interesting.

In this paper we shall consider the following questions: Whether can each derivation on a C^* -algebra be extended to a unique derivation on its injective envelope and whether can each automorphism (not necessarily *-preserving) of a C^* -algebra be extended to a unique automorphism of its injective envelope? The answers should be given affirmatively to both questions for a general C^* -algebra. As an application of the observation on derivations, we shall be able to introduce, for the general C^* -algebra A, the C^* -algebra D(A), as a C^* -subalgebra of the regular monotone completion \overline{A} of A (note that, if A is separable then \overline{A} coincides with the regular σ -competion \widehat{A} of A [18] and hence D(A)is a C^* -subalgebra of \widehat{A}). This C^* -algebra D(A) must coincide with Sakai's derived algebra $\mathscr{D}(A)$ ([14]) if A is factorial (see also Tomiyama [17]).

This work was done in a seminar at Research Institute for Mathematical Sciences, Kyoto University (R.I.M.S.). The authors would like to thank R.I.M.S. for financial support for the seminar. We assume familiarity with basics of C^* -algebras, their derivations and automorphisms (e.g., [2] and [13]). Before going into discussions, however, we shall give the definitions, and the constructions of the injective envelope and the regular monotone completion of a C^* -algebra.

DEFINITION 1.1. An extension of a unital C^* -algebra A is a pair (B, κ) of a unital C^* -algebra B and a unital *-monomorphism κ of A into B. An extension (B, κ) is *injective* if B is injective, and essential if for any unital completely positive linear mapping φ of B into a unital C^* -algebra C, φ is completely isometric whenever $\varphi \circ \kappa$ is. An extension (B, κ) is an *injective envelope* of A if it is an injective extension of A such that the identity mapping id_B on B is a unique completely positive linear mapping of B into itself which fixes each element of $\kappa(A)$.

Let A be a unital C^* -algebra. Then there exists an injective C^* algebra C containing A as a C^* -subalgebra (we may take C as the algebra B(H) of all bounded linear operators on the universal Hilbert space H of A) and a minimal A-projection on C in the sense that φ is unital, completely positive, idempotent, satisfies $\varphi(a) = a$ for all $a \in A$ and has a minimal image among the images of all A-projections. One can check that the image $\operatorname{Im} \varphi$ of φ is a uniformly closed *-subspace of C (not necessarily closed with respect to the multiplication of C). Introducing a new product in $\operatorname{Im} \varphi$ via $a \circ b = \varphi(ab)$ $(a, b \in \operatorname{Im} \varphi)$, we get that, with respect to this multiplication, Im φ is a C^{*}-algebra and it contains A as a C^* -subalgebra. The injectivity of C and the minimality of φ imply that $(\operatorname{Im} \varphi, \operatorname{id}_A)$ is an injective envelope of A. It can be shown that $(\operatorname{Im} \varphi, \operatorname{id}_A)$ is unique in the following sense: If another injective envelope (B, κ) is given, then there exists a unique *-isomorphism γ of Im φ onto B such that $\gamma \circ id_A = \kappa$. Moreover, it can be shown that $(\operatorname{Im} \varphi, \operatorname{id}_A)$ is the largest essential extension of A in the following sense: An extension (B, κ) of A is essential if and only if there exists a unital *-monomorphism λ of B into Im φ such that $\lambda \circ \kappa =$ id_{A} ([5; Lemma 4.6]).

In what follows, we regard an extension (B, κ) of A as a C^* -algebra B which contains A as a C^* -subalgebra by identifying κ with the inclusion, and the injective envelope of A is denoted by I(A). Note that I(A) is a monotone complete AW^* -algebra ([16]).

DEFINITION 1.2. A regular monotone completion of a unital C^* algebra A is a monotone complete C^* -algebra \overline{A} which contains A as a C^* -subalgebra and satisfies the following properties:

(i) \bar{A}_h itself is the smallest monotone closed subspace of \bar{A}_h which

278

contains A_h ; and

(ii) Each x in \overline{A}_h is the supremum in \overline{A}_h of the set $\{a \in A_h : a \leq x\}$.

Let us introduce the following notations: For $x \in A_h$ and $\mathscr{F} \subset A_h$, $\mathscr{F} \leq x$ means that $y \leq x$ for all $y \in \mathscr{F}$, and $\operatorname{Sup}_A \mathscr{F} = x$ means that the supremum of \mathscr{F} in A exists and it is equal to x. For an extension B of A and $x \in B_h$, we denote the set $\{a \in A_h: a \leq x\}$ by $(-\infty, x]_A$.

