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Introduction. In this paper we consider a compact totally real
totally geodesic submanifold M of a Hermitian symmetric space (M, g)
of compact type with dimM= dimcii?, and study their classification and
stability.

We shall show that such a submanifold M is always a symmetric
R-space (cf. §1 for definition), and these pairs ((M, g), M) correspond in
one to one fashion to symmetric R-spaces. Furthermore we shall prove
that M is stable in (M, g) as a minimal submanifold if and only if M
is simply connected.

Lawson-Simons [6] proved that a compact stable minimal submanifold
of the complex protective w-space Pn(C) endowed with the Kahler metric
of constant holomorphic sectional curvature is always a complex submani-
fold. They showed also [6] that this is not true for a general Hermitian
symmetric space of compact type, by giving an example of a compact
stable minimal submanifold of PX(C) x Pi(C) which is not a complex
submanifold. The simply connected ones among our submanifolds include
the example of Lawson-Simons and provide many examples with the same
properties. For example, the quaternion Grassmann manifold GPtq(H)
imbedded in the complex Grassmann manifold G2P)2q(C) is minimal and
stable, but not a complex submanifold.

The author would like to express his hearty thanks to Professor
Tadashi Nagano who gave him valuable advice during the preparation
of this note.

1. Totally real totally geodesic submanifolds of compact Hermitian
symmetric spaces. In this section we shall classify compact totally real
totally geodesic submanifolds M of a Hermitian symmetric space (M, g)
of compact type with dim M = dimc M.

Let (M, g) be a Hermitian manifold. The inner product and the
complex structure tensor on the tangent bundle TM are denoted by < , >
and J, respectively. A submanifold M of M is said to be totally real if
(JTPM, TPM) = 0 for each pe M. A submanifold M is called a real form
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of (M, g) if there exists an involutive anti-holomorphic isometry a of
(M, g) such that

M = {p e M; a(p) = p} .

LEMMA 1.1. Let (M, g) be a {complete) Hermitian manifold. Then
any real form M of (M, g) is a (complete) totally real totally geodesic
submanifold with dimikf = dimciif.

PROOF. Let a be an involutive anti-holomorphic isometry of (M, g)
which defines M. Then M coincides with the set of fixed points of the
isometry a of (M, g), and hence it is totally geodesic (cf. Kobayashi [4]).

Let peM and o* denote the differential of a at p. Then o* is an
involutive linear isometry of TPM with a*J = —Jo*. Thus, denoting by
(TpM)* the (±l)-eigenspace of a*, we have

TPM = (TPM)+ + (TPM)- (orthogonal sum)

and J(TPM)± = (TPM)\ Since (TPM)+ = TPM, we have that (JTPM, TPM) =
0 and dimikf = dimcM. q.e.d.

In the following we recall a construction of real forms, called sym-
metric i2-spaces, of a Hermitian symmetric space of compact type (cf.
Takeuchi [12]).

Let (g, T) be a positive definite symmetric graded Lie algebra (cf.
Satake [10]), that is,

9 = 9-i + 9o + Si > [QP, 9g] c Qp+q ,

is a real semi-simple graded Lie algebra such that g_x ^ 0 and g0 acts
effectively on Q_19 and r is a Car tan involution of g with TQP = Q_P (p =
— 1, 0,1). Then u = g0 + gx is a subalgebra of g. Let G be the connected
Lie group with the trivial center such that LieG, the Lie algebra of
G, is g. Put

U = {a e G; Ad(a)n = u} .

Then we have Lie U — u. The homogeneous space M = G/U is compact
and called the symmetric R-space associated to (g, r). The origin U of
M will be denoted by o.

Let g and u be the complexifications of g and u, respectively and
G the connected complex Lie group with the trivial center such that
Lie G = g. We regard G as a subgroup of G. Put

U = {aeG; Ad(a)it = u} .

Then U is a connected complex Lie subgroup of G with Lie U = n and
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Ur\G=U. The complex homogeneous space M = G/U is compact, and
the identity component Aut°(M) of the group of all holomorphic auto-
morphisms of M is identified with G (cf. Takeuchi [14]). Moreover we
obtain a natural G-equivariant imbedding / : M-> M by virtue of Un G = U.
It is called the canonical imbedding associated to (g, z). In what follows
we shall often regard M as a submanifold of M through the imbedding / .

Let a be the complex conjugation of g with respect to g and denote
the extension of a to G also by a. Since U is connected we have 0(U) =
U, and thus a induces an involutive anti-holomorphic diffeomorphism a of
M. Then M c M i s given by

M = {p e M; a(p) = p} .

Let g = I + p be the Car tan decomposition associated to z. Then
Qu = i + V — Lp is a compact real form of g. Let z denote the complex
conjugation of g with respect to QU. Then g is stable under z and z
coincides with the original z on g. From the semi-simplicity of g, there
exists uniquely an element ZSQ0 such that

Bp = {Xe g; [Z, X] = pX) (p = - 1 , 0, 1) .

The condition rgp = g_p (p = —1, 0, 1) implies zZ — —Z, and hence Zep.
Let K and Gu be the connected subgroups of G generated by f and gtt,
respectively, and put

K0 = {ae K; Ad(a)Z = Z) , l0 = Lie Ko,

Ku = {a e Gu; Ad(a)Z = Z) , tu = Lie Ku .

