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EXISTENCE PROBLEM OF TRANSVERSE FOLIATIONS
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M" in general position, that is,
dim Tw'-g;(l) ﬂ e n Tw%(p) =n — p

for all xe M and {z(1), ---, i)} {1, -, k} with p < =n.

When k& = n + 1, we call %7 an octahedral web if for all x € M there
is a chart ¢: U — R" such that x e U and .#;|U = ¢*Z; for all ¢, where
<, ={(x, -+, ) eR"|w;, = clrerfori=1,---,nand &,,, = {(&, -+, .)€
R*|x, + -+ + %, = ¢}oer- In Nishimori [10] and [11], the author classified
almost all the octahedral webs on closed manifolds.

When k& =n, we call %77 a multifoliation (or a total foliation).
Tischler [16] constructed multifoliations on the total spaces of S*-bundles
over closed surfaces, and Silberstein [14] constructed multifoliations on
M x S' where M is a stably parallelizable manifold. Furthermore Hardorp
[6] showed that all the closed orientable manifolds of dimension three
admit multifoliations.

When k£ = 2, we see that 77 is a pair of transverse foliations. For
such 77, there exists the study by Tamura and Sato [15]. They regarded
a foliated manifold (M, .# ) as an underlying manifold, and a foliation
< of M transverse to % as a structure on (M, % ). From this point
of view, Tamura and Sato characterized codimension-one C> foliations
transverse to the Reeb component of S* x D* or to the Reeb foliation
of S*® and classified them topologically by introducing TS diagrams.
From these results and the theorem of Novikov [12], they derived that
the foliation of S°® obtained from a fibered knot with a fiber of non-zero
genus has no transversely orientable transverse codimension-one C* foli-
ation. In contrast to this, they remarked that any codimension one C*
foliation of S® admits a transverse 2-plane field. Furthermore they raised
several problems on transverse foliations. One of them is the following.

ProBLEM A [15, Problem 10]. Find conditions for C* foliated mani-
folds to admit tramsverse foliations.

From now on, a manifold is always of class C~ and a foliation is a
codimension one C~ foliation, unless stated otherwise.

In Part I of this paper, we generalize the results of Tamura and
Sato on the Reeb component to the foliated manifolds (E(h), .# (h; o))
introduced as follows. Take a positive integer & and let E(k) be a com-
pact manifold obtained from S® by deleting % small open 2-disks. Let
E(h) = 8* x E(h). We treat S* and E(h) as oriented manifolds. Denote
by f(iAL) the set of the connected components of aﬁ‘(h) and let I'(h) =
(St x C|Cel'(k)}. Note that each CerI'(h) is diffeomorphic to T2 Take
a continuous map o:0E(h) — {1, —1}. Frequently we regard ¢ as a map
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from 8E(k), I'(h) and (k) to {1, —1} in a canonical way without caution.
We turbulize the product foliation

F(h, pr) = {{} x E(h)|z eS8

of E(h) so that for each ycdE(h) the oriented closed path o(y)(S* x {w}h
has an expanding holonomy with respect to the modified foliation & (k; o).
The turbulization will be stated precisely in § 2.

Tamura and Sato decomposed foliations transverse to the Reeb
component into three kinds of simple components, namely half Reeb
components, foliated I-bundles over S' x I and TS components. In our
case we decompose foliations transverse to .#(h; o) into nine kinds of
components (see Theorem 3 in §9). For a foliated manifold (M, &), we
denote by t3(M, 7 ) (or simply t}(# )) the set of transversely orientable
foliations of M transverse to .#. We can classify the foliations in
t}(E(h), Z (h; 0)) with respect to a certain equivalence relation by using
generalized TS diagrams (see Theorem 4 in § 14).

In Part II, as an application of the results of Part I we consider
Problem A for a certain class of foliated manifolds of dimension three
introduced as follows. Roughly speaking, our foliated 3-manifolds are
unions of foliated manifolds of the form (E(h), Z(h; 0)).

First take a connected. finite graph @ and fix an orientation for each
side of @®. Denote by V(®) (or S(®)) the set of vertices (or sides) of ®.
For ve V(@), let S(®; v) = {s€ S(@)|vis an end of s}, where we take two
copies s*, s~ of s if the ends of s coincide and are v. Let h(v) = £S(@; v)
and E[v] = E(h(v)). We fix a bijection C[v]: S(@; v) — I'[v] = '(h(v)).

Take a map ¥:S(®)— {C;n qi) kn —lm = —1, k, I, m, neZ}. For
each side se S(@) with a(s) = (v) — (v,), v, v, € V(®), we define a diffeo-
morphism ¥*[s]: C[v,](s) — C[v,](s) by

r*[slz, y) = (kx + ly, mx + ny), ®,yeR/Z,

where ¥(s) = Cfn ,'lt>, Clv,](s) = §* % C,, and S, C, and C, are identified

with R/Z. When the ends of s coincide and are v, we use the conven-
tion that C[v,](s) = C[v](s™) and C[v,](s) = C[v](s"). Now we obtain a
closed connected manifold M(®, ¥) from the disjoint union U {E[v]|v € V(®)}
by identifying C[v,](s) with C[v,](s) by Z*[s] for all s e S(®).

Take a continuous map o: I'[®] = U {I'[v]|ve V(®)} — {1, —1}. Then
we have a foliation # (@, ¥; ¢) of M(®, +) such that .# (9, ¥; 0)| E[v] =
F(h(v); ¢|0E[v]) for all ve V(®), where 7 (@, ¥; 0)|E[v] is the foliation
induced from .# (@, ¥; o) by the canonical immersion ¢: E[v] — M(9, ¥).
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We denote by t¥(M(Q, V), (9, ¥; o)) (or simply t}(F (@, ¥; 0))) the
set of foliations & of M(®, ¥') transverse to .7 (@, ¥; o) such that & |E[v]
is transversely orientable. Clearly t}(# (9, @; 0)) D t(F (®, ¥; 5)). Our
main purpose is to investigate whether t}(# (@, ¥; g)) is empty or not.
Note that if @ is a ¢ree (that is, a connected contractible graph) then
(0, V; 0) is transversely orientable for all ¥ and ¢ and it follows that
(T, 7;0)) = A(F(9,7; 09)).

Our criterion for the existence of transverse foliations splits into
two stages—an arithmetic criterion and a geometric one. Although the
former is stronger than the homotopy theoretic one asking for the exist-
ence of transverse 2-plane fields (see Theorem 2 below), we do not know
whether it is complete as a criterion or not. The latter is complete and
takes the form of a jigsaw puzzle or a tangram (see Theorems 8, 8*
and 8** in §21).

Now we formulate the arithmetic criterion precisely.

DEFINITION 1.1. Let (IV x Z)r'me = {(g,b)e N X Z|ap + bg =1 for
some p, g € Z}, where IV is the set of positive integers. Let (N x Z)* =
(N x Z)*=ey{(0, 1), (0, o)}

DEFINITION 1.2. An arithmetic model transverse to .7 (@, ¥; o) is a
map (a, b; r): I'[®] — (N X Z)* X 2Z, where 2Z is the set of even integers,
satisfying the following conditions (A1)-(A5).

(A1) Consider ve V(®) with h(wv) =1, and let I'[v] = {C}. Then
a(C) = 1.

(A2) Consider v e V(@) with h(v) = 2, and let I'[v] = {C, C;}. Then

(i) 7(C) = —r(C).

(ii) If »(C) # 0 and a(C) > 0, then a(C,) = a(C,) # « and b(C,) =
—b(C)).

(iii) If #(C) # 0 and a(C,) = 0, then a(C,) = 0 and o(C,) = —o(C)).

(A3) Consider v € V(@) with h(v) > 2, and let Ce I'[v]. If (a(C), b(C)) #
1, 0), then »(C) = 0.

(A4) (The TS formula). For each »e V(®),

>, a(C(C) =4 — 2h(v),
Cel[v]
where we use the convention «:0 = 0.

(A5) (The compatibility condition). Let s e S(®) with o(s) = (v,) — (v,)
and C; = C[v,](s) for i =1, 2.

(i) If a(C, = o, then a(C,) = « and 7(C,) = »(C,) = 0.

(ii) If a(C)) # -, then
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a(C)\ [k 1\/a(C) e
(b(02)) —71<m %><b(C,)) and 7(C,) = 77(C) .

In the above, we put ¥(s) = (frcn qi) and

B {sgn (ka(C,) + Ib(Cy)) if a(C) >0,
~ sgn (ma(C) + nb(C) if a(C)=0.
Furthermore, we put 6(0) = 0 and d(a) =1 for a > 0, and
Y, = 7,-0(C) e -0(C,) a0 |

We denote by am (@, ¥: ¢) the set of arithmetic models;transverse to
(0, ¥, o).

Now we can state the arithmetic criterion.
THEOREM 1. There exists a canonical map
a:t¥}(F(0,V;0) —>am (0, 7;0).

Roughly speaking, if a(Z) = (a, b;r) for € et} (F (@, ¥; 0¢)), then
(a(C), b(C)) represents the homology class of a compact leaf of & |C and
2(C) is the difference of the numbers of the positive Reeb components
(cf. Definition 4.1) and negative Reeb components of & |C. The condi-
tion (Al) was already known in Davis and Wilson [1] and does not depend
on the integrability of Z |E[v]. The condition (A3) reflects the inte-
grability of < |E[v] (see Remark 19.3). The conditions (A4) and (A5)
do not depend on the integrability of Z, but it is not clear whether
(A2) does or not.

The following is a direct consequence of Theorem 1.

THEOREM 1*. (The arithmetic criterion). If am (@, ¥;0) = @, then
t(F (0,7;0) = .

"It is comparatively easy to see whether am (@, ¥'; o) is empty or not.
We will give some examples in §19. The following will be proved in
§ 24.

THEOREM 2. If am (9, ¥;0) # O, then there is a 2-plane field of
M(®, ¥) transverse to F (@, V; o).

Our criterion is practical. The algorithm is as follows. First deter-
mine whether am (@, ¥'; ¢) is empty or not. When am (@, ¥;0) = &, we
are done. When am (@, ¥;0) + @, try to construct a TS model (cf.
Definition 20.7) transverse to # (@, ¥;c). In many cases we find a TS
model. So far we did not find any .# (@, ¥; ¢) such that am (9, ¥;0) + @
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and ¢}(F(9,7;0)) = @. We give some examples in §22. We hope that
our criterion will give a hint to constructing a theoretical or general
criterion. If a new criterion is found, then we can test it by the
examples investigated by our criterion.

We wish to thank Professors I. Tamura and A. Sato for critical and
valuable discussions.

PART 1
A generalization of the results of Tamura and Sato

2. Turbulization I and Reeb components. We describe the turbuli-
zation precisely. Let W be a compact manifold with boundary and M a
codimension-zero compact submanifold of dW. Let I" be the set of con-
nected components of M. Choose a small collar k: M x [0, 1] — W such

that
k(y,0)=y  for yeM,
k(y,t)eoW  for yeoM and telo,1].

Let £: 8" X M x[0,1]—>S* x W be the collar of S'x M defined by
k(x, y, t) = (, k(y, t)) for zeS', ye M and te[0,1]. Let W° = Cl(W —
k(M x [0,1])). Take a C* function f:]0, 1] — ]— oo, 0] such that

(fl) f(¢) =0 for all te[1/2, 1],

(f2) lim,, f(¢) = — oo,

(£f8) df/dt > 0 in ]0, 1/2[,

(f4) the submanifolds R x {0} and F.(f) = {(f(t) + ¢, t)|t€]O0, 1]},
ceR, of R x [0,1] are leaves of a foliation of R x [0, 1].

Take a continuous map o: M — {1, —1}. Let # be a foliation of
S x W such that & |k(S'x M x [0,1]) = {{z} x k(M x [0, 1])|x e S'}.
Then the foliation T[.#, M, o] obtained by turbulizing F# around M in
the direction of o is defined so that T[#, M, ¢]|S* X W° = & |S* x W°
and that T[F, M, o]|k(S* x M x [0, 1]) consists of compact leaves S* x c
for C e’ and non-compact leaves

k(o) f@®)] + 2, y, )|y eC, tel0, 1]}

for x€S' = R/Z and Cel', where [#2] means z mod 1.

Now consider E(h) = S* x E(h), I'(h) and o: 0E(h) — {1, —1} as in § 1.
Let E(h) (or aE(h)) play the role of W (or M respectively). (Below we
omit the word “respectively” in the similar description.) Then we have
the turbulized foliation .#(h; o) in §1:

F (h; 6) = T[F(h, pr), 0E(R), 0] .
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Therefore .# (h; o) consists of compact leaves CeI'(h) and non-compact
leaves

F= =8 x Eh)° U k{(lo@)f®)] + =, 9, t)|y € 0E(h), t [0, 1]})
for zeS!, where E(h)° and k:dE(k) x [0, 1] — E(h) are constructed as
above.
We recall some definitions.

DEFINTION 2.1. Let #, " be the product foliation {{x} x D"|x e S}
of §* x D", and ¢:90D" — {1, —1} be a constant map. Then the turbulized
foliation F#;"*Y(0) = T[.F.r", 0D", o] is called a standard Reeb component
of S'xD". We called #;""*(1) plus and F;""(—1) minus in Tamura-
Sato [15].

DEFINITION 2.2. Let o:0D'— {1, —1} be a bijection. Then T[.#.Z,
oD, o] is called a standard slope component of S'x D'

Reeb components A slope component

A half Reeb component A tunneled Reeb component
FIGURE 2.1 The top and the bottom are to be glued



186 T. NISHIMORI

DEFINITION 2.3. Let D*={(x,,---,,) € D"|2,=0}. Then T[.#,»"|S"'x

», D" x {0}, =1] is called a standard half Reeb component of
St x Dz.

The following is a new component appearing in our decomposition

theorem but not being contained in foliations transverse to the Reeb
component .Z;}(1) of S' x D2

DEFINITION 2.4. Let Dfy, ={(2,, -+-, %) eR"[1/d S ol 4+ --- + 2, =1}
Then T[.F,»*|S*' X Dy, 0D, £1] is called a standard tunneled Reeb
component of S* x Dp, ;.

DEFINITION 2.5. Let (M, #;) and (M,, #,) be C" foliated manifolds.
We say that &, is C" isomorphic to &, if there is a C" diffeomorphism
¢: M, — M, with Z| = ¢* 7.

DEFINITION 2.6. A foliation & is called a Reeb (or slope, half Reebd,
tunneled Reeb, ete.) component if & is C° isomorphic to a standard Reeb
(or slope, half Reeb, tunneled Reeb, etc.) component.

For better understanding, we give some figures in Figure 2.1.

3. Turbulization II and several components I. For some foliations
of S* x §* x [0,1], we can introduce a somewhat sophisticated type of
turbulizations, as follows. The foliations thus obtained will appear in
the decomposition theorem for & €t} (h; 0)).

As the data, we take a transversely orientable foliation &, of S* x S*
without Reeb components, a positive integer p,, a map o:{1, - -, tt} —
{1, —1} and an element (a, b) € (N X Z)**'™° such that there is a closed
transversal L intersecting all the leaves of &, with [L] = a[S* x {x}] +
b[{x} x S'] in H(S'x 8 Z). What we will turbulize is the product
foliation &, x I, where I means the interval [0, 1].

Put pt = a-pt. Let M, = {[yleS' = R/Z|(i — Vjp < y < (2i — 1)/2p1)
for i =1, ---, ¢, and M= MU --- UM, Let M* = {([at], [bf] + ¥)e
S*x S'|teR,yeM}. Then M*N{0]} x S*=M, and M* has p, con-
nected components. Let M* be the connected component of M* contain-
ing {[0]} Xx M, for i =1, ---, t,.

We can construct a diffeomorphism a:S*' x S*x I—- 8" x S* x I
satisfying the following conditions (1)-(3).

(1) a(S*x 8" x{t}))y =8 x S* x {t} for all tel.

(2) alS* x S*x[2/3,1] = id.