Keeping these notations in mind, we shall describe briefly a way to construct \overline{A} ([6]). Let $\widetilde{A}_h = \{x \in I(A)_h : x = \operatorname{Sup}_{I(A)}(-\infty, x]_A\}$ and $\widetilde{A} = \widetilde{A}_h + i\widetilde{A}_h$. Then, the first author showed that \widetilde{A} is a monotone complete C^* -subalgebra of I(A) which contains A as a C^* -subalgebra (it becomes a maximal regular extension of A). Define \overline{A} as the monotone closure of A in \widetilde{A} . Then it can be shown to be the regular monotone completion of A.

In this connection, \hat{A} which is defined as the monotone σ -closure of A in \bar{A} is nothing but the regular σ -completion of A introduced by Wright [18] because it is uniquely determined by A.

We have the following inclusions

$$A \subset \widehat{A} \subset \overline{A} \subset \overline{A} \subset I(A)$$

(respective inclusions are supremum preserving [6]) and moreover

$$Z_{\scriptscriptstyle A}\!\subset\!Z_{\scriptscriptstyle { ilde A}}\!\subset\!Z_{\scriptscriptstyle { ilde A}}=Z_{\scriptscriptstyle { ilde I}}=Z_{\scriptscriptstyle {I(A)}}$$
 ,

where Z_B means, in general, the center of a C^* -algebra B.

In what follows, we suppose that the C^* -algebra A in consideration acts on its universal Hilbert space H, to simplify the arguments without any loss of generality.

For a non unital C^* -algebra A, we can consider $I(A_1)$, \overline{A}_1 , \overline{A}_1 and \widehat{A}_1 , where $A_1 = C^*(A, 1_H)$, the C^* -algebra generated by A and the identity operator 1_H on H. In what follows, we employ the notations I(A), \overline{A} and \widehat{A} instead of $I(A_1)$, \overline{A}_1 and \widehat{A}_1 , respectively (see also [15]) when A is non unital.

2. Extension of derivations from A to I(A). Let B be a C^* -algebra (not necessarily unital). We denote by Der(B) the Lie algebra of all derivations on B and by Der(B; C) the Lie subalgebra of Der(B), of all derivations on B which leave a C^* -subalgebra C of B invariant.

For $\delta \in \text{Der}(B)$, δ^* means the derivation on *B* defined via $\delta^*(x) = \delta(x^*)^*$ $(x \in B)$. δ is said to be *skew-adjoint* if it satisfies that $\delta^* = -\delta$.

 $(A_k)^m$ denotes the set of all elements in $I(A)_k$ each of which can be obtained as a supremum of an inceasing net from A_k (note that $(A_k)^m \subset \overline{A}$).

The following theorem plays a key rôle for the later discussions.

THEOREM 2.1. (1) For any $\delta \in \text{Der}(I(A); A)$, $\|\delta\| = \|\delta|_A\|$ and there is an element g in $(A_h)^m + i(A_h)^m$ such that $\delta = \text{ad } g$.

(2) For any $\delta \in \text{Der}(A)$, we can get a unique $I(\delta) \in \text{Der}(I(A); A)$ such that $I(\delta)|_A = \delta$; and the mapping $\text{Der}(A) \ni \delta \to I(\delta) \in \text{Der}(I(A); A)$ is an isometric Lie isomorphism of Der(A) onto Der(I(A); A).

(3) $I(\delta)$ is skew-adjoint if and only if so is δ .

LEMMA 2.1 ([1]). Let A be a unital C*-algebra acting on its universal Hilbert space H. Let φ be any A-projection on B(H). Then φ is an A-module homomorphism, that is, $\varphi(ax) = a\varphi(x)$ and $\varphi(xa) = \varphi(x)a$ hold for all $x \in B(H)$ and $a \in A$.

If a C^* -algebra A is non unital, then by Kadison [7], each derivation δ on A can be extended to a unique derivation δ_1 on A_1 and in fact $\delta_1(a + \lambda \mathbf{1}_H) = \delta(a)$ for all $a \in A$ and $\lambda \in C$ (the complex numbers). The mapping $\delta \to \delta_1$ is an isometric Lie isomorphism of Der(A) onto Der(A_1), and δ_1 is skew-adjoint if and only if so is δ . Hence, to prove Theorem 2.1, we may assume that A is unital. As was mentioned before, we may suppose that $I(A) = \operatorname{Im} \varphi$ for some minimal A-projection on B(H) and the multiplication in it is: $a \circ b = \varphi(ab)$ ($a, b \in \operatorname{Im} \varphi$).

