A LOCAL PROPERTY OF ABSOLUTELY CONVERGENT JACOBI POLYNOMIAL SERIES

Franco Cazzaniga and Christopher Meaney

(Received October 27, 1981)

Introduction. Fix real numbers $\alpha \geqq \beta \geqq-1 / 2$ and let $P_{n}^{(\alpha, \beta)}(x)$ denote the corresponding Jacobi polynomial of degree n in x, defined by the relation

$$
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} \cdot n!}\left(\frac{d}{d x}\right)^{n}\left((1-x)^{n+\alpha}(1+x)^{n+\beta}\right)
$$

We then form the normalized polynomials $R_{n}^{(\alpha, \beta)}(x)=P_{n}^{(\alpha, \beta)}(x) / P_{n}^{(\alpha, \beta)}(1)$, so that $\sup _{-1 \leq x \leq 1}\left|R_{n}^{(\alpha, \beta)}(x)\right|=1, \forall n \geqq 0$. We let $A J(\alpha, \beta, 0)$ denote the space of series $f(x)=\sum_{n=0}^{\infty} a_{n} R_{n}^{(\alpha, \beta)}(x)$ subject to the condition $\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$.

The main result of Chapter 2 of this paper states that if $f \in$ $A J(\alpha, \beta, 0)$ and if $0<\varepsilon<\pi / 2$ then on $[\varepsilon, \pi-\varepsilon]$ we can write

$$
\begin{equation*}
f(\cos \theta)=\sum_{n=0}^{\infty} b_{n} \cos (n \theta) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|b_{n}\right|(n+1)^{\alpha+1 / 2}<\infty . \tag{2}
\end{equation*}
$$

Conversely, if a cosine series (1) satisfies condition (2) then it represents an element of $A J(\alpha, \beta, 0)$. The earlier paper [8] treats the case $\alpha=\beta=$ $m+1 / 2$ for an integer $m \geqq 0$.

That such a result should be possible is suggested by the work of Gatesoupe [14] on the local properties of radial Fourier transforms in \boldsymbol{R}^{n} and that of Ricci [25] on absolutely convergent series of characters on compact semisimple Lie groups.

The space $A J(\alpha, \beta, 0)$ can be given the structure of a Banach algebra of continuous functions on $[-1,1]$, with the usual multiplication of functions, and this has been studied by Askey and Wainger [4], Bavinck [6], Gasper [12], and Igari and Uno [19]. It can also be viewed as the Fourier algebra of the hypergroup formed by [$-1,1$] when convolution of functions on [$-1,1$] is defined as in [5]. In Chapter 3 we show that if $\alpha \geqq 1 / 2$ and $-1<x<1$ then the singleton $\{x\}$ is not a set of synthesis for $A J(\alpha, \beta, 0)$. The case $A J(+1 / 2,+1 / 2,0)$ is an example in the work
of Chilana and Ross [9], namely the algebra of absolutely convergent series of characters on $S U(2)$.

We also show that when $\alpha>-1 / 2$ and $\alpha \geqq \beta \geqq-1 / 2$ nonanalytic functions operate on $\left.A J(\alpha, \beta, 0)\right|_{[\varepsilon-1,1-\varepsilon]}$. This corresponds to [25, Thm. 2].

In the final chapter we use the preceeding results to study spectral synthesis in the Fourier algebra $K(G)$ of the compact Lie groups $G=$ $S O(n)(n \geqq 4) ; S U(n)(n \geqq 3) ; S p(n)(n \geqq 2)$; and $F_{4(-52)}$. For example, we show that if $n \geqq 4$ and $0<\theta<\pi$ then the double coset

$$
\left(\begin{array}{ccc}
1 & 0 & \cdots 0 \\
0 & & \\
\vdots & S O(n-1) \\
0 & & \\
\hline \sin \theta & \cos \theta & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & \sin \theta & \\
0 & & \cdots 0 \\
\vdots & S O(n-1) \\
0 &
\end{array}\right)
$$

is not a set of synthesis for $K(S O(n))$. This could be considered as a "compact group version" of L. Schwartz's theorem [26] which states that if $m \geqq 3, S^{m-1}$ is not a set of synthesis for the algebra of Fourier transforms on $\boldsymbol{R}^{\boldsymbol{m}}$.

Notation. We let $\boldsymbol{R}, \boldsymbol{C}$, and \boldsymbol{H} denote the real numbers, complex numbers, and quaternions, respectively. We set $\boldsymbol{T}=\boldsymbol{R} /(2 \pi \boldsymbol{Z})$ and view functions on \boldsymbol{T} as 2π-periodic functions on \boldsymbol{R}.

If $\left\{a_{n}\right\}_{n}$ and $\left\{b_{n}\right\}_{n}$ are two sequences we write $a_{n} \sim b_{n} \forall n \geqq 0$ to mean that there are positive constants c_{1} and c_{2} so that $c_{1}\left|a_{n}\right| \leqq\left|b_{n}\right| \leqq c_{2}\left|a_{n}\right|$, $\forall n \geqq 0$.

1. Review of Jacobi polynomials. Our references for the properties of Jacobi polynomials are the book of Szegö [27] and the works of Askey, Gasper, and Wainger [1], [3], [[4], [12] and [13]. We begin by setting up some notation. For $\alpha, \beta>-1$ and $-1<x<1$ let

$$
\begin{equation*}
W_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
d \mu_{\alpha, \beta}(x)=W_{\alpha, \beta}(x) d x \tag{1.2}
\end{equation*}
$$

Definition 1.3. For $\alpha, \beta>-1$ and an integer $n \geqq 0, R_{n}^{(\alpha, \beta)}(x)$ is the unique polynomial of degree n in x such that:
(i) for every polynomial $p(x)$ of degree less than n,

$$
\int_{-1}^{1} p(x) R_{n}^{(\alpha, \beta)}(x) d \mu_{\alpha, \beta}(x)=0
$$

and
(ii) $\quad R_{n}^{(\alpha, \beta)}(1)=1$.

In terms of the notation of Szegö [27], $R_{n}^{(\alpha, \beta)}(x)=P_{n}^{(\alpha, \beta)}(x) / P_{n}^{(\alpha, \beta)}(1)$. If $\alpha \geqq \beta \geqq-1 / 2$ and $n \geqq 0$ then

$$
\begin{equation*}
\sup _{-1 \leq x \leq 1}\left|R_{n}^{(\alpha, \beta)}(x)\right|=R_{n}^{(\alpha, \beta)}(1)=1 \tag{1.4}
\end{equation*}
$$

If $a \in R$ and $n \in N$ we use the notation

$$
\begin{equation*}
(a)_{0}=1 \quad \text { and } \quad(a)_{n}=a(a+1) \cdots(a+n-1) . \tag{1.5}
\end{equation*}
$$

In the case when a is not a negative integer then we can write

$$
\begin{equation*}
(a)_{n}=\Gamma(a+n) / \Gamma(a), \quad \forall n \in \boldsymbol{N} . \tag{1.6}
\end{equation*}
$$

Recall the following properties of the Gamma function.
Lemma 1.7. If $a \in \boldsymbol{R} \backslash(-N)$ then

$$
\Gamma(n+a) / \Gamma(n) \sim(n+1)^{a}, \quad \forall n \geqq 0
$$

If $0 \leqq x<\infty$ then

$$
2^{2 x-1} \Gamma(x) \Gamma(x+1 / 2)=\pi^{1 / 2} \Gamma(2 x) .
$$

This latter equation is called the duplication formula. From Szegö [27, (4.3.3) and (4.1.1)] we know that for $\alpha \geqq \beta \geqq-1 / 2$ the sequence

$$
N(\alpha, \beta, n):=\int_{-1}^{1}\left|R_{n}^{(\alpha, \beta)}\right|^{2} d \mu_{\alpha, \beta}
$$

satisfies

$$
\begin{equation*}
N(\alpha, \beta, n) \sim c_{\alpha, \beta}(n+1)^{-1-2 \alpha}, \quad \forall n \in N \tag{1.8}
\end{equation*}
$$

Note the following important special cases. When $(\alpha, \beta)=(0,0)$ we have $R_{n}^{(0,0)}(x)=P_{n}(x)$, the Legendre polynomial of degree n. If we set $x=\cos \theta$ then for $n \geqq 0, R_{n}^{(-1 / 2,-1 / 2)}(\cos \theta)=\cos (n \theta)$ and $R_{n}^{(1 / 2,1 / 2)}(\cos \theta)=$ $\sin ((n+1) \theta) /\{(n+1) \sin \theta\}$.

