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1. Introduction. Recently several foliators began the study of an
ordered set W~ = (J^, , ^l) of codimension one foliations of a manifold
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Mn in general position, t h a t is,

dim TxJ^a) Π Π TxJ^Up) = n - p

for all x e M and {i(l), , i(p)} c {1, •••,&} with p <^ n.
When & = n + 1, we call W~ an octahedral web if for all & e ikί there

is a chart 0: U-^ Rn such that a? 6 U and ^ 7 | ?7 = φ*&t for all i, where
&t = {(»!, , &») 6 Λn|a?i = c}ceR for i = 1, , n and gfn+1 = {fo, , xn) e
JRn|a?i + + xn = c}c e Λ. In Nishimori [10] and [11], the author classified
almost all the octahedral webs on closed manifolds.

When k = n, we call *W~ a multifoliation (or a total foliation).
Tischler [16] constructed multif oliations on the total spaces of SMbundles
over closed surfaces, and Silberstein [14] constructed multifoliations on
M x S1 where M is a stably parallelizable manifold. Furthermore Hardorp
[5] showed that all the closed orientable manifolds of dimension three
admit multifoliations.

When k = 2, we see that W" is a pair of transverse foliations. For
such "W, there exists the study by Tamura and Sato [15]. They regarded
a foliated manifold (M, JΓ) as an underlying manifold, and a foliation
& of M transverse to J^ as a structure on (M, ̂ ~). From this point
of view, Tamura and Sato characterized codimension-one C°° foliations
transverse to the Reeb component of S1 x D2 or to the Reeb foliation
of S3 and classified them topologically by introducing TS diagrams.
From these results and the theorem of Novikov [12], they derived that
the foliation of S3 obtained from a fibered knot with a fiber of non-zero
genus has no transversely orientable transverse codimension-one C°° foli-
ation. In contrast to this, they remarked that any codimension one Cr

foliation of S3 admits a transverse 2-plane field. Furthermore they raised
several problems on transverse foliations. One of them is the following.

PROBLEM A [15, Problem 10]. Find conditions for C°° foliated mani-
folds to admit transverse foliations.

From now on, a manifold is always of class C°° and a foliation is a
codimension one C°° foliation, unless stated otherwise.

In Part I of this paper, we generalize the results of Tamura and
Sato on the Reeb component to the foliated manifolds (E(h), ^(h; σ))
introduced as follows. Take a positive integer h and let E(h) be a com-
pact manifold obtained from S2 by deleting h small open 2-disks. Let
E(h) = S1 x E(h). We treat S1 and E(h) as oriented manifolds. Denote
by f(h) the set of the connected components of dE(h) and let Γ(h) =
{S1 x C\CeΓ(h)}. Note that each CeΓ(h) is diffeomorphic to T2. Take
a continuous map σ:dE(h)-*{l, —1}. Frequently we regard σ as a map
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from dE(h), Γ(h) and Γ{h) to {1, —1} in a canonical way without caution.
We turbulize the product foliation

J^(ft, pr) = {{x} x E(h)ixeS1}

of E(h) so that for each y e dE(h) the oriented closed path σ{y)(S1 x {y})
has an expanding holonomy with respect to the modified foliation ^~(h; σ).
The turbulization will be stated precisely in § 2.

Tamura and Sato decomposed foliations transverse to the Reeb
component into three kinds of simple components, namely half Reeb
components, foliated /-bundles over S1 x I and TS components. In our
case we decompose foliations transverse to ^"{h\ σ) into nine kinds of
components (see Theorem 3 in § 9). For a foliated manifold (Af, ^)9 we
denote by tl(M, Jf) (or simply t\{^)) the set of transversely orientable
foliations of M transverse to ^". We can classify the foliations in
t\(E(h), ̂ (h; σ)) with respect to a certain equivalence relation by using
generalized TS diagrams (see Theorem 4 in § 14).

In Part II, as an application of the results of Part I we consider
Problem A for a certain class of foliated manifolds of dimension three
introduced as follows. Roughly speaking, our foliated 3-manifolds are
unions of foliated manifolds of the form (E(h), ^(h; σ)).

First take a connected finite graph Φ and fix an orientation for each
side of Φ. Denote by V{Φ) (or S(Φ)) the set of vertices (or sides) of Φ.
For v 6 V(Φ), let S(Φ; v) = {s e S(Φ)\v is an end of s}, where we take two
copies s+, s~ of s if the ends of s coincide and are v. Let h(v) = #S(Φ; v)
and E[v] = E(h(v)). We fix a bisection C[v\: S(Φ; v) -> Γ[v] = Γ(h(v)).

Take a map Ψ: S(Φ) -» j ( ^ fy\kn - Im = - 1 , fc,ί,m,%ez[. For

each side s e S(Φ) with 3(s) = (vj — (v2), vl9 v2 e V(Φ), we define a diffeo-
morphism Ψ*[8\: C[vJ(s) — C[v2](s) by

Ψ*[s](x, y) = (kx + ly, mx + ny) , x, y e R/Z ,

where Ψ(s) = (k l), Clv^s) = S1 x C<f and S1, Cx and C2 are identified

with JB/Z. When the ends of s coincide and are v, we use the conven-
tion that C[vJ(8) = C[v](s+) and C[v2](s) = C[v](s~). Now we obtain a
closed connected manifold M(Φ, Ψ) from the disjoint union U {E[v\ \ v e V(Φ)}
by identifying C[vJ(8) with C[va](β) by Ψ*[έ\ for all β e S(Φ).

Take a continuous map σ: Γ[Φ] = \J {Γ[v]\ve V(Φ)} -* {1, -1}. Then
we have a foliation ^*(Φ, Ψ; σ) of ikf(Φ, ψ) such that ^ ' ( Φ , ^ σ)\E[v] =
^(h(v);σ\dE[v\) for all ve F(Φ), where ^(ΦfΨ; σ)\E[v] is the foliation
induced from ^ ( Φ , F; σ) by the canonical immersion c: E[v] -* M(Φ, ?").
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We denote by ί?(ΛΓ(Φ, Ψ)f J^(Φ, Ψ; σ)) (or simply t*(J^(Φ, Ψ; σ))) the
set of foliations gf of M{Φ, Ψ) transverse to ^ ( Φ , Ψ; σ) such that %?\E[v]
is transversely orientable. Clearly tf(^~(Φ, Φ; σ)) D tKJ^iΦ, Ψ; σ)). Our
main purpose is to investigate whether tf(^(Φ, Ψ; σ)) is empty or not.
Note that if Φ is a tree (that is, a connected contractible graph) then
^ ( Φ , Ψ; σ) is transversely orientable for all Ψ and σ and it follows that
t*(jT(Φ, W; σ)) = t%jT(φ, ψ; σ)).

Our criterion for the existence of transverse foliations splits into
two stages—an arithmetic criterion and a geometric one. Although the
former is stronger than the homotopy theoretic one asking for the exist-
ence of transverse 2-plane fields (see Theorem 2 below), we do not know
whether it is complete as a criterion or not. The latter is complete and
takes the form of a jigsaw puzzle or a tangram (see Theorems 8, 8*
and 8** in §21).

Now we formulate the arithmetic criterion precisely.

DEFINITION 1.1. Let (N x Z) c o p r i m e = {(α, b) eN x Z\ap + bq = 1 for
some p, qeZ}, where N is the set of positive integers. Let (N x Z)* =
(Nx Z)coprimeU{(0, 1), (oo, oo)}.

DEFINITION 1.2. An arithmetic model transverse to ^~(Φ, Ψ; σ) is a
map (α, δ; r): Γ[Φ] -> (N X Z)* x 2Z, where 2Z is the set of even integers,
satisfying the following conditions (A1)-(A5).

(Al) Consider v e V(Φ) with h(v) = 1, and let Γ[v] = {C}. Then
a{C) = 1.

(A2) Consider ve V(Φ) with h(v) = 2, and let Γ[v] = {Clt Q . Then
( i ) r(C2) = -r{Cx).

(ii) If r{C,) Φ 0 and α(CJ > 0, then α(C2) = a(Cλ) Φ oo and δ(C2) =

(iii) If riCύ Φ 0 and α(Q = 0, then a(C2) = 0 and σ(C2) = -σiC^.
(A3) Consider v e V(Φ) with λ(v) > 2, and let C e Γ[v]. If (α(C), 6(C)) Φ

(1, 0), then r(C) = 0.
(A4) (The TS formula). For each v e V(Φ),

Σ a(G)r(C) - 4 - 2Λ(v) ,
(7eΓ|>]

where we use the convention °o 0 = 0.
(A5) (The compatibility condition). Let s e S(Φ) with d(s) = (vx) — (v2)

and d = C[vt](8) for i = 1, 2.
( i ) If 0,(0,) = oo, then α(C2) = oo and r(Cλ) = r(C2) = 0.
(ii) If α(C0 ^ oo, then
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In the above, we put f(s) = ( ) and

(sgn (fcαCQ + lb(Cγ)) if α(Q > 0 ,
7 l 'sgn (mαζCί) + nbiβ,)) if α(C2) = 0 .

Furthermore, we put 5(0) = 0 and δ(α) = 1 for a > 0, and

We denote by am (Φ, Ψ: σ) the set of arithmetic models'trans verse to
, Ψ; σ).

Now we can state the arithmetic criterion.

THEOREM 1. There exists a canonical map

a: t*(J^(Φ, Ψ; σ)) -+ am (Φ, Ψ; σ) .

Roughly speaking, if α(gf) = (α, b; r) for ^ 6 tf(^~(Φ, Ψ; σ)), then
(a(C), b(C)) represents the homology class of a compact leaf of ^ | C and
r(C) is the difference of the numbers of the positive Reeb components
(cf. Definition 4.1) and negative Reeb components of gf | C The condi-
tion (Al) was already known in Davis and Wilson [1] and does not depend
on the integrability of &\E[v], The condition (A3) reflects the inte-
grability of &\E[v] (see Remark 19.3). The conditions (A4) and (A5)
do not depend on the integrability of Ĵ % but it is not clear whether
(A2) does or not.

The following is a direct consequence of Theorem 1.

THEOREM 1*. (The arithmetic criterion). If am(Φ, Ψ σ) = 0 , then
t*(jr(Φ,Ψ;σ))= 0.

It is comparatively easy to see whether am (Φ, ¥; σ) is empty or not.
We will give some examples in § 19. The following will be proved in
§24.

THEOREM 2. If am(Φ, Ψ\σ)Φ 0 , then there is a 2-plane field of
M(Φ, Ψ) transverse to J^~(Φ, Ψ; σ).

Our criterion is practical. The algorithm is as follows. First deter-
mine whether am (Φ, Ψ; σ) is empty or not. When am (Φ, Ψ; σ) = 0 , we
are done. When am(Φ, Ψ\σ)Φ 0 , try to construct a TS model (cf.
Definition 20.7) transverse to ^ ( Φ , Ψ; σ). In many cases we find a TS
model. So far we did not find any ̂ ( Φ , Ψ\ σ) such that am (Φ, Ψ; σ) Φ 0
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and ίi*(^(Φ, Ψ) σ)) = 0 . We give some examples in §22. We hope that
our criterion will give a hint to constructing a theoretical or general
criterion. If a new criterion is found, then we can test it by the
examples investigated by our criterion.

We wish to thank Professors I. Tamura and A. Sato for critical and
valuable discussions.

PART I

A generalization of the results of Tamura and Sato

2. Turbulization I and Reeb components. We describe the turbuli-
zation precisely. Let W be a compact manifold with boundary and M a
codimension-zero compact submanifold of dW. Let f be the set of con-
nected components of M. Choose a small collar ίc: M x [0, 1] —> W such
that

, 0) = y for yeM,

ίc(y, t)edW for yedM and t e [0, 1] .

Let k: S1 x M x [0, 1] -» S1 x W be the collar of S1 x M defined by
k(x, y, t) = (x, k(y, *)) for x e S\ y e M and t e [0, 1]. Let W° = Cl (W -
k(M x [0,1])). Take a C°° function / : ]0, 1] -> ] - oo, 0] such that

(fl) /(ί) = 0 for all ί e [1/2,1],
(f2) l i m M / ( ί ) = -oo,
(£3) df/dt > 0 in ]0, l/2[,
(f4) the submanifolds R x {0} and Fe(f) = {(/(ί) + c, ί) | ί e]0, 1]},

ce/ί, of R x [0, 1] are leaves of a foliation of R x [0, 1].
Take a continuous map #: M—>{1, —1}. Let &~ be a foliation of

S1 x W such that ^\k{S' x ilί x [0, 1]) - {{x} x £(AΓ x [0, lDl^eS1}.
Then the foliation Γ[^7 M, σ] obtained by turbulίzing ^ around M in
the direction of σ is defined so that Γ [ ^ M , σ^S1 x W° = ^\Sι x W°^
and that T[^f M, σ^kiS1 x M x [0, 1]) consists of compact leaves S1 x C
for C G Γ and non-compact leaves

{H[σ(y)f(t)] + x,y,t)\yeC,te [0, 1]}

for x e S1 = Λ/Z and C ef, where [2;] means z mod 1.
Now consider E(h) = S1 x ^(Λ), Γ(Λ) and σ: 9J5?(fe) -> {1, -1} as in § 1.

Let E(h) (or dE(h)) play the role of W (or M respectively). (Below we
omit the word "respectively" in the similar description.) Then we have
the turbulized foliation ^~(h; σ) in § 1:

; σ) = T[jT(h, pr), 3E{h\ σ] .
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σ) consists of compact leaves C e Γ(h) and non-compact

F' = S1 x E(h)° U k({([σ(y)f(t)] + x,y,t)\yedE{h\t e [0, 1]})

for xeS1, where E(h)° and k:dE(h) x [0, 1] -> S(fe) are constructed as
above.

We recall some definitions.

DEFINTION 2.1. Let J*vΛ+1 be the product foliation {{x} x Dn\xeS1}
of iS1 x Dn, and σ: 9D71 —> {1, —1} be a constant map. Then the turbulized
foliation ^ 7 l + 1 ( α i ) = T [ ^ r

Λ + 1 , 3JDra, σ] is called a standard Reeb component
of S'xD71. We called j ^ + 1 ( l ) pίws and ^ n + 1 ( - l ) m i w in Tamura-
Sato [15].

DEFINITION 2.2. Let aidD1-*^ -1} be a bijection. Then
3-D1, σ] is called a standard slope component of S1xD1.

Reeb components A slope component

A half Reeb component A tunneled Reeb component

FIGURE 2.1 The top and the bottom are to be glued
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DEFINITION 2.3. LetDl = {(xlf> >,xn)eDn\xn^0). Then T[ J*ς;+11S1 x
D+, D71'1 x {0}, ±1] is called a standard half Reeb component of
S1 x Dl.

The following is a new component appearing in our decomposition
theorem but not being contained in foliations transverse to the Reeb
component ^B\l) of S1 x D\

DEFINITION 2.4. Let D?1/2tll = {(xl9 , xn) e Rn | 1/4 £ x\ -^ + x\ ^ 1}.
Then TfJ^+MS1 x D?1/2>lhdDn, ±1] is called a standard tunneled Reeb
component of S1 x AW]

DEFINITION 2.5. Let (M^ J*Q and (M2, J ^ ) be Cr foliated manifolds.
We say that JF[ is Cr isomorphic to ^ if there is a Cr diffeomorphism
φ: M, -» Λf2 with ^ Γ = ^ * ^ .

DEFINITION 2.6. A foliation ^ is called a ϋίee& (or ^Zô e, half Reeb,
tunneled Reeb, etc.) component if ^ is C° isomorphic to a standard Reeb
(or slope, half Reeb, tunneled Reeb, etc.) component.

For better understanding, we give some figures in Figure 2.1.

3. Turbulization II and several components I. For some foliations
of S1 x S1 x [0, 1], we can introduce a somewhat sophisticated type of
turbulizations, as follows. The foliations thus obtained will appear in
the decomposition theorem for ^ e t\(^~(h\ σ)).

As the data, we take a transversely orientable foliation Ŝ o °f S1 χ S1

without Reeb components, a positive integer μOf a map σ: {1, • ,μ0}—>

{1, —1} and an element (α, b)e(N x Z) c o p r i m e such that there is a closed
transversal L intersecting all the leaves of ^ 0 with [L] = α[Sx x {*}] +
&[{*} x S1] in ^ ( S 1 x S1; Z). What we will turbulize is the product
foliation Ŝ o

 χ I> where I means the interval [0, 1].
Put μ = a μQ. Let Mt = {[y] eSι = R/Z\(i - 1)1 μ ^ y ^ (2ί - l)/2μ}

for i = 1, , μ, and M = Mx U U Λf̂ . Let M* = {([αί], [δί] + #) 6
S1 x S'lteR, yeM). Then M* Π {[0]} x S1 = M, and ikΓ* has ^0 con-
nected components. Let M* be the connected component of ilί* contain-
ing {[0]} x ilίi for i = 1, •••,&.

We can construct a diffeomorphism a: S1 x S1 x I-> S1 x S1 x I
satisfying the following conditions (l)-(3).