Then we have smooth identifications

M = Z/Xo , M - GJKU .
We define an involutive automorphism 6 of G by

6{a) = exp(7rv/:=:I^)a(exp(7n/:::lZ))-1 for a e G .

Then 0(1£) = Z, ^(GJ = Gu and

where Ke (resp. (GJ*) denotes the subgroup of all fixed points of 6 in K
(resp. in GJ and (^)° the identity component of Ke. Thus both (K, Ko)
and (Gtt, Ku) are compact symmetric pairs. If we define

m = {Xet;6X= - X } ,
mu = {XeQu;6X= -X) ,

denoting also by 0 the differential of 6, we have direct sum decompositions

I = f0 + m , gtt = I. + mtt
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as vector spaces. Thus m and mu are identified with T0M and T0M,
respectively. Then Ho = —V^IZ is the unique element of the center
of lu such that ad(jffo) I tn« gives the complex structure tensor Jo of M at
o. Denote by ( , ) the Killing form of g, and define a gw-invariant inner
product < , > on QU by

<X, Y) = - ( X , Y) for X, F e g M .

The i£-invariant (resp. Gu-invariant) Riemannian metric on M (resp. on fit)
which extends < , > \m x m (resp. < , )\mu x m j is denoted by g (resp. by
g), and called the canonical Riemannian metric on Af (resp. on Af). Then

( i ) (Af, g) (resp. (Af, g)) is a compact symmetric space (resp. a
Hermitian symmetric space of compact type) such that the identity
component I°(M, g) (resp. I°(Af, g)) of the group of all isometries of (Af, g)
(resp. of (Af, #)) is identified with K (resp. with GJ, and the canonical
imbedding / : (Af, g) —> (Af, </) is isometric.

Moreover <7 is an isometry of (Af, g), and hence Af is a real form of
(Af, g). Thus, by Lemma 1.1.

(ii) Af is a totally real totally geodesic submanifold of (Af, g) with
dimAf = dimcAf.

REMARK 1. If g is simple, the Riemannian metrics g and g satisfying
(i) and (ii) are unique up to homothety. In this case, the symmetric R-
space Af or (Af, g) is said to be irreducible.

REMARK 2. Let M* be the symmetric bounded domain dual to M
which is imbedded into M as an open submanifold of M by means of Harish-
Chandra imbedding. It can be shown (Takeuchi [12]) that then Af * = M* C\ M
is a non-compact symmetric space dual to Af and it is a real form of Af*.

Two positive definite symmetric graded Lie algebras (g, z) and (g', zr)
are said to be isomorphic if there exists a Lie isomorphism 0: g —> g'
such that 0gp = g'p (p = —1, 0, 1) and <j>oz = z'°$. Let S? denote the set
of all isomorphism classes of positive definite symmetric graded Lie
algebras. The set Sf was completely determined (Kobayashi-Nagano [5],
Takeuchi [12]). Next we consider a pair ((Af, g)9 Af) of a connected
Hermitian symmetric space (M, g) of compact type and a compact con-
nected totally real totally geodesic submanifold Af of (Af, g) with dim Af =
dimc M. Such a pair is called a TRG-pair. For a finite number of TRG-
pairs ((Af,, gt), Af<), l ^ i ^ s , the direct product ((M, g), M) = ((Mlf gx\ Afjx
• • • x {{M8y g8), M8), which is also a TRG-pair, is defined by M=M1 x • • • x M8,
g = Si x • • • x g8 and M = Ml x • • • x M8. Two TRG-pairs ((Af, g), M) and
((Af', g')9 M') are said to be equivalent if there exist direct product decom-
positions ((M, g), M) = ((Ml9 gx), ML) x • • • x ((&., g.\ M.) and ((M', g'\ M') =
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((Mi', g[), Ml) x • • • x ((M,',, g[,\ AT.',) with s = s' and homothetic biholo-
morphic maps $t: (Mif g%) —> (Ml, g't), 1 ^ i ^ s, such that the product map
0 = & x • • • x #,: ii?-> J07 satisfies (̂jkf) = M'. Let ^ denote the set
of all equivalence classes of TRG-pairs.

THEOREM 1.2. Our correspondence (g, r) t—• ((M, g), M) induces a
bijection 0: Sf

PROOF. It follows from definition that our correspondence induces
a map 0: 6^ -> ^ 7 Conversely, for any TRG-pair ((M, g), M) we shall
associate canonically a positive definite symmetric graded Lie algebra
(g, T). Let G — Aut°(M) which is a connected complex semi-simple Lie
group with the trivial center, and let Gu = F(M, g) which is a subgroup
of G because (M, g) is a compact Kahler manifold (cf. Kobayashi [4])_.
Let J denote the complex structure tensor of M. We identify g = Lie G
(resp. 8« = Lie Gu) with the Lie algebra of all smooth vector fields X on M
such that the Lie derivative of J with respect to X vanishes (resp. of all
Killing vector fields on (M, g)) with Lie product [X, Y]=YX- XY. Then
by Matsushima's theorem on compact Kahler Einstein manifolds we have

(1.1) g - 9u + JQu , 8. n JQu - 0 .

Let Q(M) be the real subalgebra of g consisting of all Xeg such that
the restriction X\M is tangent to M, and l(M) the Lie algebra of all
Killing vector fields on M with respect to the Riemannian metric g
induced from g. We put

and

(1.2) 9 = I + p .

Then [!, p]czp and [p, p] c I, and hence g is a real subalgebra of g. We
need here the following:

LEMMA 1.3. (1) The map l-*l(M) defined by X\-+X\M (Xet)isa
Lie isomorphism.