In the work below we will need some formulae connecting systems of Jacobi polynomials for different indices (α, β). For a summary of these results see the survey article of Gasper [13].

Proposition 1.9. For $\alpha, \beta, a>-1$ and $n \geqq 0, R_{n}^{(a, a)}(x)$ is equal to $\sum_{k=0}^{[n / 2]} \frac{n!(\alpha+1)_{n-2 k}(n+2 a-1)_{n-2 k}(1 / 2)_{k}(a-\alpha)_{k} R_{n-2 k}^{(\alpha, \alpha)}(x)}{(n-2 k)!(2 k)!(a+1)_{n-2 k}(n-2 k+2 \alpha+1)_{n-2 k}(n-2 k+a+1)_{k}(n-2 k+\alpha+3 / 2)_{k}}$, and $R_{n}^{(a, \beta)}(x)$ equal to

$$
\sum_{k=0}^{n} \frac{n!(\alpha+1)_{k}(n+a+\beta+1)_{k}(a-\alpha)_{n-k}(k+\beta+1)_{n-k} R_{k}^{(\alpha, \beta)}(x)}{k!(n-k)!(a+1)_{k}(k+\alpha+\beta+1)_{k}(k+a+1)_{n-k}(2 k+\alpha+\beta+2)_{n-k}} .
$$

The first of these identities is [27, (4.10.27)], due to Gegenbauer, and the second is [3, (2.8)]. We abbreviate these identities by setting

$$
\begin{equation*}
R_{n}^{(a, b)}(x)=\sum_{k=0}^{n} g(n, k ; a, b, \alpha, \beta) R_{k}^{(\alpha, \beta)}(x) \tag{1.10}
\end{equation*}
$$

The coefficients $g(n, k ; \cdots)$ always exist and we have just written explicit descriptions of $g(n, k ; a, a, \alpha, \alpha)$ and $g(n, k ; a, \beta, \alpha, \beta)$.

For arbitrary $\alpha, \beta>-1$ and $n, m \geqq 0$ it is clear that there exist coefficients $H(n, m, k ; \alpha, \beta)$ such that

$$
\begin{equation*}
R_{n}^{(\alpha, \beta)}(x) \cdot R_{m}^{(\alpha, \beta)}(x)=\sum_{k=0}^{n+m} H(n, m, k ; \alpha, \beta) R_{k}^{(\alpha, \beta)}(x) . \tag{1.11}
\end{equation*}
$$

An elementary argument shows that $H(n, m, k ; \alpha, \beta)=0$ for $k<|n-m|$. Furthermore, Gasper [12] has shown the following to be true.

Proposition 1.12. For $\alpha \geqq \beta>-1$ and $\alpha+\beta \geqq-1$, and all $n, m \geqq 0$ the coefficients $H(n, m, k ; \alpha, \beta)$ are nonnegative for $|n-m| \leqq$ $k \leqq n+m$. In particular,

$$
\sum_{k=0}^{n+m}|H(n, m, k ; \alpha, \beta)|=\sum_{k=|n-m|}^{n+m} H(n, m, k ; \alpha, \beta)=1
$$

For further results in this direction see [1], [4], and [12].
This result enables us to equip spaces of absolutely convergent series $\sum_{n=0}^{\infty} a_{n} R_{n}^{(\alpha, \beta)}(x)$ with Banach algebra structure, as in [4] and [19].

The spaces which we consider are modelled on certain spaces of absolutely convergent Fourier series, the so called weighted algebras [20, p. 153]. We review their properties here, prior to setting up the more general algebras of absolutely convergent Jacobi polynomial series.

DEFINITION 1.13. For $\nu \geqq 0, A_{\nu}(\boldsymbol{T})$ denotes the space of absolutely convergent Fourier series

$$
f(x)=\sum_{-\infty}^{\infty} a_{n} e^{i n x}
$$

such that $\|f\|_{\nu}=\sum_{-\infty}^{\infty}\left|a_{n}\right|(|n|+1)^{\nu}<\infty$.
Note that $A(\boldsymbol{T})$ is a Banach algebra of continuous functions on \boldsymbol{T} and if $0 \leqq \nu_{1} \leqq \nu_{2}$ then $A_{\nu_{2}}(\boldsymbol{T}) \subset A_{\nu_{1}}(\boldsymbol{T})$. In particular, $C^{\infty}(\boldsymbol{T}) \subset A_{\nu}(\boldsymbol{T})$, $\forall \nu \geqq 0$. We use the notation $A_{\nu}^{e}(\boldsymbol{T})$ to denote the subspace of even elements of $A_{\nu}(T)$, that is, cosine series.

If $\nu \geqq 1$ then elements of $A_{\nu}(\boldsymbol{T})$ are continuously differentiable functions on \boldsymbol{T}. In fact, if $n=[\nu] \geqq 1$ and $f \in A_{\nu}(T)$ then $f^{(n)} \in A_{\nu-n}(T) \subseteq$ $A_{0}(\boldsymbol{T})$. One consequence of this property is that singletons $\{x\}$ are not sets of synthesis for $A_{\nu}(\boldsymbol{T})$, when $\nu \geqq 1$. This means that the closure
of the ideal $J(x)=\left\{f \in A_{\nu}(\boldsymbol{T}): f=0\right.$ on a neighbourhood of $\left.x\right\}$ is not all of the closed ideal $I(x)=\left\{f \in A_{\nu}(T): f(x)=0\right\}$. To see this, observe that

$$
\overline{J(x)} \cong\left\{f \in A_{\nu}(T): f^{\prime}(x)=f(x)=0\right\} \neq I(x)
$$

For further discussion of this behaviour see [24, Chpt. 2], [9], and [14].
Another property of $A_{\nu}(\boldsymbol{T})(\nu>0)$ which distinguishes these spaces from $A(T) \equiv A_{0}(T)$ is the fact that nonanalytic functions operate on $A_{\nu}(T)$. More precisely, it is known [20, p. 82] that if F is a function on $[-1,1]$ with the property that $F \circ f \in A(T)$ for every $f \in A(T)$ with values in $[-1,1]$ then F is analytic on $[-1,1]$. However, if $\nu \geqq 1$ and $\mu \geqq \nu+1 / 2$ then for every $F \in A_{\nu}(\boldsymbol{T})$ and every real-valued $f \in A_{\nu}(\boldsymbol{T})$,

$$
\begin{equation*}
F \circ f \in A_{\nu}(T) \tag{1.14}
\end{equation*}
$$

See [20, p. 153]. Leblanc has shown [22] that if $0<\nu \leqq 1$ and $\mu>1+$ $(1 / 2 \nu)$ then $A_{\mu}(\boldsymbol{T})$ operates on $A_{\nu}(\boldsymbol{T})$.
2. Absolutely convergent Jacobi polynomial series. In this section we investigate local properties of some algebras of absolutely convergent Jacobi series. A special case involving certain ultraspherical polynomials appears in [8]. Our approach is suggested by the work of Gatesoupe [14] and Ricci [25].