(1) aiS1 x S1 x {«}) = S1 x S1 x {t} for all ί 6 /.
(2) alS1 x S1 x [2/3, 1] = id.
( 3 ) There is a neighborhood U of M * in S1 x S1 such that the leaves

of α*(Ŝ > x I)\U x [0, 1/3] are connected components of ({([-&£], [αί] + y)
\teR] Π Z7) x [0, 1/3] for some yeS1. (See Figure 3.1.)
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FIGURE 3.1

Bend S1 x S1 x I along dM* x {0} so that 3M* x {0} is a corner.
Choose a small collar k: M* x I-+ U x [0, 1/3] such that fc(3M* x /) c
U x {0} and that the leaves of fc*α*(2^0

 x -0 a r e connected components
of ({([-δt], [at] + ») | ί€Λ}nAf*) x I for y e S 1 . Then the turbulized
foliation T[gf0; μ0, σ\ a, b] is defined so that T[5f0; ft, ^ α, &] = «*(^o x I)
on S1 x S1 x I - Λ(M* x I) and that T[5f0; ^0, σ; α, 6]|fc(M* x I) consists
of compact leaves ikίf x {0}, i = 1, •••,//, and non-compact leaves

{fc([αc7(i)/(ί/3)] + a?, [δ*(i)/(t/3)] + », ί) | ί 6 ]0, 1], (a?, y, 0) e F}

for leaves ΐ 7 of &*α*(^0 x I)|ΛΓi* x {0}, i = 1,
/ : ]0, 1] -> ] - co, 0] in § 2. (See Figure 3.2.)

•, μOt where we use

FIGURE 3.2

DEFINITION 3.1. We call T[5f0; μ0, σ\ α, b] a standard gear component
if σ is constant.

The definitions below are not used until § 9, and it is possible to
omit them till then.
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When two standard gear components ^\ — T[&Ί; μί9 OΊ; alf 6J and
&\ = T[&2, μ2, σ2; a2, b2] with ^ = ̂ 2 are given, we can glue &\ and &\
by identifying ^ x {1} and Ŝ 2 x {1}, and obtain a foliation of a mani-
fold homeomorphic to S1 x S1 x I.

DEFINITION 3.2. The foliation obtained above is called a standard
double gear component if the values of σ1 and σ2 are different. -

When Ŝo is the foliation _ ^ r = {{x} x S^xeS1}, we can glue the
foliation {{x} x D2 \ x e S1} to T [ ^ r ; μOf σ; a, 6], and obtain a foliation

DEFINITION 3.3. We call T*[^lτ; μ09 σ; a, 6] a standard arcade com-
ponent if μ0 > 1 and σ is constant.

DEFINITION 3.4. Let ft and #2 be non-negative integers with ft + ft>0.
We call T*\^vτ\ μOf σ; 1, 6] a standard TS' component of type (ft, q2) if
j"o = ?i + (fe + 2 and

. ( 1 for i = 1, ••-,«! + 1 ,

~~ {-1 for j = ft + 2, •••,#>•

REMARK 3.5. A TS' component of type (0, g) is a TS component of
type q defined in Tamura-Sato [15].

When the leaves of ^ 0 are all compact, we can turbulize T[2^o; μOf σ; a, b]
around S1 x S1 x {1} in the directions orthogonal to Ŝ o

DEFINITION 3.6. The foliation obtained above by turbulization is
called a standard turbulized gear component if σ is constant and the
turbulization around S1 x S1 x {1} is performed in the direction of
-ίj(l)(α'[S1 x {*}] + &'[{*} x S1]), where (α', 6') e(Nx Z) c o p r i m e U {(0, 1)} with
aa' + 66' = 0.

Let ^ be a standard turbulized gear component obtained from
T[&Ό; μo, <?\ a, 6]. We may suppose that K = {([at], [bt + (l/4μ)])\teR} x I
is transverse to ^ . Then <& \ K is a slope component. Therefore & \ K
admits a smooth S1 action (see Imanishi-Yagi [6], Fukui-Ushiki [3] and
Fukui [2]) if the turbulization is carefully performed. Let β:K-^K be
a diffeomorphism such that β maps each non-compact leaf of & \ K to a
different leaf of ^ | K. Cutting S1 x S1 x I along iΓ and pasting by β,
we have a foliation Ŝ " of manifold homeomorphic to S1 x S1 x I.

DEFINITION 3.7. The foliation Sf' obtained above is called a standard
perturbed gear component.

We give some figures.
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A gear component An arcade component A TS' component

A turbulized gear component A perturbed gear component

FIGURE 3.3

4. Preliminaries, a lemma of Tamura and Sato, and the TS formula.
Let gf e tl(^~(h; σ)). We give some remarks on gf | C for C e Γ(h). Note
that C is diffeomorphic to Γ2. When & \ C has a compact leaf L, the
homology class [L] e H^C; Z) depends only on <& | C. We call C vertical
if ^ IC has no compact leaf homologous to {*} x C, and otherwise hori-
zontal. If there is an immersion g: S1 x D1 -> C such that g\Int (S1 x D1)
is an imbedding and g*^ is an Reeb component, then g is an imbedding,
and <& IC contains an even number of Reeb components, since & | C is
transversely orientable. As in Tamura-Sato [15], we can construct a C°°
isotopy {φt}teRaΌifl (E(h)) satisfying the following conditions (E1)-(E5).

(El) φt = id for t ^ 0, and φt = & for t ^ 1.
(E2) φ{& 6 ΐ?G^H(Λ; σ)) for all t e iί.
(E3) When 5f |C has no compact leaf for CeΓ(h), each leaf of

φt^\C is transverse to {x} x C and S1 x {y} for all ίc eS1 and /̂ 6C.
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(E4) When C is horizontal, each compact leaf L of &*gf |C has the
form L — {x} x C for some xeS1.

(E5) When C is vertical and & \ C has a compact leaf, each compact
leaf L has the form L = {([αί] + a?, [bt])\teR} for some α e N and 6eZ,
and for each Reeb component & contained in φf& there is a circle
Σ(&)clτ&\&\ such that ^f^ is tangent to the curves {x} x C, Λ GS 1 ,
at and only at Σ(&).

Since it is sufficient for our purpose to consider φf& instead of gf,
hereafter we treat φ**S/ and denote it by & for simplicity.

Since ^ is transverse to dE(h), there is ε > 0 such that & is trans-
verse to k(dE(h) x {«}) for all ί 6 [0, ε], where k: dE(h) x [0, 1] -> JS(Λ) is
the collar used in the definition of J^Qi\ σ). Let A = E(h) - k(βE(h) x
[0, ε[) and Ax = Fx Π A for a; e S1, where J?73' is the non-compact leaf
defined in §2. Let dcA = k(C x {ε}) and dcA

x = Fx n 3σA for CeΓ(h).
Then 3A = U{3(?-A|C6Γ(fe)}. We have a diffeomorphism Ύ:dE(h)-^dA
such that zedE(h) and 7(2) belong to the same leaf of gf. We may
assume the following conditions.

(E4)' If CeΓ(h) is horizontal, then 3cA
[0] is a compact leaf of

where [0] e S1 = R/Z means 0 mod 1.
(E5)' If C e Γ(h) is vertical, then for each Reeb component

tained in 5f I dcA there is a circle Σ(&) c Int | & \ such that gf
tangent to the curves d0A*, xeS\ at and only at Σ(C) = \
is a Reeb component contained in ^\dcA), where \&\ means the under-
lying manifold of ^?. (See Figure 4.1.)

In order to recall a lemma in Tamura-Sato [15], we make preperations.
Let CeΓ(h) be vertical. When &\C has a compact leaf L, we appoint
the orientation of L so that [L] = a[S' x {*}] + δ[{*} x C] in H^C; Z) for
some aeN and 6eZ.

|3A,

con-
A is

FIGURE 4.1
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DEFINITION 4.1. In the above situation, a Reeb component & con-
tained in <& IC is called positive (or negative) if a compact leaf L of &
has an expanding (or contracting) holonomy in the direction of σ(C)-L.
A Reeb component & contained in 2^ 13CA is called positive (or negative)
if 7*^? is positive (or negative).

The lemma which we need is the following.

LEMMA 4.2 [15, Lemma 1]. Let & he a Reeb component contained
in &\dcA and Σ{0) n A ' = {z}. If & is positive, then &\AX forms a
family of concentric half circles with center z in a neighborhood of z.
If & is negative, then <& \ Ax forms a family of confocal parabolas in
a neighborhood of z. {See Figure 4.2.)

z z
concentric confocal

half circles parabolas
FIGURE 4.2

Now we introduce the TS formula for &. When C e Γ(h) is vertical
and 5f | C has no compact leaf, let a{C) = b(C) = oo and r(C) = 0. When
C 6 Γ(h) is vertical and ^ | C has a compact leaf L, define (α(C), b(C)) e
(N x Z) c o p r i m e by

[L] = aiC^S1 x {*}] + δ(C)[{*} x C] in H^C; Z) ,

and let r(C) = p(C) — q(C), where p(C) (or q(C)) is the number of positive
(or negative) Reeb components of &\C. When CeΓ(h) is horizontal,
let (α(C), b(C)) = (0, 1) and define r(C) in the same way as above but by
replacing gf|C by c*(5f|C), where c: S1 x C -> S1 x C is defined by
Φ , 2/) = (l/, ») for a? 6 S1, 7/ e C = S\

PROPOSITION 4.3 (The TS formula). In the above situation,

Σ a(C)r(C) = 4 - 2Λ ,
CeΓίΛ)

where we use the convention that oo O = 0.

PROOF. Regard &\Am as the set of orbits of a vector field Y by
giving an orientation. By patching two copies of A[0] along 3A[0], we have
a closed manifold W. We obtain a vector field Ϋ on W from 7 U ( - Γ ) .
By Lemma 4.2, the vector field Ϋ has p (or q) singular points of index
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1 (or —1), where

p = Σ a{C)p(C) and q = Σ a(C)q(C) .
CeΓ(h) CeΓ(h)

Since the Euler number of W equals 4 — 2h, we have the formula.

5. The characteristic diffeomorphism of ^ 6 t\{^{h\ σ)) and the
projection of a leaf of gf | C to JF*. Let Ŝ  6 t%^(h; σ)). Take a vector
field X of J5(A) tangent to & and transverse to J^ijfϊ, σ) such that X is
inward (or outward) at y edE(h) with σ(y) = 1 (or — 1). We may suppose
that y e dE(h) and 7(#) is on the same orbit of X. For x e S1, let F* be
the non-compact leaf of ^~(h; σ) defined in § 2. Since F* is proper, for
each y eFx there is the first point ψa(y), of the orbits of X starting from
y, intersecting Fx. Then ψx(y)'s give rise to a diffeomorphism ψx: F

x —> I*7*.

DEFINITION 5.1. We call ψx above the characteristic diffeomorphism
of 5f with respect to X for F*.

DEFINITION 5.2. For a subset 5 of 3E{h), the rβαϊ projection RP,. (2?)
of I? to JP* along X is the set of zeFx such that the orbit of X passing
through z intersects B. For a leaf L of &\dE(h), the projection Pβ(L)
of L to ί7* along X is the saturation of RP,. (L) with respect to ST | .P3'.
We denote by P* (L) the set of leaves of <&\F* contained in Pβ(L).

Clearly ψϊ(%? \ Fx) = <& \ Fx and ^.(P. (L)) = P. (L). The set RP, (L) is
open in P^ (L). For disjoint subsets B and i?' of dE(h), it follows that
RPX (5) ΠRPX (Bf) =0ifσ\B{jB'is constant. Furthermore ψx and P,, (L)
have the following useful properties.

PROPOSITION 5.3. Let L be a leaf of g?\dE(h).
(1) The group {ψx\neZ} acts transitively on the set PJ (L).
( 2 ) Let U be another leaf of 5? \ dE(h). If P. (L) ΓΊ P. (L') =£ 0 , then

P, (L) = Fx (U).
( 3 ) If L is a compact leaf and C e Γ(h) with LaC is vertical, then

#Pί (L) = a(C), where a(C) was defined in § 4.
(4) 1/ #P? (L) < oo, ίfee^ CeΓ(Λ) 'M iίfe LdC is vertical and L is

a compact leaf or a non-compact leaf of a negative Reeb component con-
tained in &\C.

PROOF. (1) Let Kt and K2 be leaves of &\F* contained in PX(L).
By definition of P^ (L), there are points yt and y2eL such that the orbit
of X passing through yt intersects Kt at some point zif i = 1, 2. Since
L is connected, there is a path ω: /—> L with α>(0) = ^ and α>(l) = ?/2.
Transporting cw along X, we have a path ώ: I-> K such that ώ(0) equals
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zt and ω(t) and ω(t) are on the same orbit of X. Then o>(l) e K19

y2 = ω(l) and z2 e K2 are on the same orbit of X. This implies that
fn

x(ω(l)) = z2 for some neZ. Then ψ^KJ = iζ>.
( 2) Suppose that P, (L) Π P. (I/) Φ 0 . Then P? (L) n Pί (2/) * 0 . Let

ίΓ0 e P*(L) Π P?(L') Then for each Ke P*(L) there is n 6 Z with tί(-Ko) = ^
by (1). Since ^;(P* (L')) = P? (JJ) by (1), it follows that that ίΓeP? (I/).
This implies that P^ZOcP^L'). In the same way we have Pβ(L')cPβ(L).

In order to prove (3) and (4), we make preparations. Let ίf={[0]}xC.
Then RPX(H) consists of an infinite number of circles and we can number
them so that RP^ (H) = {Hi\ieZ} and that if i < j then Hi is between
H and H5 in E(h). With respect to the topology of Fx, the set
ΠneZCl (\Ji<nHi) is empty. For each i, the connected component Ft of
F* — Hi containing H^ is diffeomorphic to S1 x R and the closure of
Fi in F z is not compact. Furthermore the decreasing sequence Fo, F_ly

determines an end ε of Fx with Lε(Fx) = C, where Lε(Fx) is the ε-limit
set of F (see Nishimori [8]).

LEMMA 5.4. Suppose that C is vertical.
(1) If L is a leaf of &\C contained in C - \J{Iτιt\&\\& is a

Reeb component contained in 5f\C}, then each connected component of
RPs (L) intersects Hi at exactly one point for all ieZ.

(2) For a Reeb component & contained in ^\Gy the real projec-
tion RPs (1^1) of I & I intersects Ht for all ieZ, and gf | (RPX (\&\)ΓiFt)
is as in Figure 5.1.

PROOF. (1) is clear and (2) follows from Lemma 4.2.

PROOF OF PROPOSITION 5.3 CONTINUED. (3) Suppose that L is com-
pact and C is vertical. Since H Π L is finite, so is the set Hi n RPX (L)
for all ieZ. By Lemma 5.4 (1), we have #P? (L) < oo.

Hi-2

if & is positive if ^ is negative
FIGURE 5.1
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( 4 ) Suppose that #P? (L) < <*>. Then C is vertical. For, otherwise,
we may suppose that H = {[0]} x C is a compact leaf and it is easy to
see that for each leaf U of gf | C the intersection P^ (I/) n (2^ - i<Vi)
consists of exactly one leaf of &\F*. Therefore #P?(L) = oo, which is
a contradiction.

We see that L is not a non-compact leaf contained in C — \J {\&\ \&
is a Reeb component contained in gf | C}, as follows. Suppose the contrary.
Then L intersects H infinitely many times, and #(1^ (Ί RP* (L)) = °° for
each ieZ. Since the foliation 5f\C is orientable, the curves ϋΓnRPβW
for K e P* (L) cross the circle JGΓ0 in the same direction when ^ | Fx is
oriented. Futhermore the closure of each connected component of RP^ (L)
with respect to the topology of Fx is non-compact by Lemma 5.4 (1).
Therefore each Keΐi(L) intersects HOΓ\RFX(L) at exactly one point.
Thus we have #Pί (L) = ©o, which is contradiction.

We see that L is not a non-compact leaf of a positive Reeb com-
ponent contained in S^|C, as follows. Suppose the contrary. Then
#(.#, Π RP, (I/)) = oo for each ieZ, By Lemma 5.4 (2), the closure of each
connected component of RP^ (L) in Fx is non-compact. Therefore each
ULGP?(L) intersects ίί0 Π RPa, (L) at at most two points. We have a
contradiction as above. This completes the proof of Proposition 5.3.

6. Negative Reeb cycles. In this section we investigate negative
Reeb cycles defined below, which can be regarded as a preparation for
the next section. Let ST e t\(^~(h\ σ)).

DEFINITION 6.1. A negative Reeb chain of & is a finite ordered set
n ^ 1, of negative Reeb components contained in

such that
(1) P. (N!) = Pα (N}+1) for i = 1, . - -, n - 1, where N} and Nf are

the compact leaves of ^V\, and
(2) lnt \tyKl\ and I n t | ^ 7 + 1 | are in the same side of the compact

leaf Gi of ^ containing JV? and iV/+1, for i = 1, , n — 1.
We denote JV?, 'JV2, ^ ς and ^ ς by o(ίT), e(^), ΛW&) and ^ ( 9 f ) ,

respectively.

DEFINITION 6.2. A negative Reeb cycle of ^ is a negative Reeb chain
^ of ^ with β(^) = o(^). A negative Reeb cycle ^ is called strange
if there are a vertical CeΓ(h) and a compact leaf L of S^|C with

0 .

Note that if Ŝ  contains a gear component Ŝ o then 5 0̂ contains a
negative Reeb cycle.
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be a negative Reeb chain.

First we have the following.

PROPOSITION 6.3. Let <&> =

Then σ K M ^ I U ••• U \^K\) is constant.

