Tôhoku Math. Journ. 36 (1984), 33-40.

A MODIFIED FORM OF THE VARIATION-OF-CONSTANTS FORMULA FOR EQUATIONS WITH INFINITE DELAY

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

Toshiki Naito

(Received December 22, 1982)

1. Introduction. For equations with finite delay, the variation-ofconstants formula was given in Halanay's book [2]. Banks [1] pointed out a mistake in this book and presented the correct result. Since equations with finite delay were mainly considered, the results were derived under the restrictive hypotheses: the kernel function $\eta(t, \theta)$ of the linear operator $L(t, \cdot)$ (cf. Theorem 2.1) is constant for sufficiently small $\theta < 0$.

In the present paper, we start from the following hypotheses: $L(t, \phi)$ is continuous and the phase space for ϕ is the general space for equations with infinite delay introduced by Hale and Kato [4]. From the first hypothesis, the Borel measurability of $\eta(t, \theta)$ is naturally induced; from the second, the constant property of $\eta(t, \theta)$ mentioned above cannot be assumed (see Theorem 2.1). The equation related to the fundamental matrix is reduced to the standard equation with infinite delay (Proposition 3.1):

(1.1) $x'(t) = L(t, x_t) + h(t) ,$

where *h* is locally integrable. The representation of solutions in Theorem 3.3, which is already announced in [5], has a form that is somewhat different from the variation-of-constants formula given in [1], [2], [3]. For the special phase space \mathscr{C}_{τ} defined in Section 4, our formula is rewritten in a form analogous to the variation-of-constants formula. However, it contains a new term depending on the "exponential limit of the initial function at $-\infty$ ". Finally, we remark that the present result is an extension of the work for autonomous equations [6] to the case of nonautonomous equations.

2. Representation of linear operators. For a function $x: (-\infty, a) \rightarrow C^n$, let $x_t: (-\infty, 0] \rightarrow C^n$, t < a, be defined by $x_t(\theta) = x(t + \theta)$ for θ in $(-\infty, 0]$. Suppose \mathscr{B} is a linear space of functions ϕ, ψ, \cdots , mapping $(-\infty, 0]$ into C^n , with a semi-norm $|\phi|, |\psi|, \cdots$ having the following

properties.

(H₁) If $x: (-\infty, \sigma + A) \to C^n$, A > 0, is continuous on $[\sigma, \sigma + A)$ and $x_{\sigma} \in \mathscr{B}$, then x_t also lies in \mathscr{B} and x_t is a continuous function of t in $[\sigma, \sigma + A)$.

(H₂) There exist measurable functions K(t) and M(t) of $t \ge 0$, non-negative and locally bounded, such that

$$|x_t| \leq K(t-\sigma) \sup \{ |x(s)| : \sigma \leq s \leq t \} + M(t-\sigma) |x_\sigma|$$

for $\sigma \leq t < \sigma + A$ and x having the properties in (H_i) .

 $(\mathrm{H}_{\mathfrak{z}}) |\phi(0)| \leq K |\phi|$ for ϕ in \mathscr{B} and some constant K.

Hypothesis (H_i) implies that the space \mathscr{B} contains the space \mathscr{C} of all continuous functions mapping $(-\infty, 0]$ into C^n with compact support. To state the following representation theorem, a definition is needed. A function f mapping $(-\infty, 0]$ into a finite dimensional Banach space, locally of bounded variation on $(-\infty, 0]$, is said to be normalized if f(0) = 0 and it is continuous to the left in the interior of $(-\infty, 0]$.

THEOREM 2.1. Suppose $L: J \times \mathscr{B} \to C^n$, where J is an interval, is a continuous mapping such that $L(t, \phi)$ is linear in $\phi \in \mathscr{B}$ for each tin J. Then there exists an $n \times n$ matrix function $\eta(t, \theta)$ for (t, θ) in $J \times (-\infty, 0]$, locally of bounded variation for θ in $(-\infty, 0]$, such that

(2.1)
$$L(t, \phi) = \int_{-\infty}^{0} [d_{\theta} \eta(t, \theta)] \phi(\theta) \quad for \quad \phi \in \mathscr{C}$$

(2.2)
$$\operatorname{Var}(\eta(t, \cdot), [-r, 0]) \leq c |L(t, \cdot)| K(r) \text{ for } r > 0$$
,

where c is a constant dependent on the norm of C^n and the integral in (2.1) is the improper Riemann-Stieltjes integral (cf. [6, Theorem 3.5]). If $\eta(t, \theta)$ in Relation (2.1) is normalized in θ , then it is determined uniquely by L and is Borel measurable for (t, θ) in $J \times (-\infty, 0]$.