LEMMA 2.2. Keeping the notations as above, for any x_1, x_2 in $B(H)_h$, $x_1 \leq x_2$ in $B(H)_h$ implies $\varphi(x_1) \leq \varphi(x_2)$ in $I(A)_h$. If $x_1, x_2 \in I(A)_h$, then the converse implication also holds.

PROOF. Since, for any $x \in B(H)$, $\operatorname{Sp}_{B(H)} \varphi(x) \supset \operatorname{Sp}_{I(A)} \varphi(x)$, where $\operatorname{Sp}_{A}(x)$ is the spectrum of an element x of a C^* -algebra A, $x_1 \leq x_2$ in $B(H)_h$ implies $\varphi(x_1) \leq \varphi(x_2)$ in $I(A)_h$. Conversely if $x_1, x_2 \in I(A)_h$ and $x_1 \leq x_2$ in $I(A)_h$, then $x_2 - x_1 = y^* \circ y = \varphi(y^*y)$ for some $y \in I(A)$, thus $x_2 - x_1 \geq 0$ in $B(H)_h$. This completes the proof.

PROOF OF THEOREM 2.1. For any $\delta \in \text{Der}(A)$ it can be shown by [7] that the bitranspose δ'' of δ is a σ -weakly continuous derivation on the bidual A'' of A, which is the σ -weak closure of A in B(H), and it is an extension of δ with $||\delta''|| = ||\delta||$. Then by [13] (see also [7]), there is a generator g_0 for δ'' in A'' such that $||\delta''|| = 2||g_0||$. Let $g = \varphi(g_0)$ and $\delta^{(1)} = \text{ad } g$ (where $\text{ad } g(x) = g \circ x - x \circ g$ for $x \in I(A)$). Then, for any a in A,

$$\delta^{(1)}(a) = \varphi(g_0) \circ a - a \circ \varphi(g_0)$$

= $\varphi(\varphi(g_0)a - a\varphi(g_0)) = \varphi^2(g_0a - ag_0)$ (by Lemma 2.1)
= $\varphi(\delta''(a)) = \varphi(\delta(a)) = \delta(a)$ (because $\varphi|_A = \mathrm{id}_A$).

280

C*-ALGEBRAS

Thus $\delta^{(1)}$ is an extension of δ to I(A) and $\delta^{(1)} \in \text{Der}(I(A); A)$. Moreover, since $\|\delta^{(1)}\| \leq 2\|g\| \leq 2\|g_0\| \leq \|\delta''\| = \|\delta\| \leq \|\delta^{(1)}\|$, it follows that $\|\delta^{(1)}\| = \|\delta\|$.

If δ is skew-adjoint, then Olesen and Pedersen's theorem ([11]) tells us that the above g_0 can be taken to be the minimal positive generator h for δ , which is a strong limit in B(H) of an increasing net $\{h_{\alpha}\}$ from A_h . We can show that $\varphi(h)$ is the supremum of $\{h_{\alpha}\}$ in $(I(A))_h$. In fact, $h_{\alpha} \leq h$ in $B(H)_h$ for any α implies that $h_{\alpha} = \varphi(h_{\alpha}) \leq \varphi(h)$ in $I(A)_h$ for any α . On the other hand, if $h_{\alpha} \leq x$ for any α in $I(A)_h$, then by Lemma 2.2, $h_{\alpha} \leq x$ in $B(H)_h$ for any α and so $h \leq x$ in $B(H)_h$. Hence, again by Lemma 2.2, $\varphi(h) \leq x$ in $I(A)_h$. Thus we have $\varphi(h) = \operatorname{Sup}_{I(A)}h_{\alpha}$ ([16; Th. 7.1]). Therefore $\varphi(h)$ is in $(A_h)^m$.