(8) There is a neighborhood U of M* in S* x S! such that the leaves
of a*(Z, x IN|U x [0, 1/3] are connected components of ({([—bt], [at] + ¥)
[te R} N U) x [0, 1/3] for some y e S'. (See Figure 3.1.)
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45X S'x{0}

}——a* (anD

FIGuRrE 3.1

Bend S! x S* x I along oM* x {0} so that oM* x {0} is a corner.
Choose a small collar k: M* X I — U x [0, 1/3] such that k(oM* x I)C
U x {0} and that the leaves of k*a*(Z, x I) are connected components
of ({([—bt], [at] + ¥)|teR}N M*) x I for yeS'. Then the turbulized
foliation T[Z,; tt, 0; a, b] is defined so that T[Z,; 1, g; a, b] = a*(Z, x I)
on S' X 8§ X I — k(M* x I) and that T[Z; t, 0; a, b]|k(M* x I) consists
of compact leaves M* x {0}, 1 =1, ---, ¢, and non-compact leaves

{k([aa (D) f(E/3)] + =, [bo(0)f(t/3)] + v, B)|t €10, 1], (x, ¥, 0) € F}

for leaves F of k*a*(Z, x I)| M} x {0}, i =1, ---, tt,, where we use
f:10,1]1 > ]—,0] in §2. (See Figure 3.2.)

N
O

]

FiGURE 3.2

DEFINITION 3.1. We call T[Z,; 4, 0; a, b] a standard gear component
if ¢ is constant.

The definitions below are not used until §9, and it is possible to
omit them till then.
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When two standard gear components &, = T[Z; p, 0.; a,, b,] and
F, = T[Zy; s, 0,5 ay, b,] With &, = &, are given, we can glue % and &,
by identifying &, x {1} and &, x {1}, and obtain a foliation of a mani-
fold homeomorphic to S* x S* x I.

DEFINITION 3.2. The foliation obtained above is called a standard
double gear component if the values of o, and o, are different.-

When &, is the foliation .#,, = {{z} x S*'|z € S'}, we can glue the
foliation {{x} X D*|x €S} to T[.F.; th, 0; a, b], and obtain a foliation
T*[ F o o, 0; a, b].

DEeFINITION 3.3. We call T*[.Z,,; i, 0; a, b] a standard arcade com-
ponent if ¢, > 1 and o is constant.

DEFINITION 3.4. Let ¢, and g, be non-negative integers with ¢,+¢,>0.
We call T*[F,.; th, 0; 1, b] a standard TS component of type (q, q,) if
#O:Q1+Q2+zand

1 for j=1,---,¢,+1,

o(g) =
D=11 tor j=g 42 m.

REMARK 38.5. A TS’ component of type (0, q) is a TS component of
type ¢ defined in Tamura-Sato [15].

When the leaves of &, are all compact, we can turbulize T[Z,; ¢, o; a, b]
around S! x S' x {1} in the directions orthogonal to Z,.

DEFINITION 3.6. The foliation obtained above by turbulization is
called a standard turbulized gear component if ¢ is constant and the
turbulization around S*' x S!' x {1} is performed in the direction of
—o(1)(a@'[S* x {*}] + b'[{x} x S']), where (a’, b') € (N x Z)* ™ J {(0, 1)} with
aa’ + bb' = 0.

Let & be a standard turbulized gear component obtained from
T[Zy; th, 0; @, b]. We may suppose that K = {([at], [0t + (1/4)])|te R} x I
is transverse to &¥. Then £ |K is a slope component. Therefore & |K
admits a smooth S' action (see Imanishi-Yagi [6], Fukui-Ushiki [3] and
Fukui [2]) if the turbulization is carefully performed. Let 8: K — K be
a diffeomorphism such that B maps each non-compact leaf of & |K to a
different leaf of & |K. Cutting S* x S' X I along K and pasting by g,
we have a foliation &’ of manifold homeomorphic to S* x S* x I.

DEFINITION 3.7. The foliation &’ obtained above is called a standard
perturbed gear component.

We give some figures.
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A TS’ component

A turbulized gear component A perturbed gear component
FIGURE 3.3

4., Preliminaries, a lemma of Tamura and Sato, and the TS formula.
Let € e ti(# (h; 0)). We give some remarks on & |C for CeI'(h). Note
that C is diffeomorphic to 7% When % |C has a compact leaf L, the
homology class [L]e H,(C; Z) depends only on & |C. We call C vertical
if £ |C has no compact leaf homologous to {x} x C, and otherwise hori-
zontal. If there is an immersion g: S* X D' — C such that g|Int (S'x DY)
is an imbedding and ¢g*%Z is an Reeb component, then g is an imbedding,
and £ |C contains an even number of Reeb components, since £ |C is
transversely orientable. As in Tamura-Sato [15], we can construct a C*
isotopy {¢.};cr C Diff (E(h)) satisfying the following conditions (E1)-(E5).

(El) ¢, =1id for t <0, and ¢, = ¢, for ¢ = 1.

(E2) ¢FfZ €ti(F (h; 0)) for all teR.

(E8) When % |C has no _compact leaf for Cel'(h), each leaf of

Z |C is transverse to {x} X C and S' x {y} for all zeS* and yeC.
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(E4) When C is horizontal, each compact leaf L of ¢}< |C has the
form L = {x} x C for some z e S

(E5) When C is vertical and & |C has a compact leaf, each compact
leaf L has the form L = {([at] + z, [bt])|t € R} for some a€ N and be Z,
and for each Reeb component .Z contained in ¢F% there is a circle
3(#)cInt | 2| such that ¢*% is tangent to the curves {x} x C, x€ S,
at and only at 3(<#).

Since it is sufficient for our purpose to consider ¢¥% instead of &,
hereafter we treat ¢F¥Z and demote it by & for simplicity.

Since & is transverse to oFE(h), there is ¢ > 0 such that & is trans-
verse to k(0E(h) x {t}) for all ¢t€[0, €], where k:oE(h) x [0, 1] — E(h) is
the collar used in the definition of & (h;0). Let A = E(h) — k(6E(h) X
[0,¢]) and A* = F*N A for x¢S', where F° is the non-compact leaf
defined in §2. Let 6,4 = k(C x {¢}) and 9,4%* = F* N d,A for Cel'(h).
Then 0A = U {9,A|CeI'(h)}. We have a diffeomorphism 7:0E(h) — dA
such that z€dE(h) and 7(z) belong to the same leaf of . We may
assume the following conditions.

(E4) If CeI'(h) is horizontal, then 9,A" is a compact leaf of & |0A4,
where [0]€S' = R/Z means 0 mod 1.

(E5) If CeI'(h) is vertical, then for each Reeb component &2 con-
tained in £ |9,A there is a circle Y(<Z) CInt|. 2| such that & |d,A is
tangent to the curves 9,47 x¢S' at and only at 3(C) = U {3(#)|#
is a Reeb component contained in £ |3,A}, where || means the under-
lying manifold of <Z. (See Figure 4.1.)

In order to recall a lemma in Tamura-Sato [15], we make preperations.
Let CeI'(h) be vertical. When % |C has a compact leaf L, we appoint
the orientation of L so that [L] = a[S* x {*}] + b[{*} X C] in H,(C; Z) for
some a€ N and be Z.

=@

—0A"

FicuRre 4.1
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DEFINITION 4.1. In the above situation, a Reeb component 2 con-
tained in & |C is called positive (or megative) if a compact leaf L of &
has an expanding (or contracting) holonomy in the direction of ¢(C)-L.
A Reeb component .2 contained in & |9;A is called positive (or megative)
if v*&2 is positive (or negative).

The lemma which we need is the following.

LemMmA 4.2 [15, Lemma 1]. Let <2 be a Reeb component contained
m £|0A and S(R)N A* = {z}. If & is positive, then & |A* forms a
Jamily of concentric half circles with center z in a meighborhood of z.
If <2 is negative, then T |A* forms a family of confocal parabolas in
a neighborhood of z. (See Figure 4.2.)

2 2
concentric confocal
half circles parabolas

FIGURE 4.2

Now we introduce the TS formula for . When C e I'(h) is vertical
and & |C has no compact leaf, let a(C) = b(C) = « and »(C) = 0. When

CeI'(h) is vertical and ¢ |C has a compact leaf L, define (a(C), b(C)) e
(N X Z)coprime by

[L] = a(O)[S" x {*}] + bO)[{*} x C] in H(C; Z),
and let 7(C) = p(C) — q(C), where p(C) (or ¢(C)) is the number of positive
(or negative) Reeb components of £ |C. When CeI'(h) is horizontal,
let (a(C), b(C)) = (0, 1) and define »(C) in the same way as above but by

replacing Z|C by c*(?|C),A where ¢: S x € — St x C is defined by
c(x, y) = (y, x) for xeS*, yeC = S.

PROPOSITION 4.3 (The TS formula). In the above situation,
Sy a(Cr(C) =4 — 2h,

Cel'(h)

where we use the convention that -0 = 0.

ProoF. Regard Z|A™ as the set of orbits of a vector field Y by
giving an orientation. By patching two copies of A along A", we have
a closed manifold W. We obtain a vector field ¥ on W from Y U (-Y).
By Lemma 4.2, the vector field ¥ has p (or ¢) singular points of index
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1 (or —1), where
p=062m)a(0)p(0) and ¢= >, a(C)q(C).

Cel(h)

Since the Euler number of W equals 4 — 2k, we have the formula.

5. The characteristic diffeomorphism of % €t)(% (h;o)) and the
projection of a leaf of € |C to F. Let & €t (h; 0)). Take a vector
field X of E(h) tangent to & and transverse to .# (h; o) such that X is
inward (or outward) at y € 9E(h) with o(y) = 1 (or —1). We may suppose
that y € 0E(h) and 7(y) is on the same orbit of X. For x€S*, let F= be
the non-compact leaf of & (h; o) defined in §2. Since F*“ is proper, for
each y € F” there is the first point +,(y), of the orbits of X starting from
¥y, intersecting F=. Then +,(y)’s give rise to a diffeomorphism «,: F*— F®=.

DEFINITION 5.1. We call +, above the characteristic diffeomorphism
of & with respect to X for F-.

DEFINITION 5.2. For a subset B of 0E(h), the real projection RP, (B)
of B to F*“ along X is the set of z¢ F” such that the orbit of X passing
through z intersects B. For a leaf L of & |0E(h), the projection P, (L)
of L to F* along X is the saturation of RP, (L) with respect to & |F™.
We denote by P} (L) the set of leaves of & |F* contained in P, (L).

Clearly v}(Z |F*) = < | F* and (P, (L)) = P, (L). The set RP, (L) is
open in P, (L). For disjoint subsets B and B’ of 0E(h), it follows that
RP,(B)NRP, (B’) = @ if 6| BU B’ is constant. Furthermore +, and P, (L)
have the following useful properties.

PROPOSITION 5.3. Let L be a leaf of & |oE(h).

(1) The group {v:|neZ} acts transitively on the set P} (L).

(2) Let L' be another leaf of & |0E(h). IfP,(L)NP,(L') # @, then
P, (L) = P, (L.

(8) If L is a compact leaf and Ce I'(h) with L C C is vertical, then
P} (L) = a(C), where a(C) was defined in § 4.

(4) If P} (L) < =, then CeI'(h) with L CC 1is vertical and L 1is
a compact leaf or a non-compact leaf of a negative Reeb component con-
tained in < |C.

Proor. (1) Let K, and K, be leaves of & |F*“ contained in P, (L).
By definition of P, (L), there are points y, and y,e L such that the orbit
of X passing through y, intersects K, at some point 2z, 7 =1, 2. Since
L is connected, there is a path w: I — L with w(0) =y, and (1) = ¥,.
Transporting @ along X, we have a path @: I — K such that @(0) equals
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z, and w(t) and @(t) are on the same orbit of X. Then @(1)ecK,,
y¥, = w(1) and z,€ K, are on the same orbit of X. This implies that
yu(@(1)) = z, for some neZ. Then (K, = K,.

(2) Suppose that P,(L)NP,(L")+~@. Then P}(L)NP}(L")#@. Let
K,eP¥(L)NP¥(L'). Then for each K € P} (L) there is n € Z with 42(K,)=K
by (1). Since (P} (L)) = P¥ (L) by (1), it follows that that K e P} (L').
This implies that P,(L)cCP,(L’). In the same way we have P,(L')CP,(L).

In order to prove (3) and (4), we make preparations. Let H={[0]} xC.
Then RP,(H) consists of an infinite number of circles and we can number
them so that RP,(H) = {H,|1€ Z} and that if ¢ < j then H, is between
H and H; in E(h). With respect to the topology of F~, the set
N.czCl (Ui H;) is empty. For each 4, the connected component F; of
F* — H, containing H, , is diffeomorphic to S* x R and the closure of
F, in F* is not compact. Furthermore the decreasing sequence F,, F'_,, - --
determines an end ¢ of F* with L.(F*) = C, where L.(F*) is the &-limit
set of F* (see Nishimori [8]).

LEMMA 5.4. Suppose that C is vertical.

(1) If L is a leaf of £ |C contained in C— U {Int| F#||F# is a
Reeb component contained in < |C}, them each comnected component of
RP, (L) intersects H, at exactly one point for all 1€ Z.

(2) For a Reeb component & contained in & |C, the real projec-

tion RP, (| 2|) of | #| intersects H; for all i c Z, and < |(RP, (|.Z|)NF,)
18 as i1m Figure 5.1.

ProOF. (1) is clear and (2) follows from Lemma 4.2.

PROOF OF PROPOSITION 5.3 CONTINUED. (3) Suppose that L is com-
pact and C is vertical. Since H N L is finite, so is the set H, N RP, (L)
for all i€ Z. By Lemma 5.4 (1), we have #P¥ (L) < .

H;

Hiy

Hi,

F,

if &2 is positive if 2 is negative
FIGURE 5.1
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(4) Suppose that P} (L) < . Then C is vertical. For, otherwise,
we may suppose that H = {[0]} X C is a compact leaf and it is easy to
see that for each leaf L' of £ |C the intersection P, (L) N (F; — F;_,)
consists of exactly one leaf of < |F*. Therefore $P}(L) = «, which is
a contradiction.

We see that L is not a non-compact leaf contained in C —  {|. £ || #
is a Reeb component contained in & |C}, as follows. Suppose the contrary.
Then L intersects H infinitely many times, and #(H, N RP, (L)) = « for
each 1e€Z. Since the foliation & |C is orientable, the curves KN RP, (L)
for KeP¥ (L) cross the circle H, in the same direction when & |F” is
oriented. Futhermore the closure of each connected component of RP, (L)
with respect to the topology of F* is non-compact by Lemma 5.4 (1).
Therefore each K e P} (L) intersects H,N RP, (L) at exactly one point.
Thus we have #P} (L) = o, which is contradiction.

We see that L is not a non-compact leaf of a positive Reeb com-
ponent contained in £ |C, as follows. Suppose the contrary. Then
#(H;NRP, (L)) = « for each i€ Z, By Lemma 5.4 (2), the closure of each
connected component of RP, (L) in F* is non-compact. Therefore each
KeP} (L) intersects H,N RP, (L) at at most two points. We have a
contradiction as above. This completes the proof of Proposition 5.3.

6. Negative Reeb cycles. In this section we investigate negative
Reeb cycles defined below, which can be regarded as a preparation for
the next section. Let & et} (h; 0)).

DEFINITION 6.1. A negative Reeb chain of & is a finite ordered set
& = (A% -+, A7), n=1, of negative Reeb components contained in
< |0E(h) such that

(1) P,(N)=P,(N},) for e =1, ---,n — 1, where N} and N? are
the compact leaves of _#7, and

(2) Int|_#;| and Int|_#7,,| are in the same side of the compact
leaf G; of & containing N? and N}, for 1 =1, ---, n — 1.

We denote N}, NZ, #7 and ¥, by o(&), e(&), 4(&) and 4(Z),
respectively.

DEFINITION 6.2. A negative Reeb cycle of & is a negative Reeb chain
% of € with (&) = o(Z°). A negative Reeb cycle & is called strange
if there are a vertical Cel'(h) and a compact leaf L of Z|C with
P, (L) N RP, (Int | #3(&)|) # @.

Note that if & contains a gear component ¥, then &, contains a
negative Reeb cycle.
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First we have the following.

PROPOSITION 6.83. Let & = (475, -+, A,) be a negative Reeb chain.
Then o|(| 47U -+ U|A.]) is constant.

