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1. This paper deals with a strong form of absolute convergence of
the Walsh Fourier series of functions in a Lipschitz space, and with some
analogue for the Fourier transform of functions on the ^-dimensional
space Rk.

Suppose that / is integrable on ( —π, π) and periodic with period 2π.
Denote its Fourier series by

We use the following notations:

W = \(wn): wn >0,wn = w_n, w,n! j , || wn \\λ

(
oo \ i/α

V \\p \(nn ψa-l/pΛalZJ l\Cn\\Wn) J f
n=—oo

. | | β m | | , = inf {HwJIK'^MIc.!!,.,,}.
(wn)eW

(Cl ΓCπ

aAp,Uf) = \\Q [)_π Ir
aΔ\f{x) l

Note that | |c n | | p ^ | |c n | | p, i f O < ^ ^ α ^ o o . In the previous paper [4],
we proved the following results:

THEOREM 1.1. Let us suppose that 1< a ^ 2, I/a + I/a' = 1, 0 < p <; α',
a < j , and j = a positive integer. Then we have that

oΊlCnl"Ί lip =^ Ά a^ptj,a\J J

The inequality holds also for the case a = 1 and 0 < p < oo = a

f.
(The letter K means a positive constant which may be different from

one occurrence to another.)

THEOREM 1.2. Let us suppose that 1 ^ a ^ 2, 0 < p <̂  α, I/a + 1/α' =
1, 0 < α < j , and j = a positive integer. Then we have

n=—oo

p/a \l/p
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,A . (f\ < K Wo \ΎI |

REMARK, (i) In the previous paper, we assumed the condition
0 < a < j in Theorem 1.1. However, by the careful examination of the
original proof, we see that a condition a < j is enough to support the
assertion of Theorem 1.1. (ii) The case a = 1 or a' = p in Theorem 1.1
and the case α = 1 or a = p in Theorem 1.2 were not discussed in the
previous paper. However those extremal cases are rather easily proved.
(See the next section of the paper or [6].)

One of the corollaries of Theorem 1.1 is

THEOREM 1.3. Suppose that 1 ^ a ^ 2 and 0 < p ^ α' < oo or 0 <
p < oo = α'. Lei us put

ωa(ft δ) = sup ΓΓ \f(x + Λ) -

T/iew we have that

(1.1) Σ * ' - "•>.(/ , lln)]> <
l

n = l

(1.2) a'\\cn\n\^\\p< - .

Since (1.2) implies

(1.3) Σ \on\ΛnY < oo ,
n=—oo

our Theorem 1.3 is a generalization of J. R. McLaughlin's result [7].

For the proof of Theorem 1.3, put a = Ύ/p + 1/p — 1/α' in Theorem
1.1, then we have

^ Z Σ [ωm(f, Vn)γ [/n t-'-ιdt
l J l / + l )

where ap — 1 = 7 — p/a'.
McLaughlin stated that all known sufficiency conditions for absolute

convergence of the trigonometric Fourier series given in terms of Lip a,
Lip (a, p), Var p, ωp{f9 δ), etc. follow from (1.1). McLaughlin also proved
the same conclusion for the Walsh Fourier series.

The first purpose of the present paper is to prove Walsh Fourier
series analogue of Theorem 1.1 and Theorem 1.2, and their generaliza-
tions. The second purpose is to discuss the same for the case of Fourier
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transform in the A-dimensional Euclidean space.

2. In this section, we suppose that / is integrable on (0,1) and
periodic with period 1. The Walsh Fourier series of / will be denoted by

/ ~ Σ enψn(x)
n=0

where {o/rn(#)} is the system of Walsh functions.
We should modify the notation aAPtJ>a(f) in the following way: We

denote the dyadic addition by a symbol + and put

( f l Γ f l Ίp/α )l/p

aAp>a(f) = j Jo L Jo I t'aΔJ(x) |αdα J r ' d ή ,

where

4/(aO = /(* + t) - f(x) .
(In our case, any higher order difference has no meaning.)