PROOF. Let G4 be the compact manifold of Ŝ  containing N* and
Nf+19 as in Definition 6.1. A consideration on the holonomy of Gt on the
side of \^Y[\ tells us that σ\(\^Vl\ U |^7 + 1 | ) is constant. Then the prop-
osition follows.

Let <& — (<yVl, , .-ΛO be a negative Reeb chain. We use the nota-
tions in Definition 6.1. Let us consider the holonomy of leaves in P* (Nf)
with respect to & \Fx. For each i9 there is a unique bisection a^. P£ (JV<) —>
P* (N}) such that M e P* (iVtO and α4(Λf) intersect the same connected
component of RP β ( |^7 | ) . For each MeF* (Ni), take a small line seg-
ment Γy(M") in R P β ( | ^ ς | ) transverse to ^ 1 ^ with an endpoint zj(M)
in M. A iocαZ homeomorphism φ: (X, #0) -^ ( ^ 2/o) means a homeomorphism
from a neighborhood of xQ in X to a neighborhood of y0 in Y with
φ(x0) = y0. For each Me~P*(N})9 there is a local homeomorphism h[M]:
(T\M), z\M)) -> (Hα^Λf)), tf(at(M))) such that ^ e Dom (Λ[Λt]) and λ[Λf ](«)
are on the same leaf of ^ [RP^ (I^/Jl), where Dom (h[M]) is the domain of
h[M] Furthermore there is a local homeomorphism k[M]: (T\M), z\M)) —>
(T\M), z\M)) such that ^eDom(Λ[M]) and ^[MK'M;) are on the same
leaf of &\W9 where W is a sufficiently small neighborhood of M in Fx.
(See Figure 6.1.)

FIGURE 6.1
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Suppose that <& is a negative Reeb cycle, that is, Ni = N}. Let

a = ano. . o«i: Ps* (tf?) -» p* (JV?). Since #Pί (Λ?) < oo by Proposition 5.3,

there is a minimal positive integer v with αv = id. Let rj[M] = Jfc[α(JJf)] °

] M ] ) W)) WC))
and ^[Jtf ] = η[a"-χM)] o - - o ^[M]: (f(Jlί), ^(ilf)) -* ( W , «W))

The goal of this section is to prove the following.

he a strange negative Reeb
imbedded in Int E(h) satisfying

PROPOSITION 6.4. Let 9^ =

cycle. Then there exists a torus
the following conditions.

(1) S(9f)n F ' c R P . f l ^ D U ••• U R P β ( | ^ ς | ) U U for all xeS1,
where U is an arbitrarily small neighborhood of Fx (N}) U U Pβ (JV2).

( 2 ) S(^) is transverse to & and to ^~(h; σ).
( 3 ) S(^) Π Fx consists of a{C^jv circles for all x e S\ where C, e

Γ(h) contains \ΛΊ\ and v is as above.

DEFINITION 6.5.

of ΐf.
We call in Proposition 6.4 a separating torus

REMARK 6.6. In § 11, we see that Sf |D is a gear component, where
D is the closure of the domain surrounded by \ΛΊ\, , \<yK\> Gl9 , Gn

and S(^) . In § 14, we show that S{^) Π Fx consists of exactly one
circle, that is, v = aiCj).

PROOF OF PROPOSITION 6.4. Since ^ is strange, there are a vertical
CeΓ(h) and a compact leaf L of &\C with PX(L) Π RPx(Int l^fTl) ^ 0 .
This is true for x = [0]. For simplicity, we omit the suffix [0] from

FIGURE 6.2
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etc. We use the notations as above for x = [0] and consider Me
Then there is i£eP*(L) intersecting the connected component B

of RPd^/^l) containing M. Let Ko be a connected component of K c B.
Put aλ = α(Ci). Since ψaι(M) = M, the confocal parabolas ψnai(K0) approach
M when n moves to oo or -oo, This implies that K intersects T\M)
at infinitely many points converging to z\M), since ψnaia{C)(K) — K for
all neZ. Therefore the local homeomorphism η[M.]: (T\M), z\M)) —>
{T\M\ z\M)) has no fixed point. Take zeKΠ Dom 0?[il£]). Let Ω be
the domain in F surrounded by ikf, a^M), , α ^ o . -oαiOα^Xikί), the
closed interval T* in Γ^M) between z and ^[M"]^), and the closed interval
I P in if between z and )?[M](z). (See Figure 6.2.)

We can take a closed transversal Scoί^\F'mΩ with S'c = faφ(Sc) c i3.
Denote by Sα the union of the intervals of orbits of X between some
point yeSe and ψai/\y). Then Sa Π Fx passes near each M! e F* (N})
exactly once for all x e S1 — {[0]}. We see that Sc and S« intersect K at
exactly one point. Therefore Se and S« intersect each leaf of &\Ω at
exactly one point. Then there is a diffeomorphism ξ: Sc -> So such that
2/GSC and ξ(y) are on the same leaf of &\Ω. Now we can modify Sa

in U {Fw 11 - ε < t ^ 1} for small ε > 0 by translating each y e Sc to ξ(y)
along a leaf of &\F9 so that we obtain a torus S(^) transverse to <&
and ^"(fc; σ). Clearly S(^) has the desired property.

7. An investigation of leaves of ^ e ίJ^^Ok; cr)) containing compact
leaves of &\C for a vertical CeΓ(h). Let gf e tl(^(h; σ)) and fix a
vector field X of jE'(fe) as in §5. Let ^ , ̂ μ be the strange negative
Reeb cycles of 2 .̂ For each ^ , take a separating torus S ( ^ ) . We may
suppose that X is tangent to S ( ^ ) for all ί.

Fora vertical CeΓ(h), we have the following proposition. Proposi-
tion 7.1 is a generalization of Lemma 3 in Tamura-Sato [15], and its
proof can be regarded as a new proof of the lemma.

PROPOSITION 7.1. Let CeΓ(h) be vertical. Let L be a compact leaf
of &\dE(h), and G the leaf of & containing L. Then one of the
following occurs.

(1) G is a compact leaf diffeomorphic to S1 x I.
(2) G is a non-compact leaf diffeomorphic to S1 x [0, ©o[ and the

limit set of G consists of a compact leaf of <& diffeomorphic to T2.
(3) G Π S(^t) Φ 0 for some i, and the closure of the connected

component of G — (S(^Ί) U U S(^ι)) containing L is diffeomorphic to
&x I.

PROOF. Let A = E(h) - k(dE(h) x [0, ε[), Ax = Fx Π A, etc., be as in
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§4. We fix [0] as xeS1 and omit the suffix [0] except from A[0] for
simplicity. Thus F = Fί0\ ψ = ψίoh P(L) = P[0](L) and so forth. We
may suppose that S ^ ) c Int A for all ί.

Take a leaf K e P* (L) and a point y0 e K n RP (L) n 3A[0] When the
connected component ϋΓ* of if Π A[0] containing y0 is not compact, the
limit set of K* is a circle S contained in IntA [ 0 ] by the Poincare-
Bendixson theorem. Since α = #P*(L)<oo and ψ(P (L)) = P (L), it
follows that ψa(S) = S. It is easy to check that the case (2) occurs.
(Consequently P (L) Π RP (Int | ^ | ) = 0 for all Reeb components Λr
contained in &\dE(h).)

When JRΓ* is compact, the endpoint yλ of K* with ^ =£ y0 belongs to
dA™. Then there is a leaf L' of &\dE(h) with Z / ^ L and y^ΈLPiL').
Since #P*(L') = #P*(L)< oo, the leaf Π is

( i ) a compact leaf,
or

(ii) a non-compact leaf of some negative Reeb component ^Vl con-
tained in &\dE(h)9

by Proposition 5.3. In the case (i), we see easily that the case (1) occurs.
(Consequently P (L) Π RP (Int | ^ | ) = 0 for all Reeb components ^V of
gf |3S(λ), again.)

Now consider the case (ii). We need the following.

LEMMA 7.2. In the case (ii), there is an infinite sequence Lt = L,
Lz9 ''' of compact leaves of & | dE{h) such that for each i one of the
following occurs.

(a) Li+1 is a compact leaf of a negative Reeb component ^Vi contained
in 5?\dE(h) with RP (Int | ^ | ) Π P (L,) Φ 0 .

(b) Li+1 is a compact leaf of a negative Reeb component ^4^ such
that L\ Φ Li and P (L ) = P (Lt), where L\ is the other compact leaf of

PROOF. Let L2 be a compact leaf of ^ . Then for i = 1 the case
(a) occurs. Suppose that we have already obtained Lu —,Ln (n^2)
satisfying (a) or (b). Note that P (L) Π RP (Int | ^ | ) Φ 0 for all i = 1,
• , n - 1 and that the limit set £f{K) of K in F intersects P (L<) for
i = 2, , w. Take Z n e P*(Ln) and yneKnΠ RP (L.) Π 3A^. Let Kt be
the connected component of Kn n A[0] containing #n. We see that Kt is
compact, as follows. Suppose the contrary. Then Jzf(K%) is a circle in
Int AM. Since £f(K) i) &(K*), the case (2) occurs. Therefore P(L)Π
R P ( I n t | ^ Ί ) = 0 for all Reeb components <yΓ contained in
which is a contradiction.
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Let zn be the other endpoint of K%. Then znedAm and there is a
leaf L'n of &\dE{h) with L'nΦLn and P (LI) = P (LJ. Therefore
#P(LJt) < oo. When L'n is a non-compact leaf of a negative Reeb com-
ponent %Ar

n contained in &\dE(h), let Ln+1 be a compact leaf of y\^n.
Then Ln+1 satisfies the condition (a).

Now suppose that L'n is a compact leaf. Since J*f(K) intersects
P(LJ = P(L»), there is a leaf L" of &\dE(h) passing arbitrarily near
L'n with P(L") = P(L). Since P(L) n RP(Int | ^ | ) Φ 0 , the leaf L"
cannot be compact by the remark before Lemma 7.2. (For, otherwise
the case (1) occurs.) Therefore L'n is a compact leaf of a negative Reeb
component ^Ϋl contained in &\dE(h). Let Ln+1 be the other compact
leaf of ^// . Then Ln+1 satisfies the condition (b). This completes the
proof of Lemma 7.2.

PROOF OF PROPOSITION 7.1 CONTINUED. We see that (a) in Lemma
7.2 occurs for only a finite number of i's, as follows. Suppose the
contrary. Since &\dE{h) contains only a finite number of negative Reeb
components, there is a sequence i(l) < ΐ(2) < with L<(1) = L<(2) = .
Note that for i, k with j < & the limit set of each leaf eP*(L<(i))
contains a leaf eP*(L i ( Λ )). Since #P*(Li(1)) < oo, there is ΛfeP*(L<(1))
with J*f(ML) =) ikf. Since all leaves of & | F are proper by the Poincare-
Bendixson theorem, we get a contradiction.

Since ^ | dE(h) contains only a finite number of negative Reeb com-
ponents, there are ΐ, j with ί < j such that . ^ = ^ ^ . Thus we obtain
a negative Reeb cycle ^ = (Λϊ, , ̂ 5_i). Easily we see that the case
(3) occurs. (Consequently we see that (a) occurs only for i = 1.) This
completes the proof of Proposition 7.1.

8. An investigation of & et[(^(h;σ)) near a horizontal CeΓ(h).
Let 5f e t\{^~{h\ σ)) and fix a vector field X on E(h) as in §5. For a
horizontal CeΓ(h), we have the following.

PROPOSITION 8.1. Let CQeΓ(h) be horizontal. Then one of the
following occurs.

(1) h = 2, the other deΓ(ft) — {Q is horizontal, σ(C^) = —σ(C0),
and Sf is isomorphic to the product foliation (&\C0) x [0,1],

(2) Aii leaves of &\C0 are compact, all leaves of & intersecting
Co intersect no CeΓ(h) — Co, and & \ Cl (Sat (Co)) is a tunneled Reeb
component, where Sat ( ) means the saturation with respect to &.

(3) The foliation & \ Co has no Reeb component, all leaves of &
intersecting Co intersect a vertical CeΓ(h), and ίfCf) Sat(C0) Φ 0 for
CeΓ(h) — CQ, then C is vertical and σ(C) = — σ(C0). Furthermore
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& I Cl (Sat (Co)) is a gear component.

PROOF. For simplicity, suppose that σ(CQ) = 1. Hence X is inward
at Co. We omit the suffix [0] except from A[0], as in §7.

Take a compact leaf L of &\C0. Since Co is horizontal, we can
number the leaves in P*(L) so that P*(L) = {• , L_!, Lo, Llf •}, and
^(L, ) = Lj+1 for all j e Z. Note that [L, ] = [Lk] in JΪ^RP (Co); Z) for all
j,keZ. Consider ^f = ΠnezClF(\Jj>nLj)f where C1F ( ) means the
closure with respect to the topology of F. Note that £f = Cl̂  (RP (Co)) —

( i ) Suppose that £f is empty. Then F = RP (Co) and Λ = 2. Let
- {CO} = {Cx}. Since RP (Co) ΓΊ RP (CJ ^ 0 , it follows that ^(CJ =

— σ(C0). It is easy to check that & is isomorphic to (^|C 0) x /. Thus
we have the case (1).

(ii) Suppose that Sf is non-empty and compact. Then we may
suppose that i f c A 1 0 1 . Since Cl̂  (\Jj>n Ld) is saturated with respect to
&\F9 so is £f. If £f contains a non-compact leaf K of S^lί7, then
the limit set J*f(K) consists of exactly two compact leaves in £f because
i4.[0] can be regarded as a subspace of D\ If J?f contains at least two
compact leaves Kx and K2, then RP (Co) must contain a one-sided neigh-
borhood of Ki in F for i = 1, 2, and RP(C0) has at least three isolated
ends. This is a contradiction since RP (Co) is homeomorphic to S1 x Λ.
Therefore =SP consists of exactly one compact leaf L* of &\F. Since
ψ(L*) = L*, the leaf G* of 5f containing L* is diffeomorphic to T\
Clearly G*clnt£r(fe).

We see that all leaves of S^|C0 are compact, as follows. Suppose

s?\c σ(C) = 1

FIGURE 8.1

σ(C) = - 1
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the contrary. Then L* has a non-trivial holonomy on the side from
which the sequence Llf L2, converges to L*. Since G* has a non-
trivial holonomy in the direction of orbits of X, too, and gf is of class
C°°, we have a contradiction by the result of Kopell [7]. It is easy to
check that & | Cl (Sat (Co)) is a tunneled Reeb component. Thus we have
the case (2).

(iii) Suppose that ^f is non-empty and non-compact. It follows
that &> contains no compact leaf of &\F. Let F' = F - Int A[0]. For
CeΓ(h), let F'c be the connected component of Fr containing dcA

m.
Then F'c is diffeomorphic to ]-°°, 0] x C (or [0, oo[ x C) if σ(C) = 1 (or
— 1), and <&\F'C is isomorphic to the restriction of the covering foliation
on R x C of 5f |C. (See Figure 8.1.)

Since .Sf is non-empty, it follows that Lό Π F'c = 0 for all horizontal
CeΓ(h) — {Co}. Since =SP is non-compact, it follows that L, Π F'c Φ 0
for a sufficiently large j and some CeΓ(h) - {Co}. If L, Π F'c Φ 0 for
CeΓ(h) — {Co}, then L, is tangent to the curves in RP ({x} x C), xeS1,
at some point by (E5) in §4, and σ(C) = — σ(C0) = - 1 by the remark
before Proposition 5.3. Furthermore in this case it follows that L^Π
FOΦ 0 for / > j , and L, e P*(J7) for a non-compact leaf U of a negative
Reeb component of g71C. We denote by ^ the set of negative Reeb
components ΛT contained in &\dE(h) with RP (Int \^r |) n P (L) ^ 0 .
Then ^f = \J{P (N) \ N is a compact leaf of some ^ e ^} by the above
arguments. Since RP (Co) has exactly two ends, we can give an order
to ^ so that ^ becomes a negative Reeb cycle. Let & = {^Vl, , ^ 0
We use the notations in Definition 6.1.

We see that <& \ Co contains no Reeb components, as follows. Suppose
the contrary. Then the structure of &\F as a foliation breaks near
points in J*f, which is a contradiction.

Clearly Cl (Sat (Co)) is homeomorphic to S1 x S1 x I. And
^ I (Cl (Sat (Co)) - U) is C° equivalent to the product foliation (Sf | Co) x /,
where ?7 is an open tubular neighborhood of Gλ U U Gn in 2£(Λ).
Since Nl is homotopic to a circle S in \Λΐ\ U 3U and S is transverse to
Ŝ , the circle iVx1 is homotopic to a circle transverse to 2^|C0 in
Cl (Sat (Co)). Furthermore S intersects all the leaves of gf | (Cl (Sat (Co)) -
U). Now it is easy to see that ^ | Cl (Sat (Co)) is a gear component.
Thus we have the case (3). This completes the proof of Proposition 8.1.

9. The decomposition theorem. The purpose of this section is to
state one of the main theorems of Part I. Let ^ e t\{^{h\ σ)). We
suppose that ^ is not C° isomorphic to (S^|C) x / for any CeΓ(h).
When h Φ 2, this assumption is automatically satisfied.
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Let ^ Ί , , <ĝ  be the strange negative Reeb cycles of ^ . For
each ^ , take a separating torus JS(^,). A subleaf of ^ (or &\A) is
the closure of a connected component of G — (S(<g*i) U U S{^μ)) for
some leaf G of ^ (or &\A). Let i2 be the set of compact manifolds
obtained from the connected components of A — (S(ί^) U U S(^)) —
\J{G\G is a compact subleaf of ^\A] by attaching the boundary. For
DeΩ, we denote by *Z> the image of canonical immersion c[D]: D-* A. •
Let *Ω = {*D\DeΩ}.

