Tôhoku Math. Journ. 34 (1982), 389-406.

A LOCAL PROPERTY OF ABSOLUTELY CONVERGENT JACOBI POLYNOMIAL SERIES

FRANCO CAZZANIGA AND CHRISTOPHER MEANEY

(Received October 27, 1981)

Introduction. Fix real numbers $\alpha \ge \beta \ge -1/2$ and let $P_n^{(\alpha,\beta)}(x)$ denote the corresponding Jacobi polynomial of degree n in x, defined by the relation

$$(1-x)^{lpha}(1+x)^{eta}P_n^{(lpha,eta)}(x)=rac{(-1)^n}{2^n\cdot n!}\Big(rac{d}{dx}\Big)^n((1-x)^{n+lpha}(1+x)^{n+eta})\;.$$

We then form the normalized polynomials $R_n^{(\alpha,\beta)}(x) = P_n^{(\alpha,\beta)}(x)/P_n^{(\alpha,\beta)}(1)$, so that $\sup_{-1 \le x \le 1} |R_n^{(\alpha,\beta)}(x)| = 1$, $\forall n \ge 0$. We let $AJ(\alpha, \beta, 0)$ denote the space of series $f(x) = \sum_{n=0}^{\infty} a_n R_n^{(\alpha,\beta)}(x)$ subject to the condition $\sum_{n=0}^{\infty} |a_n| < \infty$.

The main result of Chapter 2 of this paper states that if $f \in AJ(\alpha, \beta, 0)$ and if $0 < \varepsilon < \pi/2$ then on $[\varepsilon, \pi - \varepsilon]$ we can write

(1)
$$f(\cos \theta) = \sum_{n=0}^{\infty} b_n \cos(n\theta)$$

with

$$(2)$$
 $\sum_{n=0}^{\infty} |b_n| (n+1)^{\alpha+1/2} < \infty$.

Conversely, if a cosine series (1) satisfies condition (2) then it represents an element of $AJ(\alpha, \beta, 0)$. The earlier paper [8] treats the case $\alpha = \beta = m + 1/2$ for an integer $m \ge 0$.

That such a result should be possible is suggested by the work of Gatesoupe [14] on the local properties of radial Fourier transforms in \mathbf{R}^n and that of Ricci [25] on absolutely convergent series of characters on compact semisimple Lie groups.

The space $AJ(\alpha, \beta, 0)$ can be given the structure of a Banach algebra of continuous functions on [-1, 1], with the usual multiplication of functions, and this has been studied by Askey and Wainger [4], Bavinck [6], Gasper [12], and Igari and Uno [19]. It can also be viewed as the Fourier algebra of the hypergroup formed by [-1, 1] when convolution of functions on [-1, 1] is defined as in [5]. In Chapter 3 we show that if $\alpha \ge 1/2$ and -1 < x < 1 then the singleton $\{x\}$ is not a set of synthesis for $AJ(\alpha, \beta, 0)$. The case AJ(+1/2, +1/2, 0) is an example in the work of Chilana and Ross [9], namely the algebra of absolutely convergent series of characters on SU(2).

We also show that when $\alpha > -1/2$ and $\alpha \ge \beta \ge -1/2$ nonanalytic functions operate on $AJ(\alpha, \beta, 0)|_{[\epsilon-1,1-\epsilon]}$. This corresponds to [25, Thm. 2].

In the final chapter we use the preceeding results to study spectral synthesis in the Fourier algebra K(G) of the compact Lie groups G = SO(n) $(n \ge 4)$; SU(n) $(n \ge 3)$; Sp(n) $(n \ge 2)$; and $F_{4(-52)}$. For example, we show that if $n \ge 4$ and $0 < \theta < \pi$ then the double coset

$$\begin{pmatrix} 1 & 0 \cdots 0 \\ 0 & & \\ \vdots & SO(n-1) \\ 0 & & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta & & \\ & & 0 \\ -\sin \theta & \cos \theta & & \\ & 0 & & I \end{pmatrix} \begin{pmatrix} 1 & 0 \cdots 0 \\ 0 & & \\ \vdots & SO(n-1) \\ 0 & & 0 \end{pmatrix}$$

is not a set of synthesis for K(SO(n)). This could be considered as a "compact group version" of L. Schwartz's theorem [26] which states that if $m \ge 3$, S^{m-1} is not a set of synthesis for the algebra of Fourier transforms on \mathbb{R}^m .

NOTATION. We let R, C, and H denote the real numbers, complex numbers, and quaternions, respectively. We set $T = R/(2\pi Z)$ and view functions on T as 2π -periodic functions on R.

If $\{a_n\}_n$ and $\{b_n\}_n$ are two sequences we write $a_n \sim b_n \ \forall n \ge 0$ to mean that there are positive constants c_1 and c_2 so that $c_1|a_n| \le |b_n| \le c_2|a_n|$, $\forall n \ge 0$.

1. Review of Jacobi polynomials. Our references for the properties of Jacobi polynomials are the book of Szegö [27] and the works of Askey, Gasper, and Wainger [1], [3], [4], [12] and [13]. We begin by setting up some notation. For α , $\beta > -1$ and -1 < x < 1 let

(1.1)
$$W_{\alpha,\beta}(x) = (1-x)^{\alpha}(1+x)^{\beta}$$

and

(1.2)
$$d\mu_{\alpha,\beta}(x) = W_{\alpha,\beta}(x)dx.$$

DEFINITION 1.3. For $\alpha, \beta > -1$ and an integer $n \ge 0$, $R_n^{(\alpha,\beta)}(x)$ is the unique polynomial of degree n in x such that:

(i) for every polynomial p(x) of degree less than n,

$$\int_{-1}^{1}p(x)R_{n}^{(\alpha,\beta)}(x)d\mu_{\alpha,\beta}(x)=0;$$

and

(ii) $R_n^{(\alpha,\beta)}(1) = 1.$

In terms of the notation of Szegö [27], $R_n^{(\alpha,\beta)}(x) = P_n^{(\alpha,\beta)}(x)/P_n^{(\alpha,\beta)}(1)$. If $\alpha \ge \beta \ge -1/2$ and $n \ge 0$ then

(1.4)
$$\sup_{-1 \le x \le 1} |R_n^{(\alpha,\beta)}(x)| = R_n^{(\alpha,\beta)}(1) = 1 .$$

If $a \in \mathbf{R}$ and $n \in \mathbf{N}$ we use the notation

(1.5)
$$(a)_0 = 1$$
 and $(a)_n = a(a+1)\cdots(a+n-1)$.

In the case when a is not a negative integer then we can write

(1.6)
$$(a)_n = \Gamma(a+n)/\Gamma(a) , \quad \forall n \in \mathbb{N}.$$

Recall the following properties of the Gamma function.

LEMMA 1.7. If $a \in \mathbb{R} \setminus (-N)$ then

$$\Gamma(n+a)/\Gamma(n) \sim (n+1)^a$$
, $\forall n \ge 0$.

If $0 \leq x < \infty$ then

$$2^{2x-1}\Gamma(x)\Gamma(x+1/2) = \pi^{1/2}\Gamma(2x)$$
.

