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Introduction. An m-linear operator T,(f, f, ---, f.) is said to be
an m-linear Fourier multiplier with symbol o(g, &, - -, &.), if it has the
following form

TSy Loy =y F)
= (271‘-)_"“ SR"”" ef-’ﬂ'(el‘f‘""*‘fm)o-(fl’ %y em)ﬁ(51) e fm(em)d51 e df,,, )

where 2,4, -+, &R, x-y=29y, + -+ + 2,4, and 7 is the Fourier
transform of f, i.e. &) = SM e ***f(x)dx, which is denoted also by Zf.
In [6] we showed the following: If ¢eC*™*(R"\{0}) and |0%c(¢)| <
C.lel™™, £6#0, |a|<2nm + 1, then for p;e[l, ] 1 <j=<m) and
0<1/p=1/p, + -+ + 1/p, <1 it holds that

(01) “ Ta(fu Tty fm)”p = C(pu Tty D) ”fl“pl et “fm”p,,. ’

(fiesf 3=1,---,m), where ||f;|l,;, = ||f;llz and f;e Hs if p; =1, and
in case p = o the norm on the left-hand side is the BMO norm, which
is denoted by || f|,. Here & is the Schwartz class of smooth and
rapidly decreasing functions, and Hy, is the space of all fe .5 such that
7 has compact support bounded away from the origin. || f|, is the
usual L?(R") norm (1 £ p < «). See [7], [5] or [6] for the definitions of
H? spaces and BMO.

We say that T, has Property (C) if the above inequalities (0.1) hold
foralll<p; <~ and 0=1/p=1/p,+ --+ + 1/p,, =< 1. In this note we
try to relax the assumption for o to obtain Property (C) in the case
n=1 and m = 2. That is, we deal with bilinear Fourier multipliers
with non-smooth symbols. Our symbols have singularities on finite pieces
of rays issuing from the origin. Our prototype is Calderon’s commuta-
tor K, in Section 2. It has singularities on the rays {§ = +x/2} and
{8 = 1+2)w/4}. In Section 1 we deal with non-homogeneous symbols.
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In Section 2 we treat the concrete case of homogeneous symbols such
as Calderdon’s commutator. The case of general homogeneous symbols is
treated in Section 3. In Section 4 we will see that the assumptions in
Section 8 are relaxed further, if we deal with the case 1 < p, 9, <
and 0 < 1/p = l/pl + l/pz = 1.

In the sequel, R® denotes the two dimensional Euclidean space and
(¢, «) will denote a point in R:. (r,0) will always denote the polar
coordinate representation of the point (¢, a). For a ray {# =46} =
{(r,0);r > 0,0 =06} we call a set of the form {(r, §);» > 0,0, < 0 < 6,} =
{6, < 6 < 6,} a sector neighborhood of that ray, (0, < 6,<6,). ¢4 =
*Ajog*. C*E) will denote the space of k-times continuously differenti-
able functions on the set E. For a function f(t) on an interval fla + 0)
will denote the right hand limit of f at ¢t = a. The letter C will always
denote a constant and does not necessarily denote the same one.

Finally we remark the following. In order to prove Property (C),
it suffices to show (0.1) in three cases (p, =1, p, = o), (P, = o0, p, = 1)
and (p, = p, = =), by virtue of the multilinear interpolation theory.

We thank Mr. Eiichi Nakai for pointing out some inaccuracies in
our earlier draft. We also thank the referees. In virtue of their sug-
gestions we could improve Theorems 1.1 and 3.1 satisfactorily.

1. Operators with non-homogeneous symbol. Our first main result
is the following.

THEOREM 1.1. Let 0 <6; < 2w and b; =cotb;, (j=1,2,---, k). Let
o € C(R\{0}) satisfy the following conditions:

(i) For0Em+n<5, 0=m, n <3, droso(&, a) exist for 0 + 0;
3=12 ---,k) and

(1.1) |orazo(¢, a)| < Cm, n)(|&] + |a))™ ™.

(ii) For 0=m + n=4, 0<m, n<3, orozo(&, a+0) and 07dz0(E+0, a)
exist.