PROOF. The first result of the theorem is a direct consequence of Proposition 3.3 and Theorem 3.5 in [6]; Hypothesis (H_0) in [6] is not used to derive these results. Suppose $\eta(t, \theta)$ is normalized in θ and Relation (2.1) holds. For $m = 1, 2, \cdots$, define a function $\chi^m(t)$ by the relation $\chi^m(t) = -I$, -m(t + 1/m)I, 0 for t in $[0, \infty)$ (-1/m, 0), $(-\infty, -1/m]$, respectively, where I is the $n \times n$ identity matrix and 0 the $n \times n$ null matrix. Then by integration by parts one has

$$\lim_{m\to\infty} L(t,\,\boldsymbol{\chi}^m_{-\theta}) = \lim_{m\to\infty} m \int_{\theta-1/m}^{\theta} \eta(t,\,r) dr = \eta(t,\,\theta) \quad \text{for} \quad \theta < 0 \;,$$

since $\eta(t, \theta)$ is continuous to the left for $\theta < 0$. This shows that $\eta(t, \theta)$ is determined uniquely by L. Furthermore, it is Borel measurable for

 (t, θ) in $J \times (-\infty, 0)$ as a limit function of the sequence of continuous functions $L(t, \chi_{-\theta}^m)$. Therefore $\eta(t, \theta)$ is Borel measurable for (t, θ) in $J \times (-\infty, 0]$ since $\eta(t, 0) = 0$ for t in J. q.e.d.

3. Fundamental matrix and representation of solutions. Consider a linear functional differential equation with infinite delay (1.1), where $L: R \times \mathscr{B} \to C^n$ satisfies the assumption in Theorem 2.1 and $h: R \to C^n$ is locally integrable. Since the operator norm $|L(t)| = \sup \{|L(t, \phi)|: |\phi| = 1\}$ is a lower semi-continuous function for t in R, it is Borel measurable; furthermore, from Lemma 3.1 in [7], |L(t)| is locally bounded for t in R. The normalized function $\eta(t, \theta)$, therefore, is locally bounded for (t, θ) in $R \times (-\infty, 0]$; in fact,

$$(3.1) \qquad |\eta(t,\theta)| \leq c |L(t)|K(-\theta) \quad \text{for} \quad (t,\theta) \in \mathbb{R} \times (-\infty,0] .$$

For the following discussion, we set $\eta(t, \theta) = 0$ for $\theta > 0$. Following the arguments similar to the proofs of Theorems 2.1 and 2.4 in [4], one sees that for every (σ, ϕ) in $R \times \mathscr{R}$, there exists a unique solution $x(t, \sigma, \phi, h)$ of Equation (1.1) with $x_{\sigma} = \phi$ which is locally absolutely continuous for t in $[\sigma, \infty)$ and which satisfies Equation (1.1) a.e. for t in $[\sigma, \infty)$.

To introduce the fundamental matrix of Equation (1.1), we consider the equation

(3.2)
$$\begin{aligned} x'(t) &= \int_{\sigma-t}^{0} d_{\theta} \eta(t,\,\theta) x_{t}(\theta) + g(t) \quad \sigma \leq t , \\ x(\sigma) &= a , \end{aligned}$$

where $g: [\sigma, \infty) \to C^n$ is locally integrable.

PROPOSITION 3.1. Under the above assumptions for L, η and g, Equation (3.2) is reduced to Equation (1.1) with initial condition $x_{\sigma} = 0$. Thus for every a in C^n there exists uniquely a locally absolutely continuous function x(t) for $t \geq \sigma$ such that $x(\sigma) = a$ and that the first relation of (3.2) holds a.e. in $[\sigma, \infty)$.

