Tôhoku Math. Journ. 36 (1984), 75-80.

THE SECOND COHOMOLOGY GROUPS OF THE GROUP OF UNITS OF A Z_p -EXTENSION

HIROSHI YAMASHITA

(Received February 4, 1983, revised March 29, 1983)

Let p be a prime number. We denote by K_0 a finite algebraic number field, by K_{∞} a \mathbb{Z}_p -extension of K_0 and by K_n the cyclic subextension of degree p^n . Let E_{∞} be the unit group of K_{∞} . Put $\Gamma_n = \operatorname{Gal}(K_n/K_0)$ and $\Gamma = \operatorname{Gal}(K_{\infty}/K_0)$. In connection with the Leopoldt conjecture and Greenberg conjecture, Iwasawa [5] posed the problem of studying the structure of $H^2(\Gamma, E_{\infty})$. Let S_n be the set of prime ideals of K_n ramified in K_{∞} , and D_n be the *p*-Sylow subgroup of the ideal class group generated by the ideals $\prod \mathfrak{p}^{\sigma}$ for $\mathfrak{p} \in S_n$, where \mathfrak{p}^{σ} runs through all different conjugates of \mathfrak{p} over K_0 . We consider the inductive limit D_{∞} of D_n by means of the natural map. In this paper, we shall give a partial answer,

$$H^2(\Gamma, E_\infty) \cong (\boldsymbol{Q}_p/\boldsymbol{Z}_p)^{s_0-r_p-1}$$

where $r_p = \text{ess. rank } D_{\infty}$ and $s_0 = \# S_0$.

While preparing this paper, the author received the preprint by Iwasawa entitled "On cohomology groups of units for \mathbb{Z}_p -extensions" in which he also obtains a similar result. (The paper has since appeared in [6].)

The author wishes to thank Y. Kida for reading the first draft and giving valuable advice and suggestion.

1. We define the essential rank for a Z_p -module M, which is denoted by ess. rank M, as the dimension of $M\bigotimes_{Z_p}Q_p$. For a p-primary torsion abelian group, we also define the essential rank as that of the Pontrjagin dual.

LEMMA 1. Let $\{M_n\}_{n\geq 0}$ be a family of finite abelian p-groups with bounded p-ranks. For $m > n \geq 0$, let $\varphi_{m,n} \colon M_n \to M_m$ (resp. $\psi_{m,n} \colon M_m \to M_n$) be homomorphisms giving rise to an inductive system $\{M_n, \varphi_{m,n}\}$ (resp. projective system $\{M_n, \psi_{m,n}\}$). If the orders of Ker $(\varphi_{m,n})$ and Coker $(\psi_{m,n})$ are bounded with respect to m and n, then we have ess. rank ind $\lim \{M_n, \varphi_{m,n}\}$ = ess.rank proj $\lim \{M_n, \psi_{m,n}\}$.

PROOF. Let M_n^* be the dual abelian group of M_n and $\psi_{m,n}^*$ be the

H. YAMASHITA

dual map induced by $\psi_{m,n}$. Then $\{M_n^*, \psi_{m,n}^*\}$ is an inductive system whose inductive limit is the dual of proj lim M_n . Hence ess. rank ind $\lim_{\psi^*} M_n^* =$ proj $\lim_{\psi} M_n$. Put $A = \operatorname{ind} \lim_{\varphi} M_n$ and $a = \operatorname{ess. rank} A$. Let $\varphi_n \colon M_n \to A$ be the canonical map and A_n be its image. We have $p^t A = \bigcup_{n=0}^{\infty} p^t A_n \cong$ $(Q_p/Z_p)^a$ for some t and $p^t M_n/p^t M_n \cap \operatorname{Ker}(\varphi_n) \cong p^t A_n$. Since $p^t M_n$ is an abelian group, it has a subgroup N_n such that $N_n \cong p^t A_n$. We have $[p^t M_n \colon N_n] = [p^t M_n \colon p^t M_n \cap \operatorname{Ker}(\varphi_n)] \cdot [p^t M_n \cap \operatorname{Ker}(\varphi_n) \colon 0]/[N_n \colon 0] \leq [\operatorname{Ker}(\varphi_n) \colon 0].$ Since the orders of $\operatorname{Ker}(\varphi_{m,n})$ are bounded, so are those of $\operatorname{Ker}(\varphi_n)$. Let $p^o = \max_{n\geq 0} (\sharp \operatorname{Ker}(\varphi_{m,n}))$. We have $p^{t+o} M_n \subset N_n$. Put

