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1. Introduction. R-spaces constitute an important class of homo-
geneous submanifolds in the Euclidean spheres: they are the orbits of
the isotropy representations of symmetric spaces of noncompact type
(cf. Takeuchi and Kobayashi [6]). This class includes many examples
appearing in differential geometry of submanifolds. For example, all
homogeneous hypersurfaces and all parallel submanifolds in spheres are
realized as R-spaces.

Ferus [1] showed that the standard imbeddings of symmetric R-spaces
have the parallel second fundamental forms and exhaust all submanifolds
in spheres with the parallel second fundamental forms. So the following
arises as a natural problem:

Problem. Characterize the standard imbedding of each R-space in

the semse of differential geometry.
The first step in answering the Problem is to find many differential
geometric properties of the standard imbeddings of R-spaces. In Kitagawa
and Ohnita [3] we showed that the standard imbedding of every R-space
has the parallel mean curvature vector.

Let M" be a compact rank one symmetric space, that is, one of the
following: S", RP", CP", QP" and CayP*. Let f, be the standard minimal
isometric immersion of M" into a sphere S™* induced by the k-th eigen-
functions of the Laplace-Beltrami operator of M" (cf. Wallach [7]). If
k =1, the immersion f, is just the standard imbedding of a compact
symmetric R-space of rank one. It is called a generalized Veronese
submanifold except when M" is a sphere. Wallach used the notion of
its degree in studying the rigidity of a minimal isometric immersion.
The degree of f, coincides with &k (cf. Wallach [7]) if M"™ is a sphere,
and with 2k (cf. Mashimo [4], [6]) otherwise. In particular, the degree
of a generalized Veronese submanifold is 2.

In this note we show the following theorems:

Let @ be the proper standard imbedding (cf. §2) of an R-space K/L.

THEOREM A. The degree of @ is equal to 2.
THEOREM B. If @ is regular (cf. §2), then there exists a mormal
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frame field {&, ---,&,} defined globally on K/L such that each &, (=
1, -+, p) is parallel with respect to the mormal comnection of @. In

particular, the normal connection of @ s flat.

The author thanks Professor H. Urakawa for valuable suggestion,
and also thanks the referees for suggesting improvements.

2. Preliminaries. Let (g, ) be an orthogonal symmetric Lie algebra
of noncompact type (cf. Helgason [2]). Let g =t + p be the Cartan de-
composition of g, where f={Xeg; (X)=X} and p={Xeg; 6(X)= —X}.
Let a be a maximal abelian subspace of p. Let K be the analytic sub-
group of the inner automorphism group Int(g) corresponding to the Lie
algebra ad(¥). p is invariant under K. Let o denote the Killing form
of g and we consider (p, {, )) as a Euclidean space, where {, ) = |,.
Put S={Xep; (X, X)>=1} and also denote by the same {, ) the Riemannian
metric on S induced by (, ). We denote by V° and V the Riemannian
connection of p and S, respectively.

For an arbitrarily fixed element H, in SNa, put L ={k e K; k(H,) = H,}
and an imbedding @: K/L — S by ®(kL) = k(H,). Then M = K/L is called
an R-space and @ its standard imbedding. If rank(g, ) =1, @ is the
identity map. @ is said to be proper if rank(g, ) = 2 and (M) is not
a great sphere of S. We can show that if @(M) is a great sphere of
S then there are two orthogonal symmetric Lie algebras (g, 6,) and (g,, 6,)
such that (1) (g, 0) = (g, 6.) D (8, 0.), (2) rank(g, 6,) =1, 3) H,ep =
{Xeg; 0,(X) = —X}.

For an R-linear form A on a, we put g, = {Xeg;(ad H)X = MH)X
for all Hea}. If g; ++ {0}, then X\ is called a root of (g, ) with respect
to a. Let 4 be the set of all nonzero roots on a. We put 4(X,Y) =
WX, 0(Y)) for X,Yeg. 4 is a negative definite symmetric bilinear
form on g. Then g has the following orthogonal direct sum with respect
to Yp:g =g+ Diesag;- For an element Hea, we put 4,={)\ € 4; M(H)+#0}.
If 4= 4,, then H is called a regular element in a.

The standard imbedding @ is called regular if H, is a regular ele-
ment.