Let $\delta^{(2)}$ be an extension of δ to I(A). Then, to show that $\delta^{(2)} = \delta^{(1)}$, we may assume that δ , $\delta^{(1)}$ and $\delta^{(2)}$ are skew-adjoint, by considering the respective Cartesian decompositions. Let us consider the uniformly continuous one-parameter groups $\alpha_t^{(1)} = \exp(it\,\delta^{(1)})$ and $\alpha_t^{(2)} = \exp(it\,\delta^{(2)})$ $(-\infty < t < \infty)$ of *-automorphisms of I(A). Since $\beta_t = \alpha_t^{(1)-1}\alpha_t^{(2)}$ is a completely isometric mapping of I(A) into I(A) such that $\beta_t|_A = id_A$, we have $\beta_t = id_{I(A)}$ by Definition 1.1. Thus, $\alpha_t^{(2)} = \alpha_t^{(1)}$ for any t; and this implies that $\delta^{(2)} = \delta^{(1)}$. Let us define $I(\delta)$ to be the unique extension of δ to I(A). It is obvious that the mapping $\delta \to I(\delta)$ is a Lie isomorphism of Der (A) onto Der (I(A); A). What was proved above shows that this mapping is isometric and that $I(\delta)$ is skew-adjoint if and only if so is δ . Therefore all the statements in Theorem 2.1 are proved.

REMARK 2.1. Since $Z_{I(A)} = Z_{\bar{A}}$, we can easily show by Theorem 2.1 (1) that any generator of $I(\delta)$ is found in \bar{A} . Therefore, $\bar{\delta} = I(\delta)|_{\bar{A}}$ is a derivation on \bar{A} , which is a unique extension of δ to \bar{A} , In fact, the above argument which shows that the extension of δ to I(A) is unique can be applied if we observe that $I(\bar{A}) = I(A)$ and replace A by \bar{A} .

3. Derived algebra D(A) of A. Given a derivation on an AW^* -algebra, Olesen proved that it is inner, and Halpern proved that it has a unique *minimal generator* ([10], [4]):

THEOREM 3.1 ([10], [4]). Let B be an AW^{*}-algebra with the center Z_B and δ a derivation on B. Then there is a unique generator $h(\delta)$ (called the minimal generator) for δ in B such that

$$\|\delta\|_{pB}\|/2 = \|h(\delta)p\|$$

for each projection p in Z_B , where $\delta|_{pB}$ is the derivation restricted to pB.

Given a $\delta \in \text{Der}(A)$, since $I(\delta)$ is a derivation on the AW^* -algebra

I(A), Theorem 2.1 and Remark 2.1 tell us that the minimal generator $h(\delta)$ for $I(\delta)$ is in \overline{A} . We shall show that $h(\delta)$ is also the minimal generator of $\overline{\delta}$. Since, for each projection p in $Z_{\overline{A}} (=Z_{I(A)})$ the injective envelope of pA coincides with pI(A) by [6], putting $\delta_p = \delta|_{pA}$, we have $I(\delta_p) = I(\delta)|_{pI(A)}$ and $\|\delta_p\| = \|I(\delta_p)\| = \|I(\delta)|_{pI(A)}\|$ by Theorem 2.1. Moreover, $pI(A) \supset p\overline{A} \supset \overline{pA} \supset pA$ implies that $\|\delta_p\| = \|I(\delta)|_{pI(A)}\| \ge \|\overline{\delta}|_{p\overline{A}}\| \ge \|\overline{\delta}|_{p\overline{A}}\| \ge \|\overline{\delta}|_{p\overline{A}}\|$. Therefore we have

$$\|\bar{\delta}|_{p\overline{A}}\| = \|I(\delta)|_{pI(A)}\| = 2\|h(\delta)p\| \ge \|(\operatorname{ad} h(\delta)|_{\overline{A}})|_{p\overline{A}}\| \ge \|\bar{\delta}|_{p\overline{A}}\|,$$

and hence $\|\bar{\delta}|_{p\bar{A}}\| = 2\|h(\delta)p\|$.

Summing this consideration up, we get:

LEMMA 3.1. For any $\delta \in \text{Der}(A)$, the minimal generator $h(\delta)$ for $I(\delta)$ is contained in \overline{A} and it is also the minimal generator for $\overline{\delta}$.

DEFINITION 3.1. Keeping the notations as above, D(A), with A unital, denotes the C^{*}-algebra generated by the system $\{A, h(\delta): \delta \in \text{Der}(A)\}$. When A is non unital, the notation D(A) means $D(A_1)$.

THEOREM 3.2. D(A) has the following properties:

(1) D(A) is a C^{*}-subalgebra of \overline{A} .

(2) For each $\delta \in \text{Der}(A)$, there is an $h(\delta)$ in D(A) such that $\delta = \text{ad } h(\delta)|_A$ and $\|\delta\|/2 = \|h(\delta)\|$.

