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Introduction. An m-linear operator Tσ(fl9 /2, , fm) is said to be
an m-linear Fourier multiplier with symbol σ(ξi9 ξ2, , £m), if it has the
following form

where x9 ξlf , ξm e Rn, x y = x1y1 + + xnyn and / is the Fourier
transform of /, i.e. /(ζ) = ( ^ e~ix'ζf(x)dx, which is denoted also by
In [6] we showed the following: If σeC2nm+\Rnm\{0}) and |3
C α | ίΓ | α | , £ =£ 0, | α | ^ 2 n m + l f then for p y e[ l , oo] (1 ^ i ^ m) and
0 ^ 1/p = 1/Pχ + + l/pm ^ 1 it holds that

(0.1) II T,(/ l f .. , /J l l , ^ C(p1# . , p.) IIΛH,, 11/. II,. ,
( Λ e ^ i = 1, -- ,m), where H/yH^ = \\fd\\Hi and /yeHi if p y = 1, and
in case p = oo the norm on the left-hand side is the BMO norm, which
is denoted by | | / | | * . Here S^ is the Schwartz class of smooth and
rapidly decreasing functions, and flS, is the space of all fe S* such that
/ has compact support bounded away from the origin. | | / | | p is the
usual Lp(Rn) norm (1 <£ p ^ oo). See [7], [5] or [6] for the definitions of
Hp spaces and BMO.

We say that Tσ has Property (C) if the above inequalities (0.1) hold
for all I ^ Pj ^ oo and 0 ^ 1/p = 1/^ + + l/pm ^ 1. In this note we
try to relax the assumption for σ to obtain Property (C) in the case
n = 1 and m = 2. That is, we deal with bilinear Fourier multipliers
with non-smooth symbols. Our symbols have singularities on finite pieces
of rays issuing from the origin. Our prototype is Calderόn's commuta-
tor JSΓJL in Section 2. It has singularities on the rays {θ = ±7r/2} and
{θ = (l±2)ττ/4}. In Section 1 we deal with non-homogeneous symbols.
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In Section 2 we treat the concrete case of homogeneous symbols such
as Calderόn's commutator. The case of general homogeneous symbols is
treated in Section 3. In Section 4 we will see that the assumptions in
Section 3 are relaxed further, if we deal with the case 1 < plf p2 <; oo
and 0 < 1/p = 1/p, + l/p2 ^ 1.

In the sequel, JB2 denotes the two dimensional Euclidean space and
(ξ9 oί) will denote a point in R2. (r, θ) will always denote the polar
coordinate representation of the point (ς, a). For a ray {θ = θ0} —
{(r, θ); r > 0, θ = θ0} we call a set of the form {(r, θ); r > 0, θx < θ < θ2) =
{0i < θ < θ2] a sector neighborhood of that ray, (0! < θ0 < 02). d£A =
dkA/dξk. Ck(E) will denote the space of A-times continuously differenti-
able functions on the set E. For a function fit) on an interval f(a + 0)
will denote the right hand limit of / at t = α. The letter C will always
denote a constant and does not necessarily denote the same one.

Finally we remark the following. In order to prove Property (C),
it suffices to show (0.1) in three cases (px = 1, p2 = oo), (pλ = ooyp2 = 1)
and (Pi = p2 = oo), by virtue of the multilinear interpolation theory.

We thank Mr. Eiichi Nakai for pointing out some inaccuracies in
our earlier draft. We also thank the referees. In virtue of their sug-
gestions we could improve Theorems 1.1 and 3.1 satisfactorily.

1. Operators with non-homogeneous symbol. Our first main result
is the following.

THEOREM 1.1. Let 0 ^ θά < 2π and bά = cot θά, (j = 1, 2, , k). Let

σ e C(R2\{0}) satisfy the following conditions:
( i ) For O ^ m + ^ ^ 5 , O ^ m , w ^ 3 , dfdn

aσ(ξ, a) exist for θ Φ θs

(j = 1, 2, , k) and

(1.1) |3f32σ(f, a)\ ^ C(m, n)(\ξ\

(ii) For O^m + n^4, O^m, ^ ^ 3 , dfdMξ, a±0) and d?dϊσ(ξ±0, a)
exist.

(iii) In case θά = π/2 or 3ττ/2, dζσ(t, s) is continuous at t = 0 for
each (0, s)e{θ = θά}, and

(1.2) ^ C(m, ^) | s | - m ~ n , 0 ^ m, w ^ 2 .

(iii') In case θ3- = 0 or π, conditions similar to (iii) are fulfilled,
where the roles of ζ and a are interchanged.