( 2 ) We have

(i.3) QU = t + jp, inJ*> = o .

Now, it follows from (1.1), (1.2) and (1.3) that g is a real form of g. Let
G and z denote the complex conjugation of g with respect to g and gw,
respectively. Then

(1.4) aJX=-J(jX for Xeg,

(1-5) GQU = Qu .
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We fix a point oe M and put

Ku = {aeGu;a(o) = 0} ,

which is known to be connected. (See Helgason [2] for fundamental
results on symmetric spaces.) Then M = GJKU as smooth manifold. Let
lu = Lie Ku and gtt = tu + mu be the associated Car tan decomposition. Let
Ho be the unique element of the center of tu such that Jo = SLd(H0)\xnu.
Putting Z = JH0 e g, we define

QP - {Xe g; [Z, X] = pX) (p = - 1 , 0, 1) ,

5 = 9o + 81 ,
U = {aeG; Ad(a)u = u} .

Then Lie U = u, g = g_i + g0 + §1 and M = G/tJ as complex manifold.
Note here that g0 acts on §_! effectively. We define an involutive auto-
morphism 6 of G by

6(a) = exp(;rJZ)a(exp(7rJZ))"1 for a e G .

Then 0(GJ = GW and hence the differential of d, denoted also by 6,
satisfies 0QU — QU. Morever we have

(1.6) tu

(1.7) mu

A diffeomorphism d of M = GJKU is defined by the correspondence a-ov-+
d(a)-o(aeGu) because Ku is connected. It is the symmetry of (M, g) at
0. Since M is totally geodesic in (M, g) we have ^(Af) = M, and hence
^g(M) = Q(M). Therefore we have 61 = f and dp = p, and hence 6Q = g.
Thus (1.5), (1.6) and (1.7) imply

(1.8) otu = 1. ,

(1.9) (jmu = mu .

Now it follows from (1.4) and (1.9) that ajo = -J0o on mu = T0(M), and
thus [aH0,aX]= —JoaX for each Xemu, where aH0 is an element of
the center of tu by (1.8). Therefore the uniqueness of Ho implies that
<JH0 = —Ho, and so aZ = Z, that is, J£e g. Thus, putting Qp = QPHQ (p =
~ 1 , 0,1) we get g = g_i + g0 + 81 • Moreover r restricted to g is a Cartan
involution with zZ — —Z, and thus TQP = Q_p (p — —1, 0, 1). The effec-
tiveness of g0 on g_x follows from that of g0 on Q_t. Therefore (g, r) is
a positive definite symmetric graded Lie algebra.

Next we shall show that our correspondence ((M, g), M) 1—• (g, z) in-
duces a map W: ̂  -> <?. Let ((M, g), M) and {{M\ gr), M') be equivalent.
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Various objects for {{M\ g'), Mf) will be denoted by the same notation
as ((M, g), ikf) but with primes. Let 0: ikf —• M' be an equivalence. Then,
since both <f>(6) and o' are on ikf', by Lemma 1.3, (1) there exists <j> e
P(M', g') such that <j>\M') = M' and 0'(0(o)) = o\ Therefore _we may
assume that <j>(o) = o'. Then the correspondence a i-> ^ a o f ^ G G) defines
an isomorphism <j>\ G —» G' such that the differential 0: g —»g' is a Lie iso-
morphism with ^oJ = J'ofc <PQU =r Q'UJ $Q(M) = fl(Af) and ^Z = J£\ Thus we
get <j>Q = g' and 0l = I\ Therefore ^ gives an isomorphism (g, z) —• (g', r '),
and so (g, r) is isomorphic to (g', zf).

Now we have W<>0 = 1^ by definitions, and 0oW = 1^ by Remark 1,
where I indicates the identity map. Thus our map 0 is a bijection.

q.e.d.

PROOF OF LEMMA 1.3. (1) Since (ikf, g) is a compact connected
symmetric space, F(M9 g) is generated by symmetries. Thus the map
I -> t(ikf) is surjective, because M is totally geodesic in (M, g). So it
suffices to show

(1.10) Xe I, X\M = 0 => X = 0 .

We fix a point p e M and define an endomorphism Xp of TPM by

Xp(y) = FyX for yeTpM,

where V is the Riemannian connection of (M, g). It suffices to show
Xp = 0 since X is a Killing vector field on (M, g). For any ye TPM we
have

£,(») = VyX = VyX - 0 ,

-£,Gfy) - ^t-y = Jvyx = o ,
where V is the Riemannian connection of (M, gr). Here we have used
the facts that M is totally geodesic, X\M = 0 and J i s a holomorphic
vector field on the Kahler manifold (M9g). Now TPM = TPM@JTPM
implies Xp = 0.

( 2 ) Let X e gu and decompose X\M as X | M - XT + X^, where X r

is tangent to ikf and XN is normal to ilf. Then

0 = <F,X, z> + <FZX, »> = <F,Xr, z) + <yzX\ y)

for any y,ze TPM, peM, and thus XT e l(M). Now by (1) there is X ' 6 f
such that X'\M = XT. Put X " - X - X ' e g.. Then X"|ikf = XN and
(JX") | ikf = JXN which is tangent to ikf. Therefore JX" e g(ikf) n JQU = p9

and hence X = X ' + X " 6 f + /£ . Thus we have shown that QU C t + Jp
and so gu = I + Jp. On the other hand, any Xe t n Jp satisfies X\M =
0, and hence X = 0 by (1.10). This shows lnJp = 0. q.e.d.
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REMARK 3. Actually the subalgebra g(j|f) of g in Theorem 1.2
coincides with g. In fact, for each point p of a symmetric iJ-space Ma
M there exists a holomorphic coordinate (za) of M around p such that
M is given by Im za = 0 around p. Therefore we get

Xeq,X\M= 0=>X = 0 ,

which implies Q(M) D JQ(M) = 0 and so g(ikf) = g.