This latter equation is called the duplication formula. From Szegö [27, (4.3.3) and (4.1.1)] we know that for $\alpha \ge \beta \ge -1/2$ the sequence

$$N(lpha,\,eta,\,n):=\int_{-1}^1|R_n^{\scriptscriptstyle(lpha,\,eta)}|^2d\mu_{lpha,\,eta}$$

satisfies

(1.8)
$$N(\alpha, \beta, n) \sim c_{\alpha,\beta}(n+1)^{-1-2\alpha}, \quad \forall n \in \mathbb{N}.$$

Note the following important special cases. When $(\alpha, \beta) = (0, 0)$ we have $R_n^{(0,0)}(x) = P_n(x)$, the Legendre polynomial of degree n. If we set $x = \cos \theta$ then for $n \ge 0$, $R_n^{(-1/2, -1/2)}(\cos \theta) = \cos (n\theta)$ and $R_n^{(1/2, 1/2)}(\cos \theta) = \sin ((n + 1)\theta)/\{(n + 1)\sin \theta\}.$

In the work below we will need some formulae connecting systems of Jacobi polynomials for different indices (α, β) . For a summary of these results see the survey article of Gasper [13].

PROPOSITION 1.9. For α , β , a > -1 and $n \ge 0$, $R_n^{(\alpha,\alpha)}(x)$ is equal to $\sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n!(\alpha+1)_{n-2k}(n+2\alpha-1)_{n-2k}(1/2)_k(\alpha-\alpha)_k R_{n-2k}^{(\alpha,\alpha)}(x)}{(n-2k)!(2k)!(\alpha+1)_{n-2k}(n-2k+2\alpha+1)_{n-2k}(n-2k+\alpha+1)_k(n-2k+\alpha+3/2)_k},$ and $R_n^{(\alpha,\beta)}(x)$ equal to

$$\sum_{k=0}^{n} \frac{n!(\alpha+1)_{k}(n+a+\beta+1)_{k}(a-\alpha)_{n-k}(k+\beta+1)_{n-k}R_{k}^{(\alpha,\beta)}(x)}{k!(n-k)!(a+1)_{k}(k+\alpha+\beta+1)_{k}(k+a+1)_{n-k}(2k+\alpha+\beta+2)_{n-k}}$$

The first of these identities is [27, (4.10.27)], due to Gegenbauer, and the second is [3, (2.8)]. We abbreviate these identities by setting

(1.10)
$$R_n^{(a,b)}(x) = \sum_{k=0}^n g(n, k; a, b, \alpha, \beta) R_k^{(\alpha,\beta)}(x) .$$

The coefficients $g(n, k; \cdots)$ always exist and we have just written explicit descriptions of $g(n, k; a, a, \alpha, \alpha)$ and $g(n, k; a, \beta, \alpha, \beta)$.

For arbitrary α , $\beta > -1$ and $n, m \ge 0$ it is clear that there exist coefficients $H(n, m, k; \alpha, \beta)$ such that

(1.11)
$$R_n^{(\alpha,\beta)}(x) \cdot R_m^{(\alpha,\beta)}(x) = \sum_{k=0}^{n+m} H(n, m, k; \alpha, \beta) R_k^{(\alpha,\beta)}(x) .$$

An elementary argument shows that $H(n, m, k; \alpha, \beta) = 0$ for k < |n - m|. Furthermore, Gasper [12] has shown the following to be true.

PROPOSITION 1.12. For $\alpha \geq \beta > -1$ and $\alpha + \beta \geq -1$, and all $n, m \geq 0$ the coefficients $H(n, m, k; \alpha, \beta)$ are nonnegative for $|n - m| \leq k \leq n + m$. In particular,

$$\sum_{k=0}^{n+m} |H(n, m, k; \alpha, \beta)| = \sum_{k=|n-m|}^{n+m} H(n, m, k; \alpha, \beta) = 1.$$

For further results in this direction see [1], [4], and [12].

This result enables us to equip spaces of absolutely convergent series $\sum_{n=0}^{\infty} a_n R_n^{(\alpha,\beta)}(x)$ with Banach algebra structure, as in [4] and [19].

The spaces which we consider are modelled on certain spaces of absolutely convergent Fourier series, the so called weighted algebras [20, p. 153]. We review their properties here, prior to setting up the more general algebras of absolutely convergent Jacobi polynomial series.

DEFINITION 1.13. For $\nu \ge 0$, $A_{\nu}(T)$ denotes the space of absolutely convergent Fourier series

$$f(x) = \sum_{-\infty}^{\infty} a_n e^{inx}$$

such that $||f||_{\nu} = \sum_{-\infty}^{\infty} |a_{n}|(|n|+1)^{\nu} < \infty$.

Note that A(T) is a Banach algebra of continuous functions on Tand if $0 \leq \nu_1 \leq \nu_2$ then $A_{\nu_2}(T) \subset A_{\nu_1}(T)$. In particular, $C^{\infty}(T) \subset A_{\nu}(T)$, $\forall \nu \geq 0$. We use the notation $A_{\nu}^{\varepsilon}(T)$ to denote the subspace of even elements of $A_{\nu}(T)$, that is, cosine series.

If $\nu \geq 1$ then elements of $A_{\nu}(T)$ are continuously differentiable functions on T. In fact, if $n = [\nu] \geq 1$ and $f \in A_{\nu}(T)$ then $f^{(n)} \in A_{\nu-n}(T) \subseteq A_0(T)$. One consequence of this property is that singletons $\{x\}$ are not sets of synthesis for $A_{\nu}(T)$, when $\nu \geq 1$. This means that the closure

of the ideal $J(x) = \{f \in A_{\nu}(T) : f = 0 \text{ on a neighbourhood of } x\}$ is not all of the closed ideal $I(x) = \{f \in A_{\nu}(T) : f(x) = 0\}$. To see this, observe that

$$\overline{J(x)} \subseteq \{f \in A_{\nu}(T) \colon f'(x) = f(x) = 0\} \neq I(x)$$
.

For further discussion of this behaviour see [24, Chpt. 2], [9], and [14].

Another property of $A_{\nu}(T)$ ($\nu > 0$) which distinguishes these spaces from $A(T) \equiv A_0(T)$ is the fact that nonanalytic functions operate on $A_{\nu}(T)$. More precisely, it is known [20, p. 82] that if F is a function on [-1, 1] with the property that $F \circ f \in A(T)$ for every $f \in A(T)$ with values in [-1, 1] then F is analytic on [-1, 1]. However, if $\nu \ge 1$ and $\mu \ge \nu + 1/2$ then for every $F \in A_{\nu}(T)$ and every real-valued $f \in A_{\nu}(T)$,

$$(1.14) F \circ f \in A_{\nu}(T) .$$

See [20, p. 153]. Leblanc has shown [22] that if $0 < \nu \leq 1$ and $\mu > 1 + (1/2\nu)$ then $A_{\mu}(T)$ operates on $A_{\nu}(T)$.

2. Absolutely convergent Jacobi polynomial series. In this section we investigate local properties of some algebras of absolutely convergent Jacobi series. A special case involving certain ultraspherical polynomials appears in [8]. Our approach is suggested by the work of Gatesoupe [14] and Ricci [25].

DEFINITION 2.1. For $\alpha \ge \beta \ge -1/2$ and $\lambda \ge 0$ let $AJ(\alpha, \beta, \lambda)$ denote the space of those continuous functions f on [-1, 1] whose Jacobi polynomial series

(2.2)
$$f(x) = \sum_{n=0}^{\infty} a_n R_n^{(\alpha,\beta)}(x)$$

satisfies

(2.3)
$$||f||_{(\alpha,\beta,\lambda)} := \sum_{n=0}^{\infty} |a_n|(n+1)^{\lambda} < \infty$$
.