(iii") In case θs Φ 0, π/2, π, 3π/2, δ^ί&. s + ί, s) α^d dfσibjS, s + ί)
are continuous at t = 0 /or eac/i (6y8, s) e {β = ^y}, (m = 1, 2),
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(1.3) 4-v
ds

± 0) <̂  C(m, n)\s\~m~n~1 , 0 ^ m + n <̂  3 ,

0 ^ m ^ 3 , O ^ w ^ l .

, Γσ Λαβ Property (C).
Moreover, if σ(0, α) = 0, ίftew /or 1 <; p <; oo

(1.4) l|Γ (/,fir)ll,^C,||/L||fir| |,, /eBMO, ί/eL p,

where p = * on the left-hand side and g eL°° Π L2 or /eBMO Π U when
p = °o, αwd ^ case p = 1 the norm of g is the Hx norm and geH1.

We shall prove the theorem in the following way. First, using a
partition of unity of the unit circle, we decompose the symbol σ into a
finite sum of such symbols that each of them has support in a small sector
neighborhood and satisfies the conditions in Theorem 1.1 with k — 1.

So, we begin with the following elementary lemma.

LEMMA 1.2. Let 0 < θx < τr/2 < 02 < π. Let σ e C(R\{0}) be such that
supp σ c S(θlf θ2) and σ satisfies the conditions (i), (ii), (iii) in Theorem
1.1 under the assumption k = 1 and θk = π/2. Let φ,ψe£^ be such that
φ and ψ have compact support and supp'f c(0, oo). Then, it holds that

(1.5) \^~(σ(ςlt, alt)φ{ξ)ψ{ά)){u, v)\^C{\ + \u\ + \v\Γ

x(l + \u\T\l + \v\T\

where C is independent of t > 0.

PROOF. For the sake of simplicity we prove the assertion in the
case t = 1. Put A(ξ, a) = σ(ξ, a)φ(ξ)ψ(a) and F(u, v) = ^~A(uf v). Then
integrating A(ξ, a)e~iξu by parts three times with respect to ξ, we have
by the continuity of dfσ(ξ9 a), (m = 0,1),

(1.6) Γ A(ξ, a)e-«*dξ
J-oo

= -m-3[3|A(0 - 0, a) - d]A(0 + 0, a)] + iu~* ΓsjA(f, a)e~ίζudζ .
Jo

Hence, integration by parts with respect to a yields

(1 + iu*)F(u, v) = -v~2 Γ Γ [d2

aA(ξ, a) - d]d2

aA(ζ, a)]e-i{ξu+av)dζda
JO J-oo

- v-2 Γ J?L[3«A(0 - 0, a) - 3JA(0 + 0, α)] e " ί α v dα
Jo da2

= - tr (li + I,) .
By (1.1) and the support properties of φ and ψ, we get | JJ < oo and by
(1.2) we get \I2\ < oo. Hence
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(1.7) \F(u, υ)\ ^ C(l + \u\)-\l + \v\Γ .

Next, integrating A(ξ, a)e~u* by parts twice with respect to ζ we have

(1.8) Γ A(ξ, a)e-tξ»dξ = -«-*(" %A(ξ, a)e-iίndξ .
J-00 J-00

So, integration by parts with respect to a implies

(1 + u2)F(u, v) = i i r 8 [° Γ [3»A(f, a) - 32

f3M(£, α)]e- ί( f t t+αv)d£ώα .
JO J-oo

Hence from (1.1) we obtain

(1.9) IF(u, v)\£C(l + \u|)-2(1 + \v|)"3.

If \u\ < \v\, then 1 + \u\ + |ι;| < 2(1 + |i; |), so from (1.9) we obtain (1.5).
Similarly, if |ι;| ^ \u\9 using (1.7) we obtain (1.5). That the constant C
in (1.5) does not depend on t can be easily checked by reconsidering the
above proof and using (1.1) and (1.2). q.e.d.

LEMMA 1.3. Let 0 < θ, < θ0 < θ2 < ττ/2. Let σ e G(R2\{0}) be such that
supp σ c S(θl9 θ2) and a satisfies conditions (i), (ii) and (iii") in Theorem
1.1 under the assumption k = 1 αraϊ 0fc = 0O £e£ φ9ψeS^ be such that
φ and ψ have compact support in (0, oo). Then it holds that

(1.10) I JH*(£/ί, a/t)fc)${a))(u9 v)\£C(l + \u\Γ

x (l + |t;|)-χi + |6w + i;|)-1,

where b = cot ^0 and C is independent of t > 0.