Let *<9 be the set of the closure of connected components of A —
(S(ίfJ U U S($fμ)) -\J{*D\DeΩ}. For *Γ6 *<9, the foliation gf | *T
consists of a compact subleaf, or is a bundle foliation over I or S1. When
gf I *Γ is a bundle foliation over S\ let Γ = g*(*Γ), where g: [0, 1] -> S1 =
[°, l]/{0, 1 } i s the quotient map, and denote by c[T]: Γ-> *Γ the canonical
immersion (when we fix a bundle structure of *Γ). In the other cases,
let Γ = *T and *[T] = id: T - > * T . Let <9 = {T| * Γ e *Θ}.

For each * i )e* i2U*θ and cceS1, let *D* = *Z>nA*. The number of
connected components of *DX is finite. Let *Z)1

a;, •••, *DZ{D) be the con-
nected components of *D*. Let D ; = ί D ] " ^ * ! ) ; ) . Furthermore let *ώ£C =
{*D;|Z)eώ, i = l, ... fα(Z?)}, Λ = {Z>; | JD e Λf j = 1, - ,
{ * T ; | T G Θ , i = l, .-.,α(Γ)} and θ = { Γ / | Γ e θ , i = 1, •• ,

DEFINITION 9.1. We call Ω U Θ (or Ωx U θx) the TS decomposition of
A (or A*) with respect to g^.

For each DeΩ, we define six non-negative integers, as follows. A
leaf of & I *Z)1

[0] is a connected component of G Π * A [ 0 ] for some leaf G
of ^ . We say a connected component J of 3A[0] is

o/ type (I) if * J is equal to 3cA
m for some C e Γ(h) or to a connected

component of A[0] ΓΊ S(^t) for some i,
of type (m) if * J" is equal to a connected component of A[0] Π G for

some compact leaf G of &\IntA, or
o/ i#pe (n) if * J contains a leaf of ^ | * A [ 0 ] homeomorphic to I,

where * J = 4-D](J). Let Z(JD) (or m(D), w(I?)) be the number of connected
components of dA[0] of type (ϊ) (or (m), (n)). Since each connected com-
ponent of 9A[0] is of type (I), (m) or (n) by Propositions 7.1 and 8.1, we
see that 1{D) + m(D) + n(D) equals the number of the connected com-
ponents of dA[0].

Let J be a connected component of 3AC0] of type (n). By Proposi-
tions 7.1 and 8.1, *J contains a finite number of leaves Jlf •••, J β of
^ I * A [ 0 ] homeomorphic to /, and * J — (Jx U U Ja) consists of open
intervals contained in Int | & | for Reeb or slope components & contained
in gf|3*Zλ Furthermore * J f l ( S ( ^ ) U ••• U S ( ^ ) ) = 0 , and CeΓ(h)
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intersecting *J is vertical by (E4)' in §4.
Let p(D) (or q(D\ s(D)) be the number of positive Reeb (or negative

Reeb, slope) components contained in S^|3*D intersecting 3TC*A[0], where
3n*A[0] is the union of *J for connected components J of A[o] of type
(n). Note that p(D) + q(D) + s(D) equals the number of leaves of
2^|AC0] contained in the connected components of 3A[0] of type (n)f

where gf |A[0] = (ψD]|AC01)*Sf.

DEFINITION 9.2. We call ch (D) = (Z(D), m(Z>), τι(JD); p(D), ί(D), «(JD))

the characteristic hexad of D.

Now we can state the following.

THEOREM 3 (The decomposition theorem). Let & etl(^(h; σ)).
Suppose that & is not C° isomorphic to (&\C) x I for any CeΓ(h).
Let Ω U Θ be the TS decomposition of A with respect to ^\ Then for
each DeΩ the possibilities for &\D are the cases in the following table,
and these cases can occur for some 2 .̂

type

I
II

III
IV
V

VI
VII

VIII

IX

c h φ )

(0,0,1;
(0,0,1;
(0,0,1;
(0,0,1;
(0,0,2;
(1,0,1;
(0,1,1;

(1,1,0;

(0,2,0;

1,0,
0,0,
0, q
l,q

0,(7
0,q
0,<7

o,o,

0,0,

0)
2)
> 0
> 0
> 1
> 0
> 0

0)

0)

,2)
,0)
,2)
,0)
,0)

&\D

a half Reeb component
an I-times slope component^
a TS' component
an arcade component
a double gear component
a gear component
(1) a turbulized gear component
(2) a perturbed gear component
(1) a tunneled Reeb component
(2) a rational rifle component^**
(3) an irrational rifle component^
(1) an S^times slope component^
(2) an S^times Reeb component^

w
w
w
w

(3) a twisted S1-tiτnes Reeb component^

The terms with (*) in the table will be defined in the next section.
The mark [σ] in the table means the existence of the following restric-
tions to σ(C) for CeΓ(h) concerned.

(III) σ(C') = σ(C) (or -σ(C)) if Sf|(*Dn3<4) and S?\(*D f)dc,A)
contain negative Reeb components, and *D Π dcA and *D Π dG>A belong
to the same (or different) connected components of 3*D — Int (\Sζ\ Ό\<9ί\)f

where S^ and Si are the slope components contained in &\d*D.
(IV) σ(C) = —σ(C) if & \ (*D Π dcA) contains a positive Reed com-

ponent and &\(*D Pidc'A) contains a negative Reeb components.
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(VI) σ(C')= -σ(C) if CeΓ(h) with dcAc:*D is horizontal, * ΰ n
dc,A Φ 0 and C Φ C.

(VII) σ{C) = σ(C) if *Z? ΓidcAΦ 0 and *Z> n dc,A Φ 0 .

REMARK 9.3. In the case h = 1, Theorem 3 corresponds to Theorem
1 in Tamura-Sato [15], where the possibilities for &\D are types I, II
and III, and there exist no negative Reeb cycles.

10. Several components II. We give the definition for the com-
ponents appearing in the decomposition theorem (Theorem 3) and not
yet defined. Recall Definition 2.6.

DEFINITION 10.1. A standard I-times (or S^times) slope component
is the product foliation ί x ^ 0 (or S1 x 2 0̂), where ^ 0 is a standard
slope component of S1 x I. A standard S^times Reeb component is the
product foliation S1 x J^ 2 (±l) , where J^ 2 (±l) is a standard Reeb com-
ponent of S1 x ΰ 1 .

An /-times slope component An S^-times slope component An S^-times Reeb component

A twisted S^-times Reeb component A rational (or irrational) rifle component
FIGURE 10.1
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Consider I x ^ ? ( ± 1 ) and take a diffeomorphism φ: S1 x D1-*S1 x D1

such that φ maps each non-compact leaf of «J^2(±1) to a different leaf
of ^ 2 ( ± 1 ) , as in §3. Then we have a foliation ^ of a compact
manifold diffeomorphic to S1 x S1 x D1 from I x J ^ 2 ( ± l ) by attaching
the top and bottom oί I x S1 x D1 by φ.

DEFINITION 10.2. The foliation ^~φ constructed above is called a
standard twisted S^times Reeb component.

Take a e R. Let J ^ be the foliation of JR2 x I consisting of a leaf
R x {0} and leaves

{(x+f(t\ -af(t),t)\tel}

for xeR, where we use the function /: ]0, 1] —> ]— co, 0] introduced in
§2. Since the canonical action of Z φ Z to R2 x I preserves j ^ a y we
obtain the quotient foliation ^ / Z φ Z o f ί S 1 x S 1 x I = i 2 2 x I/Zφ Z.

DEFINITION 10.3. We call ^ / Z φ Z a standard rational (or irra-
tional) rifle component if a is rational (or irrational).

We give some figures. (See Figure 10.1.)

11. The proof of the decomposition theorem. The purpose of this
section is to prove Theorem 3. Let D e Ω and ch (D) = (I, m, n; pf q, s).
Construct the double W of D[01 by pasting two copies of D^ along
dJλC0] - U ί ^ l ^ i s a compact leaf of gf |AC0] contained in dnA

c°3}, where
dnDj;0] is the union of connected components of dD^ of type (n). Then
we have a vector field Y on W whose orbits are the leaves of ( ^ {D^ U
S l̂-D/03)- The index of Y equals p — q, as in §4. Since W is obtained
from a closed surface of genus n — 1 by deleting 2(1 + m) + p + q + s
open two disks, we have

p — gr = 4 — 2(1 -{- m + n) — p — q — s .

Therefore we have an equation

( * ) 2(1 + m + n + p) + s = 4 .

The solutions of (*) are

(0, 0, 1; 1, q, 0) , (0, 0, 1; 0, q, 2) , (0, 0, 2; 0, qT', 0) , (1, 0, 1; 0, ?', 0) ,

(0, 1, 1; 0, q', 0) , (2, 0, 0; 0, 0, 0) , (1, 1, 0; 0, 0, 0) , (0, 2, 0; 0, 0, 0) ,

where q ̂  0, #' ̂  1 and #" ̂  2. Now let us examine the solutions of
(*) one by one.

The case ch (D) = (0, 0, 1; 1, q, 0) where q ̂  0. Suppose that q = 0.
Then ^ |A C 0 ] consists of concentric half circles with center 20 at
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FIGURE 11.1

We denote by D the compact manifold obtained from D — A[o] by-
attaching two copies of A[0] as the boundary. Then D is diffeomorphic
to / x A[0]. (See Figure 11.1.)

Regard the center z0 as a point in the bottom of D. Then the
leaves of &\D passing sufficiently near z0 are all homeomorphic to D2.
Using the local stability theorem for simply connected compact leaves
(see Reeb [13], Haefliger [4]), we see that all the leaves of &\D except
{zQ} are homeomorphic to ΰ 2 . Now it is easy to construct an orientation

preserving homeomorphism x D% with gf |D = φ*T[^£\S1 x
D2+, D1 x {0}, σ(C)]9 where CeΓ(h) intersects *Zλ Therefore &\D is a
half Reeb component. Thus we have the case (I).

Suppose that q > 0. By a consideration on the holonomy of compact
leaves of <& contained in 3*D, we see that σ(G) = —σ(C), where
Sf I (*D Π dcA) has a positive Reeb component and gf | (*D Π dcΆ) has a
negative Reeb component. By the same arguments as above, we see
that all the leaves of &\D except the one point leaves are homeomor-
phic to D2. Then it is easy to show that 5f\D is an arcade component.
We omit the details. Thus we have the case (IV).

The case ch (D) = (0, 0, 1; 0, q, 2) where q ^ 0. If q = 0, then gf | Aco]

is isomorphic to the foliation {{x} x I}xeI of I x I, and ^\D is an I-
times slope component, which is the case (II). Suppose that q > 0. Let
^ t , ^ t be the slope component of gf |(*Dn3A), and ^Vu * , ^ the
negative Reeb components of &\(*Dp\dA). Considering the holonomy
of compact leaves of S^ contained in 9*Z), we see the following: a con-
nected component 3(1) of d*D — I n t ( | ^ t | U \*9ί\) ̂ as the property that
if | ^ | c 3 ( l ) and 1 . ^ 7 ^ 3 ^ then σ(C) = 1. On the other hand, the
other component 3( —1) has the property that if | ^ | c 3 ( — 1) and

3cA then σ(C) = — 1. Using the arguments on &\D as above,



TRANSVERSE FOLIATIONS 207

we see that ^\Ώ is a TS' component, which is the case (III).
The case ch (D) = (0, 0, 2; 0, q, 0) where q ^ 2. Let Λl\ , ̂ ' be

the negative Reeb components contained in ^\dA intersecting a con-
nected component 9(1) of d*A[0] and Λΐ+U , -^i+n' the ones intersecting
the other connected component 3( —1). Let %Ar^ = Ί*^Vj, where
7: dE(h) -> A is as in § 4. Then <gf = {^Γu , ^T») and ΐf' =
(^Vn+ι, m ',*yK+n') are negative Reeb cycles. We use the notations for
^ in §6. Take MeP*(Ni) and consider the local homeomorphism

(ΓW, *W)) -* (TO, *W))
Suppose that ^[M] has a fixed point z. Let 1£ be the leaf of

passing through z. Then K is a circle. Let Kt = ψ'(ίΓ) for ΐ 6 2Γ. For
simplicity, suppose that σ(y) = 1 for # e | ^ | U U \^K\> Since
gf |Int *D has no compact leaf, the set (Γliez C1F (Ut>, ^ ) ) ΓΊ A[0] must be
the union of leaves of ^|*AC 0 ] contained in 9( —1). This implies that
the vector field X is outward at | ^ | for i = w + 1, , ^ + n'. There-
fore (j(2/) = - 1 for i / e | ^ ; + 1 | U ••• U l^ς+nΊ. We see that &\D is
C° isomorphic to a standard double gear component constructed from ^ 0

of S1 x S1 containing a compact leaf homologous to {*} x S1.. Thus we
have the case (V).

When η[M] has no fixed point, we can take a torus imbedded in
Int A transverse to <& and to ^Qι\ σ) as in Proposition 6.4. Then we
see that &\D is a double gear component, and have the case (V) again.
We omit the details.

The case ch (D) = (1, 0, 1; 0, q, 0) where q > 0. By similar arguments,
we see that &\D is a gear component, and can check the condition on
σ. Thus we have the case (VI).

The case ch (D) = (0, 1, 1; 0, q, 0) where q > 0. Let G be the compact
leaf of gf |Int A contained in d*D. Then K = G Π *A[0] is diffeomorphic
to S1, and there is a e N with α/rα(E:) = iL If gf | Int * A[o] has a compact
leaf ^ ' , then ψja(K') converges to K as j moves to oo or -oo, and the
leaves of & \ *A[o] are all compact by the usual arguments by means of
the theorem of Kopell [7]. In this case, we see that &\D is a turbulized
gear component, and have the case (VII-1). When 5^|Int*AC0] has no
compact leaf, we see that &\D is a perturbed gear component, and have
the case (VII-2). The condition on σ is easily checked.

The case ch (D) = (2, 0, 0; 0, 0, 0). It follows that 3*2) c dA. There-
fore *D is a non-empty closed open subset of A. Since A is connected,
it follows that *D = A and h = 2. Furthermore ^ is C° isomorphic to
(S^|C) x / for some CeΓ(h), which is a contradiction. Threfore this
case does not occur.
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Finally we see that the cases ch (D) = (1, 1, 0; 0, 0, 0), (0, 2, 0; 0, 0, 0)
imply the cases (VIII), (IX) respectively. We omit the details. The
construction of several components in the decomposition theorem is
indicated in §§2, 3, 10. This completes the proof of Theorem 3.

12. Regular TS pieces. In this and next sections, we define a
regular TS diagram as a generalization of a TS diagram introduced in
Tamura-Sato [15] for 5f et[(^(h; σ)) not C° isomorphic to (5f |C) x Jfor
any CeΓ(h). The construction of a regular TS diagram is like a jigsaw
puzzle or a tangram. The pieces admitted in our puzzle are regular TS
pieces defined below. In order to classify 2^ e t?(^"(fe; σ))9 we will attach
a regular TS piece to each D)o] e i2[0] U β[0], where β[0] U Θ[0] is the TS
decomposition of Am with respect to 2 .̂ For & isomorphic to (&\C)xI
for some CeΓ(h), we will define a singular TS piece and a singular TS
diagram in §20.

We make some preparations.

DEFINITION 12.1. A TS block Δ is a compact oriented C°° manifold
homeomorphic to D2 or S1 x I and possibly with an even number of
corner points on each connected component of dΔ.

DEFINITION 12.2. Let A be a TS block. When Δ has no corner, let
^(Δ) = 0 . When Δ has corner points, take and fix a set J?\A) of
disjoint closed intervals of dΔ, whose endpoints are in the corner /_Δ of
Δ, such that 2 # ̂ (Δ) = # Z_Δ. We denote by ^Γ(zf) the set of connected
components of the closure of dΔ — \J {J\Je ^f(Δ)}.

DEFINITION 12.3. An orientation of Ke^f(Δ) is sympathetic (or
antipathetic) if it coincides with that of dΔ as the boundary.

DEFINITION 12.4. Let Sf be the set of five symbols O, , V, Λ,
||. Let TYPE = {I, II, III, IV, V, VI, VII, VIII, IX}.

Now we can define TS pieces for gf not isomorphic to (&\C) x I
for any CeΓ(h), as follows.

DEFINITION 12.5. A regular TS piece is a quadruplet P = (Δ, v, s:
J"(Δ)-* &>, ω\ 3ίΓ --> {\, -1}), where Δ is a TS block and v belongs to
TYPE, and 3ίΓ is a subset of 3Γ{Δ), satisfying the following conditions.

(P0) If v $ {VI, VIII}, then ^ T = StT{Δ).
(PI) If p = I, then Δ ~ Ό\ %^/^Δ) = 1 and s(J) = O, where

(P2) If i> = II, then J ~ Z>\ # ^ ( J ) = 2, s(^(Λ)) - {||} or {V, Λ},
and α)(J2r(zQ) = {1, -1}.