(3) For any closed ideal J of D(A), $J \cap A = \{0\}$ implies that $J = \{0\}$.

(4) If A is factorial, then D(A) is the derived algebra for A in the sense of Sakai [14] (see also [17]).

To prove this theorem, we need the following lemma.

LEMMA 3.2. Let B be a C*-subalgebra of I(A) which contains A_1 as a C*-subalgebra. Then, for any closed two-sided ideal I of B, $A \cap I =$ {0} implies that $I = \{0\}$.

PROOF. If A is non unital, then $A \cap I = \{0\}$ if and only if $A_I \cap I = \{0\}$. Thus, to prove the lemma, we may assume that A is unital. Let I be any closed two-sided ideal of B with $A \cap I = \{0\}$ and ϕ_I the canonical quotient mapping from B onto B/I. Since $A \subset B \subset I(A)$, B is an essential extension of A. Thus ϕ_I is completely isometric because $\phi_I|_A$ is completely isometric (in fact, it is a *-monomorphism). It follows that ϕ_I is one-to-one and so $I = \{0\}$. Thus the lemma follows.

PROOF OF THEOREM 3.2. (1) and (2) Obvious.

- (3) Immediate from Lemma 3.2.
- (4) We can claim actually that if π is a faithful pseudo-factorial

C*-ALGEBRAS

-representation of a C-algebra A (thus A is pseudo-factorial and hence prime), then it can be extended to a unique *-isomorphism $\hat{\pi}$ of D(A)onto the C*-algebra D_{π} generated by $\{\pi(A), 1_{H_{\pi}}, h(\pi\delta\pi^{-1}); \delta \in \text{Der}(A)\}$, where $1_{H_{\pi}}$ is the identity operator on the representation space H_{π} of π . In fact, since A is pseudo-factorial and \overline{A} is an AW^* -factor, it follows that $h(\overline{\delta})$ and $h(\pi\delta\pi^{-1})$ can be determined uniquely by the equality

$$\|h(\bar{\delta})\| = \|\delta\|/2 = \|\pi\delta\pi^{-1}\|/2 = \|h(\pi\delta\pi^{-1})\|$$
 (Theorem 3.1).

Thus, in the same way as in [17] we get, by Lemma 3.2, the desired extension $\hat{\pi}$ which is determined uniquely by π . The details may be omitted.

REMARK 3.1. For an arbitrary C^* -algebra A, the C^* -algebra D(A) considered to be its derived algebra and, by the above theorem, Sakai's derived algebra $\mathscr{D}(A)$ with A factorial, can be realized as a C^* -subalgebra D(A) of \overline{A} .

If A is separable then $\hat{A} = \overline{A}$, and hence D(A) is a C^* -subalgebra of \hat{A} . However, in general, $D(A) \not\subset \hat{A}$. In fact, let H be a non separable Hilbert space and A the algebra C(H) of all compact operators on H. Then one can easily check that $\hat{A} = S(H) + C\mathbf{1}_H$, where S(H) is the algebra of operators on H with separable ranges, and $\overline{A} = I(A) = B(H)$. Let p be a projection on H such that p and $1 - p \notin S(H)$. Then the minimal generator of the derivation ad $p|_A$ is not in \hat{A} . Therefore $D(A) \not\subset \hat{A}$.

Since A is prime if and only if \overline{A} is a factor ([6]), we see easily that A is prime if and only if so is D(A).

If A is separable, then A is primitive if and only if D(A) is primitive and A is NGCR if and only if D(A) is NGCR ([15]).

4. Extensions of automorphisms of A to I(A). Let η be a positive automorphism of a C^{*}-algebra A in the following sense:

DEFINITION 4.1 ([9]). An automorphism η (not necessarily *-preserving) of a C*-algebra B is said to be positive if $\eta = \eta'$ (where η' is the automorphism of B defined via $\eta'(x)^* = \eta^{-1}(x^*)$ $(x \in B)$) and the spectrum Sp (η) of η is on the positive half axis $[0, +\infty)$.

