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We first recall the classical fundamental theorem of space curves,
i.e., curves in Euclidean 3-space E3.

( i ) Let x* = x\s) (i = 1, 2, 3) be a carve of class C3, where s is
the arc-length parameter. Moreover we assume that its curvature /c(s)
does not vanish anywhere. Then there exists an orthonormal frame
{e^s)} which satisfies the Frenet-Serret equation

dejds = tce2

( 1 ) dejds = -/ce, + τez

βejds = —τe2

where elf e2 and e3 are the tangent, principal normal and binormal unit
vectors, respectively, and τ(s) is the torsion.

(ii) Given a function ιc(έ) of class C1 and a continuous function
τ(s), there exists a curve of class C3 which admits an orthonormal frame
{ej satisfying the equation (1) with given K and τ as its curvature and
torsion, respectively. Such a curve is uniquely determined up to a
motion of E\

In this paper we shall study the fundamental theorem of analytic
space curves of which curvatures have discrete zero points. At zero
points of the curvature, principal normal and binormal vectors are
discontinuous in general (e.g., y = x\ z = 0 in (x9 y, z)-space; by the
definition, e2 = (Sx*/(\x\(l + 9xψ2), a/(|a|(l + 9xψ2), 0), e3 = (0, 0, 1) for
x > 0 and =(0, 0, —1) for x < 0) and the curvature is not always dif-
ferentiable even if the curve is analytic. This fact shows that, for
instance, when such a function K and any analytic function τ were given,
it is hard to see whether the curve determined by those is analytic or
not (if K is merely continuous, a solution of the equation (1) exists; in
case K > 0, see Hartman and Wintner [1]).

On this problem there are several investigations (e.g., [2], [5] and [6]).
Especially, Nomizu [2] studied Frenet curves in detail and showed that
an analytic curve is always a Frenet curve. Though his work extremely
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clarifies the ambiguities of the classical theorem stated above, there are
still some indefiniteness on the choice of normal vectors, the sign of the
curvature and the torsion (in [2], two invariants kL = ±ιc and k2 = ±τ
were taken instead of K and τ, see also, Wong and Lai [6], p. 9).

In this paper we shall take a length-varying frame of which normal
directions coincide with those of the classical frame at non-zero points
of K and shall assert that the essential invariants for analytic curves
are /c\s) and τ(s). A similar method is useful for investigating analytic
curves with singularities [3]. Our main results are Theorem A in §1
and Theorem B in §3 which correspond to (i) and (ii) above, respectively.
In §1, we shall define an orthogonal frame and shall obtain a formula
which corresponds to the Frenet-Serret equation. In §2, we shall solve
it by a method in the theory of regular singularities in the complex
domain and shall show the existence of curves and frames. In the last
section, we shall prove orthogonality of frames.

I would like to exress my thanks to my colleague, S. Tsuchiya, for
his kind advice.

1. Orthogonal Frame and Theorem A. Let x* (ί = 1, 2, 3) be co-
ordinates in E3. Let C be an analytic curve defined by x* = x\t), where
t runs through some interval and x\t) be analytic in t. We assume that
C is non-singular, i.e., ^Ui(dx\t)/dt)2 is nowhere zero. Therefore we
can parametrize C by its arc length s. From now on, we only consider
C in the following form:

C: x = x(s) = (x\s), x\s), x\s)) , s e L ,

where x(s) is analytic in s and L is a non-empty open interval. We
assume that the curvature tc(s) of C is not identically zero.

Now we define an orthogonal frame {E^s)} as follows:

E,. = dx/ds , E2 = dEJds , Ez = Έx x E2 ,

where Eλ x E2 is the vector product of Ex and E2. The relations between
those and the classical Frenet frame {e^s)} at non-zero points of K are

(1.1) Eί = el9 E2 = tce2 , E3 = tceB .

Thus E2(sQ) = E3(sQ) = 0 when /c(s0) = 0 and squares of the length of E2

and Ez vary analytically in s. By the definition of Et or (1.1), a simple
calculation shows that

(1.2) (d/ds) E2

.Ez.
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where a dash denotes the differentiation with respect to the arc length
s and τ = τ(s) = det (dx/ds, d2x/ds2, dzx/dss)//c2 is the torsion of C. From
the Frenet-Serret equation, we know that any zero point of κ2 is a
removable singularity of τ. The equation (1.2) corresponds to the Frenet-
Serret equation in the classical case. Moreover, {Et} satisfies:

p l f Ex) = 1 , (Et, E2) = (# 3, EΛ) = κ2 ,

\(Ei9 Eό) = 0 for i Φ j ,

where ( , ) denotes the inner product of Ez. We note that the essential
quantities in (1.2) and (1.3) are ιc\s) and τ(s) which are analytic in s.
Thus we conclude:

THEOREM A. Let x(s) be an analytic space curve of which curvature
does not vanish identically. Then there exists an orthogonal frame {Eiis)}
which satisfies the equation (1.2) and (1.3).