(iii) In case 6; = w/2 or 3xm/2, d.0(t,s) is continuous at t =0 for
each (0,s)e{0 = 0;}, and

(1.2) Ed"_na;»a(o +0,8) < Com, n)|s|™", O0=m, n<2.
s
(iii") In case 0; =0 or m, conditions similar to (iii) are fulfilled,
where the roles of & and a are interchanged.
(iii") In case 0; + 0, ©/2, &, 3xw/2, oro(b;s + t,s) and o7o(b;s, s + )
are continuous at t =0 for each (b;s,s)e{0 =46;}, (m =1, 2), and
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(1.3) %ag'azaw,.s, s+0)| <Cm,n)|s| ™, O0<m+n<3s,
0sm=<3, 001,
Then, T, has Property (C).
Moreover, if 0(0,a) =0, then for 1< p < o
(1.4) IT.(f, Dl =ClIfll«llgll,, feBMO, gelLr,
where p = * on the left-hand side and ge L™ N L* or fe BMO N L* when
p = oo, and in case p =1 the morm of g is the H' norm and ge H*.

We shall prove the theorem in the following way. First, using a
partition of unity of the unit circle, we decompose the symbol ¢ into a
finite sum of such symbols that each of them has support in a small sector
neighborhood and satisfies the conditions in Theorem 1.1 with k£ = 1.

So, we begin with the following elementary lemma.

LEMMA 1.2. Let 0 < 6, < /2 < 0, < w. Let oeC(R\{0}) be such that
supp g C S(0,, 6,) and o satisfies the conditions (i), (ii), (iii) in Theorem
1.1 under the assumption k =1 and 6, = w/2. Let ¢, €. be such that
é and 4 have compact support and supp ¢ < (0, ). Then, it holds that
(1.5) | 7 (0(/t, a/t)d(E)(a))(u, v)| < C(L + |u| + o)™

XA+ |u)@ + o),
where C 1s independent of t > 0.

PrROOF. For the sake of simplicity we prove the assertion in the
case t = 1. Put A(¢, a) = a(&, a)p(&)¥(a) and F(u, v) = 5 A(u, v). Then
integrating A(g, a)e™** by parts three times with respect to £ we have
by the continuity of ora(¢, a), (m =0, 1),

e |7 4 et
= —w[0;A(0 — 0, @) — 0:4A(0 + 0, )] + u™* S:agA(g, a)e g .
Hence, integration by parts with respect to « yields
@+ wF, o) = -0+ |77 (2246 @ - 0046, ale e deda

— o " E 5400 - 0, @) — 340 + 0, W)eda
o da®
=—vXI,+ I).
By (1.1) and the support properties of ¢ and 4, we get |I,| < « and by
(1.2) we get |I,| < . Hence
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1.7 | F(u, )] = CA + |u)?( + [0])7.

Next, integrating A(g, a)e ** by parts twice with respect to ¢ we have

(1.8) S‘;A(S, e~ de = _u—zsmw RAE, a)ede .

So, integration by parts with respect to a implies
A + w)F(u, v) = v S‘” S‘” [RAE, @) — BLAE, @)l dede .
0 —00
Hence from (1.1) we obtain
(1.9) | F(w, v)] = C(1 + |u])7*(1 + |v])°.

If || < |v|, then 1 + |u| + |v| < 2(1 + |v]), so from (1.9) we obtain (1.5).
Similarly, if |v| < |u|, using (1.7) we obtain (1.5). That the constant C
in (1.5) does not depend on ¢ can be easily checked by reconsidering the
above proof and using (1.1) and (1.2). q.e.d.

LEMMA 1.3. Let0< 6, < 6,< 0, < w/2. Let ceC(R\{0}) be such that
supp ¢ C S(4,, 0,) and o satisfies conditions (i), (ii) and @iii”) in Theorem
1.1 wnder the assumption k =1 and 0, = 0,. Let ¢, €. be such that
é and § have compact support in (0, o). Then it holds that

(1.10) | 7 (a(e/t, ajt)d(@ia)(u, v)| < C(L + |u|)™
X @+ o)1 + |bu + v )7,
where b = cot 6, and C is independent of t > 0.

PROOF. As in the proof of Lemma 1.2 we prove the assertion in
the case t =1 and we let A and F' be the same as before. By the con-
tinuity of o7a(b¢ + -, &), (m =0, 1, 2), integrating A(g, a)e ** by parts
three times with respect to £ we have

(1.11) | At evedg = i " 4G, agede .