(P8) If v = III, then Δ ^ Ώ\ %^{Δ) > 2, β^) = V and s(J2) = Λ
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FIGURE 12.1 Regular TS pieces
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for some Jίf J2 e ^(Δ), s(J) = φ for all Je ^(Δ) - {Ju J2}, and ω(K2) =
— ω{K^) if KlfK2e^Γ are contained in different connected components
of dΔ - Int (J, U J2).

(P4) If v = IV, then J ^ Z>2, # ^ ( J ) > 1, sW = O for some J, e
^(Δ), s(J) = φ for all Je^(Δ) - {JJ, and ω is constant.

(P5) If v = V, then Δ ~ S1 x I, s{^f(Δ)) = {#}, ^T(J) contains no
circle, and ω(K2) = —ωiKJ if KlfK2e^^ are contained in different
connected components of dzf.

(P67) If v = VI or VII, then Δ ~ S1 x I, s{^(Δ)) = {#}, JST(J)
contains exactly one circle Ko, an ω is constant. If v = VI, then 3ίΓ =
^T{Δ) - {Ko}.

(P89) If v = VIII or IX, then Δ ~ S1 x I and ^(z/) = 0 . If v =
VIII, then # ^ Γ = 1.

We call Δ, v, s, ω the underlying block, type, symbol map, orienting
map of P respectively. We denote Δ (or v) by | P | (or type(P)) some-
times.

REMARK 12.6. A regular TS piece corresponds to a component of
the same type in Theorem 3, and the symbols O (or φ) to a positive
(or negative) Reeb component of &\dE(h). The symbols V and Λ cor-
respond to a slope component, and the symbol || to a trivial component.

REMARK 12.7. The map ω: J?Γ-+{1, — 1} means the choice of
orientations of Ke 3ίί (cf. the proof of Theorem 4 in §14). Precisely
we give Kz3ίΓ the sympathetic (or antipathetic) orientation if ω(K) = 1
(or -1).

In order to make regular TS pieces more understandable, we pic-
turize them in Figure 12.1. In figures, we use the convension that V
(or Λ) is put inward (or outward) to underlying TS blocks (see Figure
12.1, II, III for example). When it is not necessary to distinguish
between V and Λ, we will use x in their place. The bold (or fine)
lines mean the elements of ^(Δ) U (^T(J) - J<Γ) (or JT). All the TS
blocks are oriented as tD The mark [σ] means the existence of condi-
tions on σ for constructing regular TS diagrams in the next section.

13. Regular TS diagrams. For the future use, we define regular
TS diagrams in a more general setting. Let Σg(h) be the compact
oriented manifold obtained from the closed surface of genus g by
deleting h(>0) small open two disks, and denote by Γg(h) the set of
connected components of dΣg(h). Clearly E(h) = Σ0(h) and f(h) = Γ0(h).
Take a continuous map σ: dΣg(h) -> {1, —1}. As before we regard σ as a
map from Γg(h) sometimes.
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DEFINITION 13.1. A pre TS diagram of Σg(h) is a triad (S, {Pλ}λeΛy
{cλ: \Pλ\ —> Σg(h)}χeA) satisfying the following conditions.

(PR1) S is the union of a finite number of disjoint circles Sl9 , Sn

contained in IτιtΣg(h).
(PR2) Pλ = {Δλ, vh s\^x -> ̂  ω: ^ -> {1, -1}) is a regular TS piece,

#{λe^ί |^ ί {II, IX}} < oo, and cλ: Aλ-+ Σg(h) is an orientation preserving
C°° immersion such that ^ | Int ̂  is an imbedding.

We denote cλ( ) by *( ) sometimes for simplicity.
(PR3) *(Int ΛλYs are disjoint, and Σg(h) is the closure of U {*Δλ\XeΛ}.

For each Si9 there are λ, λ'eΛ, Ke^Γλ, K'eSΓλ> and C,C'eΣg{h) such
that

(1) ^ = vi, *x = s o % n c ^ 0,
(2) *̂ 'ns,̂  0, *mc^ 0.

(We call Pλ the TS piece of Type VI separated by St.)
(PR4) * J c S U 3Jα(Λ) for J e ^ , *JadΣg(h) if s(J) = O or

SudΣβ(h) for ί e J Γ ( J ; ) - ^ ^ , and Int*K<zIτΛΣg(h) - S for Ke
(PR5) If i ί ^ Z ' and *K = *K' for i Γ e ^ ^ and K'e3Γλ>, then

ω(iί') = —ω(K). (Hence we can give *K an orientation such that cλ\K
and cx,\K' are orientation preserving.)

DEFINITION 13.2. Let ^~ = (S, {P,},e,, {̂ }2βil) and ^ " ' = (S', {P;},6^,
Whe '̂) be pre TS diagrams of Σg(h). A^homeomorphism φ: Σg(h)-+Σg(h)
is called an isomorphism from ^ to ^ " ' if φ(S) = S' and if there are
bijections

p:Λ->Λ', ' : ^ - ^ u ) and

such that

(2) φ(*J) = V and s(J') = s(J) for
(3) φ(*K) - *X/ and ω(iί') - ω(K) for

where Pλ = (zί,, v,, s : ^ -^ ^ α): ̂ ^ _> {1, -1}) and Pi = (4,
α>:^ '->{ l , -1}).

Now we can define regular TS diagrams as follows.

DEFINITION 13.3. A regular TS diagram of (Σg(h); σ) is a triad
( ^ fe: ^α(Λ) -> ̂ (Λ)}lβI, (α, 6; r): Γ,(Λ) -> (N x Z)* x 2Z) satisfying the
following conditions.

(Rl) j T - (S, {P,},6̂ , {^he,) is a pre TS diagram of Σg(h), and
{0j ίe7 is a C°° isotopy of diffeomorphisms such that φQ is the identity
and φλ is an isomorphism from ^ to ^ 7

(R2) Let CeΓg(h) and put p(C) (or q(C)) = # { J | J e ^ for some
λeΛ, * J c C , β(J) = O (or #)}.
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( i ) If (a(C), b(C)) = (0, 1) or (oof oo), then r(C) = 0 and there are
λ e A and K e ST(Aλ) - SΓλ with *K = C.

(ii) If (α(C), δ(C)) = (α, 6) e ( i V x Z ) — , then r(C) = (p(C)-g(C))/α,
there are λ e ^ and Jz^x with *JaC, the map (&|C)α is the identity,
(0i|C)α' has no fixed point for 0<α'<α, and the degree of η: [0, α]/{0, α}-+C
equals 6, where 57 is defined by η([t]) = φt>(φϊ(y0)) for ί = λ; + £', & e Z,
0 ^ t < 1 and a fixed point yQ e C.

(s) Let St be a circle in Sf and C, C'eΓg(h) be as in Definition 13.1
(PR3). Then (a(C), b(C')) Φ (a(C), -b(Q).

(R3) (The conditions on σ). Below, J and Jr are the elements of
^ with *J,*J'cdΣg{h).

(iii) If vλ = III, then σ(*y') = CJ(*») (or -σ(*»)) for y 6 J and y'e Γ
such that J and J ' are contained in the same (or different) connected
component of dAλ - \J{Jn\Jff e^λ9 s(J") = V or Λ}.

(iv) If vλ = IV, then σ(*y') = —σ(*y) ίoτ yeJ and y' eJr such that
8(J) = O and s(J') = .

(vi) If vλ = VI and (α(C), δ(C)) = (0,1) for C D Z
then σ(V) = -°{*y) for 2/eiΓ and / e J.

(vii) If v, = VII, then σ(*y') = σ(*y) for y e J and y' e Jf.
In (R2) and (R3), we used the description Pλ = (Λ, vh

J ^ ^ { 1 , -1}).

DEFINITION 13.4. For a regular TS piece P = (J, v, s:
ω: J Γ -> {1, -1}), let - P = (J, v, s, -α>). For a pre TS diagram
(S, {P,he,, fehe,), let - ^ " = (S,{-Pahe^fe}^). ^For a regular TS
diagram ^ " = ( ^ {^}ί6J, (α, 6; r)), let - ^ " - ( - ^ fe}fe7, (α, 6; r)).

We introduce an equivalence relation on regular TS diagrams of
(Σg(h); σ) as follows.

DEFINITION 13.5. Let jT"= ( ^ μj ί e I f (α, 6; r)) and ̂ ' = {Jr\ {φt}teI,
(α', &'; r')) be regular TS diagrams of (Σg(h); σ). Then ^ is isomorphic
to ^ " ' if there exists a C° isotopy of homeomorphisms {ht: Σg(h) —>

z, such that ^ = htoφt for ί e/, Λo is an isomorphism from ^ to
or — ^ ' , Λo is an isotopic to the identity, and (α', 6'; r') = (α, 6; r).

We denote by RTS (Σg(h); σ) the set of isomorphism classes of regular
TS diagrams of (Σg(h); σ).

14. The classification theorem. Usng regular TS diagrams, we can
generalize the classification theorem of Tamura-Sato [15]. In this paper
we give only the following.

THEOREM 4. Let & e t%^(h; σ)). If 5f is not C° isomorphic to
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\ x I for any horizontal CeΓ(h), then an element o/RTS (E(h); σ)
is canonically attached to &.

PROOF. Take an orientation of &\Fm. Let ^ , •• ,^ 7

n be the
strange negative Reeb cycles of gf and Sf a separating torus of <ĝ .
Define a map (α, δ; r): Γ(Λ) ->(Jίx Z)* x 2Z as in §4, and let (α, b; r) =
(α, &;r)oζ, where ζ:f(h)-*Γ(h) is defined by ζ(C) - S1 x C.

We construct a C°° vector field i? on A transverse to Ax for all xeS1

and tangent to Sf, , S* and 3 A First we define Z on 3̂ 4. as follows.
Let CeΓ(h). When C is horizontal or &\dcA has no compact leaf, let
Z = d/dt on dcA, where t is the coordinate of the factor S1. When C is
vertical and &\C has a compact leaf, take as Z\dcA a vector field
transverse to Ax for all x e S\ tangent to the compact leaves of Ŝ  | dcA,
and having no non-closed orbit. By Proposition 7.1, the foliation &\S*
has a compact leaf. Take as Z\Sf a vector field transverse to Ax for
all xeS1, tangent to the compact leaves of &\S*, and having no non-
closed orbits. Then we can take as ^ | G a vector field on G for each
compact subleaf G of ^ | A in a consistent way by Propositions 7.1 and
8.1. Furthermore we can extend the vector field thus obtained over all
A by the decomposition theorem.

We define a C°° isotopy {φt: A
[0] -> A[0]}ί6Z as follows. Let C(A, A[0])

be the compact manifold obtained from A by cutting along A[0]. Denote
by A0 (or A1) the bottom (or top) of C(A, A[0]). Let Af = A[t] for t e
]0, 1[. Now define ^t(s) for ^ e A[0] as the intersection point of A1 and
the orbit of Z passing through z, and define φt(z) as the intersection
point of A[0] and the fiber of the projection: S1 x E(h) —> S1 passing
through 0t(^).

In a canonical way, we can construct a pre TS diagram J^~ =
(S, {P theΛ, fohej) of A[0] satisfying the following conditions.

( l ) s = AW n (Si u u Si).
(2) {\Pλ\}λeΛ (or {*|Pj|hβiι) coincides with Ω™ U θ [ 0 ] (or *ώ^ u *Θ[0])

except some compact subleaf eΘ[0] (or *Θ[0]).
(3) To an element D)0] e i2[0] corresponds a regular TS piece of the

same type as D.
(4) To an element of θ [ 0 ] corresponds a regular TS piece of type

II with symbol || or a regular TS piece of type IX.
(5) The symbols O, and || correspond to the components stated

in Remark 12.7.
(6) The symbol V (or Λ) for JcdAm corresponds to a slope

component & contained in &\dAm such that a connected component of
has an expanding holonomy with respect to <& in the same (or
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(See Figure 14.1.)
iST determined by ω coincides

FIGURE 14.1

opposite) direction as the orientation of
(7) For ϋΓe J ^ , the orientation of *

with that of gf | F [ 0 ] .
Now take a diffeomorphism ξ: Am —> E(h) isotopic to the identity.

Transforming (^{Φthei) by ξ, we have a triad ^r' = (^"', {φ't:E(h)-*
E(h)}teI, (α, b r)). Then J ^ ' is a regular TS diagram of (E(h);σ) and
the isomorphish class of ^"' depends only on ^ . Since the check of
the details is tedious, we omit it except for the condition (R2-s) in
Definition 13.3. For checking (R2-s), we need the following.

PROPOSITION 14.1. Let ^~ = (S, {Pλ}λeA9 faheΛ be a pre TS diagram
and {φt: Σg{h) —> Σg{h)}teI an isotopy satisfying the condition (Rl) in
Definition 13.3. Let St be a circle in S. Then φ^St) = S<.

PROOF. Suppose that ^(SJ =£ S*. Since φλ(S) = S, it follows that
Sj = ̂ (Sί) c S. Take \,\'eΛ, Ke 3ίΓu Kf e 3ίΓr, and C, G e Γg(h)
satisfying the conditions in Definition 13.1 (RP3). Since φ^C) = C and

φl(Cf) = C, it follows that φ,CΔλ) Γ\CΦ 0 , A(*iΓ') Π Sy ̂  0 and φ^K') Π
C Φ 0. Take a path TΓ: J - ^ *Λ with ττ(O) e C and τr(l) 6 *K' Π S,.
Consider the circle

L - τr(I) U * ί ' U fe(7T(0))Iί 61} U A(τr(I) U *ίΓ') U {φt(y)\tel],

where {y} = *K'f)C'. Then the intersection number L St equals ± 1 .
On the other hand, L is the boundary of the degenerate disk {φt(π(I)\J
*K')\tzI) as a singular chain. Hence [L] = 0 in H^Σg(h);Z), which is
a contradiction. This completes the proof of Proposition 14.1.

THE CHECK OF (R2-S). By Proposition 14.1, we see that Sf Π A[0]

consists of exactly one circle. Furthermore a compact leaf of &\S? is
isotopic to a compact leaf in &\C if for GeΓ(h) there is a compact
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subleaf of ST intersecting Sf and C". The same argument as in the
proof of Proposition 8.1 implies that (a(C'),b(C'))Φ(a(C), -6(C)), where
Czz\%Λr\ for some negative Reeb component ^ in <ĝ . This completes
the proof of Theorem 4.

PART II

Existence problem of transverse foliations

15. An investigation of regular TS diagrams in the case h = 2.
In order to check the conditions (A2) and (A3) for & e t\(J?~{h\ σ)), we
investigate regular TS diagrams thoroughly in this and next sections.
This is the most essential part of the proof of Theorem 1 and can be
regarded also as an addendum to Part I.

Let J^~ = ( ^ {φt}teI, (α, 6; r)) be a regular TS diagram of (E(h); σ).
Let J T = (S, {P he* fohβΛ and P, = (4, ^, s : ^ - ^ ^ ω: J ^ - + {1, -1}).
Transforming (α, 6; r) by the canonical bisection ": Γ(Λ) —• f(h), we can
regard it as a map from Γ(Λ) to (JV x Z)* x 2Z.

Note the following, which is a direct consequence of Definition 13.3
(R2). We omit the proof.

LEMMA 15.1. Let (α, 6; r):Γ(h) -> (JV x Z)* x 2Z 6β m α regular TS
diagram.

(1) 1/ r(C) Φ 0, tfcβw (a(C), 6(C)) e (JV x Z) c o p r i m θ .
( 2) 1/ a(C)r(C) = 0, tΛβn r(C) = 0.

Let Ĵ o be the closure of a connected component of !?(/&) — S. Clearly
.Bo is diffeomorphic to E(h0) for some h0 e N. Let Γo = {C e Γ(h) | C c 3J?0}.
Then we have the following.

PROPOSITION 15.2 (The TS formula for regular TS diagrams).
(1) Σ,ero

(2) Σe7.

PROOF. We can construct a vector field F on E(h) satisfying the
following conditions.

(1) For each Je^χ, XeΛ, with s(J) = O (or • ) , there is a
singular point z(J) e Int *J of IT such that the orbits of Y near z{J)
are concentric half circles (or confocal parabolas). (See Figure 4.2.)
Furthermore Y has no other singular point.

(2) Y is tangent to *2f for each KeSΓλ, XeΛ, and the direction
of Y coincides with the orientation of *ίΓ determined by ω(K).

Now we can prove Proposition 15.2 in the same way as Proposition
4.3.
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Hereafter we suppose that h — 2. The goal of this section is the
following, which corresponds to (A2).

THEOREM 5. Let ^~ = ( ^ {Φt\tei, (α, b\ r)) be a regular TS diagram
of (2£(2); σ). Let Γ(h) = {C, C'}. Then

(1) r(C') = -r(C).
( 2) If r(C) Φ 0, ίfeen {a{C'\ b(C')) = (α(C), -6(C)).

In order to prove Theorem 5, we prove three lemmas. Let
(a(C), 6(C); r(C)) = (α, 6; r) and (α(C'), 6(C); KG)) - (α', &'; r') The first
lemma is the following.

LEMMA 15.3. If there are XeΛ and KeSΓλ such that *K()CΦ 0
and * l n C ' Φ 0 , then (α', &'; r') - (α, -6 ; - r ) .