PROOF. AS in the proof of Lemma 1.2 we prove the assertion in
the case t — 1 and we let A and F be the same as before. By the con-
tinuity of dfσ(bξ + ,f), (ra = 0, 1, 2), integrating A(£, a)e~ίξu by parts
three times with respect to ξ we have

(1.11) Γ A(ξ, a)e~ίζudξ = w" 3 Γ 3|A(f, α)e" ί ί t tίίf .
Jo Jo

Hence, integration by parts with respect to a gives

(1 + iu*)F(u, v)

°° [dlA(ζ, a) - dld2

aA(ξ, a)]e-ί{ξ»+aυ)dξda

ξ, ξ/b - 0) - d]A(ξ, ξ/b + 0)]e-t"<'+v/b)dζ
JO

- v-2 Γ [%daA(ξ, ξ/b - 0) - d&Aiξ, ξ/b + 0)]e-<ί(»+"/6)(
Jo
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Then from (1.1) we obtain | JJ ^ C\y\"\ From (1.8) we get |/8 |, |/4 | ^
C\v\~2. Integrating the integrand in I2 by parts and using (1.3) we get
1I2\ <; C|v | - 1 (l + \bu + v\)~x. Summing up, we have

(1.12) \F(u, v)\ <ί C(l + \u\r\l + \v\r\(l + \v\rι

+ (l + \bu + vir1).

Next, integration by parts with respect to ξ yields via (iii")

F(u, v) = -u~2 Γ [°d2

ξA(ζ, a)e-i{ξu+av)dξda = -u~2J .
Jo Jo

Hence, integrating the integrand by parts three times with respect to
α, we get, on account of the continuity of dfσ(bξ9 ξ + •)> (m = 0,1, 2),

/ = fa-* Γ Γ d]dlA(ξ, a)e-i{ξu+av)dζda
Jo Jo

[%daA(ζ, ξ/b - 0) - d)daA(ξ, ξlb + O)]β~«( + Λ)df
J

- iv~* Γ [d)dlA(ζ, ξ/b - 0) - d\dlA{ξ, ξ/b + 0)]e-<?(»+"/"d|
Jo

= iv-'J, + v~2J2 - iv-*Js.

Then by (1.1) we get \J±\^C and by (1.3) we get | J 8 | ^ C. Integrating
the integrand in J 2 by parts and using (1.3) we get | J2\ ^ C(l + \bu + vI)"1.
Integrating A(£, a)e~ilζu+av) by parts three times with respect to a, we
get the same representation for F as for J, where we replace d\A by
A. Hence, as for J we have \F(u, v)\ ^ C(l + M)~2((l + kl)" 1 +
(1 + \bu + vl)"1). Summing up we obtain

(1.13) | ί K t;)| ^ C(l + |u |)" 2(l + \v\)-\(l + Ivl)-1 + (1 + \bu + vl)"1) .

Now in order to show (1.10) we may assume 6 = 1. Then, if 2\u\ < \v\,
we get 2(1 + \u + v\) < 3(1 + \v\). Hence using (1.13) we obtain (1.10).
If 2 | v | < | w | , we get 1 + \v\ < 1 + \u\ and \u\/2 < \u + v\ < Z\u\/2.
Hence using (1.12) we get (1.10). If \u\ ^ 2\v\ ^ 4 |u | , we have obviously
(1.10). q.e.d.

We can now prove a special case of Theorem 1.1.

PROPOSITION 1.4. (a) // a satisfies the conditions in Lemma 1.2,
then Ta has Property (C) and it holds that for 1 ^ p ^ °°

(1.40 \\Tσ(f,g)\\p^CP\\f\\p\\g\U, feL*, greBMO,

where we use the convention in (1.4) in case p = °o or p = 1. Moreover
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if σ(Q, a) = 0, then (1.4) holds.
(b) If σ satisfies the conditions in Lemma 1.3, ίfcew Tσ has Property

(C), αraZ (1.4) αwd (1.4') ftota.

PROOF, (a) Let ψ e Sf be such that supp ψ* c {1/2 < α < 2} and

S oo

(^(s))^"1^ = 1 and let φ e S? be such that φ has compact support and
φ(ξ) = 1 on {2 cot θ2 < ξ < 2 cot ί j . Then applying Lemma 1.2 and putting
w(u, v) = (1 + \u\)-\l + M)~2(l + \u\ + Ivl)-1 we obtain

(1.14) δ(ίf u, v) = J^(σ(ξ/t, a/t)φ(ζ)f(a))(u, v)/w(u, v) e L"(R>) ,

and clearly

(1.15) w(u, v)(l + N)5 / 4(l + \v\)meL\R2) .

Now we follow Coifman and Meyer [4, pp. 154-155]. By (1.15)

(1.16) σ(ξ, a)φ{tζ)ψ(ta) = (2π)~2 \\ w(u, v)b(t, u, v)e~mMav)dudv .