REMARK 4. For any connected Hermitian symmetric space (M, g) of
compact type, there exists at least one involutive anti-holomorphic iso-
metry of (M, g) (Satake [10]).

2. First eigenvalues of symmetric i2-spaces. In this section we
shall compute the first eigenvalue of the Laplacian on smooth functions
of an irreducible symmetric i?-space.

Let (g, r) be a positive definite symmetric graded Lie algebra and
M = G/U = K/KQ be the symmetric i2-space associated to (g, z). We use
the same notation as in §1.

LEMMA 2.1. Let Cp be the Casimir operator on the t-module p relative
to the t-invariant inner product < , ) on f. Then C9 = (l/2)/p.

PROOF. Let {Ea} be an orthonormal basis for f with respect to < , >.
Then, by definition

For each Xep we have

-(IE,, [Ea, X]], X) = ([Ea, X], [Ea, X])
= (Ea, [X, [Ea, X]]) = -(Ea, [X, [X, EJ\)
= -(ad(XfEa, Ea) = <SLd(XfEa, Ea) .

Therefore (CPX, X) = Tr(ad(X)2|!). On the other hand, from ad(X)t<zp,
ad(X)p<zt we get (X, X) = Tr(ad(X)2) = 2Tr(ad(X)211). Thus we obtain
(C,X, X) = (X, X)/2 for each Xep, and hence

(CfX, Y) = (X, Y)/2 for any X, Yep .

This implies the assertion. q.e.d.

Let §~ c £ be a maximal abelian subalgebra in p with Ze §~ and take
an abelian subalgebra §+ of I such that Ij = Ij+ + f)~ is a Cartan subal-
gebra of g. Then the complexification | of § is a Cartan subalgebra of
g, whose real part §„ is given by Ij* = i/^T^"1" + ^~. Let Ic$R be the
root system of Q relative to 1} and put
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Choose a a-order on §R in the sense of Satake [9] such that (a, Z) ^ 0
for each a in I + , the set of positive roots. Then we have

T+ - So = {ael; (a, Z) = 1} .

In what follows in this section we assume that g is simple. Then the
folio wings are known (Takeuchi [12]):

There exists a maximal system {7U • • •, 78}, s = rank(Af, g), of strongly
orthogonal roots in T+ — 2*0 with the same length such that a{7u • • •, 7g} =
{̂ i, • • •, 78}. Moreover, if r = rank(M, g), we have

(a) r = 8, O7,, = 7t (1 <; i <; r); or
(b) 2r = s, <TYi = 7r+i (1 5£ i ^ r), changing indices of 7j's if necessary.
We define ft e §"(1 ^ i ^ r) by

if r = 8 ,

Then

_ ((%, %) if r = s ,
*' * ((^i, %)/2 if 2r = s .

Let c = {ft, • • •, ft}n be the i?-span of {ft, •••, ft}, and Tca-:$R-*a~
denote the orthogonal projection with respect to ( , ) . By Satake [10]
(cf. also Moore [7]) we have then

(2.2) 7Ta-(I) - {0} = {±(l/2)(ft±ft) (1 ^ i < j £ r), ±f t (1 ^ i ^ r)} ,
or {±(l/2)(ft±ft) (1 ^ i < i ^ r), ±ft, ±(l/2)ft (1 ^ i^ r)} .

We may choose (cf. Takeuchi [12]) root vectors Xa e g ( a e l ) in such a
way that

{a, a)

We put Ur. = Xri + X_ri e ntw (1 ^ i ^ s) and define Si em (1 <: i ^ r) by

if r = s ,

whose length with respect to < , > are the same. Then t~ = {Su • • •, Sr}R

is a maximal abelian subalgebra in nt. We define elements Vif V[ (1 ^
i ^ r) of g by

"•rt if r = 8 ,

•L + -3Tflrv if 2r = s .
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V't =
X,,, - X.,, - if 2 r = S .

Note that the F/'s are non-zero elements of the complexification p of p.
Moreover we define c' 6 Gu by

LEMMA 2.2. (1) Fo?* eacft i (1 <: i ^ r) we have

(2.3) Ad(c')(

(2.4)

(2 ) TFe have

[H, Vt] = (yS», H)Vi for each

PROOF. (1) If we put

then {X+, X_, H} is a basis for §1(2, C) with relations [X+, X_] = -H,
[H, X+] = ±2X+. On the other hand we have relations [XTj9 X_r3] =
-(2/(7,, 7,0)7,, [(2/(7,, 7i))7i, X±r.] = ±2X±rj (1 ^ i ^ 8). Thus the corres-
pondence X± H> JC±ri, H\-+ (2/(7,, 7^)7, defines an injective Lie homo-
morphism §1(2, C) —>§ such that Uv-*Urp where U = X+ + X_. Since the
element c'o of SC7(2) defined by

satisfies Ad(c'0)H -
for each j (1

^ C / , Ad(cJ)X+ = (1/2) (X+ - X_ + V^lH), we get
g s)

(2.3)'

(2.4)' = \(xr, - X_7j

Thus we obtain (2.2), (2.3) in case r = s. In case 2r = s, we have for
each i (1 ̂  i ^ r)



MINIMAL SUBMANIFOLDS 303

(2.3)" Ad(c')(.-^—<nt) = V^

(2.4)"

Adding (2.3)' and (2.3)" (resp. (2.4)' and (2.4)") we get (2.3) (resp. (2.4)),
by virtue of the equality

Vi^i) (yt9yt) (A, A)

which follows from (2.1).
(2) This follows from a direct calculation. q.e.d.