REMARKS 2.4. From (1.4) we know that if (2.3) is true then the series (2.2) is uniformly absolutely convergent on [-1, 1]. The coefficients in (2.2) are determined by

(2.5)
$$a_n N(\alpha, \beta, n) = \int_{-1}^{1} f R_n^{(\alpha,\beta)} d\mu_{\alpha,\beta}, \quad \forall n \in \mathbb{N}.$$

Clearly, if $\lambda_1 > \lambda_2$ then $AJ(\alpha, \beta, \lambda_1) \subset AJ(\alpha, \beta, \lambda_2)$. The spaces $AJ(\alpha, \beta, 0)$ have been studied by Bavinck [6] who has shown that for $\alpha \ge \beta \ge -1/2$ and $a \ge b \ge -1/2$, $AJ(\alpha, \beta, 0) \subset AJ(\alpha, b, 0)$ provided either:

(2.6)
$$a = \alpha$$
 and $b - \beta > 0$ or $\alpha - a = \beta - b > 0$.

Note that the spaces $AJ(-1/2, -1/2, \lambda)$ are isomorphic with $A_{\lambda}^{\epsilon}(T)$. That is, $f \in AJ(-1/2, -1/2, \lambda)$ if and only if $\theta \to f(\cos \theta)$ is an even element of $A_{\lambda}(T)$. Leblanc has studied weighted l^{1} -spaces of absolutely convergent trigonometric series, in [21] and [22].

In [4] and [12] it is shown that $AJ(\alpha, \beta, 0)$ is a Banach algebra. This is a consequence of Proposition 1.12. Similarly, one can show the following holds.

PROPOSITION 2.7. For $\alpha \geq \beta \geq -1/2$ and $\lambda \geq 0$, $AJ(\alpha, \beta, \lambda)$ is a Banach algebra of continuous functions on [-1, 1], equipped with usual multiplication of functions.

As mentioned in the introduction, $AJ(\alpha, \beta, 0)$ is the Fourier algebra of the hypergroup formed by equipping [-1, 1] with the convolution described in [5]. This convolution generalizes that due to Bochner and Gel'fand for series of ultraspherical polynomials. The Fourier algebra of a compact abelian hypergroup is studied in [9].

We next verify the fact that smooth functions on [-1, 1] provide a space of test functions contained in $AJ(\alpha, \beta, \lambda)$ for all relevant (α, β, λ) .

Suppose f is an even element of $C^{\infty}(T)$. Then

$$f(heta) = \sum\limits_{n=0}^{\infty} a_n R_n^{\scriptscriptstyle (-1/2,\,-1/2)}(\cos heta)$$
 , $0 \leq heta \leq \pi$,

and the sequence $\{a_n\}$ is rapidly decreasing. For $\alpha, \beta \ge -1/2$,

$$R_n^{(-1/2,-1/2)} = \sum_{k=0}^n g(n, k; -1/2, -1/2, \alpha, \beta) R_k^{(\alpha,\beta)}$$

and

$$\sum_{k=0}^n |g(n,\,k;\,-1/2,\,-1/2,\,lpha,\,eta)|^2 N(lpha,\,eta,\,k) \leq C N(-1/2,\,-1/2,\,n)$$
 ,

since

$$\int_{-1}^{1} |R_{n}^{(-1/2,\,-1/2)}|^{2} d\mu_{lpha,eta} = \int_{-1}^{1} W_{lpha+1/2,\,eta+1/2} |R_{n}^{(-1/2,\,-1/2)}|^{2} d\mu_{-1/2,\,-1/2} \;.$$

From this we conclude that for $\alpha \ge \beta \ge -1/2$ and $\lambda \ge 0$,

$$egin{aligned} &\|R_n^{(-1/2,\,-1/2)}\,\|_{(lpha,\,eta,\,\lambda)} &= \sum\limits_{k=0}^n |\,g(n,\,k;\,-1/2,\,-1/2,\,lpha,\,eta)\,|(k+1)^\lambda \ &\leq \left(\sum\limits_{k=0}^n |\,g(n,\,k;\,-1/2,\,-1/2,\,lpha,\,eta)\,|^2(k+1)^{-1-2lpha}
ight)^{1/2}(n+1)^{\lambda+lpha+1} \end{aligned}$$

and so

$$\|f\|_{(lpha,eta,\lambda)} \leq C \sum_{n=0}^{\infty} |a_n|(n+1)^{\lambda+lpha+1} < \infty$$
.

Let S denote the collection of functions on [-1, 1] defined by $F(\cos \theta) = f(\theta)$ for some even $f \in C^{\infty}(T)$.

LEMMA 2.8. For all $\alpha \geq \beta \geq -1/2$ and $\lambda \geq 0$, $S \subset AJ(\alpha, \beta, \lambda)$.

The principal result of this section is the following description of the restriction of $AJ(\alpha, \beta, 0)$ to subintervals of [-1, 1].

THEOREM 2.9. If $\alpha \ge \beta \ge -1/2$ and $0 < \varepsilon < 1$ then

$$AJ(\alpha, \beta, 0)|_{[\epsilon-1,1-\epsilon]} = AJ(-1/2, -1/2, \alpha + 1/2)|_{[\epsilon-1,1-\epsilon]}$$

When $\alpha = \beta = 1/2$ then AJ(1/2, 1/2, 0) can be identified with the algebra of absolutely convergent central Fourier series on SU(2) and Theorem 2.9 corresponds to [25, Thm. 1], [23], and [9, p. 327].

We prove this in several stages. Firstly, for $\alpha \ge \beta \ge -1/2$ we show that

$$(2.10) W_{\alpha-\beta,0} \cdot AJ(\alpha, \beta, 0) \subset AJ(\beta, \beta, \alpha-\beta)$$

and

(2.11)
$$AJ(\beta, \beta, \alpha - \beta) \subset AJ(\alpha, \beta, 0)$$
.

This reduces the problem to the case of ultraspherical polynomials. Next we fix an integer $N \ge \beta + 1/2$ and show that for $\lambda \ge 0$

$$(2.12) W_{N,N} \cdot AJ(\beta, \beta, \lambda) \subset AJ(-1/2, -1/2, \lambda + \beta + 1/2)$$

and

$$(2.13) AJ(-1/2, -1/2, \lambda + \beta + 1/2) \subset AJ(\beta, \beta, \lambda)$$

Then

$$(2.14) \qquad W_{\alpha+N-\beta,N} \cdot AJ(\alpha, \beta, 0) \subset AJ(-1/2, -1/2, \alpha+1/2) \subset AJ(\alpha, \beta, 0) .$$

Finally fix $0 < \varepsilon < 1$ and let ϕ_{ε} be an element of S such that $\phi_{\varepsilon}(x)(1-x)^{\alpha+N-\beta}(1+x)^N = 1$, $\varepsilon - 1 \leq x \leq 1 - \varepsilon$. For each $f \in AJ(\alpha, \beta, 0)$, (2.14) implies that $\phi_{\varepsilon} \cdot W_{\alpha+N-\beta,N} \cdot f \in AJ(-1/2, -1/2, \alpha + 1/2)$ and $\phi_{\varepsilon} \cdot W_{\alpha+N-\beta,N} \cdot f \mid_{[\varepsilon-1,1-\varepsilon]} = f \mid_{[\varepsilon-1,1-\varepsilon]}$. Hence

$$|AJ(lpha, \, eta, \, 0)|_{[arepsilon-1, 1-arepsilon]} \subset AJ(-1/2, \, -1/2, \, lpha + 1/2)|_{[arepsilon-1, 1-arepsilon]}$$

The reverse inclusion follows from the second part of (2.14).

It remains to prove (2.10)-(2.13).