PROOF. Since * Z n C ^ 0 and *KnC'Φ 0 , it follows that (α, 6),
(α ;,6')e(JVxZ) c o p r i m e by Definition 13.3 (R2-i). Let *KnC = {y} and
*Kf)C' = {y'}. Then ^f(y) = y and ^f(y) ^ 1/ for 0 < fc < a by (R2-ii).
Similarly φt\y) = ^' and f̂(j/') =£ 7/' for 0 < k < α'. Since ^ is an isomor-
phism from jf" to άΓ by (Rl), it follows that #(*ΛΓ) = ψi'(*K) = *ίΓ
and ^Ϊ(*JBL) =£ *JSL for 0 < k < a or 0 < k < a\ This implies that α' = α.

Modifying {φt}tei if necessary, we may suppose that (^ | *!?)" = id
since *K is diffeomorphic to J. Define a map .F: Sί x *iΓ -> S(Λ) by
F([ί], «) = Λ'foίOzO) for [ί] 6 Si = [0, α]/{0, α}, t = k + tf, keZ, 0 ^ ί' < 1
and ze*.ίL. Then ί7 can be regarded as a homotopy from F\Sl x {#}
to FI Si x {»'}. By (R2-ii), it follows that

b[C] = ^ ( [ S i x {»}]) = ^ ( [ S i x {»'}]) = b'[&]

in ^(^(2); Z). Since [C'] - -[C] ^ 0, we have V = -b. Since ar +
ar' = 0 by Proposition 15.2, it follows that rΫ = — r, which completes
the proof of Lemma 15.3.

The second is the following.

LEMMA 15.4. If S Φ 0 , then (α', 6') Φ (α, —6) and rf = r — 0.

PROOF. By the condition (R2-s) in Definition 13.3, it follows that
(α', V) Φ (α, —6). Since E{2) is an annulus, a circle in 2?(2) bounds a
disk or is isotopic to C in J?(2). By the condition (PR1) in Definition
13.1, a circle in S bounds no disk. Furthermore we see that S is
connected. By Proposition 15.2 (1), it follows that ar — a'r' = 0. By
Lemma 15.1 (2), we have r = rf = 0. This completes the proof of Lemma
15.4.

Now Theorem 5 follows directly from Lemmas 15.3 and 15.4 and
the following.
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LEMMA 15.5. Suppose that S = 0 and that for any XeΛ and
with *ίΓ Π C Φ 0 it holds that *Kf)C = 0 . Then r = r' = 0.

PROOF. Let F = U {*4|*4ΌC ^ 0}. When FnC' = 0 , there is a
circle in d F separating C and C'. Then we can show that ar = αV = 0
in the same way as in the proof of Proposition 15.2. Hence r = r' = 0.
When 7 f l C ' ^ 0 , there is exactly one regular TS piece P^ of type V
or VI. Taking a circle in Int *Aλ separating C and C', we see that
ar = a'rf = 0 as above. Hence r = r' = 0. This completes the proof of
Lemma 15.5 and Theorem 5.

16. An investigation of regular TS diagrams in the case h > 2.
The purpose of this section is to prove the following, which corresponds
to (A3).

THEOREM 6. Let ^~ = (^7 {&}tei, (α, δ; r)) δβ α regular TS diagram
of (E(h); σ) and suppose that h > 2. // r(C) =£ 0 /or CeΓ(h), then
(a(C), b(C)) = (1, 0).

We use the same notations as in § 15. First we prove the following.

LEMMA 16.1. Suppose that h > 2 and let CeΓ(h). If there are λ e
A and Ke^Tλ such that *KΓ\Cφ 0 and * ί Γ n C ' ^ 0 for some C'e
Γ(h) - {C}, tfcen (α(C), δ(C)) = (1, 0).

PROOF. Let (a(C),b(C)) =Jα, 6) and^ (o(C'), b(C')) - (α'f δ') Then we
see that a = af and δ[C] = δ'[C'] in Hx{E{h)\ Z) as in the proof of Lemma
15.3. Since h > 2, the homology classes [C] and [C'] have no linear
relation. Therefore δ = V = 0. Since (α, b)e(N x Z) c o p r i m e , it follows
that α = 1. This completes the proof of Lemma 16.1.

Now Theorem 6 follows directly from Lemma 16.1 and the following.

LEMMA 16.2. Suppose that h>2. Let CeΓ(h) and K(C)= \J {*iί|λ e
Λ,Ke3Tλ,*Kf)CΦ 0}. If K(C) n C' = 0 for all C e Γ(h) - {C}, then
(α(C), δ(C)) - (1, 0) or r(C) = 0.

PROOF. Suppose that r(C) Φ 0. Let (a(C), δ(C)) = (α, δ). We are
going to prove that (α, δ) = (1, 0). By Lemma 15.1 (1), it follows that
(α, δ)e(iVx Z) c o p r i m e .

When K(C) Π S Φ 0 , we see that (a, δ) = (1, 0), as follows. Since
r(C) Φ 0, the connected component of E(h) — S containing C is homeo-
morphic to E(h') for some hr > 2 by Proposition 15.2 (1). Then the
arguments in the proof of Lemma 16.1 implies that (α, δ) = (1, 0).

Hereafter suppose that K(C) n S = 0 . Let F = U {*Λ Γ ^ Π C Φ 0}
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and d0V = dV — {C}. Denote by B the set of connected components of
d0V. Then we can write

where C5 e Γ(h), Sy c S and iΓ, 6 J ^ ω for λ(i) e Λ. Clearly Pλ{j) is of
type VII and *ΔX{S) c F. For each Cjf there is /i(j) e A such that
* 4 Λ c 7 , vμ{i) = Yί and Cj = *Lj for L,e JT(Λω) - ^ ( y , . For each
Si9 there is ρ(j)eΛ such that % ( i ) c F , yp(i> = VI and Sj = *Λfi for

We see that # β = α + /3 + 7 > l as follows. Suppose that # B = 1.
Then F is homeomorphic to 2£(2). Since the TS formula can be obtained
for F, we have r(C) = 0 from it. Thus we have a contradiction.

Applying the arguments in the proof of Proposition 14.1, we see
that φjfKj) = *ίΓi. Therefore φx fixes all the elements of B. Since
# B > 1, the map φx must fix all J e ^ ( 1 ) U U^ ( β> U^α) U U ^ ( ^ U
^ ( i , U U^ ( r) . This implies that α = 1 and φ1 \ C = id.

Since %B > 1, there are λeΛ and iίe3Γλ such that *ίΓcE:(C) and
[*#] Φ 0 in ^ ( F , C; Z). Let L be the union of *K and a connected
component of C — *UL. Let y0 e C ΓΊ *K. Then C and L determine elements
& and ξ2 of TΓ^F, 2/0), respectively. Adding adequate elements f3, •••,
fa+β+r, we can regard ^( V, y0) as the free group generated by ξlf ,
fα+i9+r. Modifying {φt}tei in a neighborhood of *iΓ, we may suppose that
φι\L = id. Then we can define a map )y: S1 x L ^ F by ^([t], y) = ̂ t(|/)
for ί e / and 1/ 6 L. The paths η \ S1 x {?/0} and 371 {[0]} x L represent ζl
and £2f respectively. Since TΓ^S1 X L, ([0], y0)) is abelian, it follows that
ίϊ fi = f2βfϊ Therefore 6 = 0. This completes the proof of Lemma 16.2
and Theorem 6.

17. The proof of Theorem 1. Let gf e t?(^~(Φ, Ψ; σ))f where Φ, Ψ
and σ be in § 1. We use the notations in § 1. For each vertex v e V(Φ)9

consider <& \ E[v] and regard it as an element of t\{^{Φ, Ψ; σ) \ E[v\) =
ί(^(ft(tι); σ)). For each CeΓ[υ] = Γ(h(v)), define (α(C), 6(C); r(C)) by
using ^ I E[v] as in § 4. Then we have a map (α, 6; r): Γ[Φ] -> (Nx Z)* x
Z. We are going to show that (α, 6; r) is an arithmetic model transverse
to ^ ( Φ , Ψ\ σ).

The transverse orientability of & \ E[v\ for each v e V(Φ) implies
that Image r e 2Z. The condition (A4) in Definition 1.2 holds by Proposi-
tion 4.3. The condition (Al) follows from (A4).

When 5?\E[v] is not C° isomorphic to (&\C) x I for any CeΓ[v],
we can attach to gf | E[v] a regular TS diagram with (α, 6; r) | Γ[v] by
Theorem 4. Then the conditions (A2) and (A3) are guaranteed by
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Theorems 5 and 6, respectively. When &\E[v] is C° isomorphic to
(gf |C) x I for some CeΓ[v], we have h(v) = 2. Let Γ[v] = {C,C}.
Then we see the following.

( i ) If (a(C), 6(C)) = (oo,oo), then (a(C), 6(C')) = («>, oo) and r(C) =
) = 0.
(i i) If (α(C), 6(C)) = (0, 1), then (α(C'), δ(C')) = (0, 1) and r(C) =

(iii) If (α(C), δ(C)) ε (N x Z) c o p r i m θ , then (α(C'), δ(C')) = (α(C), -δ(C))
and r(C') = - r ( C ) .
Therefore the condition (A2) holds.

Finally we check the condition (A5), as follows. Let s e S(Φ) with
d(s) = (Vl) - (v2), vu v2e V(Φ) and C, = C[vJ(8). Since (y*[β])*(gf |C2) =
^ |CX, we see that if a(Cx) — oo then a(C2) = oo. When α(Ci) ^ oo, the
foliation S^ | Cx has a compact leaf L and we have

(Ψ*[8])*[L\ = {ka{Cd + ibφύW x {*}] + (mαCQ + wδCC^H*} x C2] .

Then it follows that

\ b(C2) I \m n)\ b{Gx) j

where rί1 and 72 are as in Definition 1.2. This completes the proof of
Theorem 1.

18. Some remarks on arithmetic models. In this section, we in-
vestigate the properties of arithmetic models. Let Φ, Ψ and a be as in
§1. First we obtain some informations on a side seS(Φ) such that
h(v^ > 2 and h(v2) > 2, where d(s) = {vx) — (v2), vlf v2 e V(Φ). The following
is useful.

DEFINITION 18.1. (1) A side seS(Φ) is called longitude preserving ii

y(s) = (Λ _ i ) or ί 0 1 / ^ o r s o m e lsZ> a n ( i otherwise longitude twist-

ing.

( 2 ) Let seS(Φ) with d(s) = (vx) - (v2) and Ψ(s) = (k l). For s
\7Yb nj

with k = 1 or — 1 , let

We call ί(s) the glueing sign of s.

Now we have the following.

PROPOSITION 18.2. Let όtf = (α, 6; r) ε am(Φ, ?F; a). Let s ε S(Φ)

9(β) = (vj — (v2) and Cά = C[vy](s), j = 1, 2. Suppose that h(v^) > 2
h(v2) > 2.
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( 1 ) If s is longitude twisting, then r(C^ = r(C2) = 0.
( 2 ) If s is longitude preserving, then Jtf" obtained from Jzf by

changing (α(Cx), b(CJ) and (a(C2), b(C2)) for (1, 0) is also an arithmetic
model transverse to J?~{Φ, Ψ; σ).

PROOF. ( 1 ) Suppose that r(Cx) φ 0. Then r(C2) Φ 0 by (A5) in
Definition 1.3. By (A3), it follows that (a(Cs\ b{Cό)) = (1, 0) for j = 1, 2.
LetΨ^ = (lln) B ^ A 5 ) ' w e h a v e ( m ^ ) ( J ) - ^ n K 5 ) There"
fore m = 0 and k = —n = 1 or — 1 .

( 2 ) When r(Cx) Φ 0, we have r(C2) Φ 0 and j * " = Jϊf by (A5) and
(A3). Suppose that r(Cx) = 0. Then r(C2) = 0 by (A5). It is easy to see
that J&" e am(Φ, Ψ; σ). This completes the proof of Proposition 18.2.

By Proposition 18.2, we have simpler equations to determine whether
am(Φ, ¥; σ) is empty or not in the case h(v) > 2 for all v e V(Φ), as
follows. We omit the proof.

THEOREM 7. Suppose that h(v)>2 for all v e V(Φ). Then am(Φ, Ψ; σ)φ
0 if and only if there is a map r: Γ[Φ] —• 2Z satisfying the following
conditions.

(A3)' If s is longitude twisting, then r(C[v1](s)) = r(C[v2](s)) = 0,
where d(s) = (vx) — (v2).

(A4)' Scerw r(C) = 4 - 2Λ(v) /or αίi i; 6 F(Φ).
(A5)' J/ s is longitude preserving, then r(C[v2](s)) = ί(s)r(C[/y1](s)),

where d(s) — (vλ) — (v2).

For v 6 V(Φ) with Λ(ι ) = 1, we have the following.

PROPOSITION 18.3. Let s e S(Φ) with d(s) = (vλ) - (v2). If h{vx) > 2,

h(v2) = 1 and am(Φ, Ψ;σ)Φ 0, then Ψ(s) = ( ^ i ) or ( ^ ^ ) /or some

l,m,ne Z.

PROOF. Let (α, 6; r) e am(Φ, ?f; σ). By (Al) and (A4), we have a(C2) = 1
and r(C2) = 2. Then r ^ ) Φ 0 by (A5) and (a{Cx), b(Cx)) = (1, 0) by (A3).

L e t Ψ^ = (m i ) S i n c e (m i ) (θ ) = s * n ^ ( δ ( Q > Jt f o l l o w s t h a t k = 1

or — 1 and m = kb(C2).

When the graph Φ is a tree, we have the following.

PROPOSITION 18.4. Suppose that Φ is a tree and that h(v) Φ 2 for
all v e V(Φ). If (alf W, r j , (α2, 62; r2) e am(Φ, Ψ; σ), then rγ = r2.

In order to prove Proposition 18.4, we need the following lemma.
The proof is easy and we omit it.
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LEMMA 18.5. Suppose that Φ is a tree. Then there exists a sequence
Γo, , Γp, p = #S(Φ), of subsets of Γ[Φ] satisfying the following condi-
tions.

(1) 0 = Γ o c Λ c . . . aΓP = Γ[Φ].
( 2 ) For each j = 1, , p, there is Sj e S(Φ) with Γ3 — Γ5_γ =

{C[vά-\{s5\ C K ]^-)}, where d(Sj) = ±((vό) - « ) ) .
( 3 ) For each j = 1, , p — 1, define a subgraph Φά of Φ by

V(φ5) = {ve V(Φ) I Γ[v] Φ Γj} and S(Φ,) = S(Φ) - {βlf ••-,«,},

where V(Φά) {or S(Φά)) is the set of vertices (or sides) of Φά. Then Φό is

a tree, and # (Γf^ ] — /Vi) — l

P R O O F OF PROPOSITION 18.4. We use t h e sequence Γo, " ,ΓP in

Lemma 18.5. Let Cά = Civ^s^ and C- = Civ-^Sj). We prove

((Λ) ^ ( 0 = ^10 for CeΓ,,

by induction on ^. First we see that h{y^) = 1. Then we have α^CJ —
a2(Cλ) = 1 and r ^ d ) - ^ C J = 2. Since r^CJ) ^ 0 and r2(C[) Φ 0 by (A5),
it follows that (α^Cί), 6i(CJ)) = (α2(Cί), 6,(Cί)) = (1, 0) by (A3). Then we
have b^Cj) = b2(C^) by (A5). Using (A5) once more, we get n(Cί) = r2(C[).
Therefore ((1)) holds.

Now suppose ((j)). Since #(Γ[vj+1]—Γό) = 1, we see that a^C^r^C^ =
α2(C i+1)r2(C i+1) by (A4) and the fact that a^G) = a2(C) = 1 if n(C) ^ 0
for CeΓj. When h(vj+1) = 1, we verify ((i + 1)) as above. Suppose
that h(vj+1) > 2. If ^(Cy+OnCCy+J - 0, we have n(C i + 1) - r2(C i + 1) = 0 by
Lemma 15.1 (2). By (A5), it follows that n(C;+1) = r2(C'j+1) = 0. Now
consider the case αi(C i+i)r1(C i+1) Φ 0. Since rx(Cu+l) Φ 0 and r2(Cj+1) Φ 0,
it follows that r^C'^y) Φ 0 and r2(C'j+1) Φ 0 by (A5). Then we have
M C ) , 6,(0) - (0,(0, 62(O) - (1, 0) for C = C i + 1, CJ+1 by (A3). Therefore
r x (O = r2(C) for C = Cj+1, C'j+1. Thus ((j + 1)) holds. This completes the
proof of Proposition 18.4.

19. Some application of the arithmetic criterion. The purpose of
this section is to determine whether am(Φ, Ψ; σ) is empty or not for
some J^ίΦ, Ψ; σ). First consider the graphs in Figure 19.1.

PROPOSITION 19.1. Suppose that V(Φ) = {v} and # S ( Φ ) > 1 . (See
Figure 19.1 (a).) Then am(Φ, Ψ; σ) Φ 0 if and only if there is a
longitude preserving side s e S(Φ) with ξ(s) = 1.

PROOF. Suppose that am(Φ, Ψ; σ) Φ 0 . By Proposition 18.1, we
have an arithmetic model (α, 6; r) transverse to ^~(Φ, Ψ; σ) satisfying
the following.
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(a)
FIGURE 19.1

(i ) If s e S(Φ) is longitude twisting, then r(C[v](s+)) = r(C[v](s-)) = 0.
(ii) If s 6 S(Φ) is longitude preserving, then (a(C[v](s+)\ b(C[v](s+))) =

(a(C[v](s-)\ b(C[v](s~))) = (1, 0).
Since r(C[v](s~)) = ζ(s)r(C[v](s+)) for a longitude preserving side s e

S(Φ), it follows that

a(C)r(C) = 2
] C

= 4 -Σ
CeΓ

where Γ — {C[V|(s+) | s e S(Φ) is longitude preserving and ξ(s) = 1}. Since
4 - 2h(v) = 4(1 - #S(Φ)) ^ 0, it follows that Γ Φ 0. Therefore there
is a longitude preserving side s e S(Φ) with ζ(s) = 1.