PrROOF. Let G, be the compact manifold of & containing N? and
N2, as in Definition 6.1. A consideration on the holonomy of G; on the

side of |_7#7| tells us that o|(].#7] U | _#5..]) is constant. Then the prop-
osition follows.

Let & = (_#7, ---, .#,) be a negative Reeb chain. We use the nota-
tions in Definition 6.1. Let us consider the holonomy of leaves in P} (N7)
with respect to & | F*. For each 4, there is a unique bijection «a;: P} (N}) —
P* (N?) such that MeP¥(N}) and «a,;(M) intersect the same connected
component of RP,(|.#5]). For each MeP} (N/), take a small line seg-
ment T (M) in RP, (|.#;|) transverse to & |F* with an endpoint 2/(M)
in M. A local homeomorphism ¢: (X, x,) — (Y, ¥,) means a homeomorphism
- from a neighborhood of x, in X to a neighborhood of y, in Y with
#(x,) = Y,. For each MeP}(N}), there is a local homeomorphism A[M]:
(TH(M), 2((M)) — (T*( (M), z*(a(M))) such that z € Dom (h[M]) and h[M](2)
are on the same leaf of & |RP, (|_#7]), where Dom (h[M]) is the domain of
h[M]. Furthermore there is a local homeomorphism k[M]: (T M), 2*(M)) —
(T(M), 2(M)) such that weDom (k[M]) and k[M](w) are on the same
leaf of < |W, where W is a sufficiently small neighborhood of M in F~.
(See Figure 6.1.)

FIGURE 6.1
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Suppose that & is a negative Reeb cycle, that is, N2 = N!. Let
o= o,0---oa;: PF (N} — P} (N}). Since #P} (N!) < « by Proposition 5.3,
there is a minimal positive integer v with a* = id. Let 7[M] = k[a(M)]-
hla, o -oay(M)]o- - - okla(M)]oh[M]: (T(M), 2/(M)) — (T*(a(M)), 2 (a(M)))
and 7[M] = Pl (M)]o - - - e Y[ M]: (THM), 2"(M)) — (TH(M), 2'(M)).

The goal of this section is to prove the following.

PROPOSITION 6.4. Let & = (47, -+, A7) be a strange negative Reeb
cycle. Then there exists a torus S(Z°) imbedded in Int E(h) satisfying
the following conditions.

(1) S&E)NF=cRP,(|.#)U - URP, (|A47)UTU for all zeS',
where U 1s an arbitrarily small neighborhood of P, (N} U --- UP, (N2).

(2) S(&) is transverse to & and to F (h; o).

(8) S(&)N F= consists of a(C)/v circles for all xeS', where C, ¢
I’'(h) contains | 17| and v is as above.

DEFINITION 6.5. We call S(&) in Proposition 6.4 a separating torus
of &.

REMARK 6.6. In §11, we see that & |D is a gear component, where
D is the closure of the domain surrounded by | 77|, ---, | 441, Gy, - -+, G,
and S(&°). In §14, we show that S(&) N F* consists of exactly one
circle, that is, v = a(C,).

PROOF OF PROPOSITION 6.4. Since & is strange, there are a vertical
Cerl'(h) and a compact leaf L of & |C with P, (L) N RP,(Int | +7|) # @.
This is true for x = [0]. For simplicity, we omit the suffix [0] from F',

FIGURE 6.2
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Py, ete. We use the notations as above for x = [0] and consider Me
P*(N}). Then there is K € P*(L) intersecting the connected component B
of RP (J]_#7|) containing M. Let K, be a connected component of K C B.
Put a, = a(C,). Since (M) = M, the confocal parabolas " (K,) approach
M when n moves to o or —o. This implies that K intersects T'(M)
at infinitely many points converging to 2'(M), since 4% (K) = K for
all neZ. Therefore the local homeomorphism »[M]: (T"(M), z'(M)) —
(T*(M), 2/(M)) has no fixed point. Take ze K N Dom ([M]). Let 2 be
the domain in F' surrounded by M, a(M), -+, &, ,o---ca,ca’ (M), the
closed interval T* in T'(M) between z and »[M](z), and the closed interval
K* in K between z and 7[M](z). (See Figure 6.2.)

We can take a closed transversal S, of & | F'in 2 with S, = 4*/(S,) C Q.
Denote by S, the union of the intervals of orbits of X between some
point y €S, and 4**(y). Then S,N F* passes near each M'eP}(N})
exactly once for all xeS* — {[0]}. We see that S, and S; intersect K at
exactly one point. Therefore S, and S; intersect each leaf of & |2 at
exactly one point. Then there is a diffeomorphism &: S, — S, such that
yeS, and &y) are on the same leaf of < |2. Now we can modify S,
in U{F"|1 —¢e¢ <t<1}for small ¢ > 0 by translating each y €S, to &)
along a leaf of &£ | F, so that we obtain a torus S(&) transverse to &
and & (h; o). Clearly S(&) has the desired property.

7. An investigation of leaves of & ¢ t)(# (h; 0)) containing compact
leaves of Z|C for a vertical CeI'(h). Let € c¢t)(F (h;0)) and fix a
vector field X of E(h) as in §5. Let &, ---, &, be the strange negative
Reeb cycles of <. For each &, take a separating torus S(z;). We may
suppose that X is tangent to S(&) for all 4.

For a vertical Ce I'(h), we have the following proposition. Proposi-
tion 7.1 is a generalization of Lemma 8 in Tamura-Sato [15], and its
proof can be regarded as a new proof of the lemma.

PRrROPOSITION 7.1. Let CeI'(h) be vertical. Let L be a compact leaf
of < |0KE(M), and G the leaf of ¥ containing L. Then one of the
following occurs.

(1) G is a compact leaf diffeomorphic to S* X I.

(2) G is a non-compact leaf diffeomorphic to S* x [0, [ and the
limit set of G consists of a compact leaf of & diffeomorphic to T*.

(8) GNS&E,) # @ for some i, and the closure of the conmected
component of G — (S(&) U -+ US(F) containing L is diffeomorphic to
St x I

ProOF. Let A = E(h) — k(@QE(h) X [0, ¢]), A®* = F*N A, ete., be as in
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§4. We fix [0] as 2 S' and omit the suffix [0] except from A™ for
simplicity. Thus F = FU o = 4y, P (L) = Py(L) and so forth. We
may suppose that S(&,) cInt A for all 4.

Take a leaf KeP*(L) and a point y,€ K N RP (L) N 0A™. When the
connected component K* of KN A™ containing y, is not compact, the
limit set of K* is a circle S contained in Int A™ by the Poincaré-
Bendixson theorem. Since a = #P*(L) < « and (P (L)) =P (L), it
follows that °(S) = S. It is easy to check that the case (2) occurs.
(Consequently P(L)NRP(Int|_#"|) = @ for all Reeb components _#~
contained in < |0E(h).)

When K* is compact, the endpoint y, of K* with ¢, +# 9, belongs to
0A™. Then there is a leaf L’ of & |0E(h) with L'+ L and y, € RP (L/).
Since #P*(L') = $P*(L) < o, the leaf L’ is

(i) a compact leaf,
or

(ii) a non-compact leaf of some negative Reeb component _#7 con-
tained in & |0E(h), \
by Proposition 5.3. In the case (i), we see easily that the case (1) occurs.
(Consequently P (L) N RP (Int|_#"[) = @ for all Reeb components .4~ of
< |0E(h), again.)

Now consider the case (ii). We need the following.

LEMMA 7.2. In the case (ii), there is am infinite sequence L, = L,
L, -+ of compact leaves of & |0E(h) such that for each i one of the
Sollowing occurs.

(a) L., is a compact leaf of a negative Reeb component 47 contained
wm Z|0E(h) with RP (Int |.#;) NP (L) = @.

(b) L,,, is a compact leaf of a mnegative Reeb component _4; such
that L; =+ L, and P (L;) = P (L,), where L; is the other compact leaf of
A7

PrROOF. Let L, be a compact leaf of _#7. Then for 7 =1 the case
(a) occurs. Suppose that we have already obtained L,, ---, L, (n = 2)
satisfying (a) or (b). Note that P (L) N RP (Int|_#;|) # @ for all 7 =1,
-+, — 1 and that the limit set (K) of K in F intersects P (L,) for
1=2,---,n. Take K,eP*(L,) and y,e€ K, N RP (L,) N 0A™. Let K} be
the connected component of K, N A™ containing y,. We see that K¥ is
compact, as follows. Suppose the contrary. Then .(KF) is a circle in
Int A, Since F(K)>D L (K}), the case (2) occurs. Therefore P (L) N
RP (Int |_#"|) = @ for all Reeb components _4~ contained in Z |0E(h),
which is a contradiction.
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Let z, be the other endpoint of K}. Then z,c0A™ and there is a
leaf L, of < |oE(h) with L, = L, and P (L)) = P(L,). Therefore
£P (L,) < . When L, is a non-compact leaf of a negative Reeb com-
ponent _#; contained in < |0E(h), let L,., be a compact leaf of _+7.
Then L,,, satisfies the condition (a).

Now suppose that L, is a compact leaf. Since (K) intersects
P(L,) = P (L,), there is a leaf L" of & |0E(h) passing arbitrarily near
L, with P(L"”) =P (L). Since P(L)NRP(Int|_#7|) # @, the leaf L”
cannot be compact by the remark before Lemma 7.2. (For, otherwise
the case (1) occurs.) Therefore L, is a compact leaf of a negative Reeb
component ¢, contained in & |0E(h). Let L,,, be the other compact
leaf of _#;. Then L,,, satisfies the condition (b). This completes the
proof of Lemma 7.2.

PROOF OF PROPOSITION 7.1 CONTINUED. We see that (a) in Lemma
7.2 occurs for only a finite number of 4’s, as follows. Suppose the
contrary. Since & |0E(h) contains only a finite number of negative Reeb
components, there is a sequence (1) < ¢(2) < --- with L,y = Ly = -+
Note that for 7, & with j <k the limit set of each leaf €¢P* (Ll(,,)
contains a leaf e P*(L,,,). Since $P*(L,,) < «, there is MeP*(L,,)
with &£ (M) > M. Since all leaves of & |F are proper by the Poincaré-
Bendixson theorem, we get a contradiction.

Since & |0E(h) contains only a finite number of negative Reeb com-
ponents, there are 4, ;7 with 4 < j such that #; = _#;. Thus we obtain
a negative Reeb cycle & = (_#3, -+ -, #5_1). Easily we see that the case
(8) occurs. (Consequently we see that (a) occurs only for ¢ = 1.) This
completes the proof of Proposition 7.1.

8. An investigation of Z €t)(% (h; o)) near a horizontal CecI'(h).
Let © et)l(# (h;0)) and fix a vector field X on E(h) as in §5. For a
horizontal CeI'(h), we have the following.

PRrROPOSITION 8.1. Let C,eI'(h) be horizontal. Then one of the
Sfollowing occurs.

(1) h =2, the other C,e'(h) — {Cy} 1s horizontal, o(C,) = —a(C,),
and & s isomorphic to the product foliation (¥ |C,) x [0, 1].

(2) All leaves of gIC are compact, all leaves of & intersecting
C, imtersect mo Cel'(h) — C,, and < |Cl(Sat(C,) is a tunneled Reeb
component, where Sat ( ) means the saturation with respect to Z.

(8) The foliation & |C, has mo Reeb component, all leaves of &
intersecting C, intersect a vertical CeI'(h), and if CN Sat (C,) = @ for
Cel'(h) — C,, then C 1is wertical and o(C)= —0o(C). Furthermore
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< |Cl (Sat (Cy)) is a gear component.

ProoF. For simplicity, suppose that ¢(C,) = 1. Hence X is inward
at C,. We omit the suffix [0] except from A, as in §7.

Take a compact leaf L of £ |C,. Since C, is horizontal, we can
number the leaves in P*(L) so that P*(L)={.--,L_, L, L,, ---}, and
y(L;) = L;,, for all je Z. Note that [L;] = [L,] in H(RP (C); Z) for all
j,keZ. Consider ¥ = N,czCly (Ujsa L;), where Clp( ) means the
closure with respect to the topology of F. Note that & = Cl, (RP (C,)) —
RP (C,).

(i) Suppose that & is empty. Then F = RP(C,) and h = 2. Let
I'(h) — {G} = {C}. Since RP (C,) NRP(C,) # @, it follows that ¢(C, =
—0a(Cy). It is easy to check that & is isomorphic to (¢ |C,) X I. Thus
we have the case (1).

(ii) Suppose that & is non-empty and compact. Then we may
suppose that & c A¥. Since Cl; (U;>. L;) is saturated with respect to
Z|F, so is & If & contains a non-compact leaf K of £ |F, then
the limit set <(K) consists of exactly two compact leaves in & because
Al can be regarded as a subspace of D% If & contains at least two
compact leaves K, and K,, then RP (C,) must contain a one-sided neigh-
borhood of K, in F for ¢ =1, 2, and RP (C,) has at least three isolated
ends. This is a contradiction since RP (C,) is homeomorphic to S* x R.
Therefore & consists of exactly one compact leaf L* of & |F. Since
Y(L*) = L*, the leaf G* of ¥ containing L* is diffeomorphic to T°*.
Clearly G* c Int E(h).

We see that all leaves of £ |C, are compact, as follows. Suppose

St

Z|C a(C)=1 a(C) = -1
Ficure 8.1
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the contrary. Then L* has a non-trivial holonomy on the side from
which the sequence L,, L,, --- converges to L*. Since G* has a non-
trivial holonomy in the direction of orbits of X, too, and & is of class
C=, we have a contradiction by the result of Kopell [7]. It is easy to
check that = |Cl (Sat (C,)) is a tunneled Reeb component. Thus we have
the case (2).

(iii) Suppose that & is non-empty and non-compact. It follows
that &~ contains no compact leaf of € |F. Let F' = F — Int A®. For
Cerl'(h), let F; be the connected component of F' containing 0,4%.
Then F} is diffeomorphic to ]—eo, 0] x C (or [0, [ x C) if ¢(C) =1 (or
—1), and & | F} is isomorphic to the restriction of the covering foliation
on R x C of £|C. (See Figure 8.1.)

Since .7 is non-empty, it follows that L; N F; = @ for all horizontal
CeI'(h) — {C)}. Since &~ is non-compact, it follows that L, N F; # @
for a sufficiently large j and some Cel'(h) — {C)}. If L;NF.+ @ for
Cerl'(h) — {C,)}, then L; is tangent to the curves in RP ({z} x C), ze S*,
at some point by (E5) in §4, and ¢(C) = —d(C,) = —1 by the remark
before Proposition 5.3. Furthermore in this case it follows that L; N
F.+ @ for j7>j, and L;eP*(L') for a non-compact leaf L’ of a negative
Reeb component of «|C. We denote by & the set of negative Reeb
components _#~ contained in Z|0E(h) with RP(Int| 4+ )NP (L) # @.
Then ¥ = J{P(N)|N is a compact leaf of some _#" € &} by the above
arguments. Since RP (C,) has exactly two ends, we can give an order
to & so that & becomes a negative Reeb eycle. Let &= (147, -+, 47).
We use the notations in Definition 6.1.

We see that & |C, contains no Reeb components, as follows. Suppose
the contrary. Then the structure of & |F as a foliation breaks near
points in &%, which is a contradiction.

Clearly Cl(Sat(C,) is homeomorphic to S'x S'x I. And
Z |(Cl (Sat (C,)) — U) is C° equivalent to the product foliation (< |C,) X I,
where U is an open tubular neighborhood of G,U --- UG, in E(h).
Since N} is homotopic to a circle S in |_#7| UaU and S is transverse to
<, the circle N} is homotopic to a circle transverse to Z|C, in
Cl (Sat (C,)). Furthermore S intersects all the leaves of < |(Cl (Sat (G,)) —
U). Now it is easy to see that #|Cl(Sat(C,) is a gear component.
Thus we have the case (8). This completes the proof of Proposition 8.1.