PROOF. Suppose x(t) is a solution having the above properties. If we set y(t) = 0 for $t < \sigma$ and y(t) = x(t) - a for $t \ge \sigma$, then y(t) satisfies

$$y'(t) = \int_{\sigma-t}^{0} d_{\theta} \eta(t, \theta) y_t(\theta) - \eta(t, \sigma - t)a + g(t)$$

a.e. in $t \ge \sigma$. Since y_t lies in \mathscr{C} with $\operatorname{supp} y_t \subset [\sigma - t, 0]$ for $t \ge \sigma$, this relation is reduced to the equation $y'(t) = L(t, y_t) - \eta(t, \sigma - t)a + g(t)$ a.e. in $t \ge \sigma$. Since $\eta(t, \theta)$ is Borel measurable and locally bounded for (t, θ) in \mathbb{R}^2 , the function $\eta(t, \sigma - t)$, as a function of t, is also Borel measurable and locally bounded on \mathbb{R} . Hence the equation for y has a unique solution such that $y_{\sigma} = 0$: this implies that x(t) = y(t) + a for $t \ge \sigma$ is a unique solution of Equation (3.2) having the desired properties. q.e.d.

The fundamental matrix $X(t, \sigma)$ for (t, σ) in \mathbb{R}^2 is defined to be the solution of the equation

$$\begin{array}{l} \displaystyle \frac{\partial X}{\partial t}(t, \ \sigma) \ = \ \int_{\sigma-t}^{0} d_{\theta} \eta(t, \ \theta) X(t + \theta, \ \sigma) \quad \text{a.e. in} \quad t \ge \sigma \ , \\ \displaystyle X(\sigma, \ \sigma) \ = \ I \quad \text{and} \quad X(t, \ \sigma) \ = \ 0 \quad \text{for} \quad t < \sigma \ . \end{array}$$

In case of finite delay, it is well known that the fundamental matrix has a relation with a certain matrix solution of the formal adjoint equation

(3.3)
$$y(s) + \int_{s}^{t} y(\alpha)\eta(\alpha, s - \alpha)d\alpha = b \quad s \leq t ,$$

where y and b are in $(C^n)^*$, the space of *n*-dimensional row vectors. In our case, we will see that this relation is also valid.

The following proposition corresponds to Theorem 3.1, Chapter 6, [3] (see also [1, 2]); the difference is that $\eta(t, \cdot)$ now may not be constant on $(-\infty, -r]$ for any r > 0. Since the proof is omitted in [1], [2], [3], we give it briefly in the manner suggested in [2] along with the estimate for the variation of the solution.

PROPOSITION 3.2. Given t in R and b in $(C^n)^*$, Equation (3.3) has a unique solution y(s) for s in $(-\infty, t]$ which is locally of bounded variation. The total variation of y satisfies

(3.4)
$$\operatorname{Var}(y, [s, t]) \leq |b| \left\{ \exp\left(\int_{s}^{t} c |L(\alpha)| K^{*}(\alpha - s) d\alpha \right) - 1 \right\}$$

where $K^*(r) = \sup \{K(s): 0 \leq s \leq r\}$.

PROOF. Suppose y(s) is Borel measurable and locally bounded for s in $(-\infty, t]$ and designate by $(\Omega y)(s)$ the integral term of Equation (3.3). Since $\eta(\alpha, s - \alpha) = 0$ for $\alpha \leq s$, one has

$$(\Omega y)(s) = \int_{\sigma}^{t} y(\alpha) \eta(\alpha, s - \alpha) d\alpha \quad ext{for} \quad \sigma \leq s \leq t \;,$$

and $\operatorname{Var}(\eta^{\alpha}, [\sigma, t]) = \operatorname{Var}(\eta^{\alpha}, [\sigma, \alpha]) \leq c |L(\alpha)| K(\alpha - \sigma)$ for $\sigma \leq \alpha \leq t$, where $\eta^{\alpha}(s) = \eta(\alpha, s - \alpha)$. This leads to

(3.5)
$$\operatorname{Var}\left(\Omega y, \left[\sigma, t\right]\right) \leq \int_{\sigma}^{t} |y(\alpha)|c| L(\alpha) |K(\alpha - \sigma) d\alpha ,$$

which implies Ωy is locally of bounded variation on $(-\infty, t]$. Such a

function Ωy is also Borel measurable and locally bounded on $(-\infty, t]$.