We have the following theorems for the Walsh Fourier series:
THEOREM 2.1. The result of Theorem 1.1 also holds for j = 1 and

any α.

THEOREM 2.2. The result of Theorem 1.2 also holds for a > 0.

THEOREM 2.3. The result of Theorem 1.3 also holds for the Walsh
Fourier series.

The main part of the proof of the above theorems is to prove the
following Lemmas 2.1 and 2.2 corresponding to Theorems 2.1 and 2.2,
respectively.

LEMMA 2.1. Let us suppose that 0 < p <* α. Then we have

a\\cnn \\p ^ XI a^.Pta\Cn) ,

where

Λ fo \ — \\ \f-«γ (f o

and

Ya(t, en) =

LEMMA 2.2. Let us suppose that 0 < p ^ a and 0 < α. Then, we
have

u, p,βlcnj =

The proofs of these lemmas are essentially the same as in the case
of trigonometric Fourier series shown in [4], in which the definition of
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Ya(t, cn) is given by

Ya,j(t,cn)= ] Σ |β, | |sinwί/2| 4 1 / # .
\n=—oo J

Therefore we shall give the full statements of the proofs only for the
points where the proofs are different from the case of trigonometric
Fourier series. For details, compare the previous paper [4].

PROOF OF LEMMA 2.1. Let us discuss first the case 0 < p < a < oo,
We have

r+* OO pi

n=l Jo

oo

= Σ \cn\
aMn , say .

π=l

We define a decreasing sequence {wn} by

wn = \1/2mt-a>[Ya(t, ck)]*dt , for 2m^n< 2m+1 .
Jo

Then, we have

Σ nn — V V I +~aP\ V (f /* \\Pflt

π=l m=0 n=2m Jo

oo oo f l / 2 s

= Σ 2- Σ t-"[Y.{t,et)\'dt
m=0 8=m J i ^ ' + i

ΣΣ
s=0 m=0 Jl/28+ 1

that is, we have {wn} e W and

(2.2) llw.lli^ίί^.ω]'.

Then, by Holder's inequality, we have

S l/2 m

t->-'»\ψn(fi) - l\>dt ,
0

for 2m <^n < 2m+1, where we have put P = a/p and 1/P + 1/Q = 1. Since
ψn(t) = 1 (0 ̂  t < l/2m+ι), and = - 1 (1/2W+1 ̂  ί < 1/2W), the above inte-
gral is

S l/2m

t - a p - p / a d t > j^βp+p/β-l
1 / 2m+l —

that is, Λίn ̂  jε n («-i/p+i/«)[Wn]i- /pβ βy using the last estimate, (2.1) and

(2.2), we have the conclusion.
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Let us show Lemma 2.1 for the case 0 < p = a < oo. We have to
prove that ||cnw

β||J <; K[pΆpJ>a(cn)]p. However, the right hand side of the
above inequality is

oo f l oo 2m+1—1 fl/2m

Σ Ien\Λ t-'-ι|ψM -i\>dt^KΣ> Σ Icn\'\ t-*-w
π=l JO m=0 π=2™ J l / 2 m + 1

which is what is required.
Let us show Lemma 2.1 for the case 0 < p < oo = α. Set

and

S l/2™

rα*[Γoo(£, ck)fdt , (2W ̂  7t < 2m+1) .
0

Then, in the same way as before, we have

(2.3) \\wn\\i^ KUAPta{cn)γ .

We have to show t h a t \\wn\\]!p^\\cnn
a-1/p\\PtW^ KΛp>a{cn). Since (2.3)

holds, the above inequality is equivalent to Ĥ cnn"~1/p \\P)W ^ K, which
must be read as ||c^α~1/p(/M;n)~1/2)||oo ^ K. Therefore, we have to show t h a t

( f l/2m ) 1/p

\cn\n"-1/p ^ K\\ t~ap s u p ( | c * | | ψ t ( t ) - l\)pdύ f o r 2m ^ n < 2 m + 1 ,

that is,

However, the integral on the right hand side is

S l/2™
t~apdt

l / 2 m + l

and we have the conclusion.

