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1. Introduction. i?-spaces constitute an important class of homo-
geneous submanifolds in the Euclidean spheres: they are the orbits of
the isotropy representations of symmetric spaces of noncompact type
(cf. Takeuchi and Kobayashi [6]). This class includes many examples
appearing in differential geometry of submanifolds. For example, all
homogeneous hypersurfaces and all parallel submanifolds in spheres are
realized as iϋ-spaces.

Ferus [1] showed that the standard imbeddings of symmetric i2-spaces
have the parallel second fundamental forms and exhaust all submanifolds
in spheres with the parallel second fundamental forms. So the following
arises as a natural problem:

Problem. Characterize the standard imbedding of each R-space in
the sense of differential geometry.
The first step in answering the Problem is to find many differential
geometric properties of the standard imbeddings of iϋ-spaces. In Kitagawa
and Ohnita [3] we showed that the standard imbedding of every ϋ!-space
has the parallel mean curvature vector.

Let Mn be a compact rank one symmetric space, that is, one of the
following: Sn, RPn, CPn, QPn and CayP16. Let fk be the standard minimal
isometric immersion of Mn into a sphere Sm(/fc) induced by the λ -th eigen-
functions of the Laplace-Beltrami operator of Mn (cf. Wallach [7]). If
k = 1, the immersion fk is just the standard imbedding of a compact
symmetric ϋJ-space of rank one. It is called a generalized Veronese
submanifold except when Mn is a sphere. Wallach used the notion of
its degree in studying the rigidity of a minimal isometric immersion.
The degree of fk coincides with k (cf. Wallach [7]) if Mn is a sphere,
and with 2k (cf. Mashimo [4], [5]) otherwise. In particular, the degree
of a generalized Veronese submanifold is 2.

In this note we show the following theorems:
Let Φ be the proper standard imbedding (cf. §2) of an iϋ-space KjL.

THEOREM A. The degree of Φ is equal to 2.

THEOREM B. If Φ is regular (cf. § 2), then there exists a normal
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frame field {|lf ••-,£*} defined globally on K/L such that each ξa (a =
1, •••,})) is parallel with respect to the normal connection of Φ. In
particulart the normal connection of Φ is flat.

The author thanks Professor H. Urakawa for valuable suggestion,
and also thanks the referees for suggesting improvements.

2. Preliminaries. Let (g, θ) be an orthogonal symmetric Lie algebra
of noncompact type (cf. Helgason [2]). Let g = ϊ + p be the Cartan de-
composition of g, where f = {Xe g; Θ(X) = X) and p = {Xe g; Θ(X) = —X).
Let a be a maximal abelian subspace of p. Let K be the analytic sub-
group of the inner automorphism group Int(g) corresponding to the Lie
algebra ad(ϊ). p is invariant under K. Let ψ denote the Killing form
of g and we consider (p9 < , » as a Euclidean space, where < , > = ψ\p.
Put S={Xep; (X, X) = l} and also denote by the same < , > the Riemannian
metric on S induced by < , >. We denote by V° and V the Riemannian
connection of p and S, respectively.

For an arbitrarily fixed element Ho in Sf] α, put L = [k e K; k(H0) = HQ}
and an imbedding Φ: K/L->S by Φ{kL) = k(H0). Then M = K/L is called
an R-space and Φ its standard imbedding. If rank(g, θ) = 1, Φ is the
identity map. Φ is said to be proper if rank(g, θ) ̂  2 and <P(Λf) is not
a great sphere of S. We can show that if Φ(M) is a great sphere of
S then there are two orthogonal symmetric Lie algebras (QU θλ) and (g2, θ2)
such that (1) (g, θ) - (glf θλ) 0 (g2, θt), (2) rank(βlf 0X) = 1, (3) fro6ft =

For an iί-linear form λ on α, we put Qλ = {XQ g; (ad H)X = X(H)X
for all i ϊ e α}. If ĝ  Φ {0}, then λ is called a root of (g, θ) with respect
to α. Let Δ be the set of all nonzero roots on α. We put ψθ(X, Y) —
ψ(X, Θ(Y)) for X, Feg. ^ is a negative definite symmetric bilinear
form on g. Then g has the following orthogonal direct sum with respect
to ψθ:Q = g0 + Σλβj9^ For an element Hea, we put ΛH={XeΔ\ \{Ή.)Φϋ\.
If Δ — ΔH, then H is called a regular element in α.

The standard imbedding Φ is called regular if if0 is a regular ele-
ment.