The eigenvalues of the Laplacian A with respect to the canonical
Riemannian metric g acting on the space C°°(M) of smooth functions on
M = K/Ko are obtained in the following way (cf. Takeuchi [13]).

Take an abelian subalgebra t+ of Io such that t = t+ + t" is a maxi-
mal abelian subalgebra of f. The complexification t of t is a Cartan
subalgebra of the complexification f of I and the real part t* of i is
given by tR = \Z^lt+ + V--VL~. Taking a basis {Hr+1, • • •, Ht) for i/—Tt+,
we define a lexicographic order > on tR by the basis {l/"—IS^ • • •, v / ^ l S r ,
Hr+1, - • •, Ht) for tR. Let I c i / — It" be the root system of the symmetric
pair (I, f0) and I+ the set of positive roots in I (with respect to>). We
set

r^ = {X e v^=lt-; (X, T) c
i) = {x6 T1; (\, a) ^ 0 for each a e r } .

Let 5 e i / — lt~ be the half-sum of all roots in 2+ with multiplicity
counted. Then the set Spec(ikf, g) of eigenvalues of A is given by

(2.5) SpecCM, g) = {(28 + X, X); XeD) .

Here the multiplicity of (28 + X, X) is equal to the dimension of the
irreducible F-module Vx with the highest weight X, and (28 + X, X) is
nothing but the eigenvalue of the Casimir operator on Vx relative to
the inner product < , >. In our case we have (Takeuchi [12])

r = n{Su • • -, sr}z,

where {Sl9 • • •, Sr}z denotes the subgroup of t" generated by {Sl9 • • •, Sr}.
Thus, if we define M i/^Tt-OL ^ i ^ r) by (hit v

/~zlSj) = 8tj, then they
have the same length with respect to ( , ) and
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(2.6) r± = 2{hl9-~,hr}M, K> '">hr>0.

LEMMA 2.3. The highest weight A relative to t of the ^-module Ip is
given by A = 2hx.

PROOF. Take an abelian subalgebra % in p such that fy = t + § is a
Gar tan subalgebra of g. Then the real part §'« of the complexification §'
of §' is given by fyR = i / ^ t + 8. Let I ' c | i be the root system of g
relative to §'. Let 7rt: §* -> i / ^ I t and ?rt-: §« -> V~^Vr be orthogonal
projections with respect to ( , ).

Since Ad(c')<r = i/^Tt" by (2.3), both Ad(c')5 and 5' are Cartan
subalgebras of the centralizer in g of t~. Thus there exists an element
c" of the centralizer in G of t" such that Ad(c")Ad(c')5 = §'. p u t c =
cVeff. Then Ad(c)5 = ? , and hence

(2.7) Ad(c)§ll = % f Ad(c)I = I ' ,

(2.8) ^-oAd(c) = Ad(c)o;rft- on ^ .

Moreover, by (2.3) we have

(2.9) Ad(c)((l/2)A) = ht (1 ^ i ^ r) .

Next we show

(2.10) A = Max{7rt-(a); a e I', 3 Ve p - {0} with
[if, F] = (a, i?)F for each i l e i /^I t"} .

In fact, the set of weights relative to I of the ^-module ^ coincides
with the set of 7ut(a) such that a e l ' U {0} and that there exists F e : p -
{0} with [H, V] = (a, H)V for each ife tR. Since t> is Z-isomorphic with
a iT-submodule of C°°(M), we have A^V^lt" (cf. Takeuchi [13]). On the
other hand, from the definition of the order > on tR we have

These imply the assertion (2.10). Finally we show that

( 2 . 1 1 ) [H'f VI] = (2ht, H ' ) V l f o r e a c h H r e i / ^ I r , l ^ i ^ r .

Put H= AdW-W'ea", so Ad(c')-ff = Ad(c)il. Applying Ad(c') to the
equality in Lemma 2.2, (2) we get

[Ad(c)ff, Ad(c')7J = (A,

and hence by (2.4), (2.9)
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Now, by (2.7), (2.8), (2.9) and (2.2) we have

7rt-(I') - {0} = {±{hi±h5) (1 ^ i < j ^ r), ±2ht (1 ^ i ^ r)} , or

{±(fci±fci) (1 ^ i < 3 ^ r), ±2hif ±ht (1 ^ i ^ r)} ,

and thus yl = 2fex by (2.10) and (2.11). q.e.d.

It is known (Takeuchi [12], [15]) that irreducible symmetric J?-spaces
are devided into the following five classes.

( I ) Hermitian type

2r = sf I is reducible, TC^M) = 0 .
2 = {±(hi±hj)(l ^ i < j ^ r ) , ± 2 ^ ( 1 ^ i ^ r)} , or

{±(hi±hj) (1 ^ i < j ^ r), ±2^ , ±h< (1 ^ i ^ r)} .
(II) type Sp(r)

2r = s, J is irreducible, î(Af) = 0 .
I is the same as (I).