9. The decomposition theorem. The purpose of this section is to
state one of the main theorems of Part I. Let Z eti(F (h;0)). We
suppose that % is not C° isomorphic to (¥ |C) x I for any CeI'(h).
When % # 2, this assumption is automatically satisfied.
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Let &, ---, & be the strange negative Reeb cycles of . For
each &, take a separating torus S(%;). A subleaf of & (or £ |A) is
the closure of a connected component of G — (S(Z) U --- US(&) for
some leaf G of & (or £ |A). Let 2 be the set of compact manifolds
obtained from the connected components of A — (S(&) U --- US(&E) —
U {G|G is a compact subleaf of & |A} by attaching the boundary. For
De 2, we denote by *D the image of canonical immersion ¢[D]: D — A.
Let *Q = {(*D|D e 2}.

Let *@ be the set of the closure of connected components of A —
SFEIU---USF) —U{(*D|De Q). For *Te*O, the foliation & |*T
consists of a compact subleaf, or is a bundle foliation over I or S*. When
< |*T is a bundle foliation over S*, let T = ¢*(*T), where q: [0, 1] > S' =
[0, 1]/{0, 1} is the quotient map, and denote by ¢([T]: T — *T the canonical
immersion (when we fix a bundle structure of *T). In the other cases,
let T=*T and T]=id: T —*T. Let 6 ={T|*T e *6}.

For each *De*QU*0 and 2¢S*, let *D* = *DN A*. The number of
connected components of *D- is finite. Let *Dg, ---, *DZ,, be the con-
nected components of *D*. Let D7 = (D] (*Df). Furthermore let *2° =
{*Dj|De2, j=1,---,aD)}, 2*={Dj|De®, j=1,---,aD)}, 6" =
{(*T7|Teob, j=1,---,a(T)} and 6° = {T?|Te®, =1, ---, a(T)}.

DEFINITION 9.1. We call 2U 6 (or £° U 6%) the TS decomposition of
A (or A®) with respect to Z.

For each De 2, we define six non-negative integers, as follows. A
leaf of € |*D[ is a connected component of G N *D for some leaf G
of . We say a connected component J of 9D/ is

of type (1) if *J is equal to 0,4 for some CeI'(h) or to a connected
component of A" N S(&,) for some 1,

of type (m) if *J is equal to a connected component of A NG for
some compact leaf G of & |Int A4, or

of type (n) if *J contains a leaf of < |*D[ homeomorphic to I,
where *J = (D](J). Let (D) (or m(D), n(D)) be the number of connected
components of oD[? of type (I) (or (m), (»)). Since each connected com-
ponent of dD! is of type (I), (m) or (n) by Propositions 7.1 and 8.1, we
see that I(D) + m(D) + n(D) equals the number of the connected com-
ponents of 6D,

Let J be a connected component of 0D/ of type (n). By Proposi-
tions 7.1 and 8.1, *J contains a finite number of leaves J, ---, J, of
< |*D[ homeomorphic to I, and *J — (J,U --- UJ,) consists of open
intervals contained in Int |.&Z| for Reeb or slope components .2 contained
in «[0*D. Furthermore *JN(S@&E)U - US&E) = @&, and Cel'(h)
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intersecting *J is vertical by (E4)’ in §4.

Let p(D) (or q(D), s(D)) be the number of positive Reeb (or negative
Reeb, slope) components contained in # |6*D intersecting 4,*D/!, where
0,*D[* is the union of *J for connected components J of D! of type
(m). Note that p(D) + q(D) + s(D) equals the number of leaves of
< | D[ contained in the connected components of oD/ of type (n),
where ¢ | D = ((D]|D")*=Z.

DEFINITION 9.2. We call ch (D) = (I(D), m(D), n(D); p(D), q(D), s(D))
the characteristic hexad of D.

Now we can state the following.

THEOREM 3 (The decomposition theorem). Let £ eti(F (h;0)).
Suppose that & is mot C° isomorphic to (£ |C) x I for any CeI'(h).
Let 2 U 6O be the TS decomposition of A with respect to &. Then for
each De 2 the possibilities for & |D are the cases in the following table,
and these cases can occur for some Z.

type ch (D) < |D
I 0,0,1;1,0,0) a half Reeb component
11 0,0,1;0,0,2) an I-times slope component™
III 0,0,1; 0,4 > 0,2 a TS’ component [o]
v 0,0,1;1,9>0,0) an arcade component [s]
v 0,0,2;0,9>1,2) a double gear component
VI (1,0,1;0,9 > 0,0) a gear component [o]
VII 0,1,1;0,¢ >0,0) (1) a turbulized gear component [o]
(2) a perturbed gear component
VIII (1,1,0;0,0,0) (1) a tunneled Reeb component

(2) a rational rifle component™
(38) am irrational rifle component™
IX 0,2,0;0,0,0) (1) anm S-times slope component™
(2) an Si-times Reeb component™
(8) a twisted S'-times Reeb component™

The terms with (x) in the table will be defined in the mext section.
The mark [o] in the table means the existence of the following restric-
tions to o(C) for CeI'(h) concerned.

(II) o(C") = a(C) (or —a(C)) if Z|(*DNaicA) and Z|(*DN i, A)
contain megative Reeb components, and *D N oA and *D N oA belong
to the same (or different) commected components of 0*D — Int (|.&4|U|HA)),
where & and & are the slope components contained in < |0*D.

(IV) o(C") = —a(C) if Z£|(*DNa;A) contains a positive Reed com-
ponent and Z|(*D N dyA) contains a negative Reeb components.
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(VI) o(C") = —a(C) if CeI'(h) with d,AC*D 1is horizontal, *D N
0cA + @ and C" # C.
(VII) o(C") =0(C) if *DN A+ @ and *DN iz A+ Q.

REMARK 9.3. In the case h = 1, Theorem 3 corresponds to Theorem
1 in Tamura-Sato [15], where the possibilities for & |D are types I, II
and III, and there exist no negative Reeb cycles.

10. Several components II. We give the definition for the com-
ponents appearing in the decomposition theorem (Theorem 3) and not
yet defined. Recall Definition 2.6.

DerFiNiTION 10.1. A standard I-times (or S'-times) slope component
is the product foliation I x &, (or S' X &,), where ¥, is a standard
slope component of S* x I. A standard S'-times Reeb component is the
product foliation S*' x .#;2 (1), where #(£1) is a standard Reeb com-
ponent of S' x D'.

A twisted S'-times Reeb component A rational (or irrational) rifle component
FIGURE 10.1
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Consider I x Z#X(+1) and take a diffeomorphism ¢: S' x D*— S' x D!
such that ¢ maps each non-compact leaf of F#2(41) to a different leaf
of F2(*1), as in §3. Then we have a foliation &, of a compact
manifold diffeomorphic to S*' x S* X D' from I X Z#X(+1) by attaching
the top and bottom of I x S' x D' by 4.

DerFinITION 10.2. The foliation #; constructed above is called a
standard twisted S-times Reeb component.

Take a e R. Let #, be the foliation of R? X I consisting of a leaf
R x {0} and leaves

{(@ + f(0), —af(®), )|t e I}

for x ¢ R, where we use the function f:]0,1]— ]— o, 0] introduced in
§2. Since the canonical action of Z@P Z to R* X I preserves .#,, we
obtain the quotient foliation F,/Z@ Z of S' X S' X I=R* X I/Z®D Z.

DerFINITION 10.3. We call #,/Z@ Z a standard rational (or irra-
tional) rifle component if a is rational (or irrational).

We give some figures. (See Figure 10.1.)

11. The proof of the decomposition theorem. The purpose of this
section is to prove Theorem 3. Let De® and ch (D) = (I, m, n; p, g, s).
Construct the double W of D[ by pasting two copies of D! along
0,D" — U{K|K is a compact leaf of & |D[” contained in 9,D!"}, where
0,D" is the union of connected components of 6D/ of type (n). Then
we have a vector field Y on W whose orbits are the leaves of (| D/ U
< | D). The index of Y equals p — g, as in §4. Since W is obtained
from a closed surface of genus n — 1 by deleting 200 + m) + p + ¢ + s
open two disks, we have

p—q=4—-20l+m+n)—p—q—s.
Therefore we have an equation
(%) 204+m+n+p)+s=4.
The solutions of (x) are
,0,1;1,4,0), (0,0,1;0,¢9,2), (0,0,2;0,¢",0), (1,0,1;0,¢,0),
©,1,104,0, (200000, (1,1,0;000, (0,20;0,0,0),

where ¢ =0, ¢ =1 and ¢” = 2. Now let us examine the solutions of
(*) one by one.

The case ch (D) = (0,0, 1;1, g, 0) where ¢ = 0. Suppose that q = 0.
Then % |D! consists of concentric half circles with center 2, at dD[.
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Ficure 11.1

We denote by D the compact manifold obtained from D — D[ by
attaching two copies of D/ as the boundary. Then D is diffeomorphic
to I x D!. (See Figure 11.1.)

Regard the center z, as a point in the bottom of D. Then the
leaves of % |D passing sufficiently near 2, are all homeomorphic to D2
Using the local stability theorem for simply connected compact leaves
(see Reeb [18], Haefliger [4]), we see that all the leaves of £ |D except
{#z,} are homeomorphic to D*. Now it is easy to construct an orientation
preserving homeomorphism ¢: D — S* X D} with & |D = ¢*T[.7,2|S* X
D: D' x {0}, 6(C)], where CeI'(h) intersects *D. Therefore < |D is a
half Reeb component. Thus we have the case (I).

Suppose that ¢ > 0. By a consideration on the holonomy of compact
leaves of % contained in 9*D, we see that ¢(C') = —o(C), where
Z |(*D N d;A) has a positive Reeb component and & |(*D N d,A) has a
negative Reeb component. By the same arguments as above, we see
that all the leaves of & |D except the one point leaves are homeomor-
phic to D% Then it is easy to show that £ |D is an arcade component.
We omit the details. Thus we have the case (IV).

The case ch (D) = (0, 0, 1; 0, q, 2) where ¢ = 0. If ¢ =0, then & |D®™
is isomorphic to the foliation {{x} X I},.; of I X I, and & |D is an I-
times slope component, which is the case (II). Suppose that ¢ > 0. Let
H, & be the slope component of & |(*DNadA), and 47, -+, 7+, the
negative Reeb components of & |(*D N odA). Considering the holonomy
of compact leaves of & contained in 0*D, we see the following: a con-
nected component o(1) of 9*D — Int (| 4| U|.%4|) has the property that
if |_#;/coél) and | _#7| Cd,A then o(C) =1. On the other hand, the
other component 9(—1) has the property that if |_#;|ca(—1) and
| 45| Cd;A then ¢(C) = —1. Using the arguments on £ |D as above,
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we see that & |D is a TS’ component, which is the case (III).

The case ch (D) = (0, 0, 2; 0, ¢, 0) where ¢ = 2. Let _#7, ---, #7 be
the negative Reeb components contained in £ |9A intersecting a con-
nected component (1) of 0*D! and _+3,,, ---, 4. the ones intersecting
the other connected component o(—1). Let _#;=7*_#7, where
Y:0E(h) —A is as in §4. Then & =(~+, -+, 4,) and &' =
(A sty =y Nmiw) are negative Reeb cycles. We use the notations for
& in §6. Take M e P*(N}!) and consider the local homeomorphism 7[M]:
(T(M), z(M)) — (TH(M), z/(M)).

Suppose that »[M] has a fixed point z. Let K be the leaf of & |F
passing through z. Then K is a circle. Let K, = «'(K) for 1€ Z. For
simplicity, suppose that o(y) =1 for ye| 47U ---U|4,|. Since
< |Int *D has no compact leaf, the set (N;.zCly (U:; Ki)) N A must be
the union of leaves of 2 |*D[? contained in o(—1). This implies that
the vector field X is outward at |_#;|fori=n 4+ 1, ---, » + n’. There-
fore o(y) = —1 for ye| 45| U - U| A5n]. We see that & |D is
C° isomorphic to a standard double gear component constructed from &,
of S* x S* containing a compact leaf homologous to {x} x S*. Thus we
have the case (V).

When 7[M] has no fixed point, we can take a torus imbedded in
Int A transverse to & and to # (h; o) as in Proposition 6.4. Then we
see that & | D is a double gear component, and have the case (V) again.
We omit the details.

The case ch (D) = (1, 0, 1; 0, g, 0) where ¢ > 0. By similar arguments,
we see that & |D is a gear component, and can check the condition on
0. Thus we have the case (VI).

The case ch (D) = (0,1, 1; 0, ¢, 0) where ¢ > 0. Let G be the compact
leaf of < |Int A contained in 9*D. Then K = G N *D! is diffeomorphic
to S?, and there is a € N with %K) = K. If & |Int *D[" has a compact
leaf K', then +7*(K’) converges to K as j moves to c or —co, and the
leaves of & |*D!” are all compact by the usual arguments by means of
the theorem of Kopell [7]. In this case, we see that & |D is a turbulized
gear component, and have the case (VII-1). When #«|Int *D® has no
compact leaf, we see that < |D is a perturbed gear component, and have
the case (VII-2). The condition on ¢ is easily checked.

The case ch (D) = (2,0, 0;0, 0,0). It follows that 0*D CdA. There-
fore *D is a non-empty closed open subset of A. Since A is connected,
it follows that *D = A and » = 2. Furthermore ¥ is C° isomorphic to
(2z|C) x I for some CelI'(h), which is a contradiction. Threfore this
case does not occur.



208 T. NISHIMORI

Finally we see that the cases ch (D) = (1, 1, 0; 0, 0, 0), (0, 2, 0; 0, 0, 0)
imply the cases (VIII), (IX) respectively. We omit the details. The
construction of several components in the decomposition theorem is
indicated in §§2, 3, 10. This completes the proof of Theorem 3.

12. Regular TS pieces. In this and next sections, we define a
regular TS diagram as a generalization of a TS diagram introduced in
Tamura-Sato [15] for & e€td(F (h; 0)) not C° isomorphic to (£ |C) x I for
any CeI'(h). The construction of a regular TS diagram is like a jigsaw
puzzle or a tangram. The pieces admitted in our puzzle are regular TS
pieces defined below. In order to classify & ct3(F (h;0)), we will attach
a regular TS piece to each D!e QM U O, where 21U O™ is the TS
decomposition of A with respect to &. For & isomorphic to (¢ |C)xI
for some CeI'(h), we will define a singular TS piece and a singular TS
diagram in §20.

We make some preparations.

DEFINITION 12.1. A TS block 4 is a compact oriented C* manifold

homeomorphic to D* or S' x I and possibly with an even number of
corner points on each connected component of 94.

DEFINITION 12.2. Let 4 be a TS block. When 4 has no corner, let
Z(4) = @. When 4 has corner points, take and fix a set _#(4) of
disjoint closed intervals of 04, whose endpoints are in the corner /4 of
4, such that 2% _Z(4) = § £4. We denote by .%7(4) the set of connected
components of the closure of 64 — J{J|J e _Z(4)}.

DEFINITION 12.3. An orientation of Ke .9%27(4) is sympathetic (or
antipathetic) if it coincides with that of 04 as the boundary.

DEFINITION 12.4. Let & be the set of five symbols O, @, V, A,
IIl. Let TYPE = {I, II, III, IV, V, VI, VII, VIII, IX}.

Now we can define TS pieces for & not isomorphic to (Z|C) x I
for any CeI'(h), as follows.

DEFINITION 12.5. A regular TS piece is a quadruplet P = (4, v, s:
) — S w: 2% — {1, —1}), where 4 is a TS block and » belongs to
TYPE, and .9¢ is a subset of .9%7(4), satisfying the following conditions.

(P0) If ve¢{VI, VIII}, then .22 = % (4).

(P1) If v=1, then 4=D%* % _F(4) =1 and s(J) =, where
F(d) = ().

(P2) If v =1I, then 4= D? §_F(4) =2, s(/(d)) ={|l} or {V, A},
and w(22°(4) = {1, —1}.

(P3) If v =1III, then 4= D* §_Z(4) > 2, s(J) =V and s(J,) =
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for some J,, J,€ £ (4), s(J) = @ for all Je _Z(4) — {J,, J,}, and w(K,) =
—w(K)) if K,, K,e€ 9% are contained in different connected components
of 04 — Int (J, U J,).

(P4) If v =1V, then 4= D> §_Z(4) > 1, s(J,) = O for some J, €
S (), s(J) =@ for all Je _#£(4) — {J,}, and @ is constant.