PROOF OF (2.10). We need to prove that for $k \ge 0$,

 $(2.16) || W_{\alpha-\beta,0} \cdot R_k^{(\alpha,\beta)} ||_{(\beta,\beta,\alpha-\beta)} = \mathbf{0}(1) .$

Fix k for the moment and consider the (β, β) -series $W_{\alpha-\beta,0}R_k^{(\alpha,\beta)} = \sum_{n=0}^{\infty} c_n R_n^{(\beta,\beta)}$, where

F. CAZZANIGA AND C. MEANEY

$$(2.17) c_n N(\beta, \beta, n) = \int_{-1}^1 W_{\alpha-\beta,0} R_k^{(\alpha,\beta)} R_n^{(\beta,\beta)} d\mu_{\beta,\beta} = \int_{-1}^1 R_n^{(\beta,\beta)} R_k^{(\alpha,\beta)} d\mu_{\alpha,\beta} \\ = g(n, k; \beta, \beta, \alpha, \beta) N(\alpha, \beta, k) .$$

In particular, $c_n = 0$ for n < k. Furthermore, if $\alpha - \beta \in N$ then $W_{\alpha-\beta,0}(x)R_k^{(\alpha,\beta)}(x)$ is a polynomial of degree $k + \alpha - \beta$, in which case $c_n = 0$ for $n > k + \alpha - \beta$.

Case $\alpha - \beta \in N$. Here we can write $W_{\alpha-\beta,0}R_k^{(\alpha,\beta)} = \sum_{n=k}^{k+\alpha-\beta} c_n R_n^{(\beta,\beta)}$ and observe that

$$\begin{split} \sum_{n=k}^{k+\alpha-\beta} |c_n|^2 N(\beta, \beta, n) &= \int_{-1}^1 (W_{\alpha-\beta,0})^2 (R_k^{(\alpha,\beta)})^2 d\mu_{\beta,\beta} \\ &= \int_{-1}^1 W_{\alpha-\beta,0} \cdot (R_k^{(\alpha,\beta)})^2 d\mu_{\alpha,\beta} \leq C_{\alpha,\beta} \cdot N(\alpha, \beta, k) \;. \end{split}$$

For any $\lambda \ge 0$,

$$\sum_{n=k}^{k+lpha-eta} |\, c_n \,|\, (n+1)^{\lambda+lpha-eta} \leq (\sum_n |\, c_n \,|^2 N(eta,\,eta,\,n))^{1/2} igg(\sum_{n=k}^{k+lpha-eta} (n+1)^{2\lambda+2lpha-2eta} N(eta,\,eta,\,n)^{-1} igg)^{1/2} \ \leq C_{lpha,eta} N(lpha,\,eta,\,k)^{1/2} igg(\sum_{n=k}^{k+lpha-eta} (n+1)^{2\lambda+2lpha-2eta+1+2eta} igg)^{1/2} \ \leq C_{lpha,eta} (k+1)^{-1/2-lpha+\lambda+lpha+1/2} \,,$$

since n is limited to range over $k \leq n \leq k + \alpha - \beta$. This shows that for $\lambda \geq 0$

(2.18)
$$\|W_{\alpha-\beta,0}\cdot R_k^{(\alpha,\beta)}\|_{(\beta,\beta,\lambda+\alpha-\beta)} = \mathbf{0}((k+1)^{\lambda})$$

In particular, when $\alpha - \beta \in N$,

$$(2.19) \qquad W_{\alpha-\beta,0} \cdot AJ(\alpha,\,\beta,\,\lambda) \subset AJ(\alpha,\,\beta,\,\lambda+\alpha-\beta) \,, \qquad \forall \lambda \geqq 0 \,.$$

Case $\alpha - \beta \notin N$. Now we must use the explicit description of $g(n, k; \beta, \beta, \alpha, \beta)$ given in Proposition 1.9 combined with the asymptotic properties of the Gamma function in estimating c_n . We know that

$$g(n, k; eta, eta, lpha, eta) = rac{\Gamma(n+1)\Gamma(k+1+lpha)\Gamma(n+k+2eta+1)\Gamma(n-k+eta-lpha)}{\Gamma(lpha+1)\Gamma(n+2eta+1)\Gamma(k+1)\Gamma(n-k+1)\Gamma(eta-lpha)} imes \cdots imes rac{\Gamma(k+lpha+eta+1)\Gamma(2k+lpha+eta+2)\Gamma(eta+1)}{\Gamma(2k+lpha+eta+1)\Gamma(n+k+lpha+eta+2)\Gamma(k+eta+1)} \,.$$

From Lemma 1.7 we conclude that for $n \ge k \ge 0$,

(2.20)
$$g(n, k; \beta, \beta, \alpha, \beta)$$

~ $C_{\alpha,\beta}(n+1)^{-2\beta}(k+1)^{2\alpha+1}(n-k+1)^{\beta-\alpha-1}(n+k+1)^{\beta-\alpha-1}$.

Combining this with (2.17) and (1.8) we see that

$$c_n \sim C_{\alpha,\beta}(n+1)(n-k+1)^{\beta-\alpha-1}(n+k+1)^{\beta-\alpha-1}$$

Hence,

$$(2.21) \qquad \|W_{\alpha-\beta,0}R_{k}^{(\alpha,\beta)}\|_{(\beta,\beta,\alpha-\beta)} \leq C \sum_{n=k}^{\infty} (n+1)^{1+\alpha-\beta} (n+k+1)^{\beta-\alpha-1} (n-k+1)^{\beta-\alpha-1} \\ \leq C \sum_{l=1}^{\infty} \left(\frac{k+l}{2k+l}\right)^{1+\alpha-\beta} l^{\beta-\alpha-1} = \mathbf{0}(1) \ .$$

In particular, $W_{\alpha-\beta,0}AJ(\alpha, \beta, 0) \subset AJ(\beta, \beta, \alpha - \beta)$, which completes the proof of (2.10).

PROOF OF (2.11). We have defined the coefficients $g(n, k; \cdots)$ by setting

$$R_n^{\scriptscriptstyle (eta,eta)} = \sum_{k=0}^n g(n,\,k;\,eta,\,eta,\,eta,\,eta) R_k^{\scriptscriptstyle (lpha,eta)} \;.$$

Alternatively, the orthogonality of the $R_k^{(\alpha,\beta)}$'s implies that

$$g(n, k; \beta, \beta, \alpha, \beta)N(\alpha, \beta, k) = \int_{-1}^{1} R_{n}^{(\beta,\beta)}R_{k}^{(\alpha,\beta)}d\mu_{\alpha,\beta}$$

and if $\alpha - \beta$ is an integer we saw that this is zero when $k < n - \alpha + \beta$.

Case $\alpha - \beta \in N$. When

$$R_n^{\scriptscriptstyle(eta,\,eta)} = \sum\limits_{k \ge 0 top k \ge n-lpha+eta}^n g(n,\,k;\,\cdots) R_k^{\scriptscriptstyle(lpha,\,eta)}$$

we see that

$$egin{aligned} \|R_n^{(eta,eta)}\|_{(lpha,eta,\lambda)} &= \sum_k |g(n,\,k;\,\cdots)| (k+1)^\lambda \ &= \sum_k |g(n,\,k;\,\cdots)| \, N(lpha,\,eta,\,k)^{1/2-1/2} (k+1)^\lambda \ &\leq C_{lpha,eta} N(eta,\,eta,\,n)^{1/2} igg(\sum_{k\geq 0 \ n-lpha+eta}^n N(lpha,\,eta,\,k)^{-1} (k+1)^{2\lambda} igg)^{1/2} \end{aligned}$$

and so

(2.22)
$$\|R_n^{(\beta,\beta)}\|_{(\alpha,\beta,\lambda)} = \mathbf{0}((n+1)^{\lambda+\alpha-\beta}) .$$

This says that for $\alpha - \beta \in N$ and $\lambda \ge 0$,

(2.23)
$$AJ(\beta, \beta, \lambda + \alpha - \beta) \subset AJ(\alpha, \beta, \lambda)$$
.