Hence, integration by parts with respect to a gives
1 + w®)F(u, v)

= —o=["| 1246 @) - azma, ol erededa
—w™ S: [03A(g, &/b — 0) — GLA(E, &/b + 0)]e *w+Pde
— 2 X: [agaaA(g, g/b — 0) — 6%0,A(g, &/b + 0)]e—t€(u+v/b)d$

+ 2 S: [aaA(S; é/b - O)aaA(é, E/b + O)]e—ie(u+y/5)de
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=L+L+L+1,.

Then from (1.1) we obtain |I,| < C|v|™ From (1.8) we get |I|, |L| <
C|v|™. Integrating the integrand in I, by parts and using (1.8) we get
L] < Clv|*A + |bu + v|)™. Summing up, we have

(1.12) | F(w, v)| = CA + [#])@Q + [v)H(A + |v])
+ @+ |dbu + v .
Next, integration by parts with respect to ¢ yields via (iii”)

Flu, v) = —u™ S“ r RAE, @)t dedy = —utT .

Hence, integrating the integrand by parts three times with respect to
a, we get, on account of the continuity of ora(bg &+ -), (m = 0,1, 2),

J =i || g, e erdeda
0 0
+ o= | [510.40, &b — 0) — 0.AG, &fb + O

— i | [0104G, &fb — 0) — BRAG, &b + O)e Mg
0
= w73, + v, — wJ, .
Then by (1.1) we get |J,| < C and by (1.3) we get |J;| £ C. Integrating
the integrand in J, by parts and using (1.3) we get |J,| = CA + |bu +v|)™.
Integrating A(g, a)e™*“***? by parts three times with respect to a, we
get the same representation for F' as for J, where we replace 9:A by
A. Hence, as for J we have |F(u,v)|=<CQA + |v)(QA + o)™+
1+ |dbu + v|)™). Summing up we obtain

(113)  |F(w,v)| = CL + |[uD)™@ + [oD7HA + oD + A + [bu + v))7) .

Now in order to show (1.10) we may assume b = 1. Then, if 2|u| < |v|,
we get 2(1 + |u + v|) < 8(1 + |v|). Hence using (1.13) we obtain (1.10).
If 2|v|<|ul, we get 1L+ |v|<1+ |u| and |u]/2 < |u + v| < 3|ul|/2.
Hence using (1.12) we get (1.10). If |u| < 2|v| < 4|u|, we have obviously
(1.10). q.e.d.

We can now prove a special case of Theorem 1.1.

PROPOSITION 1.4. (a) If o satisfies the conditions in Lemma 1.2,
then T, has Property (C) and it holds that for 1 < p £ =

(1.4) | T, Dl = Gl f 191l  feL?, geBMO,
where we use the convention in (1.4) in case p = « or p = 1. Moreover
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if 00, a) = 0, then (1.4) holds.
(b) If o satisfies the conditions in Lemma 1.3, then T, has Property
(C), and (1.4) and (1.4") hold.

PrOOF. (a) Let €. be such that suppy C{l/2< a < 2} and
S ((s)ys™'ds = 1 and let ¢ €.’ be such that ¢ has compact support and

%5%5) =1lon{2cotfd, < &§ < 2coth,}). Then applying Lemma 1.2 and putting
wu, v) = A + |u)*Q + |v])2Q + || + |v])™* we obtain

(1.14) B¢, u, v) = F(a(&/t, a/)FEF()) u, v)[w(u, v) e L (R,
and clearly

(1.15) w(w, v)(1 + w1 + |v])"* e L'(RY) .

Now we follow Coifman and Meyer [4, pp. 154-155]. By (1.15)

(1.16) (¢, )t i(ta) = (21)" SS w(w, Vbt w, v)e- e+ dydy |

Multiplying (1.16) by +ta)@(té)t™ and integrating it with respect to
t we obtain

(L17) o, a) = (2n)" S “ w(w, VIB(E, w, V)FEQ)F(EE)e— w0 dydy®E

0 i
This is easily checked by using Sw(q/?(t))"’t“‘dt =1 and properties of the
0
supports of o, ¢ and . Hence for f, g e . we get via Fubini’s theorem

(1.18) T.(f, g)(x)
- “w(u, v)dudvs;”[sSe-"(f+«>eiamp(at)g(a)e“fugﬁ(st)f(s)dgda]b(t, u, v)t-dt