PROOF OF LEMMA 2.2. The proof is essentially same as in the case
of trigonometric Fourier series (cf. [4, Lemma 2]). The only difference
is to estimate the following integral:

-i t-2+a/p-a«[w*(i/t)γ-a/p\irn(t) - i\adt,

where w*(t) satisfies (i) tδw*(t) is increasing, and (ii) tεw*(t) is decreasing
for some δ and ε such that 0 < ε < 1 < δ. We need to show that J <̂
Knaa~a/p+1[w*(n)]1~a/p. For this purpose, we devide the integral J into
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two parts:

S Un fl

+ 1 =J1 + J2, say .
0 Jl/n

Suppose 2m <̂  n < 2m+1. Then, by the property (i), we have

t-2+a/p-aa+δ{1"a/p)dt
Jl/2» + l

f^α α-^+ 1[^*(7l)]1-α / 2 ) .

Similarly, we have

l/n

Jl/n

Since a > 0, we may choose ε in such a way that 0 < ε < 1 and — 1 +
a/p - αα + ε(l - a/p) < 0. Therefore, we have J2 ^ ίC^αα-α/?)+1[^*(^)]1-α/p.

PROOF OF THEOREM 2.1. The Walsh Fourier series of the dyadic
difference Δtf(x) is

Af(χ) - Σ cn(φn(t) - ΐ)ψn(χ).
π=l

Therefore, by the Hausdorff-Young inequality, we have Fβ/(ί, cn) ^
ί|M*/( )ll« and hence β,APiβ(cn) ^ iΓ.Ap,β(/). Then, by Lemma 2.1, we
have the conclusion.

PROOF OF THEOREM 2.2. By the Hausdorff-Young inequality, we have
| |4/( )H.' ^ KYa(tf cn). Thererfore we have β,APfβ(/) ^ KaΆp,a(cn). By
Lemma 2.2, we have the conclusion.

From Theorems 2.1 and 2.2, we have a contraction theorem for the
Walsh Fourier series:

THEOREM 2.4. Let us denote the Walsh Fourier series of f and g by

f ~ Σ GnΨn and g — Σ dnψn .

Suppose that 0 < p ^ 2 , 0 < α < l ,

(2.4) ΣWΣkjf <oo ,
n=i \fc=n /

and g is a contraction of f, that is, for any xι and x2,
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Then
2 | | ^ 1 / 2 - 1 / 3 ) + α | | P < o o .

(The above result is a generalization of Watari's result [9].)

PROOF OF THEOREM 2.4. Since the finiteness of 2 | | cnn
1/2~1/p+a \\pf 2ΆPta(cn)

and 2APt0C(f) are mutually equivalent, we have to show the finiteness of

[A.β(Cn)]p: We have

\cnnψn(t) - l\2T
2™ J

Σ \ \ ± \nnψn() \Tdt
m=0 Jl/2 m + 1 | J

-|p/2

J

Since the finiteness of the last series derives from (2.4), we have the
conclusion. (In the same way, we can generalize the result due to
Okuyama [8].)

Finally we state some generalizations of Theorems 2.1 and 2.2: We
use the following notations. Suppose that a function I(t) is positive and
increasing on (0,1), and satisfies I(2h)/I(h) <L K, where K is a positive
constant. We define aAp Σ(f) by

Then, we have the following theorems.

THEOREM 2.5. Let us suppose that 1 < a tί 2, 1/α + 1/α' = 1 and
0 < p tS> α'. Tfoew, we /wve

11/. Λfi/tt'-i/pΓI/i/Λ|Y|-I|| < 7Γ 4 ( f\a,'\\lsnlb LJt\-L/"vJ \\p == J^ a-™-p,I\J J

The inequality holds also for the case a — 1 and 0 < p < oo == a'.