Definition 2.1. For $\alpha \geqq \beta \geqq-1 / 2$ and $\lambda \geqq 0$ let $A J(\alpha, \beta, \lambda)$ denote the space of those continuous functions f on $[-1,1]$ whose Jacobi polynomial series

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n} R_{n}^{(\alpha, \beta)}(x) \tag{2.2}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\|f\|_{(\alpha, \beta, \alpha)}:=\sum_{n=0}^{\infty}\left|a_{n}\right|(n+1)^{\lambda}<\infty \tag{2.3}
\end{equation*}
$$

Remarks 2.4. From (1.4) we know that if (2.3) is true then the series (2.2) is uniformly absolutely convergent on [-1, 1]. The coefficients in (2.2) are determined by

$$
\begin{equation*}
a_{n} N(\alpha, \beta, n)=\int_{-1}^{1} f R_{n}^{(\alpha, \beta)} d \mu_{\alpha, \beta}, \quad \forall n \in N \tag{2.5}
\end{equation*}
$$

Clearly, if $\lambda_{1}>\lambda_{2}$ then $A J\left(\alpha, \beta, \lambda_{1}\right) \subset A J\left(\alpha, \beta, \lambda_{2}\right)$. The spaces $A J(\alpha, \beta, 0)$ have been studied by Bavinck [6] who has shown that for $\alpha \geqq \beta \geqq-1 / 2$ and $a \geqq b \geqq-1 / 2, A J(\alpha, \beta, 0) \subset A J(a, b, 0)$ provided either:

$$
\begin{equation*}
a=\alpha \quad \text { and } \quad b-\beta>0 \quad \text { or } \quad \alpha-a=\beta-b>0 \tag{2.6}
\end{equation*}
$$

Note that the spaces $A J(-1 / 2,-1 / 2, \lambda)$ are isomorphic with $A_{\lambda}^{e}(T)$. That is, $f \in A J(-1 / 2,-1 / 2, \lambda)$ if and only if $\theta \rightarrow f(\cos \theta)$ is an even element of $A_{\lambda}(\boldsymbol{T})$. Leblanc has studied weighted l^{1}-spaces of absolutely convergent trigonometric series, in [21] and [22].

In [4] and [12] it is shown that $A J(\alpha, \beta, 0)$ is a Banach algebra. This is a consequence of Proposition 1.12. Similarly, one can show the following holds.

Proposition 2.7. For $\alpha \geqq \beta \geqq-1 / 2$ and $\lambda \geqq 0, ~ A J(\alpha, \beta, \lambda)$ is a Banach algebra of continuous functions on $[-1,1]$, equipped with usual multiplication of functions.

As mentioned in the introduction, $\operatorname{AJ}(\alpha, \beta, 0)$ is the Fourier algebra of the hypergroup formed by equipping $[-1,1]$ with the convolution described in [5]. This convolution generalizes that due to Bochner and Gel'fand for series of ultraspherical polynomials. The Fourier algebra of a compact abelian hypergroup is studied in [9].

We next verify the fact that smooth functions on $[-1,1]$ provide a space of test functions contained in $A J(\alpha, \beta, \lambda)$ for all relevant (α, β, λ).

Suppose f is an even element of $C^{\infty}(\boldsymbol{T})$. Then

$$
f(\theta)=\sum_{n=0}^{\infty} a_{n} R_{n}^{(-1 / 2,-1 / 2)}(\cos \theta), \quad 0 \leqq \theta \leqq \pi
$$

and the sequence $\left\{a_{n}\right\}$ is rapidly decreasing. For $\alpha, \beta \geqq-1 / 2$,

$$
R_{n}^{(-1 / 2,-1 / 2)}=\sum_{k=0}^{n} g(n, k ;-1 / 2,-1 / 2, \alpha, \beta) R_{k}^{(\alpha, \beta)}
$$

and

$$
\sum_{k=0}^{n}|g(n, k ;-1 / 2,-1 / 2, \alpha, \beta)|^{2} N(\alpha, \beta, k) \leqq C N(-1 / 2,-1 / 2, n)
$$

since

$$
\int_{-1}^{1}\left|R_{n}^{(-1 / 2,-1 / 2)}\right|^{2} d \mu_{\alpha, \beta}=\int_{-1}^{1} W_{\alpha+1 / 2, \beta+1 / 2}\left|R_{n}^{(-1 / 2,-1 / 2)}\right|^{2} d \mu_{-1 / 2,-1 / 2} .
$$

From this we conclude that for $\alpha \geqq \beta \geqq-1 / 2$ and $\lambda \geqq 0$,

$$
\begin{aligned}
\left\|R_{n}^{(-1 / 2,-1 / 2)}\right\|_{(\alpha, \beta, \lambda)} & =\sum_{k=0}^{n}|g(n, k ;-1 / 2,-1 / 2, \alpha, \beta)|(k+1)^{\lambda} \\
& \leqq\left(\sum_{k=0}^{n}|g(n, k ;-1 / 2,-1 / 2, \alpha, \beta)|^{2}(k+1)^{-1-2 \alpha}\right)^{1 / 2}(n+1)^{\lambda+\alpha+1}
\end{aligned}
$$

and so

$$
\|f\|_{(\alpha, \beta, \lambda)} \leqq C \sum_{n=0}^{\infty}\left|a_{n}\right|(n+1)^{\lambda+\alpha+1}<\infty
$$

Let S denote the collection of functions on $[-1,1]$ defined by $F(\cos \theta)=$ $f(\theta)$ for some even $f \in C^{\infty}(T)$.

Lemma 2.8. For all $\alpha \geqq \beta \geqq-1 / 2$ and $\lambda \geqq 0, S \subset A J(\alpha, \beta, \lambda)$.
The principal result of this section is the following description of the restriction of $A J(\alpha, \beta, 0)$ to subintervals of $[-1,1]$.

Theorem 2.9. If $\alpha \geqq \beta \geqq-1 / 2$ and $0<\varepsilon<1$ then

$$
\left.A J(\alpha, \beta, 0)\right|_{[\varepsilon-1,1-\epsilon]}=\left.A J(-1 / 2,-1 / 2, \alpha+1 / 2)\right|_{[\varepsilon-1,1-\varepsilon]} .
$$

When $\alpha=\beta=1 / 2$ then $A J(1 / 2,1 / 2,0)$ can be identified with the algebra of absolutely convergent central Fourier series on $S U(2)$ and Theorem 2.9 corresponds to [25, Thm. 1], [23], and [9, p. 327].

We prove this in several stages. Firstly, for $\alpha \geqq \beta \geqq-1 / 2$ we show that

$$
\begin{equation*}
W_{\alpha-\beta, 0} \cdot A J(\alpha, \beta, 0) \subset A J(\beta, \beta, \alpha-\beta) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
A J(\beta, \beta, \alpha-\beta) \subset A J(\alpha, \beta, 0) \tag{2.11}
\end{equation*}
$$

This reduces the problem to the case of ultraspherical polynomials. Next we fix an integer $N \geqq \beta+1 / 2$ and show that for $\lambda \geqq 0$

$$
\begin{equation*}
W_{N, N} \cdot A J(\beta, \beta, \lambda) \subset A J(-1 / 2,-1 / 2, \lambda+\beta+1 / 2) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
A J(-1 / 2,-1 / 2, \lambda+\beta+1 / 2) \subset A J(\beta, \beta, \lambda) \tag{2.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{\alpha+N-\beta, N} \cdot A J(\alpha, \beta, 0) \subset A J(-1 / 2,-1 / 2, \alpha+1 / 2) \subset A J(\alpha, \beta, 0) \tag{2.14}
\end{equation*}
$$

Finally fix $0<\varepsilon<1$ and let ϕ_{ε} be an element of S such that $\phi_{s}(x)(1-x)^{\alpha+N-\beta}(1+x)^{N}=1, \varepsilon-1 \leqq x \leqq 1-\varepsilon$. For each $f \in A J(\alpha, \beta, 0)$, (2.14) implies that $\phi_{\varepsilon} \cdot W_{\alpha+N-\beta, N} \cdot f \in A J(-1 / 2,-1 / 2, \alpha+1 / 2)$ and ϕ_{ε}. $\left.W_{\alpha+N-\beta, N} \cdot f\right|_{[\varepsilon-1,1-\epsilon]}=\left.f\right|_{[\varepsilon-1,1-\epsilon]}$. Hence

$$
\left.\left.A J(\alpha, \beta, 0)\right|_{[\varepsilon-1,1-\varepsilon]} \subset A J(-1 / 2,-1 / 2, \alpha+1 / 2)\right|_{[\varepsilon-1,1-\varepsilon]}
$$

The reverse inclusion follows from the second part of (2.14).
It remains to prove (2.10)-(2.13).
Proof of (2.10). We need to prove that for $k \geqq 0$,

$$
\begin{equation*}
\left\|W_{\alpha-\beta, 0} \cdot R_{k}^{(\alpha, \beta)}\right\|_{(\beta, \beta, \alpha-\beta)}=\mathbf{0}(1) \tag{2.16}
\end{equation*}
$$

Fix k for the moment and consider the (β, β)-series $W_{\alpha-\beta, 0} R_{k}^{(\alpha, \beta)}=$ $\sum_{n=0}^{\infty} c_{n} R_{n}^{(\beta, \beta)}$, where

$$
\begin{align*}
c_{n} N(\beta, \beta, n) & =\int_{-1}^{1} W_{\alpha-\beta, 0} R_{k}^{(\alpha, \beta)} R_{n}^{(\beta, \beta)} d \mu_{\beta, \beta}=\int_{-1}^{1} R_{n}^{(\beta, \beta)} R_{k}^{(\alpha, \beta)} d \mu_{\alpha, \beta} \tag{2.17}\\
& =g(n, k ; \beta, \beta, \alpha, \beta) N(\alpha, \beta, k) .
\end{align*}
$$

In particular, $c_{n}=0$ for $n<k$. Furthermore, if $\alpha-\beta \in N$ then $W_{\alpha-\beta, 0}(x) R_{k}^{(\alpha, \beta)}(x)$ is a polynomial of degree $k+\alpha-\beta$, in which case $c_{n}=0$ for $n>k+\alpha-\beta$.