REMARK 1.1. For the next section we note the following fact: Let
s0 be a zero point of it. Let us represent E2 by the Taylor series at
8 = So- Since Ĵ 2(80) = 0, it can be written as E2 = ΣΓ=n β*(β — sQ)k,
an Φ 0 (n > 0). Therefore, by the formula £2 = (E2, E2), we obtain

(1.4) it2 = (αn> αj(s - so)
2n + .

This shows that the first non-vanishing term of the power series
expansion of κ2 at s = s0 has an even power of s — β0.

Next, by a rotation of E\ we may assume that

(1.5) EM = (1, 0, 0) .

Thus, by the definition of {JE'J, the following must be satisfied;

(1.6) an = (0, αn2, aj

(1.7) Ez = (0, -α r e 3, αn2)(s - so)
n + .

2. Existence of Curves and Regular Singularity. Let L be a non-
empty open interval. For simplicity we may assume that L contains
the origin s = 0 at which a given analytic function K vanishes. Though
a negative arc-length is curious, no absurdity occurs in mathematical
meaning.

Now we take two real analytic functions K{s) ^ 0 and τ(s) on L,
and consider natural extensions of those and the equation (2.1) below
into the complex domain.



20 T. SASAI

0 1 0 •

(2.1) dE/ds = -K (log KY12 τ E,

0 -τ (log KY12.

where E = *(Elf E2y Ez). Let D be a sufficiently small disk with center
8 = 0 on which K and τ are holomorphic and s = 0 is the only zero
point of K. The power series expansions of K and r o n ΰ can be taken
as follows (cf., Remark 1.1):

(2.2)
κ= Σ

k=2n

τ = Σ ^

2ra > 0 , w ^

Let us find a solution of the equation (2.1). We may assume £Ί(0) =
(1, 0, 0) which is obtained by a motion (especially, a rotation) of E\
Consequently, our problem is to obtain a real solution of (2.1) which,
from (1.5), (1.6) and (1.7), satisfies:

(2.3) =

1

0

.0

0

0

0
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0

0.

9

(dnE(0)/dsn)/nl =

0

ξ

In ~~•e
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^2\l/2

where

(2.4) |£| ^ 412 , ξ e R .

Obviously, the linearity of the equation (2.1) and the condition (2.3)
show that, by a rotation of the (#2 £3)-plane, one solution is obtained
from another of which sign of (ιc2n — <f)1/2 in (2.3) is opposite to the
former. There is still an indefiniteness depending on f, but, for two
solutions Eti (i = 1, 2) (ζ, Φ ζ2, |f(| ^ /
exists a rotation of the (a;2 a;3)-plane

(2.5) Eξ

where

corresponding to ζi9 there also
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LEMMA 2.1. The equation (2.1) has a regular singularity at s = 0
and has characteristic exponents (0, n, n).

PROOF. From (2.2), (logίΓ)72 has a pole of order 1 with residue n
at s = 0 and the other components of the coefficient matrix of (2.1) are
holomorphic. Thus s = 0 is a regular singular point of (2.1) (Sauvage
[4]). Let us rewrite (2.1) in the vector form:

(2.6) s(de/ds) = Ae ,

where e is a 3-dimensional vector \elf e2, e8). Then, A = Σΐ=oAks
k

satisfies:

(2.7)

"0

0

0

0

n

0

0"

0

n

"0

0

0

1 0" •o

0

.0

0

*

0"

By definition, the characteristic exponents of (2.1) are the roots p of
det (Ao — pi) = 0, where I is the identity matrix. Lemma follows from
(2.7). q.e.d.

Now we determine a solution of (2.1), namely, three independent
solutions of (2.6). Let e0, en and en be solutions corresponding to the
characteristic exponents 0, n and one more n, respectively (Lemma 2.1).
First, we determine en and en.

Let en = ΣΓ=n Bks
k and e n = ΣΓ=* Bks

k. From (2.6), we obtain

(2.8) [(n + k)I - A0]Bn+k = Σ AtB5 .