= {[wtu, vdudo| wixg)st rrot, u, v)t-dt,
where ¢*(x) = ¢(x + u) and ¢,(x) = t7'¢(x/t). Then one can easily get

ot < ol [ )] = CLLE LoD
(1.19) |¢(x)|§0(1 Tzl @l =G N

Since F(¢*)(&) = e“*¢(¢), F (v*)(a) = e’y (a), they fulfill the assumptions
in Theorems 1, 2 and 3 in Yabuta [6]. Thus, if we apply those theorems
to ¢* and +°, then the proofs there imply that the operator norm of
the operator

(£, 0| e oot £IbE, w, v)td

is bounded by CQ1 + |u|)**1 + |v|)**. In fact we have only to use
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Propositions 4.1 and 4.2 there and the bilinear interpolation theorem.
Therefore, applying those theorems and using (1.15) we see that T, has
Property (C). Remark 1 to those theorems gives (1.4"). In case
00, ®) = 0, we follow again Coifman and Meyer [4, p. 155]. Then, on
account of the support properties of ¢, +r, o, we have

1.20)  T,(f g) = SS w(u, v)dudv r Wi+ 9l — 60 % FIb(E, u, v)E~'dt .

Since S(¢“(x) — ¢(x))dx = 0, we have (1.4) again by Remark 1 to Theorems
1, 2. 3 in [6].

(b) We take 4 as in the case (a). Let ¢c.5” be such that ¢ has
compact support in (0, ) and (&) =1 on {2'cot f, < &£ < 2coth,}. Set
wu, v) = (1 + |u])21 + |v])1 + |bu + v|)™. Then the proof proceeds
as in the case (a), if we can show (1.15). It is checked as follows. To
show it we may assume b = —1. Then we have

SS w(u, V(A + [ + [0 dudv
=C S:o 1+ Iu\)‘mdu[s:ﬂ 1+ v)'dv + Xo 1+ ’v)“dv]

<c S: (1 + w)"log (1 + wdu < +oo .

The same estimate holds for the integral on the set {4u < 2v < u < 0}.
The integrals on the other regions can be estimated more easily. q.e.d.

ProoF OF THEOREM 1.1. As is noted just after the statement of
the theorem, we decompose ¢ and apply Proposition 1.4 and its obvious
variant. Then the desired assertions follow.

REMARK 1. As is easily seen, the condition (iii”) in Theorem 1.1
can be replaced by a similar one, where the roles of ¢ and «a are
interchanged.

REMARK 2. If p=¢ = « in Theorem 1.1, we have || T,(f, o)l =
Cllfll«llglle for f or ge L™ N L.

In order to deduce a few consequences from Theorem 1.1, we need
a lemma. We recall ‘Ehat the Hilbert transform Hf of f is given by
F(Hf)E) = (—isgné)f().

LEMMA 1.5. For a symbol o let us put o¢'(§, a) = (&, a)sgné&. Let
1<p< o, 1£q= « and 1/r =1/p + 1/q. Then we have:

(i) If T, is a bounded bilinear operator from H' X L= into L', so
is T,.
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(ii) If T, is a bounded bilinear operator from L* X L into L', so
s T,.

(iii) If T, is a bounded bilinear operator from BMO x H® into L',
so s T,.

(iv) If T, is a bounded bilinear operator from (BMO N L*) x L* or
BMO % (LN L* (cBMO x L*) into BMO, so s T,..

In (i), (ii), (iv) the space L= may be replaced by BMO.

PROOF. By the definition of the bilinear Fourier multiplier we have
T,(f, 9) = T,(Hf, g). As is well-known, the Hilbert transform preserves
the spaces H!, BMO and L?, (1 < p < ), and is bounded there. There-
fore we have the desired assertions. g.e.d.

Now combining Theorem 1.1 and Lemma 1.5 we get:

COROLLARY 1.6. Let o be as in Theorem 1.1. Then, for the symbol
o'g,a) =0 a)sgné, T, and T, are bounded bilimear operators from
H' x L™ into L.

Moreover, if o(0,a) =0, then T, and T, are bounded bilinear
operators from BMO x H! into L' and (1.4) holds for both T, and T,.