From this remark, one can define succesive approximations $y^{m}(s)$ for $m = 0, 1, 2, \cdots$ as $y^{0}(s) = b$ and $y^{m}(s) = b - (\Omega y^{m-1})(s)$ for $s \leq t$. Then, from Inequality (3.1), one has successively

$$egin{aligned} &|y^{\scriptscriptstyle 1}(s)-y^{\scriptscriptstyle 0}(s)| \leq \int_s^t c|b| \,|L(lpha) \,|K(lpha-s)dlpha \ &|y^{\scriptscriptstyle 2}(s)-y^{\scriptscriptstyle 1}(s)| \leq \int_s^t c|L(lpha) \,|K(lpha-s)igg\{\int_lpha^t c|b| \,|L(u)|K(u-lpha)duigg\}dlpha \ , \end{aligned}$$

for $s \leq t$. Since $K(r) \leq K^*(r)$ for $r \geq 0$ and $K^*(r)$ is nondecreasing, one can replace $K(\alpha - s)$ and $K(u - \alpha)$ in the above inequalities by $K^*(\alpha - s)$ and $K^*(u - s)$, respectively. Thus the following inequality is proved by induction:

(3.6)
$$|y^{m}(s) - y^{m-1}(s)| \leq \frac{|b|}{m!} \left\{ \int_{s}^{t} c |L(\alpha)| K^{*}(\alpha - s) d\alpha \right\}^{m} \quad s \leq t$$

for $m = 1, 2, \cdots$. Therefore $y^m(s)$ converges to a function y(s) uniformly on every compact set of $(-\infty, t]$, and

(3.7)
$$|y(s)| \leq |b| \exp\left\{\int_{s}^{t} c |L(\alpha)| K^{*}(\alpha - s) d\alpha\right\} \quad s \leq t.$$

This implies that $y(s) = \lim_{m \to \infty} y^m(s) = \lim_{m \to \infty} (b - \Omega y^{m-1}(s)) = b - \Omega y(s)$, that is, y(s) is the solution of Equation (3.3). Since $y^m(s)$ are all Borel measurable for $s \leq t$, y(s) is also Borel measurable for $s \leq t$. Since $\operatorname{Var}(y, [\sigma, t]) = \operatorname{Var}(\Omega y, [\sigma, t])$, one obtains (3.4) by using (3.5) and (3.7).

Suppose z(s) is a solution of (3.3) with b = 0, and set $A_{\sigma} = \sup\{|z(s)|: \sigma \leq s \leq t\}$. Then, following arguments similar to the proof of (3.6), one can show that, for $\sigma \leq s \leq t$ and $m = 1, 2, \dots, |z(s)|$ is not greater than the right hand side of Inequality (3.6) with |b| replaced by A_{σ} . Therefore z(s) = 0, in other words, the solution of (3.3) is unique for b. q.e.d.

Let $Y(\sigma, t)$ be the matrix solution of the system

(3.8)
$$Y(\sigma, t) + \int_{\sigma}^{t} Y(\alpha, t)\eta(\alpha, \sigma - \alpha)d\alpha = I \quad \text{for} \quad \sigma \leq t$$
$$Y(\sigma, t) = 0 \quad \text{for} \quad \sigma > t \; .$$

From Proposition 3.2, $Y(\sigma, t)$ is locally of bounded variation in σ . Now, suppose x(t) is the solution of Equation (3.2). By integration by parts, one has

(3.9)
$$\int_{\sigma}^{t} [d_{\alpha} Y(\alpha, t)] x(\alpha) + \int_{\sigma}^{t} Y(\alpha, t) d_{\alpha} x(\alpha) = x(t) - Y(\sigma, t) a .$$

By the same argument as in Theorem 3.2 in Chapter 6 [3], the second

term on the left hand side becomes

$$\int_{\sigma}^{t} Y(\alpha, t) \Big\{ \int_{\sigma}^{t} [d_s \eta(\alpha, s - \alpha)] x(s) \Big\} d\alpha + \int_{\sigma}^{t} Y(\alpha, t) g(\alpha) d\alpha .$$

Using Theorem 2.1, one sees that the Riemann-Stieltjes integral in the first term is the limit of a sequence of Riemann sums which are all Borel measurable for α in $[\sigma, t]$ and whose norms are not greater than $c|L(\alpha)|K(\alpha - \sigma) \sup\{|x(s)|: \sigma \leq s \leq t\}$ for α in $[\sigma, t]$. From the bounded convergence theorem, the order of integration and limit operation can be interchanged; thus, one obtains

$$\begin{split} \int_{\sigma}^{t} Y(\alpha, t) d_{\alpha} x(\alpha) &= \int_{\sigma}^{t} \left[d_{s} \left\{ \int_{\sigma}^{t} Y(\alpha, t) \eta(\alpha, s - \alpha) d\alpha \right\} \right] x(s) \\ &+ \int_{\sigma}^{t} Y(\alpha, t) g(\alpha) d\alpha , \quad \text{for} \quad \sigma \leq t \; . \end{split}$$