 $b=\mathrm{ess.\ rank\ ind\ }\lim_{\psi st} p^{t+c}M^st_n$,

which is equal to ess. rank ind $\lim_{\psi^*} M_n^*$. Since $p^{t+c}M_n^* \cong p^{t+c}M_n$, we have p-rank $(p^{t+c}M_n^*) = p$ -rank $(p^{t+c}M_n) \leq p$ -rank $(N_n) \leq a$. Hence we have $b \leq a$. We also have $a \leq b$. Thus we have a = b. q.e.d.

Let C_n be the *p*-Sylow subgroup of the ideal class group of K_n . We define the natural homomorphism $i_{m,n}: C_n \to C_m$ by $i_{m,n}((a)) = (a)$ for the ideal a of K_n , where we denote by (a) the ideal class determined by a. Let C_{∞} (resp. C) be the inductive limit (resp. the projective limit) with respect to $i_{m,n}$ (resp. the norm map $N_{m,n}: C_m \to C_n$) for m > n. Let γ be a \mathbb{Z}_p -generator of Γ and γ_n be the generator of Γ_n which is the restriction of γ onto K_n . Let M be any Γ -module. Let $1 - \gamma$ be the endomorphism on M such that $x^{1-\gamma} = x/x^{\gamma}$ for $x \in M$. We denote by $M^{1-\gamma}$ its image and by M^{Γ} its kernel. Similarly we define $1 - \gamma_n, M_n^{1-\gamma_n}$ and $M_n^{\Gamma_n}$ on any Γ_n -module M_n .

LEMMA 2. ess. rank
$$C_{\infty}^{\Gamma} = \text{ess. rank} (C/C^{1-\gamma})$$
.
PROOF. By the exact sequence $1 \to C_n^{\Gamma_n} \to C_n \xrightarrow{1-\gamma_n} C_n^{1-\gamma_n} \to 1$, we have
 $1 \to \text{proj} \lim C_n^{\Gamma_n} \to C \xrightarrow{1-\gamma} \text{proj} \lim C_n^{1-\gamma_n} \to 1$
 $1 \to \text{ind} \lim C_n^{\Gamma_n} \to C_{\infty} \xrightarrow{1-\gamma} \text{ind} \lim C_n^{1-\gamma_n} \to 1$.

It is obvious that $\operatorname{proj} \lim C_n^{1-\tau_n} = C^{1-\tau}$ and $\operatorname{ind} \lim C_n^{1-\tau_n} = C_{\infty}^{1-\tau}$. Then we have $\operatorname{proj} \lim C_n^{\tau_n} = C^{\Gamma}$ and $\operatorname{ind} \lim C_n^{\tau_n} = C_{\infty}^{\Gamma}$. By the fundamental theorem of \mathbb{Z}_p -extensions, we see that the *p*-rank of p^bC is bounded for a certain integer *b*. Since the orders of $\operatorname{Coker}(N_{m,n})$ are bounded and so are those of $\operatorname{Ker}(\varphi_{m,n})$ by the well known theorem of Iwasawa [4], we have ess. rank $p^bC = \operatorname{ess.} \operatorname{rank} p^bC_{\infty}$ by Lemma 1. Hence we have ess. rank $C = \operatorname{ess.} \operatorname{rank} C_{\infty}$. Similarly we have ess. rank $C^{1-\tau} = \operatorname{ess.} \operatorname{rank} C_{\infty}^{1-\tau}$. By the definition of ess. rank, we have ess. rank $C^{\Gamma} = \dim_{\mathbb{Q}_p} C^T \otimes \mathbb{Q}_p = \dim_{\mathbb{Q}_p} C \otimes \mathbb{Q}_p - \dim_{\mathbb{Q}_p} C^{1-\tau} \otimes \mathbb{Q}_p$. Hence we have ess. rank $C_{\infty}^{\Gamma} = \operatorname{ess.} \operatorname{rank} C = \operatorname{ess.} \operatorname{rank} C^{1-\tau}$. Since we also have ess. rank $C_{\infty}^{\Gamma} = \operatorname{ess.} \operatorname{rank} C_{\infty} - \operatorname{ess.} \operatorname{rank} C_{\infty}^{1-\tau}$.