(P5) If vy =1V, then 4= 8" x I, s(_Z(4)) = {@}, 2% (4) contains no
circle, and w(K,) = —w(K,) if K, K,c.% are contained in different
connected components of 94.

(P67) If v = VI or VII, then 4 =8 x I, s(_#(4) = (@}, % (4)
contains exactly one circle K,, an w is constant. If v = VI, then .7 =
Z(4) — {Ky}.

(P89) If vy = VIII or IX, then 4= S*' x I and F4) =@. If v=
VIII, then $.2% = 1.

We call 4, v, s, @ the underlying block, type, symbol map, orienting
map of P respectively. We denote 4 (or v) by |P| (or type (P)) some-
times.

REMARK 12.6. A regular TS piece corresponds to a component of
the same type in Theorem 3, and the symbols O (or @) to a positive
(or negative) Reeb component of £ |0E(h). The symbols V and A cor-
respond to a slope component, and the symbol || to a trivial component.

REMARK 12.7. The map w:.% — {1, —1} means the choice of
orientations of Ke .9 (cf. the proof of Theorem 4 in §14). Precisely
we give K e 2 the sympathetic (or antipathetic) orientation if w(K) =1
(or —1).

In order to make regular TS pieces more understandable, we pic-
turize them in Figure 12.1. In figures, we use the convension that V
(or A) is put inward (or outward) to underlying TS blocks (see Figure
12.1, II, III for example). When it is not necessary to distinguish
between V and A, we will use x in their place. The bold (or fine)
lines mean the elements of _#(4) U (27 (4) — 2¥7) (or %7). All the TS
blocks are oriented as ©. The mark [¢] means the existence of condi-
tions on ¢ for constructing regular TS diagrams in the next section.

13. Regular TS diagrams. For the future use, we define regular
TS diagrams in a more general setting. Let X,(h) be the compact
oriented manifold obtained from the closed surface of genus ¢ by
deleting #(>0) small open two disks, and denote by I',(h) the set of
connected components of 03,(h). Clearly E(h) = 3,(h) and ['(h) = T'y(h).
Take a continuous map ¢:0%,(h) — {1, —1}. As before we regard o as a
map from [I',(h) sometimes.
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DEFINITION 13.1. A pre TS diagram of X,(h) is a triad (S, {Pi}ic.
{e2: | P;] — Z,(h)}ies) satisfying the following conditions.

(PR1) Sis the union of a finite number of disjoint circles S,, ---, S,
contained in Int X (k).

(PR2) P, = (4, vy, 8:_5 — S w: Z%;— {1, —1}) is a regular TS piece,
fhved|y, ¢{Ill, IX}} < o, and ¢;: 4, — X, (h) is an orientation preserving
C> immersion such that ¢;|Int 4, is an imbedding.

We denote ¢;( ) by *( ) sometimes for simplicity.

(PR3) *(Int 4,)’s are disjoint, and X,(k) is the closure of J {*4;|\ € 4}.
For each S;, there are A\, \' €4, Ke 9%;, K'e %; and C, C' € 3,(h) such
that

(1) v,=VI, *K=8, *4,nC+# g,

(2) *K'nS;# @, *K'nNC # Q.

(We call P, the TS piece of Type VI separated by S;.)

(PR4) *J S U, (h) for Je_ &, *JCaXyh)if s(J) = O or @, *KC
S U aX,(h) for Ke 97 (4;,) — 9%;, and Int *KcInt 3,(h) — S for Ke ;.

(PR5) If K+ K' and *K = *K' for Ke .%; and K'e 9%;, then
o(K') = —w(K). (Hence we can give *K an orientation such that ¢;|K
and ¢, |K’ are orientation preserving.)

DEFINITION 13.2. Let .7~ = (S, {Pihics, {thies) and T = (', (Pilicss
{¢i}2e4) be pre TS diagrams of Y, (). A homeomorphism ¢: 3,(h) — 3,(h)
is called an isomorphism from 7 to I if #(S) = S’ and if there are
bijections

p: A=A, " 4 L and "1 97— I
such that

(1) o = v ¢(*4y) = *dyw,s

(2) ¢(*J) =*J" and s(J") = s(J) for Je_g4,

(3) ¢(*K) =*K’ and w(K') = o(K) for Ke 5%,
where P, = (4, v, s:_% — %, @1 94— {1, —1}) and P} = (4}, v}, 8:_ &' —,
w: %7 — {1, —1)).

Now we can define regular TS diagrams as follows.

DEFINITION 13.3. A regular TS diagram of (¥ (h); o) is a triad .7~ =
(ﬁ {p.: 2,(h) — Zy(W)}ier, (@, by 7): T'y(h) = (N X Z)* x 2Z) satisfying the
following conditions.

R1) 9 = (S, {Pires, {t}1cs) is a pre TS diagram of 3,(h), and
{$.}sc: is a C= isotopy of diffeomorphisms such that ¢, is the identity
and ¢, is an isomorphism from .7 to .7~

(R2) Let Cerl'y(h) and put p(C) (or ¢(C)) = #{J|Je_Z# for some
rved, *JcC, s(J) =O (or @)}
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(i) If (a(C), b(C)) = (0,1) or (oo, o), then (C) = 0 and there are
red and Ke 9(4,) — 2¢; with *K = C.

(ii) If (a(C), b(C)) = (a, b) € (N X Z)*>*"'=, then r(C) = (p(C)—q(C))/a,
there are ne 4 and Je_Z with *Jc C, the map (¢,|C)* is the identity,
(¢./C)* has no fixed point for 0<a’<a, and the degree of :[0, a]/{0, a}—C
equals b, where 7 is defined by %([¢]) = ¢.(¢¥(y,) for t =k + ', ke Z,
0=<t<1 and a fixed point y,€C.

(s) Let S; be a circle in S, and C, C'e I",(h) be as in Definition 13.1
(PR3). Then (a(C"), b(C")) # (a(C), —b(C)).

(R3) (The conditions on ¢). Below, J and J' are the elements of
A with *J, *J' C 03 (h).

(iii) If v, = III, then o(*y') = o(*y) (or —o(*y)) for yeJ and y' e J’
such that J and J’ are contained in the same (or different) connected
component of 44, — U {J"|J" e 5, s(J") =V or A}

(iv) If y; =1V, then o(*y’) = —o(*y) for yeJ and y’ € J’ such that
s(J) =0 and s(J') = @.

(vi) If v, =VI and (a(C), b(C)) = (0,1) for Co Ke 2 (4;) — 243,
then o(*y') = —o(*y) for ye K and y' e J.

(vii) If v, = VII, then o(*y’) = o(*y) for yedJ and y' e€J’.

In (R2) and (R3), we used the description P, = (4;, v;, s: % — &, w:
2%, — {1, —1)).

DerINITION 13.4. For a regular TS piece P=(4,v,s F —
®: 9% —{l, —1)), let —P = (4,v,5, —w). For a pre TS diagram & =
(S, {Pihics, {ei)scn), let —F = (S, {=Piics {t}scs). For a regular TS
diagram 7~ = (7, {hier, (@, b5 7)), let —F = (=T, {6:}se1, (a, b5 7).

We introduce an equivalence relation on regular TS diagrams of
(¥ ,(h); o) as follows.

DEFINITION 13.5. Let.7 = (7, {$hies, (@, b; 7)) and 7" = (T, {$}rerr
(o', b'; ")) be regular TS diagrams of (J,(k); 6). Then .7 is isomorphic
to .77’ if there exists a C° isotopy of homeomorphisms {A: Z’,,(@—»
3,(h)}es, such that ¢; = h,o¢, for tel, h, is an isomorphism from .7 to
7' or —Z', h, is an isotopic to the identity, and (a’, b’;7') = (a, b; 7).
We denote by RTS (J,(h); 0) the set of isomorphism classes of regular
TS diagrams of (X,(h); o).

14. The classification theorem. Usng regular TS diagrams, we can
generalize the classification theorem of Tamura-Sato [15]. In this paper
we give only the following.

THEOREM 4. Let Z et(F (h;0)). If & s mot C° isomorphic to
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(Z|C) x I for any horizontal Ce'(k), then an element of RTS (E(h); o)
18 canonically attached to &.

ProoF. Take an orientation of & |FM. Let &, ---,%, be the
strange negative Reeb cycles of & and S} a separating torus of &.
Define a map (a, b; 7): I'(h) — (N X Z)* x 2Z as in §4, and let (@, b;7) =
(a, b; 7)o, where {: (k) — I'(h) is defined by ¢(C) = S* x C.

We construet a C~ vector field Z on A transverse to A® for all xeS*
and tangent to S, ---, S¥ and dA. First we define Z on 9A as follows.
Let CeI'(h). When C is horizontal or £ |d;4 has no compact leaf, let
Z = §/ot on 9,A, where t is the coordinate of the factor S'. When C is
vertical and < |C has a compact leaf, take as Z|0,A a vector field
transverse to A® for all e S*, tangent to the compact leaves of £ (9,4,
and having no non-closed orbit. By Proposition 7.1, the foliation Z |S¥
has a compact leaf. Take as Z|S} a vector field transverse to 4% for
all x e S', tangent to the compact leaves of £ |S¥, and having no non-
closed orbits. Then we can take as Z|G a vector field on G for each
compact subleaf G of £ |A in a consistent way by Propositions 7.1 and
8.1. Furthermore we can extend the vector field thus obtained over all
A by the decomposition theorem.

We define a C*~ isotopy {g,: A — A},., as follows. Let C(4, A™)
be the compact manifold obtained from A by cutting along A™. Denote
by A° (or A') the bottom (or top) of C(A4, A™). Let A*= A" for te
10, 1[. Now define ¢,(z) for ze€ A as the intersection point of A' and
the orbit of Z passing through z, and define ¢,(2) as the intersection
point of A™ and the fiber of the projection: S* x E(h) — S* passing
through &,(z).

In a canonical way, we can construct a pre TS diagram & =
(S, {Pi}ica, {2}1c4) of A satisfying the following conditions.

(1) S=A"IN(SFU---USH.

(2) {|P;il}zcs (or {*| P;l}1cs) coincides with Q21 U O (or *Q y *E)
except some compact subleaf € 8 (or *O1),

(8) To an element D™ e 2 corresponds a regular TS piece of the
same type as D.

(4) To an element of O corresponds a regular TS piece of type
II with symbol || or a regular TS piece of type IX.

(5) The symbols O, @ and || correspond to the components stated
in Remark 12.7.

(6) The symbol VvV (or A) for JCdAM™ corresponds to a slope
component & contained in & [0A™ such that a connected component of
0|%’| has an expanding holonomy with respect to & in the same (or
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FiGure 14.1

opposite) direction as the orientation of 0|%&|. (See Figure 14.1.)

(7) For Ke 94, the orientation of *K determined by ® coincides
with that of & |FM.

Now take a diffeomorphism &: A — E(h) isotopic to the identity.
Transforming (ﬁ: {¢:}:cr) by & we have a triad 7' = (.72 ' i E‘(h) —
E(h)},er, @, b; 7). Then 7' is a regular TS diagram of (E(h); o) and
the isomorphish class of .77’ depends only on Z&. Since the check of
the details is tedious, we omit it except for the condition (R2-s) in
Definition 13.8. For checking (R2-s), we need the following.

PROPOSITION 14.1. Let .7~ = (S, {P:hics, {t2}1c0) be a pre TS diagram
and {¢: 3,(h) — X, (h)}er an isotopy satisfying the condition (R1) in
Definition 18.8. Let S; be a circle in S. Then ¢,(S;) = S..

ProoF. Suppose that ¢,(S;) # S;. Since ¢,(S) = 8§, it follows that
S; =¢(S)cS. Take wzNed, Ke2%;, K'eo;,, and C,C'el,(h)
satisfying the conditions in Definition 13.1 (RP3). Since 4,(C) = C and
6,(C") = C’, it follows that ¢,(*4,) N C # @, 6,*K')N S; # @ and ¢,(*K’) N
C'# @. Take a path n:I—*4, with n(0)eC and =#n(1)e*K'NS,.
Consider the circle

L = n(I) U *K' U {g(m(0)) [t e I} U g(m(I) U *K") U {p¥) |t € I},

where {y} = *K' N C’. Then the intersection number L -S; equals =+1.
On the other hand, L is the boundary of the degenerate disk {g,(z(I)U
*K')|te I} as a singular chain. Hence [L] =0 in H,(3,(h); Z), which is
a contradiction. This completes the proof of Proposition 14.1.

THE CHECK OF (R2-s). By Proposition 14.1, we see that S} N A"
consists of exactly one circle. Furthermore a compact leaf of & |S¥ is
isotopic to a compact leaf in & |C’ if for C'eI'(h) there is a compact
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subleaf of ¥ intersecting S and C’. The same argument as in the
proof of Proposition 8.1 implies that (a(C’), b(C")) # (a(C), —b(C)), where
C>|._#"| for some negative Reeb component _#~ in &,.. This completes
the proof of Theorem 4.

PART 11
Existence problem of transverse foliations

15. An investigation of regular TS diagrams in the case h = 2.
In order to check the conditions (A2) and (A3) for ¥ et}(F (h; o)), we
investigate regular TS diagrams thoroughly in this and next sections.
This is the most essential part of the proof of Theorem 1 and can be
regarded also as an addendum to Part I.

Let .7 = (7, {$dies, (a, b; 7)) be a regular TS diagram of (E(h); o).
Let .7 = (S, {Phres, {hier) and P, = (4, v, 5 A4 — S o: 22— A1, —1)).
Transforming (a, b; ) by the canonical bijection ~: I'(h) — I'(h), we can
regard it as a map from I'(h) to (N X Z)* x 2Z.

Note the following, which is a direct consequence of Definition 13.3
(R2). We omit the proof.

LEmMMA 15.1. Let (a, b; 7): I'(h) > (N X Z)* X 2Z be in a regular TS
diagram.

(1) If »(C) # 0, then (a(C), b(C)) e (N x Z)orrime,

(2) If a(C)r(C) =0, them r(C) = 0.

Let E, be the closure of a connected component of E(h) — S. Clearly
E, is diffeomorphic to E(h,) for some h,e N. Let I', = {Ce I'(h)|C c 3E,}.
Then we have the following.

PRrROPOSITION 15.2 (The TS formula for regular TS diagrams).
(1) Ser,a(C)r(C) = 4 — 2h,.
(2) Xeeram a(Cr(C) =4 — 2h.

PROOF. We can construct a vector field Y on E(h) satisfying the
following conditions.

(1) For each Je &, ned, with s(J)=O (or @), there is a
singular point z(J)eInt*J of Y such that the orbits of Y near z(J)
are concentric half circles (or confocal parabolas). (See Figure 4.2.)
Furthermore Y has no other singular point.

(2) Y is tangent to *K for each K€ 9%;, n€ 4, and the direction
of Y coincides with the orientation of *K determined by w(K).

Now we can prove Proposition 15.2 in the same way as Proposition
4.3.
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Hereafter we suppose that » = 2. The goal of this section is the
following, which corresponds to (A2).

THEOREM 5. Let 9 = (ﬁj {$:}ic1, (a, b; 7)) be a regular TS diagram
of (E2);0). Let I'(h) = {C,C"}. Then

(1) »C') = —»C).

(2) If r(C) # 0, then (a(C"), b(C") = (a(C), —b(C)).

In order to prove Theorem 5, we prove three lemmas. Let
(a(C), b(C); r(C)) = (a, b;r) and (a(C"), b(C"); r(C)) = (a’, b’; 7"). The first
lemma is the following.

LEMMA 15.8. If there are ne A and Ke 2¢; such that *K N C+ @
and *KNC' # @, then (a’,b’; ") = (a, —b; —71).

ProorF. Since *KNC = @ and *KNC # @, it follows that (a, b),
(@, b) e (N X Z)*= by Definition 13.3 (R2-i). Let *KNC = {y} and
*KNC' ={y}). Then ¢(y) =y and ¢*y) =y for 0 <k < a by (R2-ii).
Similarly ¢#'(y) = %’ and ¢¥(y’) = ¥’ for 0 < k < a’. Since ¢, is an isomor-
phism from & to .9~ by (R1), it follows that ¢:(*K) = ¢#'(*K) = *K
and ¢*(*K) #= *K for 0 < k< a or 0 < k< a'. This implies that a’ = a.