Case $\alpha-\beta \in N$. Here we can write $W_{\alpha-\beta, 0} R_{k}^{(\alpha, \beta)}=\sum_{n=k}^{k+\alpha-\beta} c_{n} R_{n}^{(\beta, \beta)}$ and observe that

$$
\begin{aligned}
\sum_{n=k}^{k+\alpha-\beta}\left|c_{n}\right|^{2} N(\beta, \beta, n) & =\int_{-1}^{1}\left(W_{\alpha-\beta, 0}\right)^{2}\left(R_{k}^{(\alpha, \beta)}\right)^{2} d \mu_{\beta, \beta} \\
& =\int_{-1}^{1} W_{\alpha-\beta, 0} \cdot\left(R_{k}^{(\alpha, \beta)}\right)^{2} d \mu_{\alpha, \beta} \leqq C_{\alpha, \beta} \cdot N(\alpha, \beta, k)
\end{aligned}
$$

For any $\lambda \geqq 0$,

$$
\begin{aligned}
\sum_{n=k}^{k+\alpha-\beta}\left|c_{n}\right|(n+1)^{\lambda+\alpha-\beta} & \leqq\left(\sum_{n}\left|c_{n}\right|^{2} N(\beta, \beta, n)\right)^{1 / 2}\left(\sum_{n=k}^{k+\alpha-\beta}(n+1)^{2 \lambda+2 \alpha-2 \beta} N(\beta, \beta, n)^{-1}\right)^{1 / 2} \\
& \leqq C_{\alpha, \beta} N(\alpha, \beta, k)^{1 / 2}\left(\sum_{n=k}^{k+\alpha-\beta}(n+1)^{2 \lambda+2 \alpha-2 \beta+1+2 \beta}\right)^{1 / 2} \\
& \leqq C_{\alpha, \beta}(k+1)^{-1 / 2-\alpha+\lambda+\alpha+1 / 2}
\end{aligned}
$$

since n is limited to range over $k \leqq n \leqq k+\alpha-\beta$. This shows that for $\lambda \geqq 0$

$$
\begin{equation*}
\left\|W_{\alpha-\beta, 0} \cdot R_{k}^{(\alpha, \beta)}\right\|_{(\beta, \beta, \lambda+\alpha-\beta)}=\mathbf{0}\left((k+1)^{\lambda}\right) . \tag{2.18}
\end{equation*}
$$

In particular, when $\alpha-\beta \in N$,

$$
\begin{equation*}
W_{\alpha-\beta, 0} \cdot A J(\alpha, \beta, \lambda) \subset A J(\alpha, \beta, \lambda+\alpha-\beta), \quad \forall \lambda \geqq 0 \tag{2.19}
\end{equation*}
$$

Case $\alpha-\beta \notin N$. Now we must use the explicit description of $g(n, k ; \beta, \beta, \alpha, \beta)$ given in Proposition 1.9 combined with the asymptotic properties of the Gamma function in estimating c_{n}. We know that

$$
\begin{aligned}
& g(n, k ; \beta, \beta, \alpha, \beta) \\
& \quad=\frac{\Gamma(n+1) \Gamma(k+1+\alpha) \Gamma(n+k+2 \beta+1) \Gamma(n-k+\beta-\alpha)}{\Gamma(\alpha+1) \Gamma(n+2 \beta+1) \Gamma(k+1) \Gamma(n-k+1) \Gamma(\beta-\alpha)} \times \cdots \\
& \quad \times \frac{\Gamma(k+\alpha+\beta+1) \Gamma(2 k+\alpha+\beta+2) \Gamma(\beta+1)}{\Gamma(2 k+\alpha+\beta+1) \Gamma(n+k+\alpha+\beta+2) \Gamma(k+\beta+1)}
\end{aligned}
$$

From Lemma 1.7 we conclude that for $n \geqq k \geqq 0$,

$$
\begin{align*}
& g(n, k ; \beta, \beta, \alpha, \beta) \tag{2.20}\\
& \quad \sim C_{\alpha, \beta}(n+1)^{-2 \beta}(k+1)^{2 \alpha+1}(n-k+1)^{\beta-\alpha-1}(n+k+1)^{\beta-\alpha-1}
\end{align*}
$$

Combining this with (2.17) and (1.8) we see that

$$
c_{n} \sim C_{\alpha, \beta}(n+1)(n-k+1)^{\beta-\alpha-1}(n+k+1)^{\beta-\alpha-1} .
$$

Hence,

$$
\begin{align*}
\left\|W_{\alpha-\beta, 0} R_{k}^{(\alpha, \beta)}\right\|_{(\beta, \beta, \alpha-\beta)} & \leqq C \sum_{n=k}^{\infty}(n+1)^{1+\alpha-\beta}(n+k+1)^{\beta-\alpha-1}(n-k+1)^{\beta-\alpha-1} \tag{2.21}\\
& \leqq C \sum_{l=1}^{\infty}\left(\frac{k+l}{2 k+l}\right)^{1+\alpha-\beta} l^{\beta-\alpha-1}=0(1)
\end{align*}
$$

In particular, $W_{\alpha-\beta, 0} A J(\alpha, \beta, 0) \subset A J(\beta, \beta, \alpha-\beta)$, which completes the proof of (2.10).

Proof of (2.11). We have defined the coefficients $g(n, k ; \cdots)$ by setting

$$
R_{n}^{(\beta, \beta)}=\sum_{k=0}^{n} g(n, k ; \beta, \beta, \alpha, \beta) R_{k}^{(\alpha, \beta)} .
$$

Alternatively, the orthogonality of the $R_{k}^{(\alpha, \beta)}$'s implies that

$$
g(n, k ; \beta, \beta, \alpha, \beta) N(\alpha, \beta, k)=\int_{-1}^{1} R_{n}^{(\beta, \beta)} R_{k}^{(\alpha, \beta)} d \mu_{\alpha, \beta}
$$

and if $\alpha-\beta$ is an integer we saw that this is zero when $k<n-\alpha+\beta$.
Case $\alpha-\beta \in N$. When

$$
R_{n}^{(\beta, \beta)}=\sum_{k \leqslant n=\alpha+\beta}^{n} g(n, k ; \cdots) R_{k}^{(\alpha, \beta)}
$$

we see that

$$
\begin{aligned}
\left\|R_{n}^{(\beta, \beta)}\right\|_{(\alpha, \beta, \lambda)} & =\sum_{k}|g(n, k ; \cdots)|(k+1)^{\lambda} \\
& =\sum_{k}|g(n, k ; \cdots)| N(\alpha, \beta, k)^{1 / 2-1 / 2}(k+1)^{\lambda} \\
& \leqq C_{\alpha, \beta} N(\beta, \beta, n)^{1 / 2}\left(\sum_{k \geq n \geq 0}^{n} N(\alpha, \beta, k)^{-1}(k+1)^{22}\right)^{1 / 2}
\end{aligned}
$$

and so
(2.22)

$$
\left\|R_{n}^{(\beta, \beta)}\right\|_{(\alpha, \beta, \lambda)}=0\left((n+1)^{\lambda+\alpha-\beta}\right) .
$$