Then, according to [9; Theorems 8.1 and 8.3], there is an invertible positive element h in A'' such that $\eta = \operatorname{Ad} h|_A$, where $\operatorname{Ad} h$ is the automorphism implemented by h. Since both $\operatorname{Sp}(\eta)$ and $\operatorname{Sp}(\operatorname{Ad} h)$ are on $(0, +\infty)$, the principal branch Log of the logarithm can be applied to η and to $\operatorname{Ad} h$, and $\operatorname{Log} \eta = \operatorname{Log} \operatorname{Ad} h|_A$ holds. Thus, the formula $\operatorname{Log} \operatorname{Ad} h =$

ad Log h ([9; Lemma 5.3 (b)]) implies that

$$\operatorname{Log} \eta = \operatorname{ad} \operatorname{Log} h|_{A}$$
.

Let us put $\delta = \text{Log } \eta$, extend it via Theorem 2.1 to a derivation $I(\delta)$ on I(A) and put $I(\eta) = \exp I(\delta)$. Then $I(\eta)$ is an automorphism of I(A)which is an extension of η . Moreover, it turns out to be implemented by an invertible positive element in I(A) and hence to be positive. In fact, by the proof of Theorem 2.1,

$$I(\delta) = \operatorname{ad} arphi(\operatorname{Log} h)$$
 ,

where φ is, as in the preceding sections, a minimal A-projection; so that

$$I(\eta) = \exp \operatorname{ad} \varphi(\operatorname{Log} h) = \operatorname{Ad} \exp \varphi(\operatorname{Log} h)$$

(e.g., [9; Lemma 5.3 (a)]).

Let $\eta^{(1)}$ be a positive automorphism of I(A), which is an extension of η . Since $\text{Log } \eta^{(1)}$ is a derivation on I(A) which is an extension of δ , we have $\text{Log } \eta^{(1)} = I(\delta)$ by Theorem 2.1. Thus we know that $\eta^{(1)} = \exp I(\delta) = I(\eta)$.

Now we proved the following:

LEMMA 4.1. Any positive automorphism η of a C*-algebra A can be extended to a unique positive automorphism $I(\eta)$ of I(A).

We denote by Aut (A) the group of all automorphisms (not necessarily *-preserving) of a C^* -algebra A and by Aut (A; B) the subgroup of Aut (A), of all automorphisms of A of which restrictions to a C^* -subalgebra B of A become automorphisms of B.

Any automorphism ρ of a C*-algebra A has the polar decomposition:

$$\rho = \pi \eta$$

with a unique pair of a *-automorphism π and a positive automorphism η of A ([9; Theorem 7.1], cf. [8]). We obtain the following:

THEOREM 4.1. (1) For any $\rho \in \operatorname{Aut}(A)$, we get a unique $I(\rho) \in \operatorname{Aut}(I(A); A)$ such that $I(\rho)|_A = \rho$; and the mapping $\rho \to I(\rho)$ is a uniformly bicontinuous group isomorphism of $\operatorname{Aut}(A)$ onto $\operatorname{Aut}(I(A); A)$.

(2) $I(\rho)$ is *-preserving (resp. positive) if and only if ρ is *-preserving (resp. positive).

(3) $I(\rho_t)$ $(-\infty < t < \infty)$ is a uniformly continuous one-parameter group if and only if ρ_t $(-\infty < t < \infty)$ is a uniformly continuous one-parameter group; in this case $I(\rho_t)$ has the form

$$I(
ho_t) = \operatorname{Ad} \exp tg$$
 for all t $(-\infty < t < \infty)$,

 $\mathbf{284}$

with $g \in \overline{A}$.

PROOF. (1) Let ρ have the polar decomposition $\rho = \pi \eta$. By [5; Corollary 4.2], π can be extended to a unique *-automorphism $I(\pi)$ of I(A). Let us put $I(\rho) = I(\pi)I(\eta)$. Then this is an automorphism of I(A) which is an extension of ρ . Let $\rho^{(1)}$ be an automorphism of I(A) which is an extension of ρ , and have the polar decomposition $\rho^{(1)} = \pi^{(1)}\eta^{(1)}$. Since $\rho^{(1)'}|_{A} = \rho'$, we have $\rho^{(1)'}\rho^{(1)}|_{A} = \rho'\rho$ and hence

$$\eta^{_{(1)}}|_{_{A}}=(
ho^{_{(1)}}
ho^{_{(1)}})^{_{1/2}}|_{_{A}}=(
ho'
ho)^{_{1/2}}=\eta$$
 ,

because, in general, the polar decomposition $\rho = \pi \eta$ of an automorphism ρ of a C*-algebra implies that $\eta = (\rho' \rho)^{1/2}$, the square root of $\rho' \rho$ with its spectrum on $(0, +\infty)$ ([9]). Therefore, by Lemma 4.1, we have $\eta^{(1)} = I(\eta)$. Moreover, it follows that