Case $\alpha - \beta \notin N$. Recalling the asymptotic relation (2.20) we see that for $n \ge 0$,

$$(2.24) \quad \|R_n^{(\beta,\beta)}\|_{(\alpha,\beta,\lambda)} \leq C_{\alpha,\beta} \sum_{k=0}^n (n+1)^{-2\beta} (k+1)^{2\alpha+1+\lambda} (n-k+1)^{\beta-\alpha-1} (n+k+1)^{\beta-\alpha-1}$$
$$\leq C_{\alpha,\beta} (n+1)^{-2\beta+2\alpha+1+\lambda+\beta-\alpha-1} \times \cdots$$

F. CAZZANIGA AND C. MEANEY

$$\times \sum_{k=0}^{n} \left(\frac{k+1}{n+1}\right)^{2\alpha+1+\lambda} \left(\frac{n+1}{n+k+1}\right)^{1+\alpha-\beta} (n-k+1)^{\beta-\alpha-1} \\ = 0((n+1)^{\lambda+\alpha-\beta}) \ .$$

Combining (2.23) and (2.24) we prove (2.11).

LEMMA 2.25. If $\alpha \geq \beta \geq -1/2$ and $\lambda \geq 0$, $AJ(\beta, \beta, \lambda + \alpha - \beta) \subset AJ(\alpha, \beta, \lambda)$.

PROOF OF (2.12). We now examine the norm $||W_{N,N} \cdot R_k^{(\beta,\beta)}||_{(-1/2,-1/2,\lambda)}$, where $k \ge 0$, $\beta \ge -1/2$, and N is the smallest integer such that $N \ge \beta + 1/2$. Observe that $W_{N,N}(x)R_k^{(\beta,\beta)}(x)$ is a polynomial of degree (k + 2N) in x, which means that

$$(2.26) \qquad \|W_{N,N} \cdot R_{k}^{(\beta,\beta)}\|_{(-1/2,-1/2,\lambda)} \leq C_{\beta} \cdot (k+1)^{\lambda} \|W_{N,N} \cdot R_{k}^{(\beta,\beta)}\|_{(-1/2,-1/2,0)},$$

for all $k \geq 0$.

In [6] it is shown that

 $W_{\mu,0} \in AJ(-1/2, -1/2, 0)$, $\mu \ge 0$ and $W_{0,\mu} \in AJ(-1/2, -1/2, 0)$ $\mu \ge 0$. In particular,

$$(2.27) \| W_{N,N} \cdot R_k^{(\beta,\beta)} \|_{(-1/2,-1/2,0)} \le C_{\beta} \| W_{\beta+1/2,\beta+1/2} \cdot R_k^{(\beta,\beta)} \|_{(-1/2,-1/2,0)}$$

since $W_{N,N} = W_{\beta+1/2,\beta+1/2}W_{N-\beta-1/2,0}W_{0,N-\beta-1/2}$. We now have a situation similar to the proof of (2.10).

Case $\beta + 1/2 \in N$. If $W_{\beta+1/2,\beta+1/2}$ is a polynomial of degree $2\beta + 1$ then for each $k \geq 0$ there are coefficients $\{c_n\}_n$ such that

$$W_{eta+1/2,\,eta+1/2}\cdot R_k^{(eta,eta)} = \sum_{n=k}^{k+2eta+1} c_n R_n^{(-1/2,\,-1/2)}$$

with

$$\sum_{n=k}^{k+2\beta+1} |c_n|^2 N(-1/2, -1/2, n) = \int_{-1}^{1} (W_{\beta+1/2,\beta+1/2} \cdot R_k^{(\beta,\beta)})^2 d\mu_{-1/2,-1/2} \leq C_{\beta} \cdot N(\beta, \beta, k) \; .$$

From this we conclude that

$$\sum_{n=k}^{k+2eta+1} |\, c_n \,| \leq C_{eta} N(eta,\,eta,\,k)^{1/2} \thicksim C_{eta}(k+1)^{-eta-1/2} \;.$$

Hence, for all $k \ge 0$ and $\lambda \ge 0$

 $(2.28) || W_{N,N} \cdot R_k^{(\beta,\beta)} ||_{(-1/2,-1/2,\lambda)} = \mathbf{0}((k+1)^{\lambda-\beta-1/2}) .$

LEMMA 2.29. If $\beta \geq -1/2$ and $\beta + 1/2 \in N$ then

$$W_{ extsf{ extsf{ heta}+1/2}, extsf{ heta}+1/2} \cdot AJ(eta,eta,\lambda) \subset AJ(-1/2,\,-1/2,\,\lambda+eta+1/2)$$
, for every $\lambda \geq 0$.

This corresponds to the result in [8], when $\lambda = 0$.

$$\begin{array}{l} Case \ \beta + 1/2 \notin N. \ \text{Recalling proposition 1.9 and } (2.17) \ \text{we see that} \\ W_{\beta+1/2,\beta+1/2} \cdot R_k^{(\beta,\beta)} \\ &= \sum\limits_{n=k}^{\infty} g(n,k;\,-1/2,\,-1/2,\,\beta,\,\beta) N(\beta,\,\beta,\,k) N(-1/2,\,-1/2,\,n)^{-1} R_n^{(-1/2,\,-1/2)} \,, \\ \text{for } k \geq 0. \ \text{ If } n-k \ \text{ is odd, } g(n,k;\,\cdots) = 0. \ \text{ If } n-k \ \text{ is even,} \\ g(n,k;\,-1/2,\,-1/2,\,\beta,\,\beta) \ \text{ is equal to} \\ (2.30) \ \frac{c(n+1)\Gamma(k+\beta+1)\Gamma(n+k)\Gamma((n-k)/2+1/2)\Gamma((n-k)/2-1/2-\beta)}{\Gamma(\beta+1)\Gamma(-1/2-\beta)\Gamma(k+1)\Gamma(n-k+1)\Gamma(2k+2\beta+1)\Gamma((n+k)/2+1/2)} \\ &\qquad \times \frac{\Gamma(k+2\beta+1)\Gamma((k+\beta+3/2))}{\Gamma((n+k)/2+\beta+3/2)} \\ &= c_{\beta}\frac{(n+1)\Gamma(k+2\beta+1)\Gamma((n-k)/2+1)\Gamma((n-k)/2-1/2-\beta)\Gamma(k+\beta+3/2)}{\Gamma(k+1)\Gamma((n-k)/2+1)\Gamma(k+\beta+1/2)\Gamma((n+k)/2+\beta+3/2)} \\ &\sim c_{\delta}(n+1)(k+1)^{2\beta+1}((n+k)/2+1)^{-\beta-3/2}((n-k)/2+1)^{-\beta-3/2} \,. \end{array}$$

$$\sim c_{\beta}(n+1)(k+1)^{2\beta+1}((n+k)/2+1)^{-\beta-3/2}((n-k)/2)}((n-k)/2)^{-\beta-3/2}((n-k)/2)}((n-k)/2)^{-\beta-3/2}((n-k)/2)}((n-k)/2))^{-\beta-3/2}((n-k)/2)}((n-k)/2))$$

Then, for $k \ge 0$ we see that

$$(2.31) \qquad \|W_{\beta+1/2,\beta+1/2} \cdot R_k^{(\beta,\beta)}\|_{(-1/2,-1/2,0)} \\ \leq c_{\beta} \sum_{\substack{n=k \\ (n-k) \text{ even}}}^{\infty} (n+1)((n+k)/2+1)^{-\beta-3/2}((n-k)/2+1)^{-\beta-3/2} \\ \leq c_{\beta}(k+1)^{-\beta-1/2} \sum_{n=k}^{\infty} ((n+1)/(n+k+2))(n-k+1)^{-\beta-3/2} \\ = \mathbf{0}((k+1)^{-\beta-1/2}) .$$