This says that for $\alpha-\beta \in N$ and $\lambda \geqq 0$,

$$
\begin{equation*}
A J(\beta, \beta, \lambda+\alpha-\beta) \subset A J(\alpha, \beta, \lambda) \tag{2.23}
\end{equation*}
$$

Case $\alpha-\beta \notin N$. Recalling the asymptotic relation (2.20) we see that for $n \geqq 0$,
(2.24) $\quad\left\|R_{n}^{(\beta, \beta)}\right\|_{(\alpha, \beta, \lambda)} \leqq C_{\alpha, \beta} \sum_{k=0}^{n}(n+1)^{-2 \beta}(k+1)^{2 \alpha+1+\lambda}(n-k+1)^{\beta-\alpha-1}(n+k+1)^{\beta-\alpha-1}$

$$
\leqq C_{\alpha, \beta}(n+1)^{-2 \beta+2 \alpha+1+\lambda+\beta-\alpha-1} \times \cdots
$$

$$
\begin{aligned}
& \times \sum_{k=0}^{n}\left(\frac{k+1}{n+1}\right)^{2 \alpha+1+2}\left(\frac{n+1}{n+k+1}\right)^{1+\alpha-\beta}(n-k+1)^{\beta-\alpha-1} \\
= & 0\left((n+1)^{\lambda+\alpha-\beta}\right) .
\end{aligned}
$$

Combining (2.23) and (2.24) we prove (2.11).
Lemma 2.25. If $\alpha \geqq \beta \geqq-1 / 2$ and $\lambda \geqq 0, \quad A J(\beta, \beta, \lambda+\alpha-\beta) \subset$ $A J(\alpha, \beta, \lambda)$.

Proof of (2.12). We now examine the norm $\left\|W_{N, N} \cdot R_{k}^{(\beta, \beta)}\right\|_{(-1 / 2,-1 / 2, \lambda)}$, where $k \geqq 0, \beta \geqq-1 / 2$, and N is the smallest integer such that $N \geqq$ $\beta+1 / 2$. Observe that $W_{N, N}(x) R_{k}^{(\beta, \beta)}(x)$ is a polynomial of degree $(k+2 N)$ in x, which means that

$$
\begin{equation*}
\left\|W_{N, N} \cdot R_{k}^{(\beta, \beta)}\right\|_{(-1 / 2,-1 / 2,2)} \leqq C_{\beta} \cdot(k+1)^{2}\left\|W_{N, N} \cdot R_{k}^{(\beta, \beta)}\right\|_{(-1 / 2,-1 / 2,0)} \tag{2.26}
\end{equation*}
$$ for all $k \geqq 0$.

In [6] it is shown that

$$
W_{\mu, 0} \in A J(-1 / 2,-1 / 2,0), \quad \mu \geqq 0 \quad \text { and } \quad W_{0, \mu} \in A J(-1 / 2,-1 / 2,0) \quad \mu \geqq 0
$$

In particular,

$$
\begin{equation*}
\left\|W_{N, N} \cdot R_{k}^{(\beta, \beta)}\right\|_{(-1 / 2,-1 / 2,0)} \leqq C_{\beta}\left\|W_{\beta+1 / 2, \beta+1 / 2} \cdot R_{k}^{(\beta, \beta)}\right\|_{(-1 / 2,-1 / 2,0)} \tag{2.27}
\end{equation*}
$$

since $W_{N, N}=W_{\beta+1 / 2, \beta+1 / 2} W_{N-\beta-1 / 2,0} W_{0, N-\beta-1 / 2}$. We now have a situation similar to the proof of (2.10).

Case $\beta+1 / 2 \in N$. If $W_{\beta+1 / 2, \beta+1 / 2}$ is a polynomial of degree $2 \beta+1$ then for each $k \geqq 0$ there are coefficients $\left\{c_{n}\right\}_{n}$ such that

$$
W_{\beta+1 / 2, \beta+1 / 2} \cdot R_{k}^{(\beta, \beta)}=\sum_{n=k}^{k+2 \beta+1} c_{n} R_{n}^{(-1 / 2,-1 / 2)}
$$

with

$$
\sum_{n=k}^{k+2 \beta+1}\left|c_{n}\right|^{2} N(-1 / 2,-1 / 2, n)=\int_{-1}^{1}\left(W_{\beta+1 / 2, \beta+1 / 2} \cdot R_{k}^{(\beta, \beta)}\right)^{2} d \mu_{-1 / 2,-1 / 2} \leqq C_{\beta} \cdot N(\beta, \beta, k)
$$

From this we conclude that

$$
\sum_{n=k}^{k+2 \beta+1}\left|c_{n}\right| \leqq C_{\beta} N(\beta, \beta, k)^{1 / 2} \sim C_{\beta}(k+1)^{-\beta-1 / 2}
$$

Hence, for all $k \geqq 0$ and $\lambda \geqq 0$

$$
\begin{equation*}
\left\|W_{N, N} \cdot R_{k}^{(\beta, \beta)}\right\|_{(-1 / 2,-1 / 2,2)}=\mathbf{0}\left((k+1)^{\lambda-\beta-1 / 2}\right) \tag{2.28}
\end{equation*}
$$

Lemma 2.29. If $\beta \geqq-1 / 2$ and $\beta+1 / 2 \in N$ then

$$
W_{\beta+1 / 2, \beta+1 / 2} \cdot A J(\beta, \beta, \lambda) \subset A J(-1 / 2,-1 / 2, \lambda+\beta+1 / 2)
$$

for every $\lambda \geqq 0$.

This corresponds to the result in [8], when $\lambda=0$.
Case $\beta+1 / 2 \notin N$. Recalling proposition 1.9 and (2.17) we see that $W_{\beta+1 / 2, \beta+1 / 2} \cdot R_{k}^{(\beta, \beta)}$

$$
=\sum_{n=k}^{\infty} g(n, k ;-1 / 2,-1 / 2, \beta, \beta) N(\beta, \beta, k) N(-1 / 2,-1 / 2, n)^{-1} R_{n}^{(-1 / 2,-1 / 2)}
$$

for $k \geqq 0$. If $n-k$ is odd, $g(n, k ; \cdots)=0$. If $n-k$ is even, $g(n, k ;-1 / 2,-1 / 2, \beta, \beta)$ is equal to

$$
\begin{array}{r}
\frac{c(n+1) \Gamma(k+\beta+1) \Gamma(n+k) \Gamma((n-k) / 2+1 / 2) \Gamma((n-k) / 2-1 / 2-\beta)}{\Gamma(\beta+1) \Gamma(-1 / 2-\beta) \Gamma(k+1) \Gamma(n-k+1) \Gamma(2 k+2 \beta+1) \Gamma((n+k) / 2+1 / 2)} \tag{2.30}\\
\times \frac{\Gamma(k+2 \beta+1) \Gamma(k+\beta+3 / 2)}{\Gamma((n+k) / 2+\beta+3 / 2)} \\
=c_{\beta} \frac{(n+1) \Gamma(k+2 \beta+1) \Gamma((n+k) / 2) \Gamma((n-k) / 2-1 / 2-\beta) \Gamma(k+\beta+3 / 2)}{\Gamma(k+1) \Gamma((n-k) / 2+1) \Gamma(k+\beta+1 / 2) \Gamma((n+k) / 2+\beta+3 / 2)} \\
\sim c_{\beta}(n+1)(k+1)^{2 \beta+1}((n+k) / 2+1)^{-\beta-3 / 2}((n-k) / 2+1)^{-\beta-3 / 2}
\end{array}
$$

Then, for $k \geqq 0$ we see that

$$
\begin{align*}
& \left\|W_{\beta+1 / 2, \beta+1 / 2} \cdot R_{k}^{(\beta, \beta)}\right\|_{(-1 / 2,-1 / 2,0)} \tag{2.31}\\
& \quad \leqq c_{\beta} \sum_{\substack{n=k \\
(n-k) \text { even }}}^{\infty}(n+1)((n+k) / 2+1)^{-\beta-3 / 2}((n-k) / 2+1)^{-\beta-3 / 2} \\
& \quad \leqq c_{\beta}(k+1)^{-\beta-1 / 2} \sum_{n=k}^{\infty}((n+1) /(n+k+2))(n-k+1)^{-\beta-3 / 2} \\
& \quad=\mathbf{0}\left((k+1)^{-\beta-1 / 2}\right)
\end{align*}
$$