We now explain the notion of the degree of an isometric imbedding
@ of a Riemannian manifold (M, #*(, )) into a Euclidean sphere S. We
denote by B the second fundamental form of @ and let A be the shape
operator of @ defined by {(A.X,Y) =(B(X,Y), &) for X,Ye T, (M) and
e T,(M)-. For xeM, put OL M) = spang{B(X,Y): X, Y e T,(M)} and let
N, be the orthogonal projection of T,(M)*= 0% M) (0% M))* onto (O%(M*)),
where (Oi(M))* is the orthogonal complement of O%(M) in T, (M)‘. Let
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P, =M and ., = {x e M;dim O*(M) is maximal in <Z}. We define a
symmetric 3-tensor field B, on &%, by (B)(X, Y, Z) = N,(ViB\Y, Z)) for
X,Y,Ze T(M), where (ViBXY, Z)=VB(Y, Z))—B(VzY,Z)—B(Y, VZ).
Here V* is the normal connection of @ and Y, Z are vector fields defined
locally around « with (Y), =Y, (Z), = Z. B, is called the third funda-
mental form of ®. We can define Oi(M), &Z;, B; for j=2,8, ---, re-
cursively. We call B; the j-th fundamental form of @. There exists a
natural number d such that B, = 0 on <2, and B;,, =0 on ;. We call
d the degree of @.

For example, d =1 means that @ is totally geodesic. The degree
of @ is 2 if @ has the parallel second fundamental form.

3. Proof of Theorems. Let | be the Lie algebra of L and m be
the orthogonal complement of I in f with respect to +,. We identify
the tangent space T, (M) at the origin o = {L}e M = K/L with m. Then
the differential @,: T,(M) — Tp,,(p) is identified with the mapping
—ad(H,):m—p. Put p, =0 (T,(M)) = (—ad(H,))m and let n be the or-
thogonal complement of spang{H,} + p, in p with respect to +. Then
the normal space T,(M): at the origin of M in S is identified with n.
We have an orthogonal decomposition of p:

b= SpanR{Ho} + b +n.
Now we put

b=229u b=g + > a.

EAHO ZeA—AHO

H and b are invariant by 6 since 6(g;) = g_;- Hence we haveg = ()N¥t) +
HNp) + ®NE) + dNPp). Then it is easy to show the following:

(8.1 I=bnt, m=9hnt, p=9hnNp,
spang{H,} + n=bNp.

By [t, p]lcy, [, b]ch and (3.1), we have

(3.2) (adm)nch, .

LEMMA. Let X be an element of m and & an element of n. We put
x, = (exp(tX))-oe M. If a mormal wvector field & along x, is defined by
g = (exp(tX))-£e T,(M)* then we have Vi§ = 0.

PrROOF. Vi, = (d/dt)é, = (exp(tX))-[X, £]. By (3.2) and 6t€t = Vi& +

&y, Epx, = Vig,, We have V,E, € (exp(tX))-p,=@.(T,(M)). By Weingarten’s
fomula we obtain V¢, = 0. q.e.d.

PROOF OF THEOREM A. If @ is proper, then B# 0. Since @ is K-
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equivariant, we have &% =M. Let X, Y and Z be elements of m= T,(M).
Put ,=(exp(tX))-0,Y,=(exp(tX))- Ye T,(M)and Z,=(exp(tX))-Z e T, (M).
Then by the K-equivariance of @ we have B, (Y, Z,) = (exp(tX))-B(Y, Z).
Applying the Lemma to £¢=B(X,Y)en, we have V{(B(Y,, Z,))=0. Hence
(ViB(Y,Z)= —B(V;Y,, Z)— B(Y, V3Z,) € 0XM). From the definition of
the third fundamental form B, we have (B;), =0. B, vanishes everywhere
by the homogeneity of M and the equivariance of @. q.e.d.

REMARK. If (f, ) is a symmetric Lie algebra, then Y, and Z, are
parallel along x, with respect to the Riemannian connection of M. From
the above proof we have V*B = 0.

PrROOF OF THEOREM B. It is known that the centralizer in K of a
regular element of a coincides with the centralizer in K of a (for ex-
ample, see Helgason [2, p. 289]). Thus L is the centralizer in K of a.
Since 4 = 4,, we have b=g,. By (3.1) and the maximality of a, we
have spang{H,} + n = bNp = a. Hence the action of L on n = T,(M)* is
trivial. Select an orthonormal basis {¢, ---, &} of n. We can extend ¢,
to a K-invariant normal vector field &, defined globally on M. By Lemma
we have V*£, =0. Thus {§, ---,&,} is the desired normal frame field.

q.e.d.
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