2. Special cases of homogeneous symbols. We investigate here the
continuity of the following bilinear operators with homogeneous symbols.
For any real number s we set

K(f, o)) = po. 2 " GD = 6@ = 5w = W) gy,
ST - (®—vy)
where G is a primitive of g. Then one can easily check for f, ge.&; as
in [4, p. 162], that K,(f, 9) = —iT,x,(f, 9) with symbol ¢(K,) given by
o(K,) =[1— @1 — [§(sa)])*]sgné + (1 — |&/(sa)|)* sgn (sa) .
By the argument in [4, Proposition 4, p. 160] one can show the operator

K,(-,9) is a Calderon-Zygmund operator in the sense of Coifman and
Meyer, if g is a bounded function (cf. Section 4). Hence we get

LEMMA 2.1. For any real s, K, is a bounded bilinear operator from
H' x L* into L' and L™ x L* into BMO.

We also have the following:

LEMMA 2.2. For any real s, K, is a bounded bilinear operator from
L> x H* into L.

ProOF. Let T = K,. One has only to show the followingb inequality
for an H'-atom g; suppg is contained in an interval (a, b), S glx)de =0
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and [lg]l. < 1/(0 — a),
(2.1) I TCf, Dl = Cllf ll 11 g llr -

Now for an H'-atom g, T(-, g) is a Calderén-Zygmund operator, and so
T(f, 9) is BMO for fe L*. Hence, in order to prove (2.1) one has only
to show

@2 ||° T o@h@ds| < CIfI-Ihlllgle  for hes.

For the sake of simplicity we show the inequality (2.2) in the case of
T = K,. The other cases are treated in a quite similar way. Let g be

as above and G(zx) = Sz g(t)dt. Then, by ‘iirtue of the properties of
Calderon-Zygmund’s sinag'ular integrals and S glx)dx = 0,
® _{° " G(x) — G(y)
7 |" s ohds = (0. F O Wiiw)ia) fw)dy
b oo
+1. (] 1@ - vy )Gan@ade
a b
+ similar three terms
=L+ L+L+ 1+ 1I.
Then

111 = ([ 170, 92 1ay) ([ 15w )

= Cllgll1hX e L 1f llo(b — @)’
S Clikllsll £ ll1lglle(b — a) ,

LI 170180 [ 16@)1® — 2)7ds < 1)) £ 1|9l — a) .

1/2

Similar inequalities hold for I;, 7 = 3,4,5. Since || g0 —a) =< C|lg|a
we have the desired inequality (2.2). This completes the proof of our
lemma.

Combining Lemmas 2.1, 2.2 and Theorem 1.1 we obtain the follow-
ing lemma.

LEMMA 2.3. Let 0 <6, < 2z and (& a)e C(R\({0 = 6,} U{0})) be a
homogeneous fumction of degree zero and satisfy, in a sector neighbor-
hood of the ray {6 = 6,}, one of the following conditions.

(i) In case sin @, # 0 there exist a,b, c € R such that

acotd —acoth,+ ¢ 0=0,

(2.3) I @ = 1ot 0 — beotd, +c 0> 0.
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(ii) In case cos @, #= 0 there exist a,b,ce R such that (2.3) holds,
where we replace cot by tan.

Then T, is a bounded bilinear operator from H' X L into L}, from
L> x H* imto L' and from (LN L*) x L*(CL> x L~) into BMO.

ProOF. First, we shall show the first and second assertions for the
case (i). We write 0 SL (resp. 0 SR) if T, is a bounded bilinear
operator from H' X L* (resp. L X H') into L.

(a) Case 6, = w/2. By Theorem 1.1 we may assume that the support
of o is contained in the open upper half plane. Let A(¢, a) € C(R*\{0})
be a homogeneous function of degree zero, with support contained in
the open upper half plane and such that A(¢, @) = 1 on the sector {7/4 <
0 < 3x/4}. Then from Theorem 1.1 and Corollary 1.6 it follows that
(Ela)AE, a), (§la)A(E, a)sgn e SLNSR, because L>CBMO. Hence there
exists a linear combination z(¢, @) of the above two symbols such that
o — tcC*(R\{0}). Since ¢ — v is homogeneous of degree zero, by
Theorem 1.1 we have 0 —7eSLN SR, and hence 6 SLNSR. The
case 0, = 3n/2 can be treated similarly.