In (2.26) we can write $\left\|W_{N, N} \cdot R_{k}^{(\beta, \beta)}\right\|_{(-1 / 2,-1 / 2, \lambda)}=\mathbf{0}\left((k+1)^{\lambda-\beta-1 / 2}\right)$.
Lemma 2.32. If $\beta \geqq-1 / 2$ and N is the least integer such that $N \geqq$ $\beta+1 / 2$, then

$$
W_{N, N} \cdot A J(\beta, \beta, \lambda) \subset A J(-1 / 2,-1 / 2, \lambda+\beta+1 / 2), \quad \forall \lambda \geqq 0
$$

3. Consequences. Fix $\alpha \geqq \beta \geqq-1 / 2$ and $0<\varepsilon<1$. We have shown that $\left.A J(\alpha, \beta, 0)\right|_{[\varepsilon-1,1-\varepsilon]}=\left.A J(-1 / 2,-1 / 2, \alpha+1 / 2)\right|_{[\varepsilon-1,1-\varepsilon]}$. If $\alpha \geqq 1 / 2$ we know that $\left.\left.A J(-1 / 2,-1 / 2, \alpha+1 / 2)\right|_{\varepsilon-1,1-\varepsilon]} \subseteq A J(-1 / 2,-1 / 2,1)\right|_{\varepsilon \varepsilon-1,1-\varepsilon]}$ and so the elements of $A J(\alpha, \beta, 0)$ are differentiable on $]-1,1[$. If $f \in$ $A J(\alpha, \beta, 0)$ and $\varepsilon-1 \leqq x \leqq 1-\varepsilon$, then

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leqq C_{\alpha, \beta, \varepsilon}\|f\|_{(\alpha, \beta, 0)} . \tag{3.1}
\end{equation*}
$$

THEOREM 3.2. If $\alpha \geqq \beta \geqq-1 / 2, \alpha \geqq 1 / 2$, and $-1<x_{0}<1$ then $\left\{x_{0}\right\}$ is not a set of spectral synthesis for $\operatorname{AJ}(\alpha, \beta, 0)$.

Proof. As in the work of Chilana and Ross [9] observe that
$J\left(x_{0}\right)=\left\{f \in A J(\alpha, \beta, 0): f=0\right.$ on a neighbourhood of $\left.x_{0}\right\}$ is contained in $\left\{f \in A J(\alpha, \beta, 0): f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0\right\}$ and this is a proper closed subspace of $I\left(x_{0}\right)=\left\{f \in A J(\alpha, \beta, 0): f\left(x_{0}\right)=0\right\}$.
Hence $I\left(x_{0}\right)$ is larger than the closure of $J\left(x_{0}\right)$.
q.e.d.

We can also provide examples of nonanalytic functions which operate on $\left.A J(\alpha, \beta, 0)\right|_{[\varepsilon-1,1-\varepsilon]}$, analogous to [25].

ThEOREM 3.3. If $\alpha \geqq \beta \geqq-1 / 2, \alpha \geqq 1 / 2,0<\varepsilon<1, F \in A_{\alpha+1}(T)$ and if f is a real valued element of $A J(\alpha, \beta, 0)$ then

$$
\left.\left.F \circ f\right|_{[\varepsilon-1,1-\varepsilon]} \in A J(\alpha, \beta, 0)\right|_{[\varepsilon-1,1-\varepsilon]} .
$$

Proof. From Theorem 2.9 we know that there is a real-valued $g \in A J(-1 / 2,-1 / 2, \alpha+1 / 2)$ such that $\left.f\right|_{[\varepsilon-1,1-\varepsilon]}=\left.g\right|_{[\varepsilon-1,1-\varepsilon]}$. Then $\theta \rightarrow$ $g(\cos \theta)$ is an element of $A_{\alpha+1 / 2}^{e}(\boldsymbol{T})$ and from [20, p. 153] we know that $\theta \rightarrow F(g(\cos \theta))$ is an element of $A_{\alpha+1 / 2}^{e}(\boldsymbol{T})$. Finally note that $F \circ g \in$ $A J(-1 / 2,-1 / 2, \alpha+1 / 2) \subset A J(\alpha, \beta, 0)$ and $\left.F \circ g\right|_{[\varepsilon-1,1-\varepsilon]}=\left.F \circ f\right|_{[\varepsilon-1,1-\varepsilon]}$. q.e.d.

Similarly, we can treat the case $-1 / 2<\alpha<1 / 2$.
Theorem 3.4. If $1 / 2>\alpha \geqq \beta \geqq-1 / 2$ and $\alpha>-1 / 2, \quad 0<\varepsilon<1$, $F \in A_{(2 \alpha+2) /(2 \alpha+1)}(T)$, and if f is a real-valued element of $A J(\alpha, \beta, 0)$ then $\left.\left.F \circ f\right|_{[\varepsilon-1,1-\varepsilon]} \in A J(\alpha, \beta, 0)\right|_{[\varepsilon-1,1-\epsilon]}$.

Apply [21] in place of [20] in the proof of Theorem 3.3.
In [4] Askey and Wainger prove a Wiener-Lévy theorem for $A J(\alpha, \beta, 0)$.

Theorems 3.3 and 3.4 state that if $\alpha \geqq \beta \geqq-1 / 2$ and $\alpha>-1 / 2$ then closed subintervals of $]-1,1[$ are not sets of analyticity for $\operatorname{AJ}(\alpha, \beta, 0)$, in contrast with the case of $A(\boldsymbol{T})$. See [20, pp. 80 and 84].
4. Compact rank one symmetric spaces. We wish to apply the results of Chapter 2 to demonstrate the failure of spectral synthesis for the Fourier algebras of the classical compact groups $S O(n)(n \geqq 4)$, $S U(n)(n \geqq 3)$, and $S p(n)$. First we recall some facts from harmonic analysis on compact groups [18] and the theory of zonal spherical functions [10].

For the moment let G denote a compact Hausdorff group with dual object \hat{G} and equip G with normalized Haar measure m_{G}. To each $\sigma \in \hat{G}$ fix a representation $\left(\pi^{\sigma}, \mathscr{H}^{\sigma}\right) \in \sigma$ and set $d_{\sigma}=\operatorname{dim} \mathscr{H}^{\sigma}$ and $\chi_{\sigma}=\operatorname{tr}\left(\pi^{\sigma}\right)$. Let H be a closed subgroup of G, with normalized Haar measure m_{H}. We assume that the pair (G, H) has the following property: for each $\sigma \in \widehat{G}$

$$
{ }^{H} \mathscr{C}^{\sigma}=\left\{\xi \in \mathscr{H}^{\sigma}: \pi^{\sigma}(x) \xi=\xi, \forall x \in H\right\}
$$

is either zero or one-dimensional. Let \widehat{G}_{H} be the collection of σ in \hat{G} such that ${ }^{H} \mathscr{C}^{\sigma} \neq\{0\}$. Associated to such a pair (G, H) are a family of special functions, indexed by \hat{G}_{H}. These are the zonal spherical functions, defined by setting

$$
\phi_{\sigma}(x)=\chi_{\sigma} * m_{H}(x), \quad x \in G, \quad \sigma \in \widehat{G}_{H} .
$$

The properties of $\left\{\phi_{o}\right\}$ are examined in [10]. In particular, if $\sigma \in \widehat{G}_{H}$,

$$
\phi_{\sigma}\left(h_{1} x h_{2}\right)=\phi_{\sigma}(x), \quad \forall x \in G, \quad h_{1}, h_{2} \in H .
$$

Functions with this property are called bi-H-invariant. The fact that $\operatorname{dim}\left({ }^{H} \mathscr{C}^{\sigma}\right)=1$ implies that $\phi_{\sigma}(1)=1=\left\|\phi_{\sigma}\right\|_{\infty}$. The Fourier algebra of G is defined to be $K(G)=L^{2}(G) * L^{2}(G)$, [18, (34.15)]. It is sometimes denoted $A(G)$ and its properties are described in [18, §34]. $K(G)$ is an algebra of continuous functions on G and is equipped with the norm

$$
\begin{equation*}
\|f\|_{\kappa}=\inf \left\{\left\|\psi_{1}\right\|_{2}\left\|\psi_{2}\right\|_{2}: f=\psi_{1} * \psi_{2}\right\} \tag{4.1}
\end{equation*}
$$

There is an alternative description of the norm on $\boldsymbol{K}(G)$ in terms of absolutely convergent Fourier series on G, [18, (34.4)].