Multiplying (1.16) by ψitoήφit^t"1 and integrating it with respect to
t we obtain

(1.17) σ(ξ, a) = (2π)~2 j " (( w(uf v)b(t, u, v)f(ta)φ(tζ)e-it{ζu+av)dudv^- .

This is easily checked by using I (ψ(t))H~ιdt = 1 and properties of the
Jo

supports of σ, φ and ψ. Hence for f,ge£^we get via Fubini's theorem
(1.18) To(f,g)(x)

= \\w(u, v)cϊwfoΓ[j j ^ ^ ^ u, v)t'xdt

= \\w(u9 v)dudv^(<r!rv

t*g)(φΐ*f)b(t, u, v^-'dt ,

where φu(x) = φ(x + u) and φt(x) = t~ιφ{xjt). Then one can easily get

(1.19, I^ISC&ijϊr, lr{xnSC<l±^.

Since ^(φu)(ζ) = eiξuφ(ζ), ^*(ψ )(α) = β iαvt(«), they fulfill the assumptions
in Theorems 1, 2 and 3 in Yabuta [6]. Thus, if we apply those theorems
to φu and ψv, then the proofs there imply that the operator norm of
the operator

(/, flO ι-> Γ {ψl*g){Φut*f)Kt, u, v)rxdt
Jo

is bounded by C(l + \u\)m(l + \v\)m. In fact we have only to use
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Propositions 4.1 and 4.2 there and the bilinear interpolation theorem.
Therefore, applying those theorems and using (1.15) we see that Tσ has
Property (C). Remark 1 to those theorems gives (1.4'). In case
σ(0, a) = 0, we follow again Coif man and Meyer [4, p. 155]. Then, on
account of the support properties of φ, ψ, σ, we have

(1.20) Tσ(f, g) = \\ w(u, v)dudv Γ (ψv

t*g)[(φ7 - Φt)*f]b(t, u, v)Γxdt .
J J Jo

Since l(0*(α&) — φ{x))dx — 0, we have (1.4) again by Remark 1 to Theorems

1, 2. 3 in [6].
(b) We take ψ as in the case (a). Let φ e Sf be such that φ has

compact support in (0, oo) and φ{ζ) = 1 on {2"1 cot θ2 < ξ < 2 cot 0J. Set
w(u, v) = (1 + M)~2(l + M)~2(l + \bu + v\)~\ Then the proof proceeds
as in the case (a), if we can show (1.15). It is checked as follows. To
show it we may assume b = — 1. Then we have

w(u, v)[(l + \u\)(l + \v\)]Widudv
0<U<2v<iU

^ C Γ (1 + \u\)-t/2duϊ["2 (1 + v)~ιdv + \" (1 + vT'dvλ
Jo LJo Jo J

S C \" (1 + u)'w log (1 + u)du < + oo .
Jo

The same estimate holds for the integral on the set {iu < 2v < u < 0}.
The integrals on the other regions can be estimated more easily, q.e.d.

PROOF OF THEOREM 1.1. As is noted just after the statement of
the theorem, we decompose σ and apply Proposition 1.4 and its obvious
variant. Then the desired assertions follow.

REMARK 1. As is easily seen, the condition (iii") in Theorem 1.1
can be replaced by a similar one, where the roles of ζ and a are
interchanged.

REMARK 2. If p = q = oo in Theorem 1.1, we have || Tσ(ff g)\\* ^
C||/|L||flr|U for / o r geL~f)L\

In order to deduce a few consequences from Theorem 1.1, we need
a lemma. We recall that the Hubert transform Hf of / is given by

LEMMA 1.5. For a symbol σ let us put σ\ξ, a) = σ(ξ, α)sgnf. Let
1 < p < oof 1 <ί q <^ oo and 1/r = Ijp + 1/g. Then we have:

( i ) If Tσ is a bounded bilinear operator from H1 x L°° into L1, so
is 2V.
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(ii) // Ta is a bounded bilinear operator from Lp x Lq into Lr, so
is Tσ,.

(iii) If Tσ is a bounded bilinear operator from BMO x H1 into L1,
so is Ta>.

(iv) If Tσ is a bounded bilinear operator from (BMO Π L2) x L°° or
BMO x (L°° Π U) (cBMO x L°°) into BMO, so is Tσ,.

In (i), (ii), (iv) the space L°° may be replaced by BMO.

PROOF. By the definition of the bilinear Fourier multiplier we have
Tσ>(ff g) = Tσ(Hf, g). As is well-known, the Hubert transform preserves
the spaces H1, BMO and Lp, (1 < p < °°), and is bounded there. There-
fore we have the desired assertions. q.e.d.