(III) type SO(2r + 1)
r — s, I is irreducible, ^(Af) = Z2 .
^ = {±(hi±hj)(l ^ i < j ^ r ) , ± ^ ( 1 ^ i ^ r)} .

(IV) type SO(2r)
r = s ^ 2, I is irreducible, ^(Jkf) = Z2 .

(V) type
r = s, I is irreducible, n^M) = Z .

REMARK 1. If ikf is of Hermitian type, then (M, g) is an irreducible
Hermitian symmetric space of compact type and the canonical imbedding
/ is given as follows. Let M* be the complex manifold which is the
same as M as smooth manifold, but with the complex structure such that
the identity map M—>M*, denoted by pt-+p*9 is anti-holomorphic. We
put M = M x M* and g = (1/2) for x g). Then the map / : (M, g) -> (M, g)
defined by f(p) = p x p*(peM) is the canonical imbedding.

THEOREM 2.4. Let (M, g) be an irreducible symmetric R-space with
the canonical Riemannian metric g. Let Xx be the least positive eigenvalue
of the Laplacian A on C°°(M). Suppose that the fundamental group n^M)
of M is finite and g is an Einstein metric. Then X± = 1/2 with the
multiplicity equal to dim p.

PROOF. From the classification of irreducible symmetric 12-spaces
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(cf. §3) we know that the only non-Einstein irreducible symmetric R-
spaces M with finite 7ti(M) are

M = Qp,q(R) = {[x] e P p + q ^ ( R ) ; x \ + • • • + x2
p - x2

p+1 - . . . - x2
p+Q = 0} ,

where [x] denotes the line of Rp+q through x = (xt) e Rp+q - {0}. They
are characterized by the property that M is of type SO(4) and the
multiplicities of roots hx + h2 and ht — h2 are different.

We introduce a new inner product (( ,)) on t* with ((ft,, ft,-)) = 8i3- by

(GET, H')) = -r^-rriH, H') for H,H'etR.
(hlf ht)

We shall show that A = 2hl is the unique element of D — {0} such that

((28 + A, A)) = Min{((25 + X, X)); Xe D - {0}} .

If ikf is of Hermitian type, we have

2+ = {hi±hj (1 ^ i < j ^ r), 2fe, (1 ^ i ^ r)} , or

{ht±hj (l£i<j£ r), 2^ , ft, (1 ^ i ^ r)} ,

and hence by (2.6)

D = {X = 2 0 ^ + • • • + mrftr); mt 6 Z, mx ^ • • • ^ mr ^ 0} .

Since the Weyl group W oi I consists of transformations htV-*etha{i)9 e< =
± 1 , se@ r , and leaves the multiplicities of roots invariant, 28 is of the
form

28 = njfi^ + • • • + n r h r , n t e Z, % > • • • > n r > 0 .

Thus, for XeD — {0} as above, we have

((28 + X, X)) = ((28, X)) + ((X, X))

^ 2% + 4 - ((25 + 2ftlf 2ftt)) .

If X ^ 2ftlf then ((25, X)) ^ 2 ^ , ((X, X)) > 4 and so ((28 + X, X)) > 2n, + 4.
Thus yl = 2fti has the required property. In the same way we can show
the assertion for a space M of type Sp(r) or of type SO(2r + 1). If M
is of type SO(2r), we have

J + = {ft,±fty (1 ^ i < j£ r)} ,
and hence

D = {X = 2(m1ft1 + • • • + mrhr); mieZfm1'^i • • • ^ mr_! ^ |m r |} .

The Weyl group TF consists of transformations ft, h-> e^ ( t ) , et = ± 1 , JJ e< =
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1, se @r. Moreover the multiplicities of hx + h2 and hx — h2 are the same
if r = 2. Therefore 28 is of the form

28 = ufa + • • • + nrhr , nieZ,n1> '•• > nr_x > nr = 0 .

For XeD-{0} as above, we have

((28 + X, X)) = 2Inimi + Aim] .

Theorefore the assertion for M of type SO(2r) follows in the same way as
above. Thus the assertion is proved for each (M9 g) in consideration.

Now, since ny(M) is finite, K is semi-simple, and hence the T-module
ip is irreducible. Thus Lemmas 2.1 and 2.3 imply that (28 + A, A) = 1/2.
The theorem follows from this and (2.5). q.e.d.

REMARK 2. The first eigenvalues X% for the other irreducible sym-
metric jR-spaces are calculated in the same way as follows.

( i ) M= QPtq(R) (3 ^ p < q), nx(M) = Z2.

1/2 with multiplicity = p(p + 1) ='dim:p if q = q + 1 ,

\ = • 1/2 with multiplicity = (p + 2)(3p - l)/2 if g = p + 2 ,

vl(V + q - 2)«l /2) with multiplicity = (p + 2)(p - l)/2

if ^ ^ P + 3 .