We are interested in the subspace of bi- H-invariant elements of $\boldsymbol{K}(G)$, which we denote by ${ }^{H} \boldsymbol{K}(G)^{H}$. It is a fact that ${ }^{H} K(G)^{H}$ consists of series $f(x)=\sum_{o \in \hat{G}_{I I}} a_{o} \phi_{o}(x)$, with $\|f\|_{K}=\sum_{o}\left|a_{o}\right|<\infty$.

There is a projection $P: K(G) \rightarrow{ }^{H} K(G)^{H}$ defined in the following manner. If f is a continuous function on G set $\operatorname{Pf}(x)=m_{H} * f * m_{H}(x)$.

Lemma 4.2. If $f \in \boldsymbol{K}(G)$ then $P f \in{ }^{H} K(G)^{H}$ and $\|P f\|_{K} \leqq\|f\|_{\kappa}$. If $f \in{ }^{H} \boldsymbol{K}(G)^{H}$ then $\operatorname{Pf}=f$.

Proof. If $f \in \boldsymbol{K}(G)$ and $\varepsilon>0$ there exists $\psi_{1}, \psi_{2} \in L^{2}(G)$ with $f=$ $\psi_{1} * \psi_{2}$ and $\|f\|_{K} \geqq\left\|\psi_{1}\right\|_{2}\left\|\psi_{2}\right\|_{2}-\varepsilon$. From the definition of $P, P f=$ $\left(m_{H} * \psi_{1}\right) *\left(\psi_{2} * m_{H}\right)$ which shows that $\operatorname{Pf} \in L^{2}(G) * L^{2}(G)$. Furthermore,

$$
\|P f\|_{K} \leqq\left\|m_{H} * \psi_{1}\right\|_{2}\left\|\psi_{2} * m_{H}\right\|_{2} \leqq\left\|\psi_{1}\right\|_{2}\left\|\psi_{2}\right\|_{2} \leqq\|f\|_{\boldsymbol{K}}+\varepsilon
$$

The ε was arbitrary, hence $\|P f\|_{K} \leqq\|f\|_{K}$. The last part of the lemma is obvious.
q.e.d.

Definition 4.3. If E is a closed subset of G we let

$$
I(E)=\{f \in \boldsymbol{K}(G): f(x)=0 \forall x \in E\}
$$

and $J(E)=\{f \in K(G): f=0$ on a neighbourhood of $E\}$. We say that E is a set of synthesis for $K(G)$ if $I(E)$ is the closure of $J(E)$ in $K(G)$.

We now restrict our attention to some special groups, namely those
corresponding to the compact rank-one Riemannian symmetric spaces. The possibilities are tabulated as in Table 1, see [2].

Table 1

G	H	G / H
$S O(n)$	$\{1\} \times S O(n-1)$	S^{n-1}
$S O(n)$	$S(\{ \pm 1\} \times 0(n))$	$P^{n-1}(\boldsymbol{R})$
$S U(n)$	$S(\boldsymbol{T} \times U(n-1))$	$P^{n-1}(\boldsymbol{C})$
$S p(n)$	$S p(1) \times S p(n-1)$	$P^{n-1}(\boldsymbol{H})$
$F_{4(-52)}$	$S O(9)$	P^{2} (Cayley).

If $k=\boldsymbol{R}, \boldsymbol{C}$, or $\boldsymbol{H}, \boldsymbol{P}^{m}(k)$ denotes the space of k-lines in $k^{m+1} \cdot P^{2}$ (Cayley) is the Cayley projective plane. The geometry of these spaces is described in [7].

In each case listed here there is a closed subgroup of G isomorphic to T, which we will denote by A, such that

$$
\begin{equation*}
G=H A H \tag{4.4}
\end{equation*}
$$

Let $a: \boldsymbol{T} \rightarrow A$ be this isomorphism. Then if $\theta \in \boldsymbol{T}$ there exist $h_{1}, h_{2} \in H$ with

$$
\begin{equation*}
h_{1} a(\theta) h_{2}=a(-\theta) \tag{4.5}
\end{equation*}
$$

On account of (4.4) and (4.5) it follows that every bi- H-invariant function is completely determined by its restriction to $A_{+}=\{a(\theta): 0 \leqq \theta \leqq \pi\}$. Furthermore, the set $H\left(\operatorname{int} A_{+}\right) H$ is an open set of full measure in G.

For example, if $G=S O(n)$ and $H=\{1\} \times S O(n-1)$, with $n \geqq 3$, we can take

$$
A=\left\{\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & \\
0 & & I
\end{array}\right): 0 \leqq \theta \leqq 2 \pi\right\}
$$

For G and H as above, \hat{G}_{H} and the zonal spherical functions have been completely determined, [16] and [11]. We can identify \widehat{G}_{H} with N and to each $n \in \boldsymbol{N}$ the corresponding zonal spherical function is

$$
\begin{equation*}
\phi_{n}(a(\theta))=R_{n}^{(\alpha, \beta)}(\cos \theta), \quad 0 \leqq \theta \leqq \pi, \tag{4.6}
\end{equation*}
$$

where the indices (α, β) depend only on G / H.
The possible values of (α, β) are as in Table 2. See [2] for details. Note that if $d=\operatorname{dim}(G / H)$ then $\alpha=(d-2) / 2$ and $\alpha \geqq \beta \geqq-1 / 2$. From the discussion above and (4.6) we see that for (G, H, α, β) as in Table 2 the correspondence $T:{ }^{H} K(G){ }^{H} \rightarrow A J(\alpha, \beta, 0)$

$$
T f(x)=f(a(\arccos (x))), \quad-1 \leqq x \leqq 1
$$

is an isometric isomorphism.
Table 2

G / H	$\operatorname{dim}(G / H)$	α	β
$S^{m}(m \geqq 2)$	m	$(m-2) / 2$	$(m-2) / 2$
$P^{m}(\boldsymbol{R})$	m	$(m-2) / 2$	$-1 / 2$
$P^{m}(\boldsymbol{C})$	$2 m$	$(m-1)$	0
$P^{m}(\boldsymbol{H})$	$4 m$	$2 m-1$	1
$P^{2}($ Cayley $)$	16	7	3

In particular, suppose that G / H is a d-dimensional compact rank-one Riemannian symmetric space and $0<\varepsilon<\pi / 2$. Then every $f \in{ }^{H} K(G)^{H}$, when restricted to $\{a(\theta): \varepsilon \leqq \theta \leqq \pi-\varepsilon\}$, can be written as

$$
f(a(\theta))=\sum_{n=0}^{\infty} b_{n} \cos (n \theta), \quad \varepsilon \leqq \theta \leqq \pi-\varepsilon,
$$

with

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|b_{n}\right|(n+1)^{(d-1) / 2} \leqq C\|f\|_{\kappa} \tag{4.7}
\end{equation*}
$$

This is a consequence of Theorem 2.9.
Hence, if $d \geqq 3, \quad \theta \rightarrow f(a(\theta))$ is differentiable on $] 0, \pi[$. As in Chapter 3, we wish to use this to demonstrate the existence of sets of nonsynthesis.

TheOrem 4.8. If G and H are as in Table 1, if the dimension of G / H is greater than two, and if $0<\theta_{0}<\pi$ then the double coset $H a\left(\theta_{0}\right) H$ is not a set of synthesis for $\boldsymbol{K}(G)$.