THEOREM 2.6. Let us suppose that 1 ̂  a ̂  2 αraϊ 0 < p ̂  α. Suppose
that I(t) satisfies the following conditions: There exist positive numbers
ε and δ with 0 < ε < 1 < δ such that

[ uβ[I(u)]-du ^ Ktβ+1[I(t)]~a,
Jo

where β = — 2 + α/p + δ(l — α/p),

where 7 = — 2 + α/p + ε(l — α/p). Γ/ten, we have

a,APM) ^ Ka\\cnn^-

(For the proof, cf. [6].)
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3. The object of the present section is to give some analogue of
the previous results for the case of the Fourier transform in Rk.

We shall use the following notations:
Functions /, gf I and w are defined on the A-dimensional Euclidean

space Rk.

Mg(χ) = Σ ( - l ) i + m ( )g(χ + mt), f o r x,teRk.
m=0 \mj

I{x) is a radial function and J(|ίc|) = I(r) is positive and increasing
on (0, oo).

Ϋaj(t,g)= ?..i(ί) = ||flr(0|sin(t>

aAPJίI(g) = J j a [YatJ(t)/I(t)]p\t\-kdt]1/P .

Let W be the class of radial functions w(x) e L\Rk) such that w(|#|) =
w(r) are positive and decreasing on (0, oo). For each we W, we define

a\\9\\P,w

.||ff||,

and

β L, = {flr:β||flr||,< - } .

Note that aLp Q Lp if 0 < p ^ a ^ oo, and aLa = La.
We shall prove the following theorems:

THEOREM 3.1. Suppose that 1 <̂  a <; 2 and I/a + 1/α' = 1, 0 < p <̂  α'
(if 1 < a ^ 2) or 0 < 2) < <*> = α' (i/ α = 1), and that f e Lq(Rk) where
1 ^ g <̂  2. Tftew, /or ίfce Fourier transform f of f in Lq\Rk), we have

THEOREM 3.2. Lei α, αf, p and f be as in Theorem 3.1. Then, we
have

a'Wnx^xr^-^vaiixDΓWp ^ κaAP,af)
THEOREM 3.3. Suppose that 1 ^ a ^ 2, 1/α + 1/α' = 1 αm£ 0 < p ^ α,

αwd ίfeαί / G Lg(Rk) where 1 ^ # ̂  2. Furthermore, we suppose that there
exist positive e and δ such that

( i ) 0 < β < 1 < δ < oo,

r*[I(r)]-adr ^ ίΓ^+1[/(^)]-α ^feere /3 = k(a/p - 1) + αj + δ(l -
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alp) — 1, and

(iii) [° rr[I(r)]~adr ^ Kur+1[I(u)]~a where 7 = &(α/p-l)+e(l-α/p)-l.

Then, for the Fourier transform f of f in Lq'(Rk), we have

THEOREM 3.4. Let a, a', p, f and I be as in Theorem 3.3. Then
we have

aΆv,Uf) ^ κa\\Λχ)\χr/a-1/p)[KV\χ\)]-1\l •

In particular, we have the following

THEOREM 3.5. Suppose that 0 < p <; 2, and that I(t) satisfies the
same condition (in a = 2) as in Theorem 3.3. Then, 2Ap^a(f) is finite,
if and only if 2||/W|α;|fc(1/2-1/?')[I(l/|α;|)]-1||3, is finite.

REMARK: If we take I(x) = \x\a (a < j), then our theorems imply
the Beurling and Herz result (cf. [1] and [3, in particular, Theorem 2]).
In fact, the norm aAPtJtI(f) in the case when I(x) = \x\a is equivalent to
the norm of Besov space B%p.

The proof of these theorems is based upon the following lemmas.

LEMMA 3.1. Suppose that 0 < p <̂  a < °o. Then, we have

The inequality holds for the case 0 < p < °° = α.