Now combining Theorem 1.1 and Lemma 1.5 we get:

COROLLARY 1.6. Let σ be as in Theorem 1.1. Then, for the symbol
&Xζf oί) — σ(ζ, a) sgn ξ, Tσ and Ta> are bounded bilinear operators from
H1 x L°° into L\

Moreover, if (7(0, a) = 0, then Tσ and Tσ> are bounded bilinear
operators from BMO x H1 into U and (1.4) holds for both Tσ and To,.

2. Special cases of homogeneous symbols. We investigate here the
continuity of the following bilinear operators with homogeneous symbols.
For any real number s we set

where G is a primitive of g. Then one can easily check for f, g e^, as
in [4, p. 162], that K.(f, g) = -iΓα( j r,,(/ f g) with symbol σ{K8) given by

σ{K8) = [1 - (1 - |f/(saθ|)+]sgnf + (1 - |f/(sα)|)+ sgn (sa) .

By the argument in [4, Proposition 4, p. 160] one can show the operator
K»(', v) ίs a Calderόn-Zygmund operator in the sense of Coif man and
Meyer, if g is a bounded function (cf. Section 4). Hence we get

LEMMA 2.1. For any real s, K8 is a bounded bilinear operator from
H1 x L°° into U and L°° x L°° into BMO.

We also have the following:

LEMMA 2.2. For any real s, K8 is a bounded bilinear operator from
L°° x H1 into L\

PROOF. Let T — K8. One has only to show the following inequality
g(x)dx = 0

a
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and 11^11.

Now for an iP-atom g, T( ,g) is a Calderόn-Zygmund operator, and so
T(f, g) is BMO for feL°°. Hence, in order to prove (2.1) one has only
to show

(2.2) Γ ΊXf, g)(x)h{x)dx
J—oo

for

For the sake of simplicity we show the inequality (2.2) in the case of
T = JSL1# The other cases are treated in a quite similar way. Let g be

g(t)dt. Then, by virtue of the properties of
a Cb

Calderόn-Zygmund's singular integrals and \ g(x)dx = 0,
Jα

π Γ T(f, g)hdx = Γ (p.v. \
(X — y)2

- vYidy)G{x)h(x)dx

+ similar three terms

= Ji + I2 + J3 + h + J5 .

Then

^C\\h\U\\f\U\\gUb-a),

\It\ ^ \\f\U\\h\U Γ |G(aj)|(6 - xΓdx ^ iμiUH/IUIflΊUδ - α) .
Jα

Similar inequalities hold for Ijf j = 3, 4, 5. Since ||flr||oo(δ — α)
we have the desired inequality (2.2). This completes the proof of our

lemma.

Combining Lemmas 2.1, 2.2 and Theorem 1.1 we obtain the follow-

ing lemma.

LEMMA 2.3. Let 0 ^ 0O < 2π and σ(ξ, a) e C\R2\({Θ = θ0} U {0})) be a
homogeneous function of degree zero and satisfy, in a sector neighbor-
hood of the ray {θ = ΘQ}, one of the following conditions.

( i ) In case sin ΘQ Φ 0 there exist a,b,ceR such that

{a cot θ - a cot θ0 + c θ ^ θ0

(2.3) σ(ζ, a) =
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( i i ) In case cos ΘQ Φ 0 there exist a,b, ceR such that (2.3) holds,

where we replace cot by t a n .

Then Tσ is a bounded bilinear operator from H1 x L°° into L1, from

L°° x H1 into U and from (L°° Π L2) x L^cL 0 0 x L00) into BMO.

PROOF. First, we shall show the first and second assertions for the
case (i). We write σ e SL (resp. σ e SB) if Tσ is a bounded bilinear
operator from H1 x L°° (resp. L°° x H1) into L1.

(a) Case θ0 = π/2. By Theorem 1.1 we may assume that the support
of σ is contained in the open upper half plane. Let A(ξ, a) e C°°(JR2\{0})

be a homogeneous function of degree zero, with support contained in
the open upper half plane and such that A(ζ, a) = 1 on the sector {7r/4 <
θ < 3ττ/4}. Then from Theorem 1.1 and Corollary 1.6 it follows that
(ξ/a)A(ζ, a), (ζ/a)A(ζ, a) sgn ξeSLΓ\ SB, because L°°cBMO. Hence there
exists a linear combination τ(£, a) of the above two symbols such that
σ — τ 6 C%R2\{0}). Since σ — τ is homogeneous of degree zero, by
Theorem 1.1 we have σ — τ e SL Π SB, and hence σ e SL Π SB. The
case θ0 = Zπ/2 can be treated similarly.