Since

we can determine Bn and Bn as follows (see (2.3)):

nl — An =

~n

0

0

0

0

0

0

0

0

(2.9)
- ζψ\ ξ) ,

where ξ satisfies (2.4). For any integer k ^ 1, the coefficient matrix on
the left hand side of (2.8) is non-singular. Thus Bk and Bk (k > n) are
determined uniquely by (2.9) and, from the theory of regular singularity,
en and en represent holomorphic functions on D. Moreover, they take
real values for real s, since the coefficient matrices of (2.8) and (2.9) are
all real.
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Next, we determine e0 — ΣΓ=o Cks
k. Ck also must satisfy

(2.10) (kl - A0)Ck = Σ Afi, .
i+j=k

From (2.4), we take

(2.11) Co = '(1, 0, 0) .

It satisfies (2.10), for A0C0 = 0 from (2.7). For any positive integer
k (<n), kl — Ao is non-singular and the right hand side of (2.10) is zero
by (2.7). Thus Ck = 0 (1 ^ k < n). In case k = n, (2.10) can be written
as follows (see also (2.7)):

C = 0

n

0

_0

0
0

0

0
0

0_

Thus Cn = 0 satisfies (2.10). Since kl — Ao is non-singular for k (>n)9

Ck is determined uniquely by (2.11) and Cn = 0. The solution eQ determined
as above becomes also a holomorphic function on D and takes real value
for real s. Obviously, from (2.9) and (2.11), the Wronskian W of the
solutions has the following power series expansion:

W = det (β0, en, en) = κ2ns
2n + .

Since W is not identically zero, they constitute a system of linearly
independent solutions of (2.6). Namely, \EL, E2, E3) = (eQ, en, en) is a
solution of (2.1) which satisfies (2.3). Since the solution was found in a
class of holomorphic functions on D, s = 0 is an apparent singularity
of (2.1). Restricting it to real s, we obtain a solution for which we
have originally searched.

Integrating E1 with respect to s, we obtain:

LEMMA 2.2. Given two analytic functions K ^ 0 and τ, there exists
an analytic curve which admits three vectors Et (ί = 1, 2, 3) satisfying
the equation (2.1). It is uniquely determined up to a motion of Ez.

3. Orthogonality and Theorem B. The purpose of this section is
to show that the solution {J&J of (2.1) satisfies (see (1.3)):

(3.1) ( ^ , # 0 = 1, (E2, E2) = (Ed, Ez) = K, (EuEj) = 0 for

i.e., {Ei\ is an orthogonal frame.
Let Fiά = (Eif Eά) (i, j = 1, 2, 3). Then, by (2.1),

dFJds = 2F12 ,

dFJds = -KFn + (log KYFJ2 + τF 1 3 + F22 ,
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2 ) d F l 3 / d

2Z

- -2KF12 + (log ϋΓ)'F22 + 2zF2

dFJds = - i ί F ι 3 - τF2 2 + (log K)'FU + τ.P33 ,

<ZF33/ds - -2zF2Z + (log K)'Fn .

We consider the natural extension of the equations (3.2) into the complex
plane. We rewrite (3.2) as follows.

(3.3) s(dF/ds) = GF, F= \Fn, F12, F 1 8 > F229 F2B, Fzz) .

Then G = ΣΓ=o Gks
k has the property that Go is a diagonal matrix

diag (0, n, n, 2n, 2n, 2ri). We can easily show the following (cf.,
Lemma 2.1):

LEMMA 3.1. The equation (3.3) has a regular singularity at s = 0
with characteristic exponents (0, n, n, 2n, 2n, 2n).

From (1.3), we have to solve (3.3) under conditions (cf., (2.3));

F(0) = *(1, 0, - , 0) , (d"F(0)!dsn) = 0 ,

(d^F(0)/dsni(2n)l = '(0, 0, 0, κ2n, 0, κ2n) .

Thus the solution in question corresponds to the characteristic exponent
0 and must be determined uniquely by (3.4).

On the other hand, there exists a trivial solution F = *(1, 0, 0, K, 0, K)
of (3.3) which also satisfies (3.4). Thus they must coincide with each
other.

The above argument shows that {ϋ7J is an orthogonal frame of the
curve obtained in Lemma 2.2. Then, by (2.1) and (3.1), Km and τ
become its curvature and torsion, respectively. Therefore we obtain:

THEOREM B. When two analytic functions K^0 and z are given,
there exists an analytic curve which admits an orthogonal frame {E%)
satisfying (2.1) and (3.1) with given Km and τ as its curvature and
torsion, respectively. Such a curve is uniquely determined up to a
motion of E\
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