LEMMA 3.2. Suppose that 0 < p <g a < °o, and that I(t) satisfies the
conditions (i), (ii) and (iii) in the statement of Theorem 3.3. Then we have

PROOF OF LEMMA 3.1. We discuss first the case 0 < p <a < o°. In
this case, we can prove the lemma in the same way as in the proof of
Lemma 3 of the previous paper [5]. Therefore we shall give a sketch.

Let us put

= \
JllίKi/UI

Since Ϋ(t) is radial (cf. [5, Lemma 1]), and since I(t) and w{x) are radial,
we have

|| w ||x - K Γ [I(r)r»[?.,i(r)]'r-*r»-1clr ,
Jo

that is,

(3.1) || w ||x = K[aAPfj>I(g)Y < - , and w e W .
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By definition, we have

(3.2) [aAp,jfI(g)Y = \ \g(x)\aG(x)dx,

where

G{x) = \ \t\~W)rp[Ϋatj(t)y-a\sin (t, χ)/2\a*
JRK

Let us estimate the following integral:

V = \ I ί \-kp/a[I(t)]~p\ sin (ί, x)/2 \**dt .
J l ί l < i / l χ |

Put P = α/p > 1 and 1/P + 1/Q = 1. Then, by the Holder inequality,
V ^ [G(x)]1/P[w(x)]1/Q. Therefore, G(x) ^ [w(x)]~p/QVp. On the other hand,
we have, for k ^ 2,

( | sin (Vι\ x

We see that the above inequality holds also for k = 1. Now we have

(3.3) G(aO ^ [w(x)γ-a/p\x \-ka/p+k[I(l/\x \)]'a .

Summing up (3.2) and (3.3), we have

[aΆP,ag)Y ^ K^gix

Using the equality (3.1), we have

aΆPtj>I(g) = [Άr^-1/a)[Ά

by which we have the conclusion in the case 0 < p < a < ©o.
For the case 0 < p = a < °°, the result of Lemma 3.1 is easily seen.
Let us finally show the result in the case 0 < p < °o = a: Set

Ϋoojit) g) = sup [|flr(αθ||sin (ί, x)/2\'] and

[fi)][Ϋ~,to g)]>dt,
\t\<l/\z\

then we have

(3.4)

W e have to show that

Due to the inequality (3.4), the above inequality is equivalent to

|| flr(a?)|a? Γ*/p[J(l/|α? Dl̂ Cwζa?)]"17* !!«> ̂  K. Therefore, we have to show that
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^ K\ [I(i)]-y|sin (ί, χ)/2|"dί .
Jm<i/i«ι

However, the right hand side integral is greater than

[/(I/I x \)]-p \ I sin (ί, x)/2 \>*dt = K[I(l/\ x \)]-*\x \~k ,
Jl ί l< i/ la j |

by which we have the conclusion (cf. [5, proof of Lemma 3]).

PROOF OP LEMMA 3.2. For the detail, see the proof of [5, Lemma 4].
Let us discuss the case 0 < p < a < ©o. Suppose that there exists

weW such that

For this w, we find w* which has the following properties:

(3.5) w*(t) is radial and positive .

(3.6) w(t) ^ w*(t)

(3.7) r'w*(r) is decreasing on (0, » ) .

(3.8) r9w*(r) is increasing on (0, <*>) .

(3.9) 11^*11, = K\\w II, .

Let P = a/p, 1/P + 1/Q = 1, ax = 2k/Q - k and α2 = -2Λ/Q. Then, by
the Holder inequality, we have

( I sin (ί,
K JRK

We denote by J the second integral on the right hand side. Then,

J ^ K \ \x\aj\t hP + α ' '[/(£)]-α[w*(l/|t \)]ι~a/*dt
Jl*l<i/lβ|

I ί |αiP[/(ί)]-α[w*(l/| t \)γ-a/pdt
\t\>i/\χ\

= K(J, + J2), say .