(ii) M is of type [7(r), ^(Jlf) = Z.
Let v ^ 0 be the multiplicity of the root hx — h2. Then

11/2 with multiplicity = dimp if v ^ l ,

1/2 with multiplicity = dim}? + 2 if v = 2 ,

r/(v(r - 1) + 2)«l /2) with multiplicity = 2 if i; ̂  3 .
3. Ricci curvatures of symmetric i2-spaces. In this section we shall

study the Ricci curvature tensor of an irreducible symmetric i?-space.
In general, for a symmetric space (M, g) expressed as M = K/Ko by

a symmetric pair (K, Ko) with a Z-invariant Riemannian metric gr, the
Ricci curvature tensor S is given at the origin o = Ko e M by
(3.1) S(X, Y) = -(X, Y\/2 for X, Ye m = T0M ,
where ( , ) , is the Killing form of I = Lie K and I = l0 + m is the Cartan
decomposition (cf. Takeuchi-Kobayashi [16]).

Now let (g, z) be a simple positive definite symmetric graded Lie
algebra and (M, g) the irreducible symmetric .K-space associated to (g, z)
with the canonical Riemannian metric g. We retain the notation in §1.

If (M, g) is an Einstein manifold: S — eg, c ̂  0, we can compute the
constant c by (3.1).
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For example, let M be of Hermitian type. Then there exists a
a complex simple Lie algebra ^ such that g is the scalar restriction to
R of 5^, and I is a compact real form of ^ and p = Jt, where J is the
complex structure of g. Thus we have

(X, Y) = 2(X, Y)t for X,Yel9

and hence by (3.1)

S(X, Y) = - (X, D./2 = - (X, F)/4 = <X, T>/4

for X, Fern. Therefore (Af, #) is an Einstein manifold: S = eg with

(3.2) c = 1/4 .

If M = Qp,q(R) (3 ^ p < q), we have decompositions

(3.3) (M, gr) ~ (ikfi, flrj x (M2f g2) (locally isometric); and

K ~ K± x K2 (locally isomorphic),

where (Mif-gt) is a compact connected Einstein symmetric space: S< =
c ^ (i = 1, 2) with 0 ^ cx < c2 and Kt = I\Mif gt) (i = 1, 2). That is, Mx =
Sp-\ Af2 = Sq~\ K, = SO(p) and ir2 = SOto). The remaining irreducible
symmetric .B-spaces are those of type U(r) (r ^ 2). In this case we have
also the decompositions (3.3) with M1 = S1, i^ = SO(2) and cx = 0. These
constants clf c2 are also computed by (3.1).

We give here the constants c or el9 c2 for each non-Hermitian irre-
ducible symmetric jR-space.

(1) M= GPtq(C) (l^pt^q), M= GPtq(R).
(a) p = q = 1. r = 1, type 17(1), v = 0, ^(ikf) = Z, Einstein, c = 0.
(b) p = # ^ 2. r = p, type SO(2p)9 nx{M) = Z2, Einstein, c =

(P - l)/4p.
(c) Otherwise, r = p, type SO(2^ + 1), n^M) = Z2, Einstein, c =

(p + g - 2)/4(p + g).
(2 ) M = G2p>2g(C) (1 ^ p ^ q), M= Gp>q{H). r = p, type Sp(p),

= 0, Einstein, c = (p + q + l)/4(p + q).
(3 ) M = Gn,n(C) (n ^ 2 ) , itf = C/(^). r = n, type I7(n), v = 2,

= Z, d = 0, c2 = 1/4.
(4) M = S0(2n)/U(n) (n ^ 5 ) , M - SO(n). r = [n/2], type S0(n),

Z2f_ Einstein, c = (w - 2)/4(w - 1).
( 5 ) M= SO(4n)/U(2n) (n ^ 3), M = U(2n)/Sp(n). r = n, type U(n),

v = 4, Tr̂ ikf) = Z, d = 0, c2 =. ̂ /2(2^ - 1).
( 6 ) M = Sp(2n)/U(2n) (n ^ 2), M = Sp(w). r = w, type

= 0, Einstein, c = (n + l)/2(2w + 1).
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(7) M = Sp(n)/U(n) (n ^ 3 ) , M = U(n)/O(n). r = n, type
v = 1, ^(Af) = Z, Ci = 0, c2 = w/4(w + 1).

(8 ) M= Qp+g_2(C) (^ + g ^ 3, 1 ^ p ^ g), Af = Q,tM(R).
(a) p = 1, q :> 4 (g =£ 5). r = 1, type Sp(l), TT̂ Af) = 0, Einstein,

c = (g - 2)/2(g - 1).
(b) p = 2, g ^ 3 (g =£ 4). r = 2, type [7(2), y = g - 2, ^(M) = Z,

Ci = 0, c2 = (g - 2)/2g.
(c) p = g ^ 4. r = 2, type SO(4), TT^AT) = Z2, Einstein, c =

(p - 2)/4(p - 1).
(d) 3 ^ p < g. r = 2, type SO(4), ^(M) = Z8, cx = (p - 2)/2(p +

g - 2), c2 = (g - 2)/2(p + g - 2).
(9 ) M = EJT-Spin(10), M = G2t2(H)/Z2. r = 2, type SO(5), ^(Af) =

Z2, Einstein, c = 5/24.
(10) M = E6/T-Spin(l0), M = P2(K). r = 1, type Sp(l), ^(M) = 0,

Einstein, c = 3/8.
(11) M = E7/T-EQ, M = SU(S)/Sp(4)-Z2. r = 4, type SO(8), ^(Jlf) =

Z2, Einstein, c = 2/9.
(12) M = E7IT-EQf M = T-EJFt. r = 3, type 17(3), i> = 8, ^(M) = Z,

Cl = 0, c2 = 1/3.