(b) Case 0 <6, <m/2. Let A(¢ a)eC~(R\{0}) be a homogeneous
function of degree zero, with support contained in the open first quadrant,
such that A(§, @) = 1 on a sector neighborhood of the ray {# = 6,}. Put
s =cotf, and P& a) = 0(K_,)& a). Then by Lemmas 2.1 and 2.2 we
get PeSL N SR. Now

1 (—m/2=0=<6,
P < JE6 =1 (6,<0=m)
S @2 0<7+06)

—28/(sa) +1 (m+ 6,< 6 < 87/2).

Let B(¢, a) e C*(R*\{0}) be a homogeneous function of degree zero such
that its support is contained in the sectors {|a/¢| < tan min (6,, /2 —
6,) = M} and B(§, «) =1 on the sectors {|a/é| < M/2}. Let E( a) =
B(a, £). Then from the case (i) it follows that PE e SL N SR, and hence
we get P(1 — E)eSL N SR. So, by Lemma 1.5 we get P(1 — E)sgnée
SL, and hence P(1 — E)(1 + sgné&)e SL. Thus, via Theorem 1.1 we get
APeSL. We have already seen that PEcSR. Since clearly PBe
C~(R)\{0}), we get PBe SR by Theorem 1.1. Hence P(1 — E — B)c SR.
So, by Lemma 1.5 we get P(1—E—B)sgna € SR and so P(1—E—B)1 +
sgna)e SR. Since P(1—E — B)(1+sgna)(1—sgn &) e C*(R’\(0}), it belongs
to SR by Theorem 1.1. Thus, we get P(1 — E — B) x (1 + sgna)(l +
sgné) e SR. Therefore via Theorem 1.1 we obtain APc SR. Summing
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up, we get APe SLNSR. We get A(¢, a)¢/a e SLNSR by Theorem 1.1,
because it belongs to C=(R%{0}). Now, clearly there exists a linear
combination 7(§, &) of AP and A(§, a)é/a such that o — e C(R)\{0}).
Hence on account of Theorem 1.1 we see that 0 e SL N SR. The other
three cases can be treated in a quite similar way.

(¢) The last assertion for the case (i) can be shown in a way similar
to the above proof for ¢ € SL, by using L cBMO in addition.

(d) Finally, changing the variables & and «, we can deduce the
assertions for the case (ii). q.e.d.

3. General case of homogeneous symbols. If ¢ is homogeneous of
degree zero, then we can drop the continuity assumptions on derivatives
in Theorem 1.1.

THEOREM 3.1. Let (&, a) be homogeneous of degree zero and assume
o0&, a) = a(r, ) 1s continuous and piecewise C° with respect to 0. Then
T, has Property (C).

ProOF. By Theorem 1.1 we may assume o € C*(R)\({6 = 6,} U {0})) for
some 6,:0 < 6, < 2z. (i) Case 6, = w/2. Let A(¢, a)e C°(R\({6 = &/2} U
{0})) be a homogeneous function of degree zero such that, in a sector
neighborhood of {0 =x/2}, A, a)=0 (0 <7/2) and =¢&/a (7/2 < 0).
Then, since A(0, a) =0.A(0 +0, @) =0 and 9,4A(0—0, a) = 1/a, there exists
a constant ¢ such that ¢ + ¢4 € C'(R*\{0}). Since ¢ + cA is homogeneous
of degree zero, it satisfies the assumption in Theorem 1.1. Hence, from
Theorem 1.1 and Lemma 2.3 we see that T, has Property (C).

(ii) Case 0 < 6, < w/2. Let A( a)eC~(R"\{0}) be a homogeneous
funection of degree zero such that its support is contained in the open first
quadrant and A(§, ) =1 on a sector neighborhood of the ray {§ =6,}. Let
GE a)=0 (0< 0 <06,) and =&/a — cot 6, (6, < 6 < w/2). Let J(&, a) =0
0<6<6,) and =aj/¢ —tand, (0, < 8 < w/2). Then, since AG and AJ
satisfy the assumption in Lemma 2.3, T,; and T,, have Property (C).
Now put s =cotéd,, t =tand,, A, = AG and A, = A, + s’AJ. Then we
get Ay(g, te) = 0. A\(& + 0, t8) = 0:A,(& £ 0, t5) = 0 and 9:4,(& — 0, t&) = s/¢.
Furthermore, A,(g, tg) = 0,4,(¢& £ 0, t&) = 0:A,(6+0, t&) = 0 and 0;A,(¢ — O,
te) = 2s/¢’. Therefore, using the homogeneity of o, A, and A,, we can
find two constants ¢, and ¢, such that ¢ + ¢, A, + ¢4, is in C(R"\{0})
and satisfies the assumptions (i), (ii), (iii"”) in Theorem 1.1. Hence by
Theorem 1.1 we see that T, has Property (C). The other cases are
treated quite similarly. q.e.d.