Then, by using properties (ii) and (3.8), we have

0

υ]'1 r>[I(r)]-adr
O
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Similarly, we have, by (iii) and (3.7),

\x\-g{Λ"-ι)[w*(\x\)]ι- " Γ τr[I(r)]-adr
Ji/lsl

Summing up J, and J2 and using (3.6), we have J S K\x\k{1'a/p)[I(XI\x\)]'"ax
[w(\x\)f~a/p. So we have the conclusion in the case 0 < p < a < ©o.

For the case 0 < p = a < °°, the result of Lemma 3.2 is easily seen
from the properties (ii) and (iii) with a = p.

PROOF OF THEOREM 3.1. Suppose that ΛA9tU{f) is finite. Then we
have Δ\f e La(Rk), and there exists its Fourier transform in La'(Rk), which
must be equal to the Fourier transform of Δ{f(x) in Lq\Rk), that is,
(ΔifYix) = (e<(ίM) - iYf(x). By the Hausdorίf-Young inequality, we have
||/(.)|sin(., ί)/2|i||., <ς iqμί/( . ) | | . . It follows that ΛP,Uf) ^ KaAP,Uf)'
Applying Lemma 3.1, we have the conclusion.

PROOF OF THEOREM 3.2. Suppose that aAPfJtI(f) < <*>. Then we have
IMί/llα < °° Therefore, there exists the Fourier (inverse) transform of
Jίf, which may be expressed as

(3.10) l.Lm. S [Jίf(u)]ei(*>u)du = f*(x)(e-i{t'x) - 1)', say .
N-*oo J NP

(For the inversion argument, see, for example, Herz [2]: Here we denote
by P a convex polyhedron in Rk containing 0 in its interior and NP the
homothetic dilation of P by the amount N.) On the other hand Δ5

tf(u)
is the Fourier transform of f(x)(e~ί{ttX) — l)j in Lq\Rk), and we have, by
the inversion argument,

(3.11) f(x)(e-i{t>a) - l)j = l.i!m. (2τr)-n/2 ( [Jif(u)]ei{*>u)du .
iV—oo J NP

From the two equalities (3.10) and (3.11), we have (2π)n/2f(x) = /*(&).
Apply the Hausdorίf-Young inequality, and we have \\f(-)(e~tι'ft) — l) y | | β ' ^
J5ΓII4/H., that is, a>Άp>JtI(f) ^ KaAp>jfI(f). By Lemma 3.1, we have the
conclusion.

PROOF OF THEOREM 3.3. We may suppose that aΆPJfI(f) is finite (cf.
Lemma 3.2). Then, /( )(e" ί (>ί) - I)5'eLα(i2Λ), and we have its Fourier
transform in La\Rk) which must be equal to the Fourier transform of
/( )(β"'('if) - l)y in Lq\Rk)y that is,

By the Hausdorff-Young inequality, we have | |4/( )||α' ̂  #11/(01 sin( ,
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ί)/2|y | |β and, by Lemma 3.2, we have the conclusion.

PROOF OF THEOREM 3.4. Suppose that

Then, by Lemma 3.2, we have aΆp>JtI(f) < «>, and (ei(t w) - iYf(u) e L\Rk).
Therefore, there exists the limit

LLm. S (ei(t>u) - iy?(u)ei{m u)du = f*(xf t) , say .
iV-oo J NP

On the other hand, we have ( 4 / Γ M = (ei{t>u) - l)jf(u) in Lq'(Rk), and,
by the inversion argument, we have

l.i.m. (eί{t u) - iyf(u)enx'u)du = {2πYnΔif{x) ,
N-+00 J NP

which must be equal to f*(x, ί). Now apply the Hausdor if-Young in-
equality, jind we have | | 4 / | | α ' ^ ίΓ||(e<(l ° - W ( )||α, that is, a>APJtI{f) ^
KaΆPtitI(f). Using Lemma 3.2, we have the conclusion.
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