COHOMOLOGY GROUPS

we have ess. rank $C_{\infty}^{\Gamma} = \text{ess. rank } C - \text{ess. rank } C^{1-\gamma} = \text{ess. rank}(C/C^{1-\gamma}).$ q.e.d.

2. In the following we denote by $H^{m}(A_{n})$ (resp. $H^{m}(A_{\infty})$) the cohomology group $H^{m}(\Gamma_{n}, A_{n})$ (resp. $H^{m}(\Gamma, A_{\infty})$) for a Γ_{n} -module A_{n} (resp. Γ -module A). Let U_{n} be the group of unit idéles of K_{n} and E_{n} be the group of global units of K_{n} . Let I_{n} be the ideal group of K_{n} .

LEMMA 3. (1)
$$H^{1}(U_{n}) \cong I_{n}^{\Gamma_{n}}/I_{0}$$

(2) $H^{1}(U_{n}/E_{n}) \cong C_{n}^{\Gamma_{n}}/i_{n,0}(C_{0})$

PROOF. Let J_n be the idéle group of K_n . We notice that $U_n \cdot K_n^{\times}/K_n^{\times} \cong U_n/E_n$ and that $(J_n/K_n^{\times})^{\Gamma_n} = J_0 \cdot K_n^{\times}/K_n^{\times}$. Let C'_0 (resp. C'_n) be the ideal class group of K_0 (resp. K_n^{\times}) and $i: C'_0 \to C'_n$ be the natural map. We have (1) and $H^1(U_n/E_n) = C'_n^{\Gamma_n}/i(C'_0)$ by the cohomology long exact sequences

$$\begin{split} 1 &\to U_0 \to J_0 \to I_n^{\Gamma_n} \to H^1(U_n) \to H^1(J_n) = 1 \quad \text{and} \\ 1 &\to (U_n \cdot K_n^{\times}/K_n^{\times})^{\Gamma_n} \to (J_n/K_n^{\times})^{\Gamma_n} \to C_n'^{\Gamma_n} \to H^1(U_n \cdot K_n^{\times}/K_n^{\times}) \to H^1(J_n/K_n^{\times}) \\ &= 1 \end{split}$$

associated to the short exact sequences $1 \to U_n \to J_n \to I_n \to 1$ and $1 \to U_n \cdot K_n^{\times}/K_n^{\times} \to J_n/K_n^{\times} \to C'_n \to 1$, respectively. Since $C'_n{}^{\Gamma_n}/i(C'_0)$ is a p-group, we have $C'_n{}^{\Gamma_n}/i(C'_0) = C_n{}^{\Gamma_n}/i(C_0)$. q.e.d.

REMARK. The isomorphisms in Lemma 3 are compatible with the inflation maps from K_n to K_m for m > n and natural maps $I_n^{\Gamma_n}/I_0 \to I_m^{\Gamma_m}/I_0$ and $C_n^{\Gamma_n}/i_{n,0}(C_0) \to C_m^{\Gamma_m}/i_{m,0}(C_0)$.

We have the exact sequence $H^{i}(E_{n}) \to I_{n}^{\Gamma_{n}}/I_{0} \to C_{n}^{\Gamma_{n}}/i_{n,0}(C_{0}) \to H^{2}(E_{n})$ by the cohomology long exact sequence associated to the short exact sequence $1 \to E_{n} \to U_{n} \to U_{n}/E_{n} \to 1$ and by Lemma 3. Let D'_{n} be the ideal group which is generated by $I_{n}^{\Gamma_{n}}$. We have $\operatorname{Image}(I_{n}^{\Gamma_{n}}/I_{0} \to C_{n}^{\Gamma_{n}}/i_{n,0}(C_{0})) \cong$ $D'_{n} \cdot i(C'_{0})/i(C'_{0})$. Since this group is a *p*-group, we have $D'_{n} \cdot i(C'_{0})/i(C'_{0}) \cong$ $D_{n} \cdot i_{n,0}(C_{0})/i_{n,0}(C_{0})$. Hence we have the exact sequence

$$(1) 1 \to D_n \cdot i_{n,0}(C_0) / i_{n,0}(C_0) \to C_n^{\Gamma_n} / i_{n,0}(C_0) \to H^2(E_n) H^2(U_n) \to H^2(U_n/E_n) \to H^3(E_n) .$$