As a consequence we have the following.
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COROLLARY 3.2. Let a(g, a) be the same as in Theorem 3.1. Assume,
moreover, 0(0, &) = 0. Then it holds that

(3.1 I T.(f, Dll, = Collfllcllgll, (A== o),
where we use the convention in Theorem 1.1 provided »p =1 or p = .

PRrROOF. Since 0(0, @) =0, both (s, a) and a(g, ) X sgn g satisfy
the hypothesis in Theorem 3.1. Hence we have || T,(f, 9)l,, || T.(Hf, 9)|, <
C I fll=lgll,- Itis well-known that every BMO function can be written
in the form f= h + Hk, where h, ke L*(R) and || f|, is equivalent to
|~]lo + ||k|l.. From these we can easily deduce the inequality (3.1).
Here Hf denotes the Hilbert transform of f. q.e.d.

4, The case 1< p, », < o« and 0<1/p, + 1/p, < 1. In this case

we can further relax the hypothesis in Theorem 3.1.

THEOREM 4.1. Let o(g, @) be a homogeneous function of degree zero
such that the restriction w(f) of ¢ to the unit circle has the first deriva-
tive of bounded variation. Then, if 1< p, ¢ < o and 0 <1/r =1/p+
1/q £ 1, it holds that

(4.1) I To(f, Dl = Clo, DU Follglle (feL?, gel).

PROOF. Our method is the same as in Coifman and Meyer [4, pp.
162-163]. We only point out important check points.

(i) The case 1< p<  and ¢ = . Let ¢ a)eC(R\{0}) be
homogeneous of degree zero, and satisfy 4(0, 1) = ¢(0, 1), ¢(1, —1) =
o1, —1) and ¢(—1,1) = a(—1,1). From Theorem 1.1 it follows that T
satisfies (4.1), and hence we may assume o0(0, +1) =01, —1)=
o(—1,1) =0. Now we put ¢ = ¢/(¢ + a) and h(t) = 0(&, @) (sgn (¢ +a) >0
and sgné& > 0). Then, h(t) =0a(t, 1 —t). We put b(v) = h(e’). Then by
the homogeneity of o, we have b(v) = o(1, 1 — e")/e’) = a(e’/(1 — ¢”), 1).
Hence, b'(v) = 0.0(e"/(1 — ¢”), 1)e*(1 — €)™ = —0d,0(1, (1 — e")/e")e™. There-
fore, since ®w’(f) is bounded, we have b'(v) = O(e™'"') as v — . By
the assumption ¢(0, 1) = o(1, —1) = 0 we get b(— ) = b(+) = 0. Con-
sequently, we have b(v) = O(e™"') as v — *o. Hence &b is bounded
on (—oo, ), Next, since ®'(f) is of bounded variation, one can easily
see that d.0(e’/(1 — ¢*), 1) and 9,0(1, (1 — ¢")/e’) are of bounded variation
on (—oo, —1] and [—1, =), respectively. Hence, we see that b’'(v) is of
bounded variation on (—co, ). So, by integration by parts we have

lglh(e“)e“"’dv S0/ + 7).

Combining similar considerations for the other three cases (sgn(s+a)>0,
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sgn£ < 0), (sgn(¢+a)<0, sgng>0), (sgn(e+ a<0), sgng <0), we
get

0=\ (|,

giate+e) el e + a|™ . kz m i, (Y)
Jyk=1,—-1

X(L+ jsgng)(L + ksgn (s + a))f(g)ﬁ(a)dgda)l i772 ,

for some m . € L~(R). Hence,
7.5, 9 = | M {g@M)@) + m) HM Ag(@) M f)e)
+ my(V)M_{g(x)(HM; f) (%)} + m(V)HM_{g(x)(HM, f )(w)}ll—% ’

for some m (7)€ L™(R). Here, H is the Hilbert transform and (M, f)(¢) =
lel7fg). It is known that || M;f |las < Co(L+ [YNY*= || £ ||» (0< D < o),
(see Miyachi [5, p. 282]). It is well-known that |Hf||z < C,|f|z»
(0 < p < ). Hence, if 1 < p < = we have