To prove this we will need the following lemma.
Lemma 4.9. If G and H are as in Table $1,0<\theta_{0}<\pi$, and if U is a neighbourhood of $H a\left(\theta_{0}\right) H$ in G then there exists $\delta>0$ such that U contains

$$
H .\left\{a(\theta):\left|\theta-\theta_{0}\right|<\delta\right\} . H
$$

This follows from [15, Lemma VII 7.1].
Now fix θ_{0} as in the statement of the theorem. Suppose that $E=$ H. $a\left(\theta_{0}\right)$. H and $f \in J(E)$. Then Lemma 4.9 implies that there is a $\delta>0$ such that $\operatorname{Pf}(a(\theta))=0$ for all $\left|\theta-\theta_{0}\right|<\delta$. Hence $\left.(d / d \theta)(P f(a(\theta)))\right|_{\theta=\theta_{0}}=0$. Since $d \geqq 3$, (4.7) tells us that we can define a bounded linear functional Λ on $K(G)$ by setting

$$
\begin{equation*}
\Lambda(f)=\left.(d / d \theta)(\operatorname{Pf}(a(\theta)))\right|_{\theta=\theta_{0}} . \tag{4.10}
\end{equation*}
$$

We have just seen that $J(E) \cong \operatorname{ker}(\Lambda)$, and so $\overline{J(E)} \subseteq \operatorname{ker}(\Lambda)$.
However, $I(E)$ is not contained in ker (Λ). For example, the function Ψ defined by

$$
\begin{equation*}
\Psi\left(h_{1} a(\theta) h_{2}\right)=\cos (\theta)-\cos \left(\theta_{0}\right), \quad h_{1} h_{2} \in H, \tag{4.11}
\end{equation*}
$$

is in $I(E) \cap\left({ }^{H} \boldsymbol{K}(G)^{H}\right)$ but $\Lambda(\Psi)=-\sin \left(\theta_{0}\right) \neq 0$, on account of the choice of θ_{0}. This completes the proof of the theorem.

Observe that we could define a collection of bounded functionals $\Lambda_{j}(0 \leqq j \leqq[(d-1) / 2])$ by setting

$$
\Lambda_{j}(f)=\left.(d / d \theta)^{j}(P f(a(\theta)))\right|_{\theta=\theta_{0}}, \quad 1 \leqq j \leqq[(d-1) / 2],
$$

and $\Lambda_{0}(f)=P f\left(a\left(\theta_{0}\right)\right)$. Then the spaces

$$
i_{j}\left(\theta_{0}\right)=\left\{f \in \boldsymbol{K}(G): \Lambda_{l}(f)=0, \quad 0 \leqq l \leqq j\right\}
$$

are all closed subspaces of $K(G)$ containing $J(E)$ and

$$
\overline{J(E) \subset i_{[(d-1) / 2]}\left(\theta_{0}\right) \varsubsetneqq \cdots \varsubsetneqq i_{1}\left(\theta_{0}\right) \varsubsetneqq I(E) .}
$$

This property is similar to [28, Thm. 3].
The theorem of Herz [17] that the circle is a set of synthesis for the algebra of Fourier transforms on \boldsymbol{R}^{2} suggests that the case of $S O(3) / S O(2)$ could be different from the higher dimensional cases described in Theorem 4.8.

In [25, Thm. 2] Ricci shows that nonanalytic functions operate locally on $K^{2}(G)$, the subalgebra of central elements of $\boldsymbol{K}(G)$, when G is a compact connected semisimple Lie group.

Theorem 4.12. Let G / H be a compact rank-one Riemannian symmetric space of dimension $d>1$. Let $x_{0} \in H . \operatorname{int}\left(A_{+}\right)$. H. Then there is a neighbourhood U of x_{0} in G such that $A_{d / 2}(\boldsymbol{T})$ operates on the realvalued elements of $\left.\left({ }^{H} \boldsymbol{K}(G)^{H}\right)\right|_{v}$.

Proof. Our hypothesis is that $x_{0}=h_{1} a\left(\theta_{0}\right) h_{2}$, for some $0<\theta_{0}<\pi$ and $h_{1}, h_{2} \in H$. Let $2 \delta=\min \left\{\theta_{0},\left|\theta_{0}-\pi / 2\right|\right\}$ and put $U=H .\left\{a(\theta):\left|\theta-\theta_{0}\right|<\right.$ $\delta\} . H$, an open set in G. Then $\left.\left({ }^{H} K(G)^{H}\right)\right|_{V}$ is isomorphic with $\left.A J(\alpha, \beta, 0)\right|_{T}$, where I is the interval $\cos \left(\left\{\theta:\left|\theta-\theta_{0}\right|<\delta\right\}\right)$. Now apply Theorem 3.3. q.e.d.

Bibliography

[1] R. Askey, Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics 21, S. I. A. M. Philadelphia, 1975.
[2] R. Askey and N. H. Bingham, Gaussian processes on compact symmetric spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 37 (1976), 127-143.
[3] R. Askey and G. Gasper, Jacobi polynomial expansions of Jacobi polynomials with nonnegative coefficients, Proc. Camb. Phil. Soc. 70 (1971), 243-255.
[4] R. Askey and S. Wainger, A dual convolution structure for Jacobi polynomials, "Orthogonal expansions and their continuous analogues", Southern Illinois University Press, Carbondale and Edwardsville, 1968, 25-36.
[5] R. Askey and S. Wainger, A convolution structure for Jacobi series, American J. Math. 91 (1969), 463-485.
[6] H. Bavinck, On absolute convergence of Jacobi series, J. Approx. Theory 4 (1971), 387-400.
[7] A. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Math. 93 SpringerVerlag, Berlin, Heidelberg, New York, 1978.
[8] F. Cazzaniga, A local property of absolutely convergent ultraspherical series, to appear in Boll. U. M. I.
[9] A. K. Chilana and K. A. Ross, Spectral synthesis in hypergroups, Pacific J. Math. 76 (1978), 313-328.
[10] C. F. Dunkl and D. E. Ramirez, Topics in harmonic analysis, Appleton-Century-Crofts, New York, 1971.
[11] R. Gangolli, Positive-definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. H. Poincaré. B. 3 (1967), 121-226.
[12] G. GaSPer, Linearization of the product of Jacobi polynomials, I \& II, Canadian J. Math. 22 (1970), 171-175 \& 582-593.
[13] G. Gasper, Positivity and special functions, in "Theory and application of special functions" Academic Press, New York, San Francisco, London, 1975, 375-433.
[14] M. Gatesoupe, Caractèrisation locale de la sous algèbra fermée des fonctions radiales de $\mathscr{F} L^{1}\left(\boldsymbol{R}_{n}\right)$, Ann. l'Inst. Fourier, Grenoble, 17 (1967), 93-107.
[15] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York \& London, 1962.
[16] S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153-180.
[17] C. S. Herz, Spectral synthesis for the circle, Ann. of Math. 68 (1958), 709-712.
[18] E. Hewitt and K. A. Ross, Abstract harmonic analysis II, Springer-Verlag, Berlin Heidelberg, New York, 1970.
[19] S. Igari and Y. Uno, Banach algebra related to the Jacobi polynomials, Tôhoku Math. J. 21 (1969), 668-673.
[20] J.-P. Kahane, Series de Fourier absolument convergentes, Ergebnisse der Math. 50, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
[21] N. Leblanc, Calcul symbolique dans certaine algèbres de séries de Fourier à poids, C. R. Acad. Sci. Paris 266 (1968), 339-341.
[22] N. Leblanc, Les fonctions qui opèrent dans certaines algèbres à poids, Math. Scand. 25 (1969), 190-194.
[23] M.-P. Malliavin and P. Malliavin, Calcul symbolique sur l'algèbre de Wiener centrale de $S U(3)$, Lecture Notes in Math. 266 (1972), Springer-Verlag, Berlin Heidelberg, New York, 215-228.
[24] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Mathematical Monographs, Oxford U. Press, Oxford, 1968.
[25] F. Ricci, Local properties of the central Wiener algebra on the regular set of a compact Lie group, Bull. Sci. Math. (2) 101 (1977). 87-95.
[26] L. Schwartz, Sur une propriété de synthèse spectrale dans les groupes non compacts, C. R. Acad. Sci. Paris 227 (1948), 424-426.
[27] G. Szego, Orthogonal polynomials, 3rd edition, AMS Colloquium Publications 23 (1967).
[28] N. Th. Varopoulos, Spectral synthesis on spheres, Proc. Camb. Phil. Soc. 62 (1966), 379-387.

Instituto Matematico	and
"Federigo Enriques"	
Department of Pure Mathematics	
Universitã di Milano	
Via C. Saldini, 50	G. P. O. Box 498, Adelaide
20133 Milan	South Australia 5001
Italy	Australia