(b) Case 0 < ΘQ < TΓ/2. Let A(ξ, a) e C°°(iJ2\{0}) be a homogeneous
function of degree zero, with support contained in the open first quadrant,
such that A(ξ, a) = 1 on a sector neighborhood of the ray {θ = θ0}. Put
s = cot 0O and P(f, α) = σ(K_.)(ξ, a). Then by Lemmas 2.1 and 2.2 we
get PeSLnSB. Now

α) =

Let B(ξ, a) e C°°(i22\{0}) be a homogeneous function of degree zero such
that its support is contained in the sectors {\a/ζ\ < tanmin(0o, π/2 —
ΘO) = M} and 5(f, a) = 1 on the sectors {|α/f| < Λf/2}. Let E(ξ, a) =
β(α, ί). Then from the case (i) it follows that PEeSLf] SB, and hence
we get P(l - E)eSL0 SB. So, by Lemma 1.5 we get P(l - E) sgn ξ e
SL, and hence P(l - JK)(1 + sgnf)eSL. Thus, via Theorem 1.1 we get
APeSL. We have already seen that PEeSB. Since clearly PBe
C%R2\{0}), we get PBe SB by Theorem 1.1. Hence P(l - E - B)eSB.
So, by Lemma 1.5 we get P(l-E-B)sgnaeSB and so P(l-E—B)(l +
&gna)eSR. Since P ( l - # - £ χ i + sgnα)(l-sgnf)eC%β2\{0}), it belongs
to SB by Theorem 1.1. Thus, we get P(l - E - B) x (1 + sgnα)(l +
sgnf)eSi?. Therefore via Theorem 1.1 we obtain APeSB. Summing

Ί

2f/(βα) -
- 1

-2ζ/(sa)

1

+ 1
(π/ί
( T Γ -

< 0 ^ π/2)

ί ^ 0 ^ π + θ0)

{• θo<θ < Zπ/2)
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up, we get APeSLΠSR. We get A(f, a)ξ/a e SL Π SR by Theorem 1.1,
because it belongs to C°°(R2\{0}). Now, clearly there exists a linear
combination τ(f, a) of AP and A(ξ, ά)ξ/a such that σ - τ e Cδ(R2\{0}).
Hence on account of Theorem 1.1 we see that σ eSL Π SR. The other
three cases can be treated in a quite similar way.

(c) The last assertion for the case (i) can be shown in a way similar
to the above proof for σeSL, by using L°°cBMO in addition.

(d) Finally, changing the variables ξ and a, we can deduce the
assertions for the case (ii). q.e.d.

3. General case of homogeneous symbols. If σ is homogeneous of
degree zero, then we can drop the continuity assumptions on derivatives
in Theorem 1.1.

THEOREM 3.1. Let σ(ζ, a) be homogeneous of degree zero and assume
σ(ζf a) = σ(rf θ) is continuous and piecewise C5 with respect to θ. Then
Tσ has Property (C).

PROOF. By Theorem 1.1 we may assume σeC\R\{θ = ΘQ} U {0})) for
some θ0: 0 ^ θ0 < 2π. (i) Case θ0 = π/2. Let A(ξ, a) e C°°(R2\({Θ = π/2} U
{0})) be a homogeneous function of degree zero such that, in a sector
neighborhood of {θ = π/2}, A(ξ, a) = 0 (θ<π/2) and =£/α (π/2 < θ).
Then, since A(0, a) = dζA(0 +0, a) = 0 and 3^(0-0, a) = IIa, there exists
a constant c such that σ + cAe C1(R2\{0}). Since σ + cA is homogeneous
of degree zero, it satisfies the assumption in Theorem 1.1. Hence, from
Theorem 1.1 and Lemma 2.3 we see that Tσ has Property (C).

(ii) Case 0 < θ0 < π/2. Let A(£, a) e C°°(JR2\{0}) be a homogeneous
function of degree zero such that its support is contained in the open first
quadrant and A(ζ, a) — 1 on a sector neighborhood of the ray {θ = θ0}. Let
G(ί, ά) = 0 (0 < θ < θ0) and =ξ/a - cot θ0 (θ0 < θ < π/2). Let J(ξ, α) = 0
(0 < ^ < β0) and =a/ξ - tan<90 (θ0 < θ < π/2). Then, since AG and AJ
satisfy the assumption in Lemma 2.3, TAG and TAJ have Property (C).
Now put s = cot 0̂> ί = tan θ0, A± = AG and A2 = At + s2AJ. Then we
get Ax(f, tζ) = a,Ax(f + 0, if) - SJA f̂ ± 0, tξ) = 0 and ^ ( f - 0, tξ) = «/f.
Furthermore, A2(£, if) = 3eA2(f ± 0, tξ) = d]A2(ξ+0, if) = 0 and 3|A2(f - 0,
tζ) = 2s/ζ2. Therefore, using the homogeneity of σ, A1 and A2, we can
find two constants cλ and c2 such that σ + cxAx + c2A2 is in C\R2\{0})
and satisfies the assumptions (i), (ii), (iii") in Theorem 1.1. Hence by
Theorem 1.1 we see that Ta has Property (C). The other cases are
treated quite similarly. q.e.d.