I To(f, Dl = ClLf Nl 1l 9l -

(ii) The case 1< p,g< o and 1 <7 < . We choose ¢ so that
#(0, +£1) = (0, +1) and ¢(=*1, 0) = o(£1, 0). Hence we assume ¢(0, +1) =
o(x1,0) = 0. Then, putting ¢ = ¢/a and arguing as in the case (i) we
get

T, 0) = | IO Mr0) + mVMHF M)

o+ MY M19) + mar)MHS M Ho) ‘i“’vz ,

for some m;(7)e L°(R). Hence we obtain

Il T.(f, DI = Cli flsllglle - g.e.d.

REMARK 1. The above proof shows that, if ¢(0, £1) = (%1, 0) =0,
then

4.2)  NT(S, Dllr = Cooll fllazllgllae (0 <p,q< o0, 1/r=1/p + 1/g).

This poses the following questions. (i) Does (4.2) hold for the symbols
in Theorem 4.1? (ii) Does (4.2) hold for the symbols in Theorem 1.1?
(iii) Does (4.2) hold for the bilinearization of Littlewood-Paley’s g-func-
tion in [6]? If (ii) is affirmative, so is (i). And if (iii) is affirmative,
so is (ii).

REMARK 2. The Calderén commutator K, in Section 2 satisfies (4.2)
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for 1< p, < > and 1/r =1/p + 1/¢ [2, Theorem A]. Hence, this is
also true for the symbols in Theorem 4.1 if ¢(0, 1) = (1, 0) and ¢(0, —1) =
0(—1,0). If one could show (4.2) for the operator K_, (1 < p,q < ),
then the operators in Theorem 4.1 would also satisfy (4.2) (1 < p, ¢ < o).
However, the method in [2] does not work in this case. One would
need more devices. Here H? is the H? space in the sense of Stein-
Weiss (cf. [5])-

REMARK 3. Since the operator (f, g)+ H(fg) clearly satisfies the
inequality (4.1), using Theorem 1.1, Lemma 1.5 and Theorem 3.1, one
can show the following: If o(&, a) is homogeneous of degree zero, con-
tinuous except at 6 = *x/2, 3r/4, —x/4, piecewise C' and with the
second derivative bounded with respect to #, then the inequality (4.1)
holds.

REMARK 4. Theorem 4.1 for the case 1< p,q,r< « is stated
implicitly in Theorem I in Coifman and Meyer [9]. By our Theorem 4.1,
their theorem remains varid for the case 1< p,¢ < o and 1 £ 7 < oo.

REMARK 5. For the operator p.v. Sm [Alx + &) + A(x — t) — 2A(x)] X

t~%(sgnt)f(x — t)dt we have the same integral representation as in the
proof of Theorem 4.1, where (1 + ¥*)* is replaced by (1 + v»*log (1 + |7]),
(see [4, p. 162]). Hence, the same assertion as in Theorem 4.1 remains
valid for this operator.

Using the argument in the proof of Corollary 3.2 we get:

COROLLARY 4.2. Let o(¢, a) be as in Theorem 4.1 or Remark 3.
Assume, moreover, o(,0) =0. Then it follows that

(4.3) [To(f, Dl = Gl flollgll A <D< o).

5. Examples. For a real number s we put

S(f, 9)@) = p.v.-L S: Gl + s — y)) + G — s@ = y)) = 2G@) g,y |

sT (x — y)
ULS, 0)@) = pv = |7 Gero@ V) = O = s = Wy,
ST J-o (x—1v)

where G is a primitive of g. Then these are bilinear Fourier multipliers
with the following symbols

a(S,) = —2i(1 — [¢/(sa)|)* sgn (sa) ,
o(U,) = 24[1 — (1 — |&/(sa))*] sgn & .
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To these symbols we can apply Theorem 3.1. As applications of Corollary
4.2 we have

| H(G(@)f'(x)) — G)Hf' @) ||, = C,ll f 11l gll« »
and

| 9Hf — H(f9)ll, = G|l fl,119]l«
(cf. Coifman-Meyer [8, pp. 105-107]).
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