In (2.26) we can write $\|W_{N,N} \cdot R_k^{(\beta,\beta)}\|_{(-1/2,-1/2,\lambda)} = 0((k+1)^{\lambda-\beta-1/2}).$

LEMMA 2.32. If $\beta \ge -1/2$ and N is the least integer such that $N \ge 1$ $\beta + 1/2$, then

$$W_{{}_{N,N}}\cdot AJ(eta,\,eta,\,\lambda)\subset AJ(-1/2,\,-1/2,\,\lambda+eta+1/2)\;,\qquad orall\lambda\geqq 0$$

3. Consequences. Fix $\alpha \ge \beta \ge -1/2$ and $0 < \varepsilon < 1$. We have shown that $AJ(\alpha, \beta, 0)|_{[\varepsilon-1,1-\varepsilon]} = AJ(-1/2, -1/2, \alpha + 1/2)|_{[\varepsilon-1,1-\varepsilon]}$. If $\alpha \ge 1/2$ we know that $AJ(-1/2, -1/2, \alpha + 1/2)|_{[\epsilon-1,1-\epsilon]} \subseteq AJ(-1/2, -1/2, 1)|_{[\epsilon-1,1-\epsilon]}$ and so the elements of $AJ(\alpha, \beta, 0)$ are differentiable on]-1, 1[. If $f \in$ $AJ(\alpha, \beta, 0)$ and $\varepsilon - 1 \leq x \leq 1 - \varepsilon$, then

$$(3.1) |f'(x)| \leq C_{\alpha,\beta,\varepsilon} ||f||_{(\alpha,\beta,0)} .$$

THEOREM 3.2. If $\alpha \geq \beta \geq -1/2$, $\alpha \geq 1/2$, and $-1 < x_0 < 1$ then $\{x_0\}$ is not a set of spectral synthesis for $AJ(\alpha, \beta, 0)$.

PROOF. As in the work of Chilana and Ross [9] observe that

 $J(x_0) = \{f \in AJ(\alpha, \beta, 0): f = 0 \text{ on a neighbourhood of } x_0\}$ is contained in $\{f \in AJ(\alpha, \beta, 0): f(x_0) = f'(x_0) = 0\}$ and this is a proper closed subspace of $I(x_0) = \{f \in AJ(\alpha, \beta, 0): f(x_0) = 0\}$.

Hence $I(x_0)$ is larger than the closure of $J(x_0)$. q.e.d.

We can also provide examples of nonanalytic functions which operate on $AJ(\alpha, \beta, 0)|_{[\epsilon-1,1-\epsilon]}$, analogous to [25].

THEOREM 3.3. If $\alpha \geq \beta \geq -1/2$, $\alpha \geq 1/2$, $0 < \varepsilon < 1$, $F \in A_{\alpha+1}(T)$ and if f is a real valued element of $AJ(\alpha, \beta, 0)$ then

$$F \circ f|_{[\varepsilon-1,1-\varepsilon]} \in AJ(\alpha, \beta, 0)|_{[\varepsilon-1,1-\varepsilon]}$$
.

PROOF. From Theorem 2.9 we know that there is a real-valued $g \in AJ(-1/2, -1/2, \alpha + 1/2)$ such that $f|_{[\epsilon-1,1-\epsilon]} = g|_{[\epsilon-1,1-\epsilon]}$. Then $\theta \to g(\cos \theta)$ is an element of $A^{\epsilon}_{\alpha+1/2}(T)$ and from [20, p. 153] we know that $\theta \to F(g(\cos \theta))$ is an element of $A^{\epsilon}_{\alpha+1/2}(T)$. Finally note that $F \circ g \in AJ(-1/2, -1/2, \alpha + 1/2) \subset AJ(\alpha, \beta, 0)$ and $F \circ g|_{[\epsilon-1,1-\epsilon]} = F \circ f|_{[\epsilon-1,1-\epsilon]}$. q.e.d.

Similarly, we can treat the case $-1/2 < \alpha < 1/2$.

THEOREM 3.4. If $1/2 > \alpha \ge \beta \ge -1/2$ and $\alpha > -1/2$, $0 < \varepsilon < 1$, $F \in A_{(2\alpha+2)/(2\alpha+1)}(T)$, and if f is a real-valued element of $AJ(\alpha, \beta, 0)$ then $F \circ f|_{[\varepsilon-1,1-\varepsilon]} \in AJ(\alpha, \beta, 0)|_{[\varepsilon-1,1-\varepsilon]}$.

Apply [21] in place of [20] in the proof of Theorem 3.3.

In [4] Askey and Wainger prove a Wiener-Lévy theorem for $AJ(\alpha, \beta, 0)$.

Theorems 3.3 and 3.4 state that if $\alpha \ge \beta \ge -1/2$ and $\alpha > -1/2$ then closed subintervals of]-1, 1[are not sets of analyticity for $AJ(\alpha, \beta, 0)$, in contrast with the case of A(T). See [20, pp. 80 and 84].

4. Compact rank one symmetric spaces. We wish to apply the results of Chapter 2 to demonstrate the failure of spectral synthesis for the Fourier algebras of the classical compact groups SO(n) $(n \ge 4)$, SU(n) $(n \ge 3)$, and Sp(n). First we recall some facts from harmonic analysis on compact groups [18] and the theory of zonal spherical functions [10].

For the moment let G denote a compact Hausdorff group with dual object \hat{G} and equip G with normalized Haar measure m_{G} . To each $\sigma \in \hat{G}$ fix a representation $(\pi^{\sigma}, \mathscr{H}^{\sigma}) \in \sigma$ and set $d_{\sigma} = \dim \mathscr{H}^{\sigma}$ and $\chi_{\sigma} = \operatorname{tr}(\pi^{\sigma})$. Let H be a closed subgroup of G, with normalized Haar measure m_{H} . We assume that the pair (G, H) has the following property: for each $\sigma \in \hat{G}$

$${}^{\scriptscriptstyle H}\mathscr{H}{}^{\sigma}=\{\xi\in\mathscr{H}{}^{\sigma}:\pi^{\sigma}(x)\xi=\xi,\,\forall x\in H\}$$

is either zero or one-dimensional. Let \hat{G}_H be the collection of σ in \hat{G} such that ${}^{_{H}}\mathscr{H}{}^{\sigma} \neq \{0\}$. Associated to such a pair (G, H) are a family of special functions, indexed by \hat{G}_{H} . These are the zonal spherical functions, defined by setting

$$\phi_{\sigma}(x) = \chi_{\sigma} st m_{\scriptscriptstyle H}(x)$$
 , $x \in G$, $\sigma \in \widehat{G}_{\scriptscriptstyle H}$.

The properties of $\{\phi_{\sigma}\}$ are examined in [10]. In particular, if $\sigma \in G_{H}$,

$$\phi_{\sigma}(h_1xh_2)=\phi_{\sigma}(x)$$
 , $orall x\in G$, $h_1,\,h_2\in H$.

Functions with this property are called *bi-H-invariant*. The fact that $\dim({}^{\scriptscriptstyle H}\mathscr{H}{}^{\sigma}) = 1$ implies that $\phi_{\sigma}(1) = 1 = ||\phi_{\sigma}||_{\infty}$. The Fourier algebra of G is defined to be $K(G) = L^2(G) * L^2(G)$, [18, (34.15)]. It is sometimes denoted A(G) and its properties are described in [18, §34]. K(G) is an algebra of continuous functions on G and is equipped with the norm

(4.1)
$$\|f\|_{\kappa} = \inf \{\|\psi_1\|_2 \|\psi_2\|_2 : f = \psi_1 * \psi_2\}.$$

There is an alternative description of the norm on K(G) in terms of absolutely convergent Fourier series on G, [18, (34.4)].