Conversely suppose that there is a longitude preserving side s e S(Φ)
with ζ(s) = 1. Let r(C) = 0 for CGΓ[V] - {C[v](s+), C[v](s~)}9 and
r(C[v](s+)) = r(C[v](s~)) = 2-h(v). Then r:Γ[Φ]->2£ satisfies (A3)', (A4)'
and (A5)' in Theorem 7. By Theorem 7, it follows that am(Φ, Ψ;σ)Φ 0 .
This completes the proof of Proposition 19.1.

PROPOSITION 19.2. Suppose that V(Φ) = {v0, , vμ}f μ > 2, and that

S(Φ) = {slf —-,8μ} and d(8j) = (v0) — (vά) for all j . (See Figure 19.1 (b).)

Then am(Φ, Ψ; σ) Φ 0 if and only if Ψ[Sj] = ( ) or y j for

all j and # {s e S(Φ) \ ξ(s) = 1} = 1.

PROOF. Suppose that am(Φ, Ψ; σ) Φ 0 and let (α, 6; r) be an arith-
metic model. By the proof of Proposition 18.2, we have

(ii) a(C) = 1 for all CeΓ[Φ],
(in) r(C) = 2 for all C e Γ K I U U Γ[vμ].

Therefore we see that r(C[vo](si)) = 2f(sy). Since 2(ξ(s,) + + ζ(sμ)) =
4 - 2h(v0) = 2(2 - μ) and ζ(sj) = 1 or - 1 , it follows that % {s e S(Φ) \ ζ(s) =

Conversely suppose that Ψ[s3] = ( ) or ( ) for all j and

%{s e S(Φ)\ξ(s) = 1} = 1. We may suppose that ζ(s1) = 1 and ζ(s2) = =
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ξ(8μ) = - 1 . Let rίCKK*)) = 2, r(CK](«y)) = - 2 for i = 2, -, jw, and
^Cfylfo)) = - 2 for i = 1, •--, JM. Let α(C) = 1 for all CeΓ[Φ] and
&(£[<!(*,•)) = 0 for all j . Determining ZKC^Ks,-)) by (A5) for all j , we
have an arithmetic model (α, 6; r) transverse to ^{Φ, Ψ; σ). This com-
pletes the proof of Proposition 19.2.

REMARK 19.3. Consider the graphs Φ in Proposition 19.2. Let ?P"[eJ =

(J J) and y[β i] = β _ J ) for i = 2, , jtβ. Then ikf(Φ, y) is diffeomor-

phic to S3. By Proposition 19.2, it follows that am(Φ, Ψ; σ) = 0 for an
arbitrary σ. This implies that ίJ(^(Φ, ?Γ; σ)) = 0 by Theorem 1. On
the other hand, the foliation ^~(Φ, W; σ) admits a transverse 2-plane
field as proved in Tamura-Sato [15]. Since (Al) does not depend on the
integrability of transverse foliations, this means that (A4) reflects the
integr ability.

Hereafter we consider <^~{Φ9 Φ; σ) such that h(v) > 2 for all v e V{Φ).
Let Φ' be the subgraph of Φ such that V{Φ') = V(Φ) and S(Φ') = {s e S(Φ) \ s
is longitude preserving}. The following is the direct consequence of
Theorem 7 and we omit the proof.

PROPOSITION 19.4. If Φ' has an isolated vertex, then am(Φ, Ψ; σ) = 0 .

Suppose that Φr is a tree. Take a vertex v0 e V{Φ) and fix it. For
each ve V(Φ) — {VoL there are a unique sequence S(v, v0) = (su , sUυ))
in S(Φ') and a unique sequence V{v9 v0) = (vλ = v, v2, , VΪ(V>+I = v0) in
F(Φ) such that d(8f) = ±((vy) - (ι;i+1)) for i = 1, , ϊ(v). Let f(v, v0) =
(-lγwξfa) f(8l(w,) and f(v0, v0) = 1. Then we have the following.

PROPOSITION 19.5. Suppose that Φr is a tree. Then am(Φ, Ψ; σ) Φ 0
if and only if ΣveF(Φ) ζ(v, vo)(4 - 2fe(v)) = 0 for some voe V(Φ).

PROOF. Suppose that am(Φ, Ψ; σ)Φ0. Then there is a map r: Γ[Φ] ->
2Z satisfying (A3)', (A4)' and (A5)' by Theorem 7. By Lemma 18.5, we
have a sequence 0 = Γo, Λ, , Γp, ^ = #S(Φ'), satisfying the conditions
corresponding to (1), (2) and (3) in Lemma 18.5. We use the notations
in Lemma 18.5. Let Cs = C^Ks,) and C'ά = CK Kβ̂  ). By induction on
i, we prove

[[ill r(Cy) = 4 - 2Λ(vy) - Σ f(v, ^)(4 - 2h(v)) ,
»6F(ί)

where F(i) = {ve V(Φ) - {vό} \ S(v, v3) c {βlf • • -, s^J}.
Since V(l) = 0 and r(C) = 0 for CeΓ[vy] - {CJ, the condition [[1]]

follows from (A4)\ Now suppose that [[i]] holds for i ^ j . For each
CeΓ[vj+1], there is a unique side seS(Φ) with C = C[vj+1](s). If s is
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longitude twisting, then r(C) = 0 by (A3)'. If s is longitude preserving,
then there is j(C) e {1, , j + 1} with s = 8j{0). When j(C) < j + 1, we
have

r(C) = ζ(sj[C))U - 2Λ(t>«) - Σ ξ(V
I yeF(i((7))

Since V(j + 1) = \J{V(j(C))U [vj{C)}\CeΓ[vj+1] and i(C)< j + 1}, the
condition [[j + 1]] follows from (A4)' and the above formula. This com-
pletes the induction.

Since V(Φ) = V(p) U {vp} and r(C) = 0 for CeΓ[vp] - {CP}f we have

Σ ξ(v9 v,)(4 - 2Λ(ι;)) - 0
?;eF(Φ)

by [[p]] and (A4)'.
Conversely suppose that Σvevm ξ(v, vo)(4 — 2ft(v)) = 0 for some voe

F(Φ). We can take a sequence Γo, , Γp as above and we may suppose
that v0 = vp. For s e S(Φ) - S(Φ') with 3(β) = (v) - (v'), let r(C[v](β)) =
^•(C'tv'])) = 0. Using induction on j , define riClVjKsj)) by the formula
[[j]]. It is easy to check that r: Γ[Φ] -> 2Z satisfies (A3)', (A4)' and (A5)'.
This completes the proof of Proposition 19.5.

REMARK 19.6. Suppose that Φ' is not connected but consists of trees
containing at least two vertices. Then am(Φ, Ψ; σ) Φ 0 if and only if
the corresponding formula holds for each tree contained in Φ'.

20. TS models transverse to ^ ( Φ , Ψ; σ). Using TS diagrams, we
describe a necessary and sufficient condition under which t*(Φ, Ψ\ σ)
becomes non-empty in this and the next section.

First we must define a TS diagram for & 6 t\{^{h\ σ)) C° isomorphic
to (2^|C) x I for some CeΓ(h). Note that the existence of such &
implies that h = 2 and that if Cx is horizontal with respect to & then

DEFINITION 20.1. A singular TS diagram of (E(2); σ) is a quadruplet
= «Jλ}λeA, {cλ: Jλ -> S1}^, {s(Jλ) 6 f}λβΛ, (a, b; r) e (iVxZ)* x2Z) satisfy-

ing the following conditions.
(51) Jx is a copy of I for all XeΛ.
(52) If # A > 1, then ^: J^ —> S1 is an imbedding for each XeΛ,

Int *Jλ n Int *Jλ. - 0 for λ ^ λ', and S1 is the closure of U {*Jλ \XeΛ},
where *( ) means cλ{ ) for an appropriate XeΛ. If#^ί = l, then cλ\IntJλ

is an imbedding and *Jλ = S1, where Λ = {λ}.
(53) #{λG^f|s(J) = O or # } < oo.
(54) If σ is constant, then (α, b)e(Nx Z) c o p r i m e U {(oo, oo)}. If (α, δ) =
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, oo), then μ = l a n d r = #{XeΛ\s(J) = O or φ} = 0. If (α, 6)e
x Z) c o p r i m θ U {(0, 1)}, then r = # {λ 6 4 | β(J2) = O} - # {λ e 41 s(Jx) = •}.
We call a triad (J";, ̂ , e(J;)), in a singular TS diagram, a sigular TS

We introduce an equivalence relation on the set of singular TS
diagrams as follows.

DEFINITION 20.2. Let ^ = ({Jλ}λβΛ9 {cxhei, {s(J)heA9 (α, 6; r)) and
({^W, &},«*, {s(J'μ}μeM, (α', 6'; r')) be singular TS diagrams of (#(2); <τ).
Then ^ and ^~' are isomorphic if (α, 6; r) = (α/, 6'; r') and there are a
homeomorphism ^: S1 —>S1 and a bijection p:A—>Msuch that #(*J*) — *J^,
and s(J'pU)) = s(Jj) for aU λ e Λ.

We denote by STS(i?(2); σ) the set of isomorphism classes of singular
TS diagrams of (E(2); σ).

DEFINITION 20.3. We call P a TS piece if P is a regular TS piece
or a singular TS piece. We call JT~ a TS diagram if ^~ is a regular
TS diagram or a singular TS diagram. Let TS(E(h); σ) = RTS(2?(Λ); σ)
if h Φ 2, and TS(^(2); σ) = RTS(^(2); σ) U STS(^(2); σ).

As a generalization of Theorem 4, we have the following and we
omit the proof.

THEOREM 4*. There exists a canonical map

T: t%jr(h; σ)) -> ΎS(E(h); σ) .

Now let us consider ,βr{Φf W; σ) as in § 1. For each v e V(Φ), we
obtain a set ΎS[v] = ΎS(E[v]; σ \ Γ[v]). We describe the compatibility
conditions for a family {[^(v)]eΎS[v]}υeV{φ) to correspond to some & e
ίf(Φ, ?F; (7) as follows.

DEFINITION 20.4. Let ^~ = ( ^ { t̂}ί6i, (α, δ; r)) be a regular TS
diagram of (E(h); σ). For each CeΓ(h), the C boundary diagram dc^~
of J ^ is a quadruplet ({/„}„«*, {̂ : J,->L(C)},eJlf, {s(J,)},eM, (α(C), 6(C); r(C)))
satisfying the following conditions.

(B0) If a(C) = 0 or oo, then UP) = S1 x {*}. If 0 < a(C) < oo, then
L{C) = C/~, where y ~ y' for y,yf eC if and only if yr = φ\{y) for some
keZ. (Note that (& | C)α((7) = id.)

(Bl) Jμ is a copy of / for all μeM.
(B2) If α(C) = 0 or oo, then % A = 1 and ^ | Int J^ is an imbedding

and *Jμ = L{C) for μ e M, where *( ) = ^( ) as before. If 0 < a(C) <
oo, then cμ I Int J^ is an imbedding for μeM and there is a sur jection

= {*J\XeA, /e^U(JSr(4)-JSf3 f *JcC}->ilί such that *JΓ

e(.jr) =
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π(*K) and that s(*Jς{*κ)) = s(K) if Ke^fλ for some λ, and otherwise
e(VewnH \\, where ^ contains {Pλ = (4, *,, sijϊ - > ^ α>: ̂ - > {1, -l})he^
and π: C —> L(C) is the projection.

DEFINITION 20.5. Suppose that fe = 2 and let ^ = ({Jχ}λeAf {txheΛ,
{8(Jχ)}λeΛ9 (df b; r)) be a singular TS diagram. For Ce Γ(2), the C boundary
diagram dc^~ is defined as follows.

(1) When σ is not constant, let σ(C+) = 1 and σ(C~) = — 1, where
Γ(2) - {C+, C-}. Then 3 ^ ^ is equal to ^ and 3 ^ - ^ to ({J^6^, fohβ*
{β'Whβ* « δ'; -r)) such that

( i ) s\Jλ) = * , O, Λ, V, || if 8(Jλ) = O, , V, Λ, || respectively.
(ii) (α', 6') = (α, 6) ir (α, 6) = (0, 1) or (oo, oo), and « V) - (α, -6)

if (α, b)e(N x Z) c o p r i m e .
( 2 ) When σ is constant, we fix an order < on Γ(2) and let C < C,

C, C'eΓ(2). Then 3 ^ is equal to ^ and 3C,Ĵ ~ to ({Jλ}λeA, {cλheA9

{8'(Jz)heΛ, (a', V) r')) such that
( i ) s\Jλ) = , O (or O, •) if β(Ja) = O, and (α, 6) = (0, 1) (or

(α, b)e(N x Z) c o^ i m e). s'(J.) = Λ, V, || if s(J,) - V, Λ, ||.
(ii) (α', 6'; r') = (α, b; - r ) if (α, 6) - (0, 1) or (-, oo), and (α\ 6'; r') -

(α, -6 ; r) if (α, b)e(N x Z) c o p r i m e.

DEFINITION 20.6. Given a map (α, 6): Γ -• (iV x Z)*, for each C e Γ

let v(C) = ( ~ ^ ) if 0 < α(C) < - , and v(C) - ( J ) if α(C) - 0 .

DEFINITION 20.7. A TS model transverse to ^"(Φ, Ψ; σ) is a family
{[^~(v)]eTS[v]}vevm satisfying the following conditions.

Let seS(Φ) with 3(β) = (v) - (v') Let C = C[v](β), C = C[v'](β),
dc^(v) = ({Jihβ^, tehβ^, M J ΰ h β * (α, 6; r)) and dc,^~(y') = {{J'μ}μ&M, {c'μ}μeMf
{s(J'μ)UM, (a', V) r'))

(1) (α, 6; r) and (α', 6'; r') satisfies the condition corresponding to
(A5) in Definition 1.2.

( 2 ) There is a homeomorphism φ[s]: L(C) —» L(C') such that
( i ) if a(C) = oo, then ^[s] is orientation preserving,
(ii) if a(C) Φ oo and ε > 0 (or e < 0), then φ[s] is orientation pre-

serving (or reversing), where ε = tτv(Cf) Ψ[s] v(C) (product as matrices).
(3) Furthermore there is a bijection p: A -> ikf such that for each

( i ) *[«](VJ - V;U), and
(ii) β(j;W)) = O, , Λ, V, || (or * , O, Λ, V, ||) if s{Jλ) = O, , V,

Λ, || and 72 > 0 (or 72 < 0), where 72 is as in Definition 1.2.
We denote by TS (Φ, Ψ; σ) the set of TS models transverse to

Ψ; σ).
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21. The geometric criterion. We formulate the geometric criterion
precisely. First we have the following. Since the proof is long and
tedionus, we omit it.

THEOREM 8. There exists a canonical commutative diagram

tί(JT(Φ, Ψ; σ)) - Ϊ - * TS(Φ, Ψ; σ)

\ /
am(Φ, Ψ; σ) .

When a TS model ^ contains an infinite number of TS pieces, the
construction of a foliation <& transverse to ^{Φ, Ψ; σ) corresponding to
^ has troubles concerning the differentiability of 2 .̂ In order to get
a better formulation, we need the following.

DEFINITION 21.1. A TS model ^ is called finite if it contains at
most a finite number of TS pieces.

DEFINITION 21.2. A TS model ^ = {[^~(v)]}vevm is called irreducible
if the following conditions are satisfied.

(1) For each v e V(Φ), a representative J7~{v) contains no regular
TS piece P = {Δ, v9 s: J" -> ̂  ω: JT -> {1, -1}) such that v = IX and ω
is not constant.

(2) Let & be the set of TS pieces in fixed representatives
{J7~(v)}υeV{φ). On ^ , we consider an equivalence relation ~ determined
by

P - P' if there is s e S(Φ) with d(s) = (v) - (v')

such that P (or P') belongs to ^~{v) (or ^"(v')) and φ[s] in Definition
20.7 maps π(*J) to π'(V') for some Je^(\P\) and J ' e JF(\P'\), where
π (or π') is the projection to L(C[v](s)) (or L(C[v'](s))).

Then there is no equivalence class & with respect to ~ such that
if P c ^ then the symbols attached to P are V, Λ or ||.

We denote by ts(Φ, Ψ; σ) the set of finite irreducible TS models
transverse to ^{Φ, Ψ; σ).

Now we have the following.

THEOREM 8*. (1) There exists a canonical commutative diagram

I'
am(Φ, Ψ\ a)



228 T. NISHIMORI

( 2 ) r* is surjective.

The following follows directly from Theorem 8*.

THEOREM 8** (The geometric criterion). ί*( ^ ( Φ , Ψ) σ)) Φ 0 if and
only if ts(Φ, Ψ; σ) Φ 0 .