We now explain the notion of the degree of an isometric imbedding
Φ of a Riemannian manifold (M, Φ*< , » into a Euclidean sphere S. We
denote by B the second fundamental form of Φ and let A be the shape
operator of Φ defined by <A,X, Γ> = <β(X, Y\ ξ) for X, Ye TX(M) and
ξ e Γ.(Λf)\ For * e M, put O2,(M) = spanΛ{S(X, Γ): X, Γ e r,(M)} and let
iV2be the orthogonal projection of Tx(M)1 = O2

x(M)ξ&(O2

x(M))1 onto (O^ikf1)),
where (O^M))1 is the orthogonal complement of 0\{M) in TX(M)L. Let
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^ = M and &2 = {xe M; dim O\(M) is maximal in ^ } . We define a
symmetric 3-tensor field Bz on ^ 2 by (£3)(X, F, JZΓ) = N2((V$B)( Y, Z)) for
X, Γ, ^ 6 Γ.(Λf), where (VίB)(Γ, Z) = V±(B( ?,/))-B(V X ?, Z)-5( Y, Vx£).
Here V 1 is the normal connection of Φ and Ϋ, Z are vector fields defined
locally around x with (Y)β = Y, (Z)x = ϋΓ. Bz is called the third funda-
mental form of Φ. We can define Ot(M), &jf B5 for j = 2, 3, , re-
cursively. We call Bά the j-th fundamental form of Φ. There exists a
natural number d such that β d ΐ 0 on ^ ? d and J5d+1 Ξ O O Π β ^ d . We call
c? the degree of Φ.

For example, tZ = 1 means that Φ is totally geodesic. The degree
of Φ is 2 if Φ has the parallel second fundamental form.

3. Proof of Theorems. Let I be the Lie algebra of L and m be
the orthogonal complement of I in ϊ with respect to ψθ. We identify
the tangent space T0(M) at the origin o = {L}eM = K/L with m. Then
the differential Φ*: T0(M) -> Tφ{0)(p) is identified with the mapping
-ad(flo):m->t>. Put ft, = Φ^Γ^Λί)) = (-ad(H0))m and let π be the or-
thogonal complement of spanΛ{H0} + ft, in p with respect to ψθ. Then
the normal space T0(M)L at the origin of M in S is identified with n.
We have an orthogonal decomposition of p:

p = spanΛ{JΪ0} + ft0 + n .

Now we put

ή = Σ & > b = 9o + Σ & -

ί) and b are invariant by ^ since 0(8*) = g_A. Hence we have g = (ή Π I) +
+ (bΠΪ) + (bΓlt>). Then it is easy to show the following:

( 3 . 1 ) i = b n ϊ , m = § n ϊ , ί>0 = ή n t > ,

spanΛ{£Γ0} + n = b Π ft .

By [*,*>]<= ft, [§, b ] c ^ and (3.1), we have

(3.2) (ad(τn))ncfto
LEMMA. Lei X 6e α^ element of m and ξ an element of π. We put

xt — (exp(ίX)) 0 6Jlf. // a normal vector field ξt along xt is defined by
ξt = (exp(tX)) 5 6 TXt{M)L then we have Viξt = 0.

PROOF. Vfo = (d/dί)ft = (exp(ίX)). [X, 5]. By (3.2) and %ξt = VJ& +
<*ι, f«>»* = VJft, we have Vfft e (exp(ίX)) fto= ^^(Γ./Af)). By Weingarten's
fomula we obtain Vtξt = 0. q.e.d.

PROOF OF THEOREM A. If Φ is proper, then B Φ 0. Since Φ is K-
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equivariant, we have ^?2 = M. Let X, Y and Z be elements of m = T0(M).
Putx t = (exv(tX))-o,Yt = (exp(tX)) Ye TXt(M)tmdZt = (exv(tX)) Ze Tmt(M).
Then by the JiΓ-equivariance of Φ we have BXt(Yty Zt) = (exp(ίJf)) JS(Γ, £).
Applying the Lemma to £ = I?(X, Γ) 6 n, we have V -̂BCΓ*, £«)) = (). Hence
(Vf£)(Γ, Z) = -5(V x Γ l f Z) - J5(F, VxZf) e O\(M). From the definition of
the third fundamental form i?3 we have (B3)o = 0. I?3 vanishes everywhere
by the homogeneity of M and the equi variance of Φ. q.e.d.

REMARK. If (f, I) is a symmetric Lie algebra, then Yt and Zt are
parallel along xt with respect to the Riemannian connection of M. From
the above proof we have V*2? = 0.

PROOF OF THEOREM B. It is known that the centralizer in K of a
regular element of α coincides with the centralizer in K of α (for ex-
ample, see Helgason [2, p. 289]). Thus L is the centralizer in K of α.
Since Δ — dHo, we have b = g0. By (3.1) and the maximality of α, we
have spanΛ{£Γ0} + n = hf)p = a. Hence the action of L on n = T0(M)λ is
trivial. Select an orthonormal basis {ξlf , ξp] of π. We can extend ξa

to a iί-invariant normal vector field | α defined globally on M. By Lemma
we have V1!,, = 0. Thus {ξu , ξp} is the desired normal frame field.

q.e.d.
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