We are interested in the subspace of bi-*H*-invariant elements of K(G), which we denote by ${}^{H}K(G)^{H}$. It is a fact that ${}^{H}K(G)^{H}$ consists of series $f(x) = \sum_{\sigma \in \hat{G}_{H}} a_{\sigma}\phi_{\sigma}(x)$, with $\|f\|_{K} = \sum_{\sigma} |a_{\sigma}| < \infty$.

There is a projection $P: K(G) \to {}^{H}K(G){}^{H}$ defined in the following manner. If f is a continuous function on G set $Pf(x) = m_{H} * f * m_{H}(x)$.

LEMMA 4.2. If $f \in K(G)$ then $Pf \in {}^{H}K(G)^{H}$ and $||Pf||_{\kappa} \leq ||f||_{\kappa}$. If $f \in {}^{H}K(G)^{H}$ then Pf = f.

PROOF. If $f \in K(G)$ and $\varepsilon > 0$ there exists $\psi_1, \psi_2 \in L^2(G)$ with $f = \psi_1 * \psi_2$ and $||f||_{\kappa} \ge ||\psi_1||_2 ||\psi_2||_2 - \varepsilon$. From the definition of P, $Pf = (m_H * \psi_1) * (\psi_2 * m_H)$ which shows that $Pf \in L^2(G) * L^2(G)$. Furthermore,

$$\|Pf\|_{ extsf{K}} \leq \|m_{{\scriptscriptstyle H}}*\psi_1\|_2 \|\psi_2*m_{{\scriptscriptstyle H}}\|_2 \leq \|\psi_1\|_2 \|\psi_2\|_2 \leq \|f\|_{ extsf{K}} + arepsilon \;.$$

The ε was arbitrary, hence $\|Pf\|_{\kappa} \leq \|f\|_{\kappa}$. The last part of the lemma is obvious. q.e.d.

DEFINITION 4.3. If E is a closed subset of G we let

$$I(E) = \{ f \in K(G) : f(x) = 0 \ \forall x \in E \}$$

and $J(E) = \{f \in K(G): f = 0 \text{ on a neighbourhood of } E\}$. We say that E is a set of synthesis for K(G) if I(E) is the closure of J(E) in K(G).

We now restrict our attention to some special groups, namely those

corresponding to the compact rank-one Riemannian symmetric spaces. The possibilities are tabulated as in Table 1, see [2].

Table	1
-------	---

G	H	G/H
SO(n)	$\{1\} \times SO(n-1)$	S^{n-1}
SO(n)	$S(\{\pm 1\} imes 0(n))$	$P^{n-1}(\boldsymbol{R})$
SU(n)	$S(T \times U(n-1))$	$P^{n-1}(C)$
Sp(n)	$Sp(1) \times Sp(n-1)$	$P^{n-1}(H)$
$F_{4(-52)}$	SO(9)	$P^2(Cayley).$

If k = R, C, or H, $P^{m}(k)$ denotes the space of k-lines in $k^{m+1} \cdot P^{2}(\text{Cayley})$ is the Cayley projective plane. The geometry of these spaces is described in [7].

In each case listed here there is a closed subgroup of G isomorphic to T, which we will denote by A, such that

$$(4.4) G = HAH .$$

Let $a: T \to A$ be this isomorphism. Then if $\theta \in T$ there exist $h_1, h_2 \in H$ with

$$(4.5) h_1 a(\theta) h_2 = a(-\theta) .$$

On account of (4.4) and (4.5) it follows that every bi-*H*-invariant function is completely determined by its restriction to $A_+ = \{a(\theta): 0 \le \theta \le \pi\}$. Furthermore, the set $H(\operatorname{int} A_+)H$ is an open set of full measure in *G*.

For example, if G = SO(n) and $H = \{1\} \times SO(n-1)$, with $n \ge 3$, we can take

$$A = egin{cases} & \cos heta & \sin heta & 0 \ -\sin heta & \cos heta & 0 \ 0 & I \end{pmatrix} : \ 0 \leq heta \leq 2\pi iggr\} \, .$$

For G and H as above, \hat{G}_{H} and the zonal spherical functions have been completely determined, [16] and [11]. We can identify \hat{G}_{H} with N and to each $n \in N$ the corresponding zonal spherical function is

(4.6)
$$\phi_n(a(\theta)) = R_n^{(\alpha,\beta)}(\cos \theta)$$
, $0 \leq \theta \leq \pi$,

where the indices (α, β) depend only on G/H.

The possible values of (α, β) are as in Table 2. See [2] for details. Note that if $d = \dim(G/H)$ then $\alpha = (d-2)/2$ and $\alpha \ge \beta \ge -1/2$. From the discussion above and (4.6) we see that for (G, H, α, β) as in Table 2 the correspondence $T: {}^{_{H}}K(G)^{_{H}} \to AJ(\alpha, \beta, 0)$

$$Tf(x) = f(a(\arccos(x))), \quad -1 \leq x \leq 1,$$

is an isometric isomorphism.

TABLE	2
-------	---

G/H	$\dim (G/H)$	α	β
$S^m (m \ge 2)$	т	(m - 2)/2	(m-2)/2
$P^m(\mathbf{R})$	m	(m-2)/2	-1/2
$P^m(C)$	2m	(m-1)	0
$P^m(H)$	4m	2m-1	1
$P^2(Cayley)$	16	7	3

In particular, suppose that G/H is a *d*-dimensional compact rank-one Riemannian symmetric space and $0 < \varepsilon < \pi/2$. Then every $f \in {}^{_{H}}K(G)^{_{H}}$, when restricted to $\{a(\theta): \varepsilon \leq \theta \leq \pi - \varepsilon\}$, can be written as

$$f(a(heta)) = \sum_{n=0}^{\infty} b_n \cos(n heta)$$
, $\varepsilon \leq heta \leq \pi - \varepsilon$,

with

(4.7)
$$\sum_{n=0}^{\infty} |b_n| (n+1)^{(d-1)/2} \leq C \|f\|_{\kappa}.$$

This is a consequence of Theorem 2.9.

Hence, if $d \ge 3$, $\theta \to f(a(\theta))$ is differentiable on]0, π [. As in Chapter 3, we wish to use this to demonstrate the existence of sets of nonsynthesis.

THEOREM 4.8. If G and H are as in Table 1, if the dimension of G/H is greater than two, and if $0 < \theta_0 < \pi$ then the double coset $Ha(\theta_0)H$ is not a set of synthesis for K(G).

To prove this we will need the following lemma.

LEMMA 4.9. If G and H are as in Table 1, $0 < \theta_0 < \pi$, and if U is a neighbourhood of $Ha(\theta_0)H$ in G then there exists $\delta > 0$ such that U contains

$$H. \left\{ a(heta) \colon \left| \, heta \, - \, heta_{ extsf{0}}
ight| < \delta
ight\} . \, H \; .$$

This follows from [15, Lemma VII 7.1].

Now fix θ_0 as in the statement of the theorem. Suppose that $E = H. a(\theta_0)$. H and $f \in J(E)$. Then Lemma 4.9 implies that there is a $\delta > 0$ such that $Pf(a(\theta)) = 0$ for all $|\theta - \theta_0| < \delta$. Hence $(d/d\theta)(Pf(a(\theta)))|_{\theta=\theta_0} = 0$. Since $d \ge 3$, (4.7) tells us that we can define a bounded linear functional Λ on K(G) by setting

(4.10)
$$\Lambda(f) = (d/d\theta)(Pf(a(\theta)))|_{\theta=\theta_0}.$$

We have just seen that $J(E) \subseteq \ker(\Lambda)$, and so $\overline{J(E)} \subseteq \ker(\Lambda)$.