Therefore, using the fact that Y satisfies Equation (3.8), one can rewrite Relation (3.9) as

$$x(t) = Y(\sigma, t)a + \int_{\sigma}^{t} Y(\alpha, t)g(\alpha)d\alpha \quad \sigma \leq t \; .$$

If one takes a = I and g(t) = 0 for $\sigma \leq t$, one obtains $X(t, \sigma) = Y(\sigma, t)$ for all (t, σ) in \mathbb{R}^2 ; consequently,

(3.10)
$$x(t) = X(t, \sigma)a + \int_{\sigma}^{t} X(t, \alpha)g(\alpha)d\alpha \quad \sigma \leq t .$$

To demonstrate the main theorem, we introduce linear operators $S(t): \mathscr{B} \to \mathscr{B}, t \geq 0$, by $[S(t)\phi](\theta) = \phi(t+\theta)$ for $t+\theta \leq 0$ and $[S(t)\phi](\theta) = \phi(0)$ for $t+\theta > 0$. Hypothesis (H₁) guarantees that $S(t)\phi$ is continuous in t for each fixed ϕ in \mathscr{B} .

THEOREM 3.3. Suppose $L: \mathbb{R} \times \mathscr{B} \to \mathbb{C}^n$ is continuous, $L(t, \phi)$ is linear for ϕ in \mathscr{B} and $h: [\sigma, \infty) \to \mathbb{C}^n$ is locally integrable. Then for every ϕ in \mathscr{B} the solution $x(t, \sigma, \phi, h)$ of Equation (1.1) such that $x_{\sigma} = \phi$ is given by

(3.11)
$$x(t, \sigma, \phi, h) = \phi(0) + \int_{\sigma}^{t} X(t, s) L(s, S(s - \sigma)\phi) ds + \int_{\sigma}^{t} X(t, s) h(s) ds \quad \text{for} \quad t \ge \sigma \; .$$

PROOF. From the superposition principle, it follows that $x(t, \sigma, \phi, h) = x(t, \sigma, \phi, 0) + x(t, \sigma, 0, h)$ for $t \ge \sigma$. Since $x(t, \sigma, 0, h)$ is a solution of Equation (3.2) with a = 0 and g = h, it is equal to the third term on the right hand side of Relation (3.11). Now consider the function

 $z(t) = x(t, \sigma, \phi, 0) - y(t)$, where, $y(t) = \phi(t - \sigma)$ for $t \leq \sigma$ and $y(t) = \phi(0)$ for $t > \sigma$. Then z(t) satisfies $z'(t) = L(t, z_t) + L(t, y_t)$ a.e. in $t \geq \sigma$, and $z_{\sigma} = 0$. Since $y_t = S(t - \sigma)\phi$ for $t \geq \sigma$, from Formula (3.10), it follows that z(t) is equal to the second term on the right hand side of Relation (3.11). Therefore, the relation $x(t, \sigma, \phi, h) = \phi(0) + z(t) + x(t, \sigma, 0, h)$ becomes Relation (3.11) for $t \geq \sigma$. q.e.d.

4. Applications to equations with the phase space \mathscr{C}_7 . The representation formula (2.1) is applicable to functions in \mathscr{C} . Is it valid for other functions in \mathscr{R} ? A partial information is given in Theorem 4.4 in [6]; for the space \mathscr{C}_7 defined below, however, a complete answer was obtained in [5]. In this section, we summarize this result with some comments.

For any fixed γ in R, let \mathscr{C}_{τ} be the space of continuous functions $\phi: (-\infty, 0] \to C^n$ such that $\tilde{\phi}(-\infty) = \lim_{\theta \to -\infty} e^{-\tau\theta} \phi(\theta)$ exists in C^n . It is a Banach space with the norm $|\phi| = \sup \{e^{-\tau\theta} | \phi(\theta) | : \theta \leq 0\}$, and it satisfies Hypothesis (H_1, H_2, H_3) . Changing independent variables, one knows that \mathscr{C}_{τ} is isomorphic to the space $C([-1, 0], C^n)$, the space of continuous functions mapping [-1, 0] into C^n . This observation yields the following result due to Hagemann ([5, Lemma]). If $L: R \times \mathscr{C}_{\tau} \to C^n$ is continuous and $L(t, \phi)$ is linear for ϕ in \mathscr{C}_{τ} , then there exist matrix functions $\Lambda(t)$ and $\eta(t, \theta)$ such that $\eta(t, \theta)$ is locally of bounded variation for θ in $(-\infty, 0]$ and that