Modifying {¢.};c; if necessary, we may suppose that (¢,|*K)* = id
since *K is diffeomorphic to I. Define a map F:S: x *K — E(h) by
F([t], 2) = ¢.(¢1(2)) for [t]eS:=1[0,al/{0,a}, t=Fk+ ¢, keZ 0=t <1
and z€¢*K. Then F can be regarded as a homotopy from F'|S! x {y}
to F'|S: x {y'}. By (R2-i), it follows that

b[C] = Fy([S: x {y}]) = F([S: X {y'}]) = ¥'[C"]

in H(E(?2); Z). Since [C"] = —[C‘] # 0, we have b’ = —b. Since ar +
ar’ = 0 by Proposition 15.2, it follows that ' = —#, which completes
the proof of Lemma 15.3.

The second is the following.

LEMMA 15.4. If S+ @, then (o', V") # (a, —b) and ' =r = 0.

PROOF. By the condition (R2-s) in Definition 13.3, it follows that
(a/, b') # (@, —b). Since E(2) is an annulus, a circle in E(2) bounds a
disk or is isotopic to C in E(2). By the condition (PR1) in Definition
18.1, a circle in S bounds no disk. Furthermore we see that S is
connected. By Proposition 15.2 (1), it follows that ar = a'*' = 0. By

Lemma 15.1 (2), we have » = ' = 0. This completes the proof of Lemma
15.4.

Now Theorem 5 follows directly from Lemmas 15.8 and 15.4 and
the following.
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LEMMA 15.5. §uppose that S= Q& and that for any ned and
Ke 9% with *KNC % @ it holds that *KNC' = @. Then r =1 = 0.

ProOF. Let V = {*4;|*4,nC = @}. When VNC' = @, there is a
circle in oV separating C and C’. Then we can show that ar = ¢/’ = 0
in the same way as in the proof of Proposition 15.2. Hence r» =+’ = 0.
When VN # @, there is exactly one regular TS piece P, of type V
or VI. Taking a circle in Int *4, separating C and @’, we see that
ar = a'r' = 0 as above. Hence » = +' = 0. This completes the proof of
Lemma 15.5 and Theorem 5.

16. An investigation of regular TS diagrams in the case h > 2.
The purpose of this section is to prove the following, which corresponds
to (A3).

'llHEOREM 6. Let 7 = (.7A: {¢:}ier, (@, b; 7)) be a regular TS diagram
of (E(h); 6) and suppose that h >2. If »({C)=0 for Cel (h), then
(a(0), b(0)) = (1, 0).

We use the same notations as in §15. First we prove the following.

LEMMA 16.1. Suppose that Ah > 2 and let Cel:(h). If there are n €
A and Ke 97; such that *KNC #+ @ and *KNC' =+ @ for some C'e
I'(h) — {C}, then (a(C), b(C)) = (1, 0).

Proor. Let (a(C), b(C)) = (a, b) and (a(C’), b(C")) = (a’, b’). Then we
see that ¢ = o’ and b[C’] = b’[@'] in H(E(h); Z) as in the proof of Lemma
15.8. Since & > 2, the homology classes [C’] and [C”] have no linear
relation. Therefore b =b" = 0. Since (a, db) e (N x Z)°r=°, it follows
that @ = 1. This completes the proof of Lemma 16.1.

Now Theorem 6 follows directly from Lemma 16.1 and the following.

LEMMA 16.2.A Suppose that h> 2. Let CeI'(h) and K(C)=U {*K|re
4, Keo,*KnNnC+ ). If KC)NC' = @ for all C'eI'(h) — {C}, then
(a(C), b(C)) = (1, 0) or r(C) = 0.

PROOF. Suppose that #(C) #0. Let (a(C), b)) = (a,b). We are
going to prove that (a, ) = (1,0). By Lemma 15.1 (1), it follows that
(a, b) e (N x Z)eorrime,

When K(C)N S # @, we see that (a, d) = (1, 0), as follows. Since
7(C) # 0, the connected component of E(h) — S containing € is homeo-
morphic to E(h') for some k' > 2 by Proposition 15.2 (1). Then the
arguments in the proof of Lemma 16.1 implies that (a, b) = (1, 0).

Hereafter suppose that K(C)NS = @. Let V = U {*4,*4nC = @)
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and 3,V = oV — {C}. Denote by B the set of connected components of
0,V. Then we can write

B = {ély Tty ém Sl! Tty Sﬁ’ *Ku ) *KJ’} ’

where C;eI'(h), S, S and K;e€ . 5%;,; for \j)ed. Clearly P,; is of
type VII and *4;;,,CcV. For each C;, there is p(j)eA such that
*Auiy CV, Vuy = VI and C; = *L; for L;e % (du;) — Fu;. For each
S;, there is p(j)eA such that *4,;cCV, v,; = VI and S; =*M; for
M;e 2 (4ois)) — Faiir-

We see that # B=a + 8+ 7 > 1 as follows. Suppose that § B = 1.
Then V is homeomorphic to E(2). Since the TS formula can be obtained
for V, we have 7(C) = 0 from it. Thus we have a contradiction.

Applying the arguments in the proof of Proposition 14.1, we see
that ¢,(*K;) = *K;. Therefore ¢, fixes all the elements of B. Since
# B > 1, the map ¢, must fix all Je_Z,, U -+ U_Zuw U fwU U Gp U
Sw U+ U_Zun. This implies that ¢ =1 and ¢,|C = id.

Since # B > 1, there are ne 4 and Ke 2%; such that *K c K(C) and
[*K]+#0 in H(V, C; Z). Let L be the union of *K and a connected
component of C — *K. Let y,eC N *K. Then C and L determine elements
& and & of 7w (V,y,), respectively. Adding adequate elements g, ---,
E,4p41» We can regard m,(V, y,) as the free group generated by ¢, ---,
E,rp+r- Modifying {¢,},c; in a neighborhood of *K, we may suppose that
¢, | L = id. Then we can define a map 7: S' X L—V by 7(t], ¥) = 6.¥)
for tel and ye L. The paths 7|S* x {y,} and 7|{[0]} x L represent &
and &, respectively. Sinee 7,(S' x L, ([0], ¥,)) is abelian, it follows that
&g, = &8, Therefore b = 0. This completes the proof of Lemma 16.2
and Theorem 6.

17. The proof of Theorem 1. Let Z et}(# (@, ¥; g)), where 0,7
and ¢ be in §1. We use the notations in §1. For each vertex ve V(9),
consider & | E[v] and regard it as an element of t)(.F (@, 7; 0)| E[v]) =
t%(F (h(v); 0)). For each Cel'[v] = I'(h(v)), define (a(C), b(C); »(C)) by
using & | E[v] as in §4. Then we have a map (a, b; 7): I'[@] > (NX Z)* X
Z. We are going to show that (a, b; ) is an arithmetic model transverse
to (0, T; o).

The transverse orientability of < |E[v] for each ve V(@) implies
that Image r €2Z. The condition (A4) in Definition 1.2 holds by Proposi-
tion 4.3. The condition (Al) follows from (A4).

When & |E[v] is not C° isomorphic to (2 |C) x I for any CeI[v],
we can attach to & |E[v] a regular TS diagram with (a, b; 7)| I'[v] by
Theorem 4. Then the conditions (A2) and (A3) are guaranteed by
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Theorems 5 and 6, respectively. When £ |E[v] is C° isomorphic to
(£|C) x I for some Cel'[v], we have h(v) =2. Let I'[v] ={C,C'}.
Then we see the following.

(i) If (a(C), b(C)) = (o, =), then (a(C’), b(C") = (oo, o) and »(C) =
r(C") = 0.

(ii) If (a(C), b(C)) = (0, 1), then (a(C’), B(C")) = (0, 1) and »(C’) =
—2(C).

(iii) If (a(C), b(C))e (N x Z)<'™°, then (a(C’), b(C")) = (a(C), —b(C))
and »(C") = —»(C).

Therefore the condition (A2) holds.

Finally we check the condition (A5), as follows. Let se S(®) with
a(s) = (v) — (v), v, v,€ V(@) and C; = C[v;](s). Since F*[s])*(Z |C,) =
< |C,, we see that if a(C,) = « then a(C,) = . When a(C,) # «, the
foliation & |C, has a compact leaf L and we have

@*[s1)4[L] = (ka(C,) + ICYIS X {+}] + (ma(C.) + nb(CY)[{*} x Ci] .
Then it follows that
a(C,) k 1\ /a(C)
=1 d » C2 =g Cl ’
(@) =l wllacy) 2 7@ =)
where 7, and 7, are as in Definition 1.2. This completes the proof of
Theorem 1.

18. Some remarks on arithmetic models. In this section, we in-
vestigate the properties of arithmetic models. Let @, ¥ and ¢ be as in
§1. First we obtain some informations on a side seS(®) such that
h(v,) > 2 and h(v,) > 2, where d(s) = (v,) — (v,), v;, v,€ V(®). The following
is useful.

DEFINITION 18.1. (1) A side se S(®) is called longitude preserving if
V(s) = <(1) _{) or (ﬁ(l) {) for some ! e Z, and otherwise longitude twist-
ng.

(2) Let seS(@®) with a(s) = (v,) — (v) and W(s) = (’;z ,nf) For s
with . =1 or —1, let

&(s) = k-a(Clv](s))-a(C[v:](s)) -
We call &(s) the glueing sign of s.

Now we have the following.

PROPOSITION 18.2. Let & = (a, b; r) eam(®, ¥'; g). Let s € S(®) with
0(8) = () — (vy) and C; = C[v;](s), 5 =1,2. Suppose that h(v,) > 2 and
h(v.) > 2.
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(1) If s is longitude twisting, then r(C,) = r(C,) = 0.

(2) If s is longitude preserving, then .7’ obtained from . by
changing (a(C.), b(C.)) and (a(C,), b(C,)) for (1,0) is also an arithmetic
model transverse to F (0, 7; o).

PrOOF. (1) Suppose that #»(C,) # 0. Then 7(C,) #+0 by (A5) in
Definition 1.8. By (A3), it follows that (a(C;), b(C;)) = (1, 0) for j =1, 2.

Let ¥(s) = ('jn i) By (A5), we have (’;@ ! )(é) = sgn (k)((l)). There-

fore m =0and k= —n =1 or —1.

(2) When 7(C,) #+ 0, we have 7(C,) # 0 and .&%¢’ = . by (Ab) and
(A3). Suppose that »(C,) = 0. Then »(C,) = 0 by (A5). It is easy to see
that .o’ ceam(®, ¥'; ). This completes the proof of Proposition 18.2.

By Proposition 18.2, we have simpler equations to determine whether
am(@, ¥; o) is empty or not in the case h(v) > 2 for all ve V(@), as
follows. We omit the proof.

THEOREM 7. Suppose that h(v)>2 for all ve V(®). Then am(®, ¥'; o)+
@ if and only if there is a map r: I'[®] — 2Z satisfying the following
conditions.

(A3) If s s longitude twisting, then r(C[v.](s)) = #(C[v.](s)) = 0,
where 0(s) = (v,) — (V).

(Ad) Sermm(C) =4 — 2h(v) for all ve V().

(AB) If s is lomgitude preserving, them r(C[v,)(s)) = &(8)r(C[v.](s)),
where 0(s) = (v,) — (vy).

For ve V(@) with h(v) = 1, we have the following.

PROPOSITION 18.8. Let se€ S(®) with d(s) = (v.) — (vy). If h(v) > 2,
h(v,) =1 and am(®, ¥'; ) + &, then ¥(s) = Gn f?/) or <_,”} ,)l@> for some
l,mneZ.

PROOF. Let (a, b;7)cam(®, ¥;¢). By (Al) and (A4), we have a(C,) =1
and r(C,) = 2. Then »(C) == 0 by (A5) and (a(C,), b(C,)) = (1, 0) by (A3).
Let ¥'(s) = (I;@ i) Since (I:n i)(é) = sgn(k)(b(é )>, it follows that k =1
or —1 and m = kb(C,).

When the graph @ is a tree, we have the following.

PROPOSITION 18.4. Suppose that @ is a tree and that h(v) # 2 for
all ve V(®). If (a,, by; 1), (ay, by 1,) €eam(®, ¥'; o), then r, = 7,.

In order to prove Proposition 18.4, we need the following lemma.
The proof is easy and we omit it.
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LEMMA 18.5. Suppose that @ is a tree. Then there exists a sequence
Iy ---, Iy, p=%8(P), of subsets of I'[®] satisfying the following condi-
tioms.

(1) o9 =rycl,c-.-crl',=1T][0].

(2) For each j=1,---, p, there is s;€S(@) with I'; —I';, =
{Clv;)(s)), Clvil(sy)}, where a(s;) = £((v;) — (v))).

(8) For each j=1,---,0—1, define a subgraph @; of @ by

V(@) ={ve V(@) |l ¢ I';} and S(@;) = S8(P) — {sy, -+, 85} »

where V(®;) (or S(®;)) is the set of vertices (or sides) of @;. Then ®@; is
a tree, and ¥ (I'[v;] — I';_,) = 1.

PrOOF OF PROPOSITION 18.4. We use the sequence Iy, ---, I, in
Lemma 18.5. Let C; = C[v;](s;) and C; = C[vj](s;). We prove
(9 r(C) =m(C) for Cel};,

by induction on j. First we see that A(v,) = 1. Then we have a,(C)) =
a,(C)) = 1 and 7,(C,) = r,(C,) = 2. Sinece 7,(C}) # 0 and 7,(C}) = 0 by (A5),
it follows that (a,(C)), b,(C})) = (ax)(C}), b,(C})) = (1, 0) by (A3). Then we
have b,(C,)) = b,(C,) by (A5). Using (A5) once more, we get 7,(C}) = »,(C)).
Therefore ((1)) holds.

Now suppose ((7)). Since #(I'[v;..]—1I";)=1, we see that a,(C;,)r,(C;.)=
a(C;.)ryC;,,) by (A4) and the fact that a,(C) = ay(C) =1 if »(C) %0
for Cel';, When h(v;,,) =1, we verify ((5 + 1)) as above. Suppose
that h(v;,) > 2. If a(Cp)r(Cip) = 0, we have 7,(Cy.) = 74Cyy) = 0 by
Lemma 15.1 (2). By (A5), it follows that #(C}.,) = 7(Ci,) = 0. Now
consider the case a,(C;.)r.(C;y1) # 0. Sinece 7,(C;.,) # 0 and 7,(C;,,) # 0,
it follows that #,(Cj.,) #+ 0 and 7,(Cj,) # 0 by (A5). Then we have
(a,(C), b,(C)) = (axC), b(C)) = (1, 0) for C = Cy,,, Cj4, by (A3). Therefore
7,(C) = r,(C) for C = C;,,, C;;,. Thus (( + 1)) holds. This completes the
proof of Proposition 18.4.

19. Some application of the arithmetic criterion. The purpose of
this section is to determine whether am(®, ¥; o) is empty or not for
some & (0,¥; o). First consider the graphs in Figure 19.1.

PROPOSITION 19.1. Suppose that V(®) = {v} and % S(®) > 1. (See
Figure 19.1 (a).) Then am(®, ¥'; 0) = @ if and only if there is a
longitude preserving side s e S(®) with &(s) = 1.

ProOF. Suppose that am(®, ¥; o) # @. By Proposition 18.1, we
have an arithmetic model (a, b; ) transverse to # (@, ¥; o) satisfying
the following.
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(a) (b)
Ficure 19.1

(i) If seS(®)is longitude twisting, then »(C[v](s™)) = r(C[v](s™)) = 0.

(ii) If seS(®) is longitude preserving, then (a(C[v](s%)), b(C[v](s%))) =
(a(C[v)(s7)), b(C[v](s7)) = (1, 0).

Since 7(C[v](s7)) = &(8)r(C[v](s*)) for a longitude preserving side se
S(®), it follows that
S a(C)r(C) = 20% r(C) =4 — 2n(v) ,

CETv]
where I' = {C[v](s*)|s € S(®) is longitude preserving and &(s) = 1}. Since
4 — 2n(v) = 4(1 — £S(®@)) # 0, it follows that I' = @. Therefore there
is a longitude preserving side se S(®) with &(s) = 1.