PROOF OF THEOREM 8*. Let α* = a | ts(Φ, Ψ; σ). We define τ* as
follows. Let gfe£*(J^(Φ, ^ <*)) and ^f = τ(5f). Using the theorem
of Kopell [7] as in Nishimori [9], we can show that if ^ is irreducible
then ^£ is finite, since ^ ^ G Image f. In this case, let τ*(S^) = ^ C
Suppose that ^ C is not irreducible. Then & contains foliated /-bundles
corresponding to regular TS pieces of type IX or to equivalence classes
of 3? in Definition 21.2 (2). Collapsing such foliated /-bundles along
fibers, we obtain a foliation &' such that τ(&') is irreducible. Then
τ(gf') is finite as above. Let τ*(gf) = τ(gf')• Since α(g^') = α(5f), we
have α*°τ* = cc.

( 2 ) Let ^ = {[^~(y)]}vevm 6 ts(Φ, Ψ\ σ). For each regular TS piece
P of ^(v), we take an appropriate component of the same type as P in
Theorem 3 if S"(v) is regular. When ^~(v) is singular, take C+ in
Definition 20.5 (1) or C in Definition 20.5 (2) and denote it by C. We
construct a foliation ^ of S1 x S1 such that

1i) SP* I (*e7̂ ) x S1 is a Reeb component such that the connected
components of d(*Jλ) x S1 have expanding holonomy in the same (or
opposite) direction as the orientation of S1 if s(Jλ) = O (or φ) ,

(ii) &\(*Ji) x S1 is a slope component such that the connected
components of d(*Jλ) x S1 have expanding holonomy in the same (or
opposite) direction as the orientation of d(*Jλ) x S1 as the boundary of
*Jλ x S1 if s(Jλ) = V (or Λ),

(iii) # I (V2) x S1 consists of leaves {x} x S1 for x e *Jλ if s(Jλ) = ||,
where ^(v) = ({Jλ}λeA, {cλ}λeΛ, {s(Jχ)}λeΛ, (a, b; r)). Now take a foliation &(v)
of E[v] with &(v) \C = Φ such that &(v) is C°° isomorphic to φ x /.

Since . ^ satisfies the condition in Definition 20.7 and ^ is finite,
we have a C°° foliation gf of Λf(Φ, ?Γ) transverse to ^ ( Φ , f; σ) with
r * ( ^ ) = ^ ^ . We omit the details. This completes the proof of Theo-
rem 8*.

The proof of Theorem 8* implies the following.

THEOREM 9. (1) For each ^£ e TS(Φ, Ψ; σ), there is cannonically
a C° foliation of M(Φ, Ψ) transverse to J^(Φ, Ψ; σ).

(2) // TS(Φ, Ψ;σ)Φ 0 , there is a C°° 2-plane field of M{Φ,Ψ)
transverse to &~(Φ, Ψ; σ).
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PROOF. (1) is clear. As for (2) there is a transverse C° foliation
by (1). It suffices to take a C°° approximation of Tgf.

22. Some applications of the geometric criterion. We treat
Ψ; σ) considered already in § 19. For such ^ ( Φ , Ψ; σ), we obtained a
necessary and sufficient condition under which am(Φ, Ψ; σ) Φ 0 by Prop-
ositions 19.1, 19.2, 19.5 and Remark 19.6. First consider J^(Φ, W; σ) such
that Φ is a graph in Figure 19.1. We show that for such JfiΦ, Ψ; σ)
the arithmetic criterion is complete. Precisely we have the following.

or

THEOREM 10.

(a) V(Φ) = {

(b)

Let
} and

, Ψ; σ) be as in
> 1,

1. Suppose that

= (vQ) -S(Φ) = {su , Sμ] and c

for all j .
Then the following conditions are equivalent.

( 1 ) t*(^(Φ,Ψ;σ))Φ 0 .
(2) ts(Φ,Ψ;σ)Φ 0 .
(3) am(Φ, Ψ; σ) Φ 0 .

PROOF. Note that (1)<=>(2) and (2) => (3) are already known for
general ^~(Φf Ψ\ σ)'s by Theorems 8** and 1*. Therefore it is sufficient
to prove that (3) implies (2). Suppose that am(Φ, Ψ; σ) Φ 0 .

Case (a). By Proposition 19.1, there is a longitude preserving side
8 e S(Φ) with ξ(s) = 1. Furthermore we have an arithmetic model (α, b; r):
Γ[Φ] = Γ[v] ->(Nx Z)* x 2Z such that

( i ) (aid), 6(00; r(d)) = (a(C2), δ(C2); r (Q) = (1, 0; 2 - μ),
(ii) r(C) = 0 for C e Γ[v] - {Clf C2},

where Cλ = C[v](s+) and C2 = CM(s"). Let Γ[v] - {Cl9 Q - {C3, ; , Cμ],
where μ = 2 #S(Φ). Now we find a regular TS diagram ^ " of
indicated by Figure 22.1.

III

VII

•

VII

y
III

φ

π •
VII

y
III

The right and left vertical segments are to be glued

FIGURE 22.1
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Then it is easy to check that [ J Π e ts(Φ, Ψ; σ) and a*([^~]) = (a, b; r).
Case (b). By Proposition 19.2, there is s5* e S{Φ) with ξ(sj*) = 1, and

ζ(s) = — 1 for all s e S(Φ) — {sj*}. We may suppose that Sj* = sλ. Further-
more we have an arithmetic model (α, 6; r): Γ[Φ] -> (N x Z)* x 2Z such
that

( i ) (a(C\ δ(C)) - (1, 0) for all CeΓ[Φ],
(ii) r(C^ = 2 and r(C, ) = 2^-) for j > 0,

where Cy = CfyoKβy) and Ĉ  = C[vy](sy). Now we find regular TS diagrams
indicated by Figure 22.2 in the case μ = 4.

FIGURE 22.2

Then it is easy to check that ^ = {[^7]}ίU is a finite TS model
and α*(^€0 = (α, 6; r). We have Λ' e ts(Φ, Ψ; σ) from ^ ^ by reduction
as in the proof of Theorem 8*. This completes the proof of Theorem 10.

Consider ^{Φf Ψ\ σ) such that Φ is a graph in Figure 22.3, where
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longitude preserving (or twisting) sides are represented by solid (or
dotted) lines.

The arithmetic criterion is complete in this case, too, and we have
the following.

THEOREM 11. Let ^(Φ, Ψ; σ) be as in § 1. Suppose that

h(v0) = μ > 1 , h(vό) = 3 for j > 0 ,

(2)

sά (or Sj) is longitude preserving (or twisting). Then t*(^(Φ9 Ψ; σ)) Φ
0 if and only if am(Φ, Ψ; σ) Φ 0 .

PROOF. AS above it suffices to prove that am(Φ, Ψ; σ) Φ 0 implies
ts(Φ, Ψ; σ) Φ 0 . Suppose that am(Φ, Ψ; σ) Φ 0 . By Proposition 19.5, we
have

Σ ξ(vjf t;0)(4 - 2h(vά)) = 2(2 - μ + ± ξ(8j)) = 0 .
3=0 3=1

Therefore ξ(sj*) = — 1 for some j * and ζ(β, ) = 1 for all je{l, , μ) —
{jf*}. We may suppose that j * = 1. Now we find regular TS diagrams
_^7, , ^μ'9 where ^ ' equals ^ in Case (b) in the proof of Theorem
9, and ^ 7 , , ^ are indicated by Figure 22.4.

V and
FIGURE 22.4

Then we see that ts(Φ, Ψ; σ) Φ 0 as above. This completes the
proof of Theorem 11.

REMARK 22.2. Let ^ ( Φ , Ψ; σ) satisfy the condition of Theorem 9
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(b) or Theorem 10. Then ί?(^(Φ, Ψ; σ)) Φ 0 if and only if am(Φ, Ψ σ) Φ
0, since ί?(^(Φ, Ψ; σ)) = t*(^~(Φ, Ψ; σ)) in the case Theorem 9 (b).
Consider the case of Theorem 10. In order to obtain transversely
orientable foliation & transverse to JF'iΦ, Ψ; σ), it suffices to insert,
for each j > 0, a regular TS piece P = ( z f , v , s : / ^ ^ ( £ ) : X ^ { - l , 1}),
such that v — IX and ω is constant, between the TS pieces of type VI
and VIII in ^ 7 if necessary.

23. A construction of regular TS diagrams of (E(h); σ) with given
(α, 6; r) in the case h > 2. The purpose of this section is to make pre-
parations for the proof of Theorem 2. We prove the following.

THEOREM 12. Let ^(h; σ) be as in §1 and suppose that h > 2. Let
(α, b; r): Γ(h) —> (N x Z)* x 2Z 6e a map such that

( i ) if r(C) = 0 for CeΓ(h), then (a(C), b(C)) = (1, 0).
(ϋ) Σ(7βru>α(CMC) = 4 - 2 λ .

ίfeerβ is α regular TS diagram ^~ = ( ^ {&}tβj, (αf, &f; r ')) o/
σ) ^ΐίfe (α', 6'; r') = (α, 6; r).

REMARK 23.1. When ft = 1 or 2, we obtain results similar to Theorem
12 more easily.

PROOF OF THEOREM 12. Denote by Γ+ (or Γ~, Γ°) the set of C e Γ{h)
with r{C) > 0 (or <0, =0), and let Γ+ = {C+, .. , C,+

(+)}, Γ" = {Cΐ, ,
C,-(_)}, and Γ°-{CJ, •• ,CΪ(O,}. For each CeΓ(h), take a set 77(C) of
I r(C) I points of C. Let Π+ = U ί^(C) IC 6 Γ+} and 77" = U {^(C) IC e Γ~}.
Number the elements of 77+ in such a way that

+ l ., 7r+(gr(C/)) e 77+

are on Cί in the order opposite to the orientation of Ci for k = 1,
Number the elements of 77~ in such a way that

I *(Cf) I + l) , , 1Γ ( g I r{Cj) |) 6 Π~

are on Cΐ in the same order as the orientation of Cϊ for k =
1, ,&( — )• Take an orientation preserving imbedding <τ: E(h) -^ R2

such that
(1) ;(<:*-,_,) = CN(N, 0) for large ^ ,
( 2) ί(C7) = CM -9) for i = 1, , Λ(-) - 1,
( 3) c(CJ) = CM, 9) for j = 1, , fc(+),
(4 ) c(Q) = C,(9(i + *;( + )), 9) for j = 1, , fc(0),

where C,,(a;, j/) is the circle of radius p with center (x, y). Identifying
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E(h) and c(E(h)), we regard E{h) as a subspace of R2.

Since Σσβrr(C) = Σc7βrα(C)r(C) = 4 - 2Λ < 0, w e h a v e ^ ( - ) > 0.
Since h - 1 ^ |4 - 2h\ for λ ^ 3 and fc(0) ̂  ft-1, it follows that ft(0) +
^ + ^ r~, where r + = #i7 + and r~ = #77". Sliding the points of Π+ and
i7~ if necessary, we may take disjoint line segments L(l), , L(r+)
such that dL(j) = {π+(j), π~(j)}. Furthermore we may take disjoint line
segments L(r+ + 1), , L(r+ + k(0)) in such a way that an endpoint of
L(r+ + j) equals π~(r+ + j) and the other one belongs to CJ. In addition
to these, take line segments K(l), - - , Kfa) satisfying the following
conditions (l)-(3).

( 1 ) An endpoint of k(j) belongs to Cp and the other one belongs
to Cj., for some f and j " .

( 2 ) The set B, = Cί U U Ciι+) UpΓ U U C* U L(l) U U I/(r+) U
i£(l) U U -SLCAΓX) is connected, where CV* contains π"(r + ).

( 3 ) For each j e {1, , ycj, the set Bλ — K(j) is not connected.
Finally take line segments K(jcx + 1), , K(ιc2) satisfying the follow-

ing conditions (4)-(6).
( 4 ) An endpoint of K(j) belongs to Cγ> and the other one belongs

to Cjt+1 for some f.
( 5 ) The set B2 = Bλ U C»+1 U U CjΓ<-) U if(/Ci + 1) U U JSL(Λ:2) is

connected.
( 6 ) For each j e {ic^ + 1, , tc2}, the set B2 — K(j) is not connected.

(See Figure 23.1.)
Let Ho be the connected component of

H = E(h) - (L(l) U U L(r+ + fc(0)) U ΛΓ(1) U U K(fc2))

FIGURE 23.1
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containing the point (-N, 0)eR\ We denote by Ho the compact mani-
fold with corner obtained from Ho by attaching the boundary. Then
So is homeomorphic to D2. Each other connected component Hs of H is
surrounded by Cp, Cj,,, L(j*) and L(j* + 1) for some f, j " and j * . The
closure of H3- is homeomorphic to D2.

Take a non-singular vector field Z on a neighborhood of E(h) —
IntfZΌ = B2 U (if — JHQ) satisfying the following conditions (l)-(4).

(1) Z is tangent to S2?(fc) at and only at Π+ U i7" U CJ U U Cfc

0

(0).
(2) The orbits of Z make concentric half circles (or confocal pa-

rabolas) near a point of Π+ (or Π~).
(3) The line segments K(l), , JKΓ(/C2) are orbits of Z.
(4) For each j = 1, , r + the orbits of Z make figures as in

Figure 23.2 (a) in a closed neighborhood U3 of L(j), and for each j = 1,
• , fc(0) they do so as in Figure 23.2 (b) in a closed neighborhood Vό of
£(r + + j) U C?.

(a) (b)

FIGURE 23.2

(a) (b)

FIGURE 23.3
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Since Σceπ/^C) = 4 — 2h, we can extend Z to a non-singular vector
field Z* on E(h). For each j = r+ + fc(0) + 1, , r~, take a small closed
interval J(j) in dE(h) containing π~(j). Since J(j)aH0, the saturation
J(j)* of J(j) with respect to Z* is contained in Ho. Modifying Z* if
necessary, we may suppose that J(j)* Π (Π~ — {π~(j)}) = 0 for
For a small closed neighborhood Ws of ττ~(j), the saturation W* of
is as in Figure 23.3 (a).

It is easy to see that for each connected component Xt of

all j .

E(h) - U U

where r* = r+ + fc(0) + 1, the orbits of i£* passing through X5 are as
in Figure 23.3 (b).

Now we take a regular TS piece for each of Uh Vj9 W3 and Xj9 as
in Figure 23.4.

ws

FIGURE 23.4

Then it is easy to construct a regular TS diagram containing the above
TS pieces and satisfying the condition of Theorem 12. This completes
the proof of Theorem 12.

24. The proof of Theorem 2. Theorem 2 follows from Theorem 9
(2) and the following.

THEOREM 13. The map a: TS(Φ, Ψ; σ) -> am(Φ, Ψ; σ) is surjective.

PROOF. Let (α, b; r) eam(Φ, Ψ; σ). For each ve V(Φ) with h(v) > 2,
we take the regular TS diagram ^~(v) constructed in §23. For ve V(Φ)
with h(v) = 1, we have a(C) = 1 and r(C) = 2, where {C} = Γ[v]. Take
a regular TS diagram ^~(y) containing exactly two TS pieces of type I.
Consider v e V(Φ) with h{v) = 2. Let Γ[v] = {C, C'}. When r(C) = 0, we
take a regular TS diagram ^"(v) containing exactly two TS pieces of
type VIII. When r(G) Φ 0 and a(C) = 0, we may suppose that σ(C) = 1
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r(C) < 0 r(C) > 0

FIGURE 24.1

and we take a singular TS diagram *^~{y) as in Figure 24.1. When
r(C) Φ 0 and a(C) > 0, we take a regular TS diagram ^~(y) indicated
by Figure 24.2.

= α(C)|r(C)|

FIGURE 24.2

Unfortunately {^~(v)}vevlΦ) constructed above does not satisfy the
compatibility condition described in Definition 20.7. For each seS(Φ)
with d(s) = (v) - (vf), we see that C = C[v](s) and C = C[i7f](β) satisfy
the compatibility condition on the symbols O, attached to L(C) and
L(C), while we have trouble with the symbols V, Λ, ||. We can over-
come this trouble by using the following trick.

Suppose that r(C) Φ 0. First take a homeomorphism φ: L(C) —> L(C)
satisfying the following conditions (l)-(3).

(1) For each J with s(J) = O or φ, the image φ(Int J) intersects
only one J' with s(J') = O or ••

(2) For each J with s(J) = V, Λ or ||, the image φ(J) is contained
in some J'.

(3) For each J' with s(J') = V, Λ or ||, there is J with φ(J)z)J'.
Inserting regular TS pieces of type II or singular TS pieces with

symbols V, Λ, || into ^(vr) for each J with s(J) = V, Λ, ||, we can
modify φ to φλ in such a way that φx satisfies the conditions corresponding
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-*-1-*

"Inserted
TS pieces

FIGURE 24.3

to (1), (2) and (3) above and φ1 maps each J with s(J) = V, Λ, || to some
J7 with the same symbol. (See Figure 24.3.)

Performing this for all seS(Φ), we have a family {^(v){1)}vevm of
TS diagrams. Now make similar modifications in the opposite direction
of s for all seS(Φ) and get {^(v)m}9BV{φ). Then L(C[v](s)) has possibly
new J's with s(J) = V, Λ or || for seS(Φ) with d(s) = (v) - (V). Re-
peating the process of inserting TS pieces with symbols V, Λ, || infinitely
many times, we have a limit family {^(vYoo)}υeViΦ) of TS diagrams. By
construction, this limit family ^y£ is a TS model transverse to J7~{Φ, Ψ; σ)
with ά{^£r) = (α, 6; r). This completes the proof of Theorem 13.
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