(4.1)
$$L(t, \phi) = \Lambda(t)\widetilde{\phi}(-\infty) + \lim_{R \to \infty} \int_{-R}^{0} [d_{\theta}\eta(t, \theta)]\phi(\theta) \text{ for } \phi \in \mathscr{C}_{\gamma}.$$

If $\eta(t, \theta)$ is normalized in θ , then $\Lambda(t)$ and $\eta(t, \theta)$ are determined uniquely by L and they are Borel measurable.

Let $\omega(\gamma)(\theta)$, γ in R, be defined as $\omega(\gamma)(\theta) = \exp(\gamma\theta)$ for $\theta \leq 0$. Then \mathscr{C}_{γ} is considered as $\mathscr{C}_{\gamma} = \omega(\gamma)\mathscr{C}_{0} = \{\omega(\gamma)\psi : \psi : (-\infty, 0] \to C^{n} \text{ is continuous}$ and $\psi(\theta)$ approaches some vector in C^{n} as $\theta \to -\infty\}$. If $\Lambda(t) \neq 0$, then Formula (2.1) is valid only for ϕ in \mathscr{C}_{γ} with $\tilde{\phi}(-\infty) = 0$, which are in the very restricted subclass of \mathscr{C}_{γ} . On the other hand, if Relation (4.1) holds with $\eta(t, \theta)$ normalized in θ , then Theorem 2.1 says that $\eta(t, \theta)$ is unique for L and is Borel measurable for (t, θ) . If one set $\phi = \omega(\gamma)a$, a in C^{n} , then one can compute $\Lambda(t)a$ for every a in C^{n} ; consequently

$$A(t) = L(t, \omega(\gamma)I) - \lim_{R \to \infty} \int_{-R}^{0} d_{\theta} \eta(t, \theta) e^{r\theta}$$
 for t in R .

This also shows that $\Lambda(t)$ is unique for L and it is Borel measurable.

Finally, if one applies Representation (4.1) to $L(s, S(s - \sigma)\phi)$ in Formula (3.11), one obtains the following [5, Theorem]

T. NAITO

$$\begin{split} x(t, \sigma, \phi, h) &= X(t, \sigma)\phi(0) + \left[\int_{\sigma}^{t} X(t, s)\Lambda(s)e^{\gamma(s-\sigma)}ds\right]\tilde{\phi}(-\infty) \\ &+ \lim_{R \to \infty} \int_{-R}^{0} d_{\theta} \left[\int_{\sigma}^{t} X(t, s)\eta(s, \sigma + \theta - s) ds\right]\phi(\theta) \\ &+ \int_{\sigma}^{t} X(t, s)h(s)ds \quad \text{for} \quad t \geq \sigma, \ \phi \ \text{in} \ \mathscr{C}_{\gamma} \,. \end{split}$$

This is really an extension of Formula (9) in [1] (see also [3, Theorem 3.2]). In addition to the formal prolongation of the interval of the Riemann-Stieltjes integral, there appears a new term dependent on the limit $\tilde{\phi}(-\infty)$, "the exponential limit of ϕ at $-\infty$ ".

References

- H. T. BANKS, Representations for solutions of linear functional differential equations, J. Differential Equations 5 (1969), 399-409.
- [2] A. HALANAY, "Differential Equations: Stability, Oscillations, Time Lags", Academic Press, New York, 1966.
- [3] J. K. HALE, "Theory of Functional Differential Equations", Springer-Verlag, New York, Heidelberg, Berlin, 1977.
- [4] J. K. HALE AND J. KATO, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
- [5] T. HAGEMANN AND T. NAITO, Functional differential equations with infinite delay on the space 𝒞₇, Proc. EQUADIFF 82, Lecture Notes in Math. 1017, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983, 207-214.
- [6] T. NAITO, Fundamental matrix of linear autonomous retarded equations with infinite delay, Tôhoku Math. J. 32 (1980), 539-556.
- [7] K. SAWANO, Exponential asymptotic stability for functional differential equations with infinite retardations, Tôhoku Math. J. 31 (1979), 363-382.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF ELECTRO-COMMUNICATIONS CHOFU, TOKYO 182 JAPAN