However, I(E) is not contained in ker (A). For example, the function Ψ defined by

$$(4.11) \qquad \qquad \Psi(h_1a(\theta)h_2) = \cos{(\theta)} - \cos{(\theta_0)} , \qquad h_1h_2 \in H ,$$

is in $I(E) \cap ({}^{_{H}}K(G){}^{_{H}})$ but $\Lambda(\Psi) = -\sin(\theta_0) \neq 0$, on account of the choice of θ_0 . This completes the proof of the theorem.

Observe that we could define a collection of bounded functionals Λ_j $(0 \le j \le [(d-1)/2])$ by setting

$$\Lambda_{\mathbf{j}}(f) = (d/d heta)^{\mathbf{j}}(Pf(a(heta)))ert_{ heta= heta_0}$$
 , $1\leq j\leq \left[(d-1)/2
ight]$,

and $\Lambda_0(f) = Pf(a(\theta_0))$. Then the spaces

$$i_j(heta_{\scriptscriptstyle 0}) = \{f \in {\it K}(G) : arLambda_l(f) = 0 \hspace{0.1 cm}, \hspace{0.1 cm} 0 \leq l \leq j\}$$

are all closed subspaces of K(G) containing J(E) and

$$\overline{J(E)} \subset i_{\scriptscriptstyle [(d-1)/2]}(heta_{\scriptscriptstyle 0}) \varsubsetneq \cdots \varsubsetneq i_{\scriptscriptstyle 1}(heta_{\scriptscriptstyle 0}) \varsubsetneq I(E)$$
 .

This property is similar to [28, Thm. 3].

The theorem of Herz [17] that the circle is a set of synthesis for the algebra of Fourier transforms on \mathbb{R}^2 suggests that the case of SO(3)/SO(2) could be different from the higher dimensional cases described in Theorem 4.8.

In [25, Thm. 2] Ricci shows that nonanalytic functions operate locally on $K^{z}(G)$, the subalgebra of central elements of K(G), when G is a compact connected semisimple Lie group.

THEOREM 4.12. Let G/H be a compact rank-one Riemannian symmetric space of dimension d > 1. Let $x_0 \in H$. int (A_+) . H. Then there is a neighbourhood U of x_0 in G such that $A_{d/2}(T)$ operates on the realvalued elements of $({}^{H}K(G){}^{H})|_{U}$.

PROOF. Our hypothesis is that $x_0 = h_1 a(\theta_0) h_2$, for some $0 < \theta_0 < \pi$ and $h_1, h_2 \in H$. Let $2\delta = \min \{\theta_0, |\theta_0 - \pi/2|\}$ and put $U = H.\{a(\theta): |\theta - \theta_0| < \delta\}$. *H*, an open set in *G*. Then $({}^H K(G){}^H)|_U$ is isomorphic with $AJ(\alpha, \beta, 0)|_I$, where *I* is the interval $\cos (\{\theta: |\theta - \theta_0| < \delta\})$. Now apply Theorem 3.3.

q.e.d.

BIBLIOGRAPHY

- R. ASKEY, Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics 21, S. I. A. M. Philadelphia, 1975.
- [2] R. ASKEY AND N. H. BINGHAM, Gaussian processes on compact symmetric spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 37 (1976), 127-143.

- [3] R. ASKEY AND G. GASPER, Jacobi polynomial expansions of Jacobi polynomials with nonnegative coefficients, Proc. Camb. Phil. Soc. 70 (1971), 243-255.
- [4] R. ASKEY AND S. WAINGER, A dual convolution structure for Jacobi polynomials, "Orthogonal expansions and their continuous analogues", Southern Illinois University Press, Carbondale and Edwardsville, 1968, 25-36.
- [5] R. ASKEY AND S. WAINGER, A convolution structure for Jacobi series, American J. Math. 91 (1969), 463-485.
- [6] H. BAVINCK, On absolute convergence of Jacobi series, J. Approx. Theory 4 (1971), 387-400.
- [7] A. BESSE, Manifolds all of whose geodesics are closed, Ergebnisse der Math. 93 Springer-Verlag, Berlin, Heidelberg, New York, 1978.
- [8] F. CAZZANIGA, A local property of absolutely convergent ultraspherical series, to appear in Boll. U. M. I.
- [9] A. K. CHILANA AND K. A. Ross, Spectral synthesis in hypergroups, Pacific J. Math. 76 (1978), 313-328.
- [10] C. F. DUNKL AND D. E. RAMIREZ, Topics in harmonic analysis, Appleton-Century-Crofts, New York, 1971.
- [11] R. GANGOLLI, Positive-definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. H. Poincaré. B. 3 (1967), 121-226.
- [12] G. GASPER, Linearization of the product of Jacobi polynomials, I & II, Canadian J. Math. 22 (1970), 171-175 & 582-593.
- [13] G. GASPER, Positivity and special functions, in "Theory and application of special functions" Academic Press, New York, San Francisco, London, 1975, 375-433.
- [14] M. GATESOUPE, Caractèrisation locale de la sous algèbra fermée des fonctions radiales de $\mathscr{F}L^{1}(\mathbb{R}_{n})$, Ann. l'Inst. Fourier, Grenoble, 17 (1967), 93-107.
- [15] S. HELGASON, Differential geometry and symmetric spaces, Academic Press, New York & London, 1962.
- [16] S. HELGASON, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153-180.
- [17] C. S. HERZ, Spectral synthesis for the circle, Ann. of Math. 68 (1958), 709-712.
- [18] E. HEWITT AND K. A. Ross, Abstract harmonic analysis II, Springer-Verlag, Berlin Heidelberg, New York, 1970.
- [19] S. IGARI AND Y. UNO, Banach algebra related to the Jacobi polynomials, Tôhoku Math. J. 21 (1969), 668-673.
- [20] J.-P. KAHANE, Series de Fourier absolument convergentes, Ergebnisse der Math. 50, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- [21] N. LEBLANC, Calcul symbolique dans certaine algèbres de séries de Fourier à poids, C. R. Acad. Sci. Paris 266 (1968), 339-341.
- [22] N. LEBLANC, Les fonctions qui opèrent dans certaines algèbres à poids, Math. Scand. 25 (1969), 190-194.
- [23] M.-P. MALLIAVIN AND P. MALLIAVIN, Calcul symbolique sur l'algèbre de Wiener centrale de SU(3), Lecture Notes in Math. 266 (1972), Springer-Verlag, Berlin Heidelberg, New York, 215-228.
- [24] H. REITER, Classical harmonic analysis and locally compact groups, Oxford Mathematical Monographs, Oxford U. Press, Oxford, 1968.
- [25] F. RICCI, Local properties of the central Wiener algebra on the regular set of a compact Lie group, Bull. Sci. Math. (2) 101 (1977). 87-95.
- [26] L. SCHWARTZ, Sur une propriété de synthèse spectrale dans les groupes non compacts, C. R. Acad. Sci. Paris 227 (1948), 424-426.

F. CAZZANIGA AND C. MEANEY

 [27] G. SZEGO, Orthogonal polynomials, 3rd edition, AMS Colloquium Publications 23 (1967).
 [28] N. TH. VAROPOULOS, Spectral synthesis on spheres, Proc. Camb. Phil. Soc. 62 (1966), 379-387.

Instituto Matematico	AND	DEPARTMENT OF PURE MATHEMATICS
"Federigo Enriques"		UNIVERSITY OF ADELAIDE
Università di Milano		G. P. O. BOX 498, ADELAIDE
VIA C. SALDINI, 50		South Australia 5001
20133 Milan		AUSTRALIA
Italy		