Conversely suppose that there is a longitude preserving side s € S(9)
with &) =1. Let »(C)=0 for Cellv] — {C[v]ls"), C[vl(s™)}, and
r(C[v](s*)) = r(C[v](s7)) =2 — h(v). Then »:I'[@] — 2Z satisfies (A3)’, (A4)
and (A5) in Theorem 7. By Theorem 7, it follows that am(®, ¥;0) + @.
This completes the proof of Proposition 19.1.

PrOPOSITION 19.2. Suppose that V(®) = {v,, - --, v}, # > 2, and that
S(@) = {sy, - -+, 84} and d(s;) = (v,) — (v;) for all j. (See Figure 19.1 (b).)
Then am(®,¥;0)+ @ if and only if ¥[s;] = <'}n i) or <—'m% ,ﬁ,) for
all j and #{seS(®)|&(s) =1} = 1.

PROOF. Suppose that am(®, ¥; o) # @ and let (a, b; ) be an arith-
metic model. By the proof of Proposition 18.2, we have

(i) o] =}y, 1) or (71, 4) for all 4,

(ii) a(C) =1 for all Ce I'®],

(iii) »(C) =2 for all Cel'[v,]U --- U I'[v,].
Therefore we see that »(C[v,](s;)) = 2&(s;). Since 2(&(s) + « -+ + &(8u) =
4 — 2n(v,) = 2(2 — p) and &(s;) = 1 or —1, it follows that #{se S(®)|&(s) =
1) = 1.

Conversely suppose that ¥7[s,] = Gn f@) or <_m1 1l1,> for all 7 and
#{seS(?)|&(s) =1} = 1. We may suppose that &(s,) =1 and &(s,) = «-- =
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&(sy) = —1. Let 7(C[v](s) = 2, 7(C[v])(s,)) = —2 for j =2, ---, 1, and
r(Clv;1(s;)) = —2 for j=1,---,¢. Let a(C) =1 for all Cel'[®] and
b(C[])(s;)) = 0 for all j. Determining b(C[v;](s;)) by (A5) for all j, we
have an arithmetic model (a, b; ) transverse to .# (@, ¥; ). This com-
pletes the proof of Proposition 19.2.

REMARK 19.3. Consider the graphs @ in Proposition 19.2. Let ¥[s,]=
(‘1’ (1)) and ¥[s,] = ((1) _‘1’) for j =2, ---, 2. Then M(®,7¥) is diffeomor-
phic to S®. By Proposition 19.2, it follows that am(®, ¥; ¢) = @ for an
arbitrary o. This implies that ¢}( (@, ¥; 0)) = @ by Theorem 1. On
the other hand, the foliation & (@, ¥; o) admits a transverse 2-plane
field as proved in Tamura-Sato [15]. Since (Al) does not depend on the

integrability of transverse foliations, this means that (A4) reflects the
integrability.

Hereafter we consider & (@, @; o) such that n(v) > 2 for all v e V().
Let @’ be the subgraph of @ such that V(@) = V(@) and S(@') = {s e S(®)|s
is longitude preserving}. The following is the direct consequence of
Theorem 7 and we omit the proof.

PROPOSITION 19.4. If @ has an isolated vertex, then am(®, ¥; o) = Q.

Suppose that @' is a tree. Take a vertex v,e V(@) and fix it. For
each ve V(@) — {v,}, there are a unique sequence S(v, v,) = (8, - -, Si(n)
in S(®@') and a unique sequence V(v, v,) = (¥, = v, ¥y, ++, Vi1 = V) IN
V(®) such that a(s;) = +=((v;) — (v;4,) for j =1, ---, l(v). Let &, v,) =
(—=1)'™&(s,) + -+ &(81sy) and &(vy, v,) = 1. Then we have the following.

ProPOSITION 19.5. Suppose that @' is a tree. Then am(®,¥; o) # @
if and only if Dievie £, v)(4 — 2h(v)) = 0 for some v, € V(D).

PROOF. Suppose that am(®, ¥'; )+ @. Then there is a map »: I'[®] —
2Z satisfying (A3)’, (A4)’ and (A5)’ by Theorem 7. By Lemma 18.5, we
have a sequence @ =I',, Iy, -+, I',, 0 = £ S(?"), satisfying the conditions
corresponding to (1), (2) and (8) in Lemma 18.5. We use the notations
in Lemma 18.5. Let C; = C[v,]I(s;) and C; = C[v}](s;). By induction on
j, wWe prove

(411 (G =4 — 2h(v;) — 35 £(v, v;)(4 — 2h(v)),

where V(j) = {ve V(®) — {v}|S(v, v,) C s, -+, 8;_.})-

Since V(1) = @ and 7(C) = 0 for CeI'[v,] — {C,}, the condition [[1]]
follows from (A4). Now suppose that [[7]] holds for ¢ < j. For each
Ce'[v;,,], there is a unique side seS(®) with C = C[v;,,](s). If s is
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longitude twisting, then »(C) = 0 by (A3)'. If s is longitude preserving,
then there is j(C)e(l, ---, j + 1} with s = s;,. When j(C) <j + 1, we
have

7(C) = &(s50) {4 — 2h(v) = 3} &0, vi0)(4 — 2h(o))} -

VeV (5(C

Since V(5 + 1) = U{V(H(C) U{v;}|Cel'[v;,] and j(C) <+ 1}, the
condition [[j + 1]] follows from (A4)’ and the above formula. This com-
pletes the induction. k

Since V(@) = V(p) U {v,} and »(C) = 0 for Ce I'[v,] — {C,}, we have

35,6, )4 — 2h(0)) = 0

by [[o]] and (Ady.

Conversely suppose that >,.y &%, v,)(4 — 2kh(v)) = 0 for some w,¢e
V(@). We can take a sequence Iy, ---, ', as above and we may suppose
that v, = v,. For seS(®) — S(®') with a(s) = (v) — ('), let »(C[v](s)) =
r(C[v'])) = 0. Using induction on j, define »(C[v;](s;)) by the formula
[[41]- It is easy to check that r»: I'[@] — 2Z satisfies (A3)’, (A4)" and (A5)".
This completes the proof of Proposition 19.5.

REMARK 19.6. Suppose that @’ is not connected but consists of trees
containing at least two vertices. Then am(®, ¥; ¢) # @ if and only if
the corresponding formula holds for each tree contained in @'.

20. TS models transverse to .# (9, ¥; 6). Using TS diagrams, we
describe a necessary and sufficient condition under which ¢}¥(®@,7; o)
becomes non-empty in this and the next section.

First we must define a TS diagram for & € t)(% (h; g)) C° isomorphic
to (¢ |C) x I for some Cel'(h). Note that the existence of such &
implies that » = 2 and that if C, is horizontal with respect to & then
0(02) = —0(C1>-

DEFINITION 20.1. A singular TS diagram of (E’(Z); o) is a quadruplet
T = ({(Tihen {2 1 = S'haca, {8(J2) € Fhicyy (@, b; 7) € (NX Z)* X 2Z) satisfy-
ing the following conditions.

(S1) J; is a copy of I for all ne 4.

(S2) If #4>1, then ¢:J;,— S' is an imbedding for each \e4,
Int *J, N Int *J,, = @ for » = A/, and S* is the closure of U {*J;|»€ 4},
where *( ) means ¢,( ) for an appropriate e 4. If $4 = 1, then ¢|Int J,
is an imbedding and *J, = S*, where 4 = {\}.

(S3) #{xe4d|s(J) =0 or @} < oo.

(S4) 1If o is constant, then (a, b) € (N X Z)**™° (J {(c0, )}. If (a, b) =
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(0, ), then 4 =1 and r =¢{Ac4d|s(J)=O or @} =0. If (a,b)e
(N x Z)>=ey{(0, 1)}, then » = §{red|s(J) = O} — #{red|s(J) = @).

We call a triad (J,, ¢;, s(J;), in a singular TS diagram, a sigular TS
piece.

We introduce an equivalence relation on the set of singular TS
diagrams as follows.

DEFINITION 20.2. Let .9 =({J}ica, {tidiea, 8(D)}ies, (@, b; 7)) and 7 '=
(T vess Ednens (8T e, (@, 05 1)) be singular TS diagrams of (E(2); o).
Then .7~ and 7' are isomorphic if (a, b; ) = (a’, b’; 7') and there are a
homeomorphism ¢: S'— S* and a bijection p: 4 — M such that ¢(*J;) = *J}.,,
and s(J, ) = s(J;) for all ne 4.

We denote by STS(E’(Z); o) the set of isomorphism classes of singular
TS diagrams of (E(2); o).

DEFINITION 20.3. We call P a TS piece if P is a regular TS piece
or a singular TS piece. We call o~ a TS diagram if 7~ is a regular
TS diagram or a singular TS diagram. Let TS(E(R); o) = RTS(E(h); o)
if b+ 2, and TS(E(2); 0) = RTS(E(2); ¢) U STS(E(2); 0).

As a generalization of Theorem 4, we have the following and we
omit the proof.

THEOREM 4*. There exists a canonical map
7: (. (h; 0)) — TS(E(h); o) .

Now let us consider # (@, 7; o) as in §1. For each ve V(®), we
obtain a set TS[v] = TS(E[v]; ¢|I'[v]). We describe the compatibility
conditions for a family {[.7 (#)] € TS[?]},crw to correspond to some Z ¢
t¥®, T, o) as follows.

DEFINITION 20.4. Let 7 = (7, {d}ier, (@, b; 7)) be a regular TS
diagram of (E(h); 6). For each CeI'(h), the C boundary diagram 0,9
of .7 is a quadruplet ({Ju}ue u, {6u: Iy = L(C}yenr, {8(T)} e, (@(C), B(C); 7(C)))
satisfying the following conditions.

(B0) If a(C) =0 or e, then L(C) = S* x {+}. If 0 < a(C) < oo, then
L(C) = C/~, where y ~ y' for y,y'e€C if and only if y' = ¢#(y) for some
keZ. (Note that (¢, |C)*® = id.)

(B1) J,is a copy of I for all pe M.

(B2) If a(C) =0 or o, then #4 =1 and ¢,|IntJ, is an imbedding
and *J, = L(C) for xe M, where *( ) =1¢/( ) as before. If 0 < a(C)<
oo, then ¢,|IntJ, is an imbedding for g e M and there is a surjection
g _Z(C)={*T|ned, Je FZU(F% (4)—23), *J<C) — M. such that *J, .z =
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n(*K) and that s(*Ji.x) = s(K) if Ke # for some X\, and otherwise
8(*Jeem) = ||, where .7~ contains {Pr= (4 t5, 8:_ 5 — .S 0: Z7— {1, —1)}ics
and 7: C — L(C) is the projection.

DEFINITION 20.5. Suppose that h =2 and let 77 = ({Ji}ica, {ta}2eas
{s(/)}ie s, (a, b; 7)) be a singular TS diagram. For CeI'(2), the C boundary
diagram 0,7 1is defined as follows.

(1) When o is not constant, let ¢(C*) =1 and ¢(C~) = —1, where
I'2) ={C*, C-}. Then 9,+.7 is equal to .7, and 9,-7 to ({Ji}res {t}1c
{s"(JD}ren, (@', b'; —7)) such that

(i) d(J)=@,0, N\, V, | if s(J;)) = O, @, V, A, || respectively.

(ii) (a, 0") = (a, b) ir (a, b) = (0, 1) or (oo, ), and (a’, d") = (a, —b)
if (a, b) € (N x Z)corrime,

(2) When o is constant, we fix an order < on I'(2) and let C < (',
C,C'el'(2). Then 0, is equal to 7, and 0,7 to ({Ji}ics, {ti}icss
{'(ID}rea, (@', b'; ")) such that

(i) §(J)=@,0 (or O, @) if s(J;) = O, @ and (a,b) = (0,1) (or
(a,b) e (N x Z)rri=e) $'(J) = A, V, | if s(J) =V, A, |.

(ii) (@, ;7)) = (a, b; —7)if (a, b) = (0, 1) or (o, =), and (a’, b'; ') =
(a, —b; r) if (a, b) e (N x Z)-~rrime,

DEFINITION 20.6. Given a map (a, b): I’ — (N x Z)*, for each Cerl’

let v(C) = (“Z((%) if 0< a(C) < o, and v(C) = ((1)) if a(C) = 0.

DEFINITION 20.7. A TS model transverse to & (@, ¥; o) is a family
{[.7” (v)] € TS[?]}sev w0, satisfying the following conditions.

Let seS(®) with a(s) = (v) — (¢'). Let C = C[v](s), C" = C[v'](s),
007" (v) = ({Jhre s, {ahae s, {8(TD}ics, (@, b; 7)) and 957 (V') = ({Sibue s, {tiueus
{s(Li}uex, (@', b5 7).

(1) (a,b;r) and (a’, b’; »’) satisfies the condition corresponding to
(A5) in Definition 1.2.

(2) There is a homeomorphism ¢[s]: L(C) — L(C’) such that

(i) if a(C) = o, then ¢[s] is orientation preserving,

(ii) if a(C) # o« and ¢ > 0 (or ¢ < 0), then ¢[s] is orientation pre-
serving (or reversing), where ¢ = "»(C’")-¥[s]-v(C) (product as matrices).

(8) Furthermore there is a bijection p: 4 — M such that for each
ned,

(i) ¢[s1(*J) = *J,z, and

(il) S(Jf:(l)) = 09 ’; /\: \/, ” (or .’ O: /\’ V: ||) if S(Jg) = Or ., V’
A, |l and v, > 0 (or 7, < 0), where 7, is as in Definition 1.2.

We denote by TS(@, ¥; o) the set of TS models transverse to
F(,7; a).
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21. The geometric criterion. We formulate the geometric criterion
precisely. First we have the following. Since the proof is long and
tedionus, we omit it.

THEOREM 8. There exists a canonical commutative diagram

HF (@, T; 0)) — TS(@, ¥; o)

a a
am(9, T; o) .
When a TS model _# contains an infinite number of TS pieces, the
construction of a foliation & transverse to & (9, ¥'; ¢) corresponding to

# has troubles concerning the differentiability of . In order to get
a better formulation, we need the following.

DEFINITION 21.1. A TS model _#Z is called finite if it contains at
most a finite number of TS pieces.

DEFINITION 21.2. A TS model .Z = {[.7 (¥)]}sev (o is called irreducible
if the following conditions are satisfied.

(1) For each ve V(®), a representative .7 (v) contains no regular
TS piece P = (4,v,s: F — . w: 2 — {1, —1}) such that vy =IX and o
is not constant.

(2) Let & be the set of TS pieces in fixed representatives
{7 (W}erisy» On &P, we consider an equivalence relation ~ determined
by

P ~ P’ if there is se S(®) with o(s) = (v) — (V')
such that P (or P’) belongs to .77 (v) (or .7 (v')) and ¢[s] in Definition
20.7 maps n(*J) to n'(*J’) for some Je _Z(|P|) and J'e _Z(|P'|), where
7w (or ©') is the projection to L(C[v](s)) (or L(C[v'](s))).

Then there is no equivalence class & with respect to ~ such that
if Pc & then the symbols attached to P are Vv, A or |.

We denote by ts(®@, ¥; o) the set of finite irreducible TS models
transverse to &% (9, ¥; o).

Now we have the following.

THEOREM 8*. (1) There exists a canonical commutative diagram

1T @, U; 0)) — ts(@, ¥; 0) — TS(D, 0; 0)

N A

am(®, T; o)
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(2) 7* is surjective.
The following follows directly from Theorem 8*.

THEOREM 8** (The geometric criterion). tf(Z (@, ¥;0)) + @ if and
only if ts(®, ¥; o) + O.

PROOF OF THEOREM 8*. Let a* = a&|ts(?, ¥; o). We define z* as
follows. Let et} # (0, ¥; o)) and # =7(%). Using the theorem
of Kopell [7] as in Nishimori [9], we can show that if _# is irreducible
then _# is finite, since _# c¢Image7. In this case, let *(¥) = _#.
Suppose that _#Z is not irreducible. Then £ contains foliated I-bundles
corresponding to regular TS pieces of type IX or to equivalence classes
of & in Definition 21.2 (2). Collapsing such foliated I-bundles along
fibers, we obtain a foliation %’ such that 7(2’) is irreducible. Then
T(Z") is finite as above. Let 7%(¥) = 7(¥’). Since a(Z’) = a(¥), we
have a*o7* = a.