$$\pi^{_{(1)}}|_{_{A}} = (
ho^{_{(1)}}\eta^{_{(1)}-1})|_{_{A}} =
ho\eta^{_{-1}} = \pi$$

and hence $\pi^{(1)} = I(\pi)$. Thus we have

$$ho^{_{(1)}}=\pi^{_{(1)}}\eta^{_{(1)}}=I(\pi)I(\eta)=I(
ho)\;.$$

Next, suppose that a sequence $\{\rho_n\}$ of automorphisms of A converges uniformly to an automorphism ρ of A. Then

$$\|\rho_n \rho^{-1} - \mathrm{id}_A\| = \|(\rho_n - \rho)\rho^{-1}\| \le \|\rho_n - \rho\| \|\rho^{-1}\| \to 0 \ (n \to \infty)$$

Therefore, for all *n* sufficiently large, Sp $(\rho_n \rho^{-1})$ lies in the open half plane $\Omega = \{\lambda \in C: \text{Re } \lambda > 0\}$. This implies that $\delta_n = \text{Log}(\rho_n \rho^{-1})$ is a derivation of *A* (e.g., [13; 4.1.18]). Thus, for all *n* sufficiently large, we have

$$I(\rho_n)I(\rho)^{-1} = I(\rho_n\rho^{-1}) = \exp I(\delta_n) = \mathrm{id}_{I(A)} + \sum_{k=1}^{\infty} I(\delta_n)^k/k!$$

to obtain

$$\begin{split} \|I(\rho_n) - I(\rho)\| &= \|(I(\rho_n)I(\rho)^{-1} - \mathrm{id}_{I(A)})I(\rho)\| \leq \left\|\sum_{k=1}^{\infty} I(\delta_n)^k / k!\right\| \|I(\rho)\| \\ &\leq \left(\sum_{k=1}^{\infty} \|\delta_n\|^k / k!\right) \|I(\rho)\| \quad \text{(by Theorem 2.1)} \\ &= (\exp \|\delta_n\| - 1) \|I(\rho)\| \to 0 \quad (n \to \infty) \;. \end{split}$$

Then we conclude that $||I(\rho_n) - I(\rho)|| \to 0 \ (n \to \infty)$, as required.

(2) Obvious from what was mentioned above.

(3) It is obvious that if $I(\rho_t)$ $(-\infty < t < \infty)$ is a uniformly continuous one-parameter group then so is ρ_t $(-\infty < t < \infty)$.

Suppose that ρ_t $(-\infty < t < \infty)$ is a uniformly continuous one-para-

meter group of automorphisms of A. Then $\rho_t = \exp t\delta$ with a derivation δ on A. Thus by Theorem 2.1, there is an element g in \overline{A} such that $I(\delta) = \operatorname{ad} g$. It follows immediately that for all $t \ (-\infty < t < \infty)$,

$$I(\rho_t) = \exp t I(\delta) = \operatorname{Ad} \exp t g$$
.

Now we proved all the statements in Theorem 4.1.

5. Concluding remarks. In Sections 2 and 4 we considered how to extend derivations and automorphisms (not necessarily *-preserving) of a C^* -algebra A to its injective envelope I(A). In this closing section, we discuss questions whether each derivation on (resp. automorphism of) A can be extended to a unique derivation on (resp. automorphism of) a C^* -subalgebra B of I(A) which contains A.

(1) A derivation δ on A can be extended to a derivation on B if and only if $I(\delta)(B) \subset B$; in this case, $I(\delta)|_B$ is the unique extension of δ to B. Indeed, suppose that there is an extension δ_1 of δ to B. Then the extension $I(\delta_1)$ of δ_1 to I(B) coincides with δ on A. Since I(B) =I(A), we have $I(\delta_1) = I(\delta)$ by Theorem 2.1 (2). Therefore $\delta_1 = I(\delta_1)|_B =$ $I(\delta)|_B$.

(2) We may apply a similar argument to show that an automorphism ρ of A can be extended to an automorphism of B if and only if $I(\rho)(B) = B$; in this case $I(\rho)|_{B}$ is the unique extension of ρ to B.