We take the inductive limit of this sequence with respect to the inflation maps and the natural maps induced by $i_{m,n}$. Let $E_{\infty} = \bigcup_{n=0}^{\infty} E_n$. Let $i_{\infty}: C_0 \to C_{\infty}$ be the canonical map. Since the cohomological dimension of Γ is 2, we have the exact sequence

$$(2) \qquad 1 \to D_{\infty} \cdot i_{\infty}(C_0) / i_{\infty}(C_0) \to C_{\infty}^{\Gamma} / i_{\infty}(C_0) \to H^2(E_{\infty}) \\ \to \operatorname{ind} \lim H^2(U_n) \to \operatorname{ind} \lim H^2(U_n/E_n) \to 1 .$$

H. YAMASHITA

3. We compute the inductive limit of $H^2(U_n)$ and $H^2(U_n/E_n)$. Let a be the smallest integer n such that every prime ideal of K_n ramified in K_∞ is totally ramified. Let $N_n: U_n \to U_0$ be the norm map.

LEMMA 4. ind lim $H^2(U_n) \cong (Q_p/Z_p)^{s_0}$.

PROOF. Since Γ_n is cyclic, we have $H^2(U_n) \cong U_0/N_nU_n$. We have $H^2(U_a) \cong \prod_{i=1}^{s_0} \mathbb{Z}/p^{d_i}\mathbb{Z}$ by the semi-local theory. Hence we have $H^2(U_n) \cong \prod_{i=1}^{s_0} \mathbb{Z}/p^{n-a+d_i}\mathbb{Z}$ for $n \ge a$. Let $\varphi_{m,n}: U_0/N_nU_n \to U_0/N_mU_m$ be the inflation map for m > n. Let $\{u\}_n$ be an element of U_0/N_nU_n which is the class of $u \in U_0$. Then $\varphi_{m,n}(\{u\}_n) = \{u^{p^{m-n}}\}_m$. We have $\operatorname{Image}(\varphi_{m,n}) \cong U_0^{p^{m-n}} \cdot N_m U_m/N_m U_m$. Hence we have $\operatorname{Image}(\varphi_{m,n}) \cong \prod_{i=1}^{s_0} \mathbb{Z}/p^{n-a+d_i}\mathbb{Z}$. This shows that $\varphi_{m,n}$ is injective for $m > n \ge a$. Hence we have ind $\lim H^2(U_n) \cong (\mathbb{Q}_p/\mathbb{Z}_p)^{s_0}$.

Let L_n be the *p*-Hilbert class field of K_n . We denote by L_n^* its genus of the Galois extension K_n/K_0 . Put $L_\infty^* = \bigcup_{n=0}^{\infty} L_n^*$. Let $E_{n,p}$ be the completion of E_n in $\prod_{\nu/p} U_{n,\nu}$ where $U_{n,\nu}$ is the unit group of the completion of K_n at \mathfrak{p} . Let $N_\infty U_\infty = \bigcap_{n=1}^{\infty} N_n U_n$. Let $V_n = U_0/N_\infty U_\infty$ and W = $E_{0,p} \cdot N_\infty U_\infty/N_\infty U_\infty$. We have the projective system $\{V_0/V_n \cdot W\}_{n\geq 0}$ with respect to the canonical maps $V_0/V_n \cdot W \to V_0/V_n \cdot W$. Let V be its projective limit.

LEMMA 5. ess. rank $V = \text{ess. rank } \operatorname{Gal}(L_{\infty}^*/L_0)$ = ess. rank $(C/C^{1-\gamma}) + 1$.