As a consequence we have the following.



552 K. Y ABUT A

COROLLARY 3.2. Let σ(ξ, a) be the same as in Theorem 3.1. Assume,
moreover, σ(0, a) = 0. Then it holds that

(3.1) || Γ.(/, flOH, ̂  Cp\\f\Ug\\p (1 ^ p ^ » ) ,

where we use the convention in Theorem 1.1 provided p = 1 or p = oo.

PROOF. Since σ(0, α) = 0, both σ(£, α) and σ(£, α) x sgn £ satisfy
the hypothesis in Theorem 3.1. Hence we have \\Tσ(ff g)\\p, \\ Tσ(Hf, g)\\p^
Cpll/IUIMIp It is well-known that every BMO function can be written
in the form f=h + Hk, where h, keL°°(R) and \\f\\* is equivalent to
||fe||oo+ p||oo. From these we can easily deduce the inequality (3.1).
Here Hf denotes the Hubert transform of /. q.e.d.

4. The case 1 < plf p2^ °° and 0 < 1/^ + l/p2 <̂  1. In this case
we can further relax the hypothesis in Theorem 3.1.

THEOREM 4.1. Let σ(ξ, a) be a homogeneous function of degree zero
such that the restriction ω(θ) of σ to the unit circle has the first deriva-
tive of bounded variation. Then, if 1 < p, q ^ oo and 0 < 1/r = 1/p +
1/q ̂  1, it holds that

(4.1) l|Γ.(/,fir)||r^C(p,g)||/||,||flr||g (feL>,geL<).

PROOF. Our method is the same as in Coifman and Meyer [4, pp.
162-163]. We only point out important check points.

( i ) The case l < j χ ° ° and g = o o , Let φ(ξ, a) e C°°(R2\{0}) be
homogeneous of degree zero, and satisfy ^(0, ±1) = σ(0, ±1), φ(l, — 1) =
(j(l, -1) and φ(-l, 1) = σ( — l, 1). From Theorem 1.1 it follows that Tφ

satisfies (4.1), and hence we may assume σ(0, ±1) = σ(lf — 1) =
σ( — l, 1) = 0. Now we put t = ς/(ξ + a) and h{t) = σ(ξ, a) (sgn (ξ+a)>0
and sgnf > 0). Then, h(t) = σ(t, 1 - ί). We put b{v) = h(eυ). Then by
the homogeneity of σ, we have b(v) = σ(l, (1 — ev)/ev) = σ(ev/(l — ev), 1).
Hence, b\v) = dξσ{evl(l - ev), l)ev(l - ev)~2 = Saσ{l, (1 - ev)\ev)e~\ There-
fore, since ω\θ) is bounded, we have b'(y) — O(e~M) as v->±oo, By
the assumption σ(0,1) = σ(l, — 1) = 0 we get b( — oo) = 6( + oo) = 0. Con-
sequently, we have b(v) — O(e"lv|) as v - * ± o o . Hence ^b is bounded
on (— oo, oo). Next, since ω\θ) is of bounded variation, one can easily
see that dξσ(ev/(l — ev), 1) and daσ(l, (1 — ev)/ev) are of bounded variation
on ( — oo? —l] and [ — 1, oo), respectively. Hence, we see that b\v) is of
bounded variation on (—oo, oo). So, by integration by parts we have

is: h(ev)e-ir*dv +
Combining similar considerations for the other three cases (sgn(|+α)>0,
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sgn ς < 0), (sgn (ζ + a) < 0, sgn ξ > 0), (sgn (ξ + a < 0), sgn ξ < 0), we
get

S °° /f
I 1 βixlξ+a) I £ \iγ I * i „ \—iγ ^Γ1

I 1 2

e Iςl |ς T W| 2-L

x (1 + j sgn £)(1 + A; sgn (f + α

for some m^eL^R). Hence,

W , 9) = Γ [m1(7)Jlf.r{ff(ίc)(Λfr/)(aj)} + mlJ)HM_r{g{x){Mrf){x)}
J_oo

+ ms(7)ilί_λ{sr(a;)(ίfMr/)(a;)} + mi(7)HM_r{g(,x)(HMrf)(x)}]-^

for some m/7) e L°°(JB). Here, i ϊ is the Hubert transform and (MrfT(ξ) =
Ifl'^f). It is known that ||ΛΓr/|U, ^ C,(l + \y\)^-^ \\f\\HP (0<p<oo)9