(3) If B contains D(A), then the condition stated in (1) is satisfied by each derivation δ on A, and the condition stated in (2) is satisfied by each positive automorphism ρ of A (because ρ is of the form $\rho = \exp \delta = \log \rho$). Therefore, when B contains D(A), an automorphism ρ of A satisfies $I(\rho)(B) = B$ if and only if the *-preserving part $I(\pi)$ of $I(\rho)$ in its polar decomposition satisfies that $I(\pi)(B) = B$.

(4) Each automorphism ρ of A can be extended to a unique automorphism $\bar{\rho}$ of \bar{A} and Theorem 4.1 holds when I(A) and $I(\rho)$ are replaced by \bar{A} and $\bar{\rho}$, respectively. To see this it is sufficient to observe that \bar{A} contains D(A) and $I(\pi)(\bar{A}) = \bar{A}$ and that $I(\rho)|\bar{A} = \bar{\rho}$.

(5) In general, the condition stated in (2) cannot hold for a C^* -algebra A, a C^* -subalgebra B of I(A) which contains A and a *-automorphism α of A. We give here such an example. Let A be the C^* -algebra of all complex continuous functions on the one-dimensional torus T. Then I(A) turns out to be B(T)/m(T) where B(T) is the algebra of all bounded Baire functions on T and m(T) is the ideal of all meager functions in B(T). Let p be the projection in I(A) defined by the characteristic function of $\{\exp 2\pi i\theta: 0 \leq \theta < 1/4\}$ and, B the C^* -subalgebra of A

C*-ALGEBRAS

References

- M.-D. CHOI, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974), 565-574.
- [2] J. DIXMIER, Les C*-Algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- [3] G. A. ELLIOTT, On derivations of AW*-algebras, Tôhoku Math. J. 30 (1978), 263-276.
- [4] H. HALPERN, The norm of an inner derivation of an AW^* -algebra, preprint.
- [5] M. HAMANA, Injective envelopes of C^{*}-algebras, J. Math. Soc. Japan 31 (1979), 181-197.
- [6] M. HAMANA, Regular embeddings of C*-algebras in monotone complete C*-algebras, J. Math. Soc. Japan 33 (1981), 159-183.
- [7] R. V. KADISON, Derivations of operator algebras, Ann. of Math. 83 (1966), 280-293.
- [8] T. OKAYASU, A structure theorem of automorphisms of von Neumann algebras, Tôhoku Math. J. 20 (1968), 199-206.
- [9] T. OKAYASU, Polar decomposition for isomorphism of C*-algebras, Tôhoku Math. J. 26 (1974), 541-554.
- [10] D. OLESEN, Derivations of AW*-algebras are inner, Pacific J. Math. 53 (1974), 555-561.
- [11] D. OLESEN AND G. K. PEDERSEN, Derivations of C*-algebras have semi-continuous generators, Pacific J. Math. 53 (1974), 563-572.
- [12] G. K. PEDERSEN, Derivations of operator algebras, C*-algebras and their applications to statistical mechanics and quantum field theory, North-Holland, Amsterdam-New York-Oxford, 1976, 139-146.
- [13] S. SAKAI, C*-Algebras and W*-Algebras, Springer-Verlag, Berlin-Heiderberg-New York, 1971.
- [14] S. SAKAI, Derived C*-algebras of primitive C*-algebras, Tôhoku Math. J. 25 (1973), 307-316.
- [15] K. SAITÔ, A structure theory in the regular σ -completion of a C*-algebra, J. London Math. Soc. 22 (1980), 549-558.
- [16] J. TOMIYAMA, Tensor products and projections of norm one in von Neumann algebras, Lecture Notes for Seminar Given at University of Copenhagen (1970).
- [17] J. TOMIYAMA, Derived algebras of C*-algebras, C*-algebras and their applications to statistical mechanics and quantum field theory, North-Holland, Amsterdam-New York-Oxford, 1976, 147-153.
- [18] J. D. M. WRIGHT, Regular σ-completions of C*-algebras, J. London Math. Soc. (2), 12 (1976), 299-309.

Masamichi Hamana	Takateru Okayasu	Kazuyuki Saitô
DEPARTMENT OF MATHEMATICS	DEPARTMENT OF MATHEMATICS	MATHEMATICAL INSTITUTE
FACULTY OF EDUCATION	FACULTY OF SCIENCE	Tôhoku University
TOYAMA UNIVERSITY	YAMAGATA UNIVERSITY	Sendai, 980
Точама, 930	Чамадата, 990	JAPAN
JAPAN	JAPAN	