PROOF. Since $\operatorname{Gal}(L_{\infty}^{*}/K_{\infty}) \cong C/C^{1-\gamma}$, we have the last equality. Let H_n be the full Hilbert class field of K_n and H_n^* be the genus field in H_n of the Galois extension K_n/K_0 . We have $\operatorname{Gal}(H_n^*/K_0) \cong J_0/K_0^{\times} \cdot N_n U_n$. Hence $\operatorname{Gal}(H_n^*/H_0) \cong K_0^{\times} \cdot U_0/K_0^{\times} \cdot N_n U_n \cong U_0/E_0 \cdot N_n U_n \cong V_0/V_n \cdot W$ since $E_{0,p} \cdot N_u U_n = E_0 \cdot N_n U_n$. Since $U_0^{p^n} \subset N_n U_n$, it is a *p*-group. $\operatorname{Gal}(L_n^*/L_0)$ is canonically isomorphic to the *p*-Sylow subgroup of $\operatorname{Gal}(H_n^*/H_0)$. Hence we have $\operatorname{Gal}(L_n^*/L_0) \cong V_0/V_n \cdot W$. We have the following commutative diagram for m > n, with respect to the restriction maps of the Galois group and the canonical maps $V_0/V_n \cdot W \to V_0/V_n \cdot W$.

Taking the projective limit, we have $\operatorname{Gal}(L_{\infty}^*/L_0) \cong V$. q.e.d.

LEMMA 7. ess. rank ind $\lim H^2(U_n/E_n) = \text{ess. rank } C_{\infty}^{\Gamma} + 1.$

PROOF. We have Image $(H^2(U_n) \to H^2(U_n/E_n)) \cong U_0/N_nU_n \cdot E_0$. Let

78

COHOMOLOGY GROUPS

4. THEOREM. Let $r_p = \text{ess. rank } D_{\infty}$ and s_0 be the number of the prime ideals of K_0 which are ramified in K_{∞} . Then we have

$$H^{\scriptscriptstyle 2}(arGamma, E_\infty)\cong (oldsymbol{Q}_p/oldsymbol{Z}_p)^{s_0-r_p-1}$$
 .

PROOF. By (2), we have

$$egin{aligned} ext{ess. rank} \ H^2(E_\infty) &= - ext{ess. rank} \ D_\infty \cdot i_{n,0}(C_0)/i_{n,0}(C_0) \ + ext{ess. rank} \ C_\infty^{arGamma}/i_{n,0}(C_0) \ + \ s_0 - ext{ess. rank} \ C_\infty^{arGamma} - 1 = s_0 - r_p - 1 \ . \end{aligned}$$

Let $\varphi_n: H^2(E_n) \to H^2(E_\infty)$ be the canonical map. Since $H^2(E_n) \cong E_0/N_n E_n$, we denote by $\{x\}_n$ the element of $E_0/N_n E_n$ which is the class of $x \in E_0$. Let $\inf_{n+1,n}: E_0/N_n E_n \to E_0/N_{n+1}E_{n+1}$ be the inflation map. Then we have $\varphi_n(\{x\}_n) = \varphi_{n+1} \circ \inf_{n+1,n}(\{x\}_n) = \varphi_{n+1}(\{x^p\}_n)$. Hence $\varphi_{n+1}(\{x\}_{n+1})^p = \varphi_n(\{x\}_n)$. This shows that $H^2(E_\infty)$ is p-divisible. Thus we have $H^2(E_\infty) \cong (Q_p/Z_p)^{s_0-r_p-1}$. q.e.d.

References

- R. GREENBERG, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 93 (1976), 204-214.
- [2] K. IWASAWA, A note on the group of units of an algebraic number field, J. Math. Pure et. Appl. 35 (1956), 189-192.
- [3] Κ. ΙWASAWA, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226.
- [4] K. IWASAWA, On Z_l-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
- [5] K. IWASAWA, On cohomology groups of Z_p -extensions (in Japanese), Sûrikaisekikenkyûsho Kôkyûroku No. 440 (1981), 76-89.

H. YAMASHITA

[6] K. IWASAWA, On cohomology groups of units for Z_p -extensions, Amer. J. Math. 105 (1983), 189-200.

Kanazawa Women's Junior College Kanazawa 920-13 Japan

80