(see Miyachi [5, p. 282]). It is well-known that \\Hf\\HP ^ Cp\\f\\HP

(0 < p < oo). Hence, if 1 < p < oo w e have

(ii) The case 1 < p, q < oo and 1 <̂  r < ©o. We choose 0 so that
0(0, ±1) = <τ(0, ±1) and ^(±1, 0) = σ(±l,0). Hence we assume σ(0, ±1) =
σ(±l, 0) = 0. Then, putting t = £/α and arguing as in the case (i) we
get

Ta(f, g) = Γ [m1(7)(Mr/)(ilί_λfir) + mz(Ύ)(MrHf)(M_rg)

+ nφ){MrHf){M_rg) + mlΊ)(MrHf){M_rHg)V
7 2 f

for some m/7) e L°°(R). Hence we obtain

q.e.d.

REMARK 1. The above proof shows that, if σ(0, ±1) = σ(±l, 0) = 0,
then

(4.2) || Tσ(f, g)\\r ^ C,ff | | / | U P | | 0 | | I * (0 < p, q < oo, l/r = 1/p + 1/q) .

This poses the following questions, (i) Does (4.2) hold for the symbols
in Theorem 4.1? (ii) Does (4.2) hold for the symbols in Theorem 1.1?
(iii) Does (4.2) hold for the bilinearization of Littlewood-Paley's g-ίunc-
tion in [6]? If (ii) is affirmative, so is (i). And if (iii) is affirmative,
so is (ii).

REMARK 2. The Calderόn commutator Kx in Section 2 satisfies (4.2)
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for 1 < p, q < oo and 1/r = 1/p + 1/q [2, Theorem A]. Hence, this is
also true for the symbols in Theorem 4.1 if σ(0,1) = σ(l, 0) and σ(0, — 1) =
σ( — 1, 0). If one could show (4.2) for the operator K^ (1 < p, q < oo),
then the operators in Theorem 4.1 would also satisfy (4.2) (1 < p, q < oo).
However, the method in [2] does not work in this case. One would
need more devices. Here Hp is the Hp space in the sense of Stein-
Weiss (cf. [5]).

REMARK 3. Since the operator (/, g)h-+ H(fg) clearly satisfies the
inequality (4.1), using Theorem 1.1, Lemma 1.5 and Theorem 3.1, one
can show the following: If σ(ς, a) is homogeneous of degree zero, con-
tinuous except at θ — ±π/2, 3ττ/4, — π/4, piecewise C1 and with the
second derivative bounded with respect to θ, then the inequality (4.1)
holds.

REMARK 4. Theorem 4.1 for the case 1 < p, q, r < °o is stated
implicitly in Theorem I in Coif man and Meyer [9]. By our Theorem 4.1,
their theorem remains varid for the case 1 < p, q ^ oo and 1 5g r < oo.

S oo

[A(x + ί) + A(x — t) — 2A(x)] x
- O O

ί~2(sgn t)f(x — t)dt we have the same integral representation as in the
proof of Theorem 4.1, where (1 + 72)"1 is replaced by (1 + TT^ogί l + |7|),
(see [4, p. 162]). Hence, the same assertion as in Theorem 4.1 remains
valid for this operator.

Using the argument in the proof of Corollary 3.2 we get:

COROLLARY 4.2. Let σ(ξ9 a) be as in Theorem 4Λ or Remark 3.
Assume, moreover, σ(ζ, 0) = 0. Then it follows that

(4.3) || Γ.(/, 0)||, ^ C,||/U|ff |L ( K P < ~) •

5. Examples. For a real number s we put

SJLf. oXx) = P.V.-A- Γ G(x + s(x ~ y)) + Gix ~s(x - y)) ~ 2Gix)f(y)dy ,
sπ J-°° (x — y)2

U.(f, g)(x) = p.v.-L Γ ^ + ** ~ f - ^ - «* ~ y))f{y)dy ,
sπ J-°° (x — yf

where G is a primitive of g. Then these are bilinear Fourier multipliers
with the following symbols

σ(S8) = -2Ϊ(1 - |ί/(sα)|)
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To these symbols we can apply Theorem 3.1. As applications of Corollary
4.2 we have

\\H(G(x)f'(x)) - G(x)Hf'(x)\\9 ^ Cp\\f\\9\\g\\* ,

and

\\gHf-H(fg)\\,£C,\\f\\,\\g\\*

(cf. Coifman-Meyer [8, pp. 105-107]).
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