(2) Let 7 ={9 Wlerw €ts(@, ¥; g). For each regular TS piece
P of 7 (v), we take an appropriate component of the same type as P in
Theorem 3 if .7 (v) is regular. When .7 (v) is singular, take C* in
Definition 20.5 (1) or C in Definition 20.5 (2) and denote it by C. We
construct a foliation & of S x S! such that

(i) ?l(*JZ) x S*' is a Reeb component such that the connected
components of a(*J;) x S' have expanding holonomy in the same (or
opposite) direction as the orientation of S* if s(J;) = O (or @),

(ii) ?](*Jl) x S* is a slope component such that the connected
components of o(*J;) X S' have expanding holonomy in the same (or
opposite) direction as the orientation of a(*J,) x S* as the boundary of
*J, x Stif s(J;) = V (or A),

(iii) ?l(*Jl) X S* consists of leaves {x} X S* for xe*J,if s(J;) = ||,
where 7 (V) ={J}re s, {C}ren, {8(D)}aes, (@, b; 7). Now take a foliation & (v)
of E[v] with £(v)|C = £ such that & (v) is C* isomorphic to £ x I.

Since _# satisfies the condition in Definition 20.7 and _# is finite,
we have a C= foliation & of M(®, ¥) transverse to # (@, ¥;o0) with
(&) = #. We omit the details. This completes the proof of Theo-
rem 8*.

The proof of Theorem 8* implies the following.

THEOREM 9. (1) For each .# €TS(D,V; o), there is cannonically
a C° foliation of M(®, V) transverse to F (@, ¥; o).

(2) If TS(®,¥;0)+ @, there is a C* 2-plane field of M(®, V)
transverse to . (0, V; o).
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PRrROOF. (1) is clear. As for (2) there is a transverse C° foliation
< by (1). It suffices to take a C= approximation of T'Z.

22. Some applications of the geometric criterion. We treat .7 (9,
¥; o) considered already in §19. For such & (9, ¥; ), we obtained a
necessary and sufficient condition under which am(®, ¥'; ¢) # @ by Prop-
ositions 19.1, 19.2, 19.5 and Remark 19.6. First consider .# (9, ¥’; o) such
that @ is a graph in Figure 19.1. We show that for such & (9, 7;0)
the arithmetic criterion is complete. Precisely we have the following.

THEOREM 10. Let # (0, 7; o) be as in §1. Suppose that
(a) V(@) = {v} and £S(®) > 1,
or
(b) V(@) ={vy, -+, v, £>2
S(@) = {s,, -+, 84 and d(s;) = (v) — (v))
for all 3.
Then the following conditions are equivalent.
(1) t{(F(D,V;0) + Q.
(2) ts(0,7;0)+ @.
(3) am(®,¥; 0) # Q.

PrRoOF. Note that (1)=(2) and (2)= (8) are already known for
general .# (0, ¥; 0)’s by Theorems 8** and 1*. Therefore it is sufficient
to prove that (3) implies (2). Suppose that am(9, ¥; o) # @.

Case (a). By Proposition 19.1, there is a longitude preserving side
s € S(®) with &(s) = 1. Furthermore we have an arithmetic model (a, b; 7):
I'[@] = I'lv] > (N x Z)* x 2Z such that

(1) (a(C), b(Cy; r(C) = (a(Cy), b(Cy); 7(Cy) = (1, 0; 2 — p1),

(ii) 7(C) =0 for CeI'[v] — {C, Cy},
where C, = C[v](s*) and C, = C[v](s7). Let I'[v] — {C, C;} = {C, "y C.l,
where ¢ = 2-#S(®). Now we find a regular TS diagram .7~ of (E(); o)
indicated by Figure 22.1.

®-

E 3
[ ]

AV \ o L
A} " N

1L VII VII

CIE©

IIT 1T

The right and left vertical segments are to be glued
Ficure 22.1
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Then it is easy to check that [[Z7]ets(®, ¥; o) and a*([.7 )=(a, b; 7).

Case (b). By Proposition 19.2, there is s;. € S(®) with &(s;.) = 1, and
£(s) = —1 for all se S(®) — {s;.}. We may suppose that s;. = s,. Further-
more we have an arithmetic model (a, b; 7): I'[@] — (N X Z)* X 2Z such
that

(i) (a(C), b(C)) = (1, 0) for all Ce I'[®],

(ii) »(C;) = 2 and r(C;) = 2&(s;) for 7 > 0,
where C; = C[v,](s;) and C; = C[v,](s;). Now we find regular TS diagrams
T+, 7 indicated by Figure 22.2 in the case ¢ = 4.

FIGURe 22.2

Then it is easy to check that _#Z = {[Z;]}., is a finite TS model
and a*(#Z) = (a, b; r). We have _#"'cts(®, ¥; o) from _# by reduction
as in the proof of Theorem 8*. This completes the proof of Theorem 10.

Consider .# (@, ¥'; o) such that @ is a graph in Figure 22.3, where

FI1GURE 22.3
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longitude preserving (or twisting) sides are represented by solid (or
dotted) lines.

The arithmetic criterion is complete in this case, too, and we have
the following.

THEOREM 11. Let & (®,V; o) be as in §1. Suppose that
(1) V(@) ={v, -, v,
hv)=p>1, hw;)=3 for 7>0,
(2) S(@)={sy -+, 588, ", s},
0(85) = (vo) — (v;), 9(s7) = (v;) — (Vjua) s
s; (or s;) is longitude preserving (or twisting). Then t¥(F (Q,¥; 0)) #
@ if and only if am(®,V; 0) *+ @.
PROOF. As above it suffices to prove that am(®, ¥'; ¢) = @ implies

ts(®, ¥'; 0) # @. Suppose that am(®, ¥'; o) = @. By Proposition 19.5, we
have

g &(v;, vo)(4 — 2R(v;)) = 2(2 — ¢ + ]2:1 £s,) =0.

Therefore &(s;) = —1 for some j* and &(s;) =1 for all jefl, -+, p} —
{7*}. We may suppose that j* = 1. Now we find regular TS diagrams
7, -+, 7., where 7, equals .7, in Case (b) in the proof of Theorem

9, and .77, ---, 7, are indicated by Figure 22.4.
ey
T

¥ T

\L kY2 \L

N A

.7-2’ and ~7/: ‘7_3’1"'1‘7—1"‘—1

FicurE 22.4

Then we see that ts(®, ¥; o) # @ as above. This completes the
proof of Theorem 11.

REMARK 22.2. Let # (@, ¥; o) satisfy the condition of Theorem 9



232 T. NISHIMORI

(b) or Theorem 10. Then t{(F (@, ¥; 0)) + @ if and only if am(®, ¥; o) #
@, since t(F (@,V; 0)) = t*(F (0,¥; 0)) in the case Theorem 9 (b).
Consider the case of Theorem 10. In order to obtain transversely
orientable foliation ¥ transverse to .# (@, ¥; o), it suffices to insert,
for each j > 0, a regular TS piece P = (4, v, s: _F — S w: 2% —{—1,1}),
such that v = IX and w is constant, between the TS pieces of type VI
and VIII in .77 if necessary.

23. A construction of regular TS diagrams of (E’(h); o) with given
(a, b; r) in the case h > 2. The purpose of this section is to make pre-
parations for the proof of Theorem 2. We prove the following.

THEOREM 12. Let % (h; o) be as in §1 and suppose that h > 2. Let
(a, b; ): I'(h) — (N X Z)* x 2Z be a map such that

(i) 4f r(C) =0 for CeI'(h), then (a(C), b(C)) = (1, 0).

(i) Seeray a(C)r(C) = 4 — 2h.
Then there is a vregular TS diagram 7 = (ﬁ: {pher, (@', D5 7)) of
(E(h); 0) with (&', b'; 7') = (a, b; 7).

REMARK 23.1. When i = 1 or 2, we obtain results similar to Theorem
12 more easily.

PROOF OF THEOREM 12. Denote by I't (or I'", I'°) the set of Ce I'(h)
with #(C) > 0 (or <0, =0), and let 't ={C{, ---,Ci.,}, I~ ={Cy, -+,
Cio), and I ={C’, ---, C,}. For each Cel'(h), take a set II(C) of
|7(C)| points of C. Let II* = U {II(C)|Cel*}and II- = U{I(C)|Cel}.
Number the clements of I+ in such a way that

n+<:z=‘,_ll "CH) + 1), . n+<j§:;1 »r(c,.+)) e IT*

are on C; in the order opposite to the orientation of Cf for k=1, ---,
k(+). Number the elements of /7~ in such a way that

w(Z17C1 +1), o, m (S InCHI) e I

are on C; in the same order as the orientation of C; for k=
1, .---,k(—). Take an orientation preserving imbedding c¢: E(h) — R?
such that

(1) «Cz-,) = Cy(N, 0) for large N,

(2) dC;)=Cy9j, —9) for j=1, -, k(—) — 1,

(3) «Ci) =Cy95,9) for j=1, -, k(+),

(4) «C3) = C 7 + k(+)),9) for 5 =1, ---, k(0),
where C,(z, y) is the circle of radius p with center (z, y). Identifying
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E‘(h) and 4(F:'(h)), we regard E(h) as a subspace of R®.

Since Y, 7(C) = Soera(C)r(C) =4 — 2R < 0, we have k(—) > 0.
Since h — 1 =< |4 — 2h| for h = 8 and k(0) < h—1, it follows that %(0) +
rt* <7, where r* = #II" and »~ = $II-. Sliding the points of II* and
II- if necessary, we may take disjoint line segments L(1), ---, L(r")
such that oL(5) = {z*(4), #~(5)}. Furthermore we may take disjoint line
segments L(r* + 1), ---, L(»* + k(0)) in such a way that an endpoint of
L{r* 4+ j7) equals 7=(r* + j) and the other one belongs to C’?. In addition
to these, take line segments K(1), ---, K(x,) satisfying the following
conditions (1)-(3).

(1) An endpoint of %k(j) belongs to C’; and the other one belongs
to C;, for some 5’ and ;.

(2) The set B,=CsU---UCi,, UCrU---UCRUL@)U---UL(HU
K1) U --- U K(k,) is connected, where Cy contains T=(r*).

(8) For each je{l, ---, k,}, the set B, — K(j) is not connected.

Finally take line segments K(k, + 1), - - -, K(k,) satisfying the follow-
ing conditions (4)-(6).

(4) An endpoint of K(j) belongs to C’,-T and the other one belongs
to CA',-"H for some j'. R R

(5) The set B,=B,UCpny U -+ UCio, UKk, + 1)U --- U K(k,) is
connected.

(6) For each je{r, + 1, -+, £}, the set B, — K(j) is not connected.
(See Figure 23.1.)

Let H, be the connected component of

H=FE®h) — (LA)U --- ULE" + k0) UKL U -+ UK(K))

()
L) kY L) |L(*+E(0))

CE(“)

K (#2)

Cix K (x,+1)

Fi1GURE 23.1



234 T. NISHIMORI

containing the point (—N, 0)e R*>. We denote by H, the compact mani-
fold with corner obtained from H, by attaching the boundary. Then
H, is homeomorphic to D*. Each other connected component H; of H is
surrounded by CA';-',, C‘;,, L(5*) and L(5* + 1) for some j5’, 5/ and j*. The
closure of H; is homeomorphic to D

Take a non-singular vector field Z on a neighborhood of E(h) —
Int H, = B, U (H — H,) satisfying the following conditions (1)-(4).

(1) Z is tangent to 9E(k) at and only at I7+ U I~ U oy U 6'3(0,.

(2) The orbits of Z make concentric half circles (or confocal pa-
rabolas) near a point of II* (or II7).

(3) The line segments K(1), ---, K(k,) are orbits of Z.

(4) For each =1, --.,r" the orbits of Z make figures as in
Figure 23.2 (a) in a closed neighborhood U; of L(j), and for each j =1,
.-, k(0) the;r do so as in Figure 23.2 (b) in a closed neighborhood V; of
L(r* + j) U C}.

N

Uj Vi

/ \
(a) (b)
FIGURE 23.2

o

.-

() (b)
FIGURE 23.3
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Since >iscrm 7(C) =4 —2h, we can extend Z to a non-singular vector
field Z* on E(h). For each j = r* + k(0) + 1, ---, 7, take a small closed
interval J(j) in aE’(h) containing 77 (j). Since J(j) C H,, the saturation
J(5)* of J(j) with respect to Z* is contained in H,. Modifying Z* if
necessary, we may suppose that J(H)*N{I~ — {z=(5)}) = @ for all j.
For a small closed neighborhood W; of 7~ (j), the saturation W} of W;
is as in Figure 23.3 (a).

It is easy to see that for each connected component X, of

N rt (0) =
s~ (G) v (v 0 (O).
where »* = »* + k(0) + 1, the orbits of Z* passing through X; are as
in Figure 23.3 (b).
Now we take a regular TS piece for each of U, V,, W, and X;, as

in Figure 23.4.
I
1

11T VII

*

U; V; w; X;
FIGURE 23.4

Then it is easy to construct a regular TS diagram containing the above
TS pieces and satisfying the condition of Theorem 12. This completes
the proof of Theorem 12.

24. The proof of Theorem 2. Theorem 2 follows from Theorem 9
(2) and the following.

THEOREM 18. The map @: TS(®, ¥'; o) —» am(®, ¥; o) is surjective.

ProOF. Let (a, b; r)cam(®@, ¥; o). For each ve V(®) with h(v) > 2,
we take the regular TS diagram .7 (v) constructed in §23. For ve V(®)
with a(v) = 1, we have a(C) =1 and »(C) = 2, where {C} = I'[v]. Take
a regular TS diagram .7 (v) containing exactly two TS pieces of type I.
Consider v e V(@) with h(v) = 2. Let I'[v] = {C, C'}. When »(C) = 0, we
take a regular TS diagram .7 (v) containing exactly two TS pieces of
type VIII. When 7(C) = 0 and a(C) = 0, we may suppose that ¢(C) =1
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O

r(C) <0 r(C) >0
FiGURE 24.1

and we take a singular TS diagram .7 (v) as in Figure 24.1. When
r(C) # 0 and a(C) > 0, we take a regular TS diagram .7 (v) indicated
by Figure 24.2.

11T 11T
III 1L

£(0) = a(0)|r(0) |
FIGURE 24.2

Unfortunately {7 (v)},erw, constructed above does not satisfy the
compatibility condition described in Definition 20.7. For each sec S(®)
with a(s) = (v) — (v'), we see that C = C[v](s) and C’ = C[v'](s) satisfy
the compatibility condition on the symbols O, @ attached to L(C) and
L(C"), while we have trouble with the symbols \, A, |. We can over-
come this trouble by using the following trick.

Suppose that »(C) # 0. First take a homeomorphism ¢: L(C) — L(C")
satisfying the following conditions (1)-(3).

(1) For each J with s(J) = O or @, the image #(Int.J) intersects
only one J' with s(J') = O or @.

(2) For each J with s(J) = Vv, A or |, the image ¢(J) is contained
in some J'.

(3) For each J’ with s(J') = VV, A or ||, there is J with ¢(J)>DJ'.

Inserting regular TS pieces of type II or singular TS pieces with
symbols V, A, || into .7 (¢') for each J with s(J)= V, A, ||, we can
modify ¢ to ¢, in such a way that ¢, satisfies the conditions corresponding
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[

(4“>Inserted
TS pieces

FIGURE 24.3

to (1), (2) and (3) above and ¢, maps each J with s(J) = V, A, || to some
J’' with the same symbol. (See Figure 24.3.)

Performing this for all se€ S(®), we have a family {7 (v)*},cr@ of
TS diagrams. Now make similar modifications in the opposite direction
of s for all seS(®) and get {7 (¥)?},cvwy. Then L(C[v](s)) has possibly
new J’s with s(J) = VvV, A or | for seS(®) with a(s) = (v) — (v'). Re-
peating the process of inserting TS pieces with symbols Vv, A, || infinitely
many times, we have a limit family {7 (v)*'},cv@, of TS diagrams. By
construction, this limit family _# is a TS model transverse to .7 (9, ¥'; o)
with a(_#) = (a, b; ). This completes the proof of Theorem 13.
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