In the above list,
GPtq(F): Grassmann manifold of all p-subspaces in Fp+q, for F — R, C

or real quaternion algebra H,
P2(K): Cay ley protective plane,
Qn(C): Complex quadric of dimension n,
Einstein: (Af, g) is an Einstein manifold.

4. Stability of TRG-pairs. In this section we shall study the
stability as a minimal submanifold of M in (Af, g) for a TRG-pair

In general, let / : (Af, g) —> (Af, g) be a minimal isometric immersion
of a compact Riemannian manifold (Af, g) into a Riemannian manifold
(M, #). Let /* be a smooth variation of / with fo = f and 3 (̂«) the
volume of (M,ft*g). Then the second derivative of T{t) is described as
follows (cf. Simons [11]). We define a vector field V along / by

Vo = Tr-ft(p) for v 6 Af .

We define furthermore an elliptic self-adjoint differential operator L of
order 2 on the space C°°(NM) of all smooth sections of the normal bundle
NM for / , called the Jacobi operator for / , by
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L = AL + S1 - a .

Here AL = -Tr^F1)2 is the Laplacian on JVM; a e C°°(End JVM) is defined
by a = ao*a regarding the second fundamental form a of f as ae
C°°(Hom(TM(x) TM, NM)); S1 e C~(End NM) is defined by

(S^u), v) = S <#fe, %)*<, v> for u, v e Npikf , p e l ,

where R is the curvature tensor of (M, 0) and {ej is an orthonormal
basis for TPM. We have then

^ ( 0 ) = ( (LVN, VN)dv ,

where F^ denotes the normal component of V and dv the Riemannian
measure of (M, 0).

The multiplicity n(f) of the eigenvalue 0 of L is called the nullity
of / . The sum i{f) of multiplicities of negative eigenvalues of L is
called the index of / . The minimal immersion / is said to be stable if
i(f) = 0. We define moreover a subspace P of C°°(NM) by

P = {(X|M)*; X is a Killing vector field on (M, #)} ,

and call the dimension nk(f) of P the Killing nullity of / . It is known
(cf. Simons [11]) that L\P = 0, and hence nk(f) ^ w(/).

LEMMA 4.1. (Chen-Leung-Nagano [1]) Let (M, g) be a compact con-
nected symmetric space expressed as M = K/Ko by an almost effective
compact symmetric pair (K, Ko). Suppose that g is defined by a K-
invariant inner product < , ) on t = Lie K and let C denote the Casimir
operator of I relative to < , >. Let / : (M, g) —> (M, g) be a totally geodesic
isometric immersion of (M, g) into a symmetric space (M, g). Then t
acts on the normal bundle NM and there exists a l-invariant symmetric
endomorphism Q of NM such that the Jacobi operator L for f is given by

(4.1) L = C+Q .

We retain the notation in §1 for symmetric JB-spaces. By a method
in [1] we prove the following:

THEOREM 4.2. Let (M, g) be a symmetric It-space with the canonical
Riemannian metric g associated to a positive definite symmetric graded
Lie algebra (g, r), and f: (M, g) —• (M, g) the canonical isometric imbed-
ding. Then

(1) n*(/)
(2) Q = -(1/2)1™
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PROOF. (1) Identifying p with a space of vector fields on M, we
define a linear map p-^P by the correspondence Xt-*(JX)\M (Xep).
Then it is a ^-isomorphism since p = g n e/gtt, and thus the assertion
follows.

(2) Let C be the Casimir operator of t relative to {X, Y) —
-(X, Y). By the proof of (1) and Lemma 2.1 we have C\P = (1/2)IP.
Thus, by L |P = 0 and (4.1) we get Q\P = -(l/2)/P . On the other hand,
since Gu is transitive on ikf we have

TPM = {Xp; Xe QU} for any p e M .

Therefore, by gtt = f + Jj) we have

NPM = {Xp; Xe P) for any p e M .

This and Q\P = — (l/2)/P imply the assertion. q.e.d.

REMARK 1. Let / : (M, g) -> (M, g) be as in Theorem 4.2. We define
an endomorphism S1 of NM by

(S1^), v} = S(u, v) for u, v6 JVPM , peM ,

where S denotes the Ricci curvature tensor of (M, g). It can be proved
by a direct calculation that then Q = — S1, and hence the assertion (2)
follows also from the formula (3.1) for our (M, g).

Recalling (Ikeda-Taniguchi [3]) that the Laplacian acting on forms
on a compact symmetric space M coincides with the Casimir operator,
we get the following:

COROLLARY. Let L be the differential operator on Coo(Tr*ikf) corres-
ponding to L on C°°(NM) under the K-isomorphism:

g

where T*ikf is the cotangent bundle of M, J- is the multiplication by J
and g is the duality by means of g. Then

where A denotes the Laplacian of (Mf g) acting on the space C°°(T*M)
of 1-forms on M.

Here we recall some results on the Laplacian A on 1-forms on a
general compact connected Riemannian manifold (M, g). For X >̂ 0 we
put
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Cx = {£6#a;cZ*£ = 0},

where d* denotes the formal adjoint operator of d with respect to the
Riemannian measure for g. If X > 0, we have

(4.2) Ex = Bx + Cx (direct sum) ,

and d induces an isomorphism

(4.3) d:FABx.

THEOREM OF YANO. (cf. Kobayashi [4]) If (M, g) is an Einstein
manifold: S — eg, then C2C coincides with the space of all Killing 1-
forms on (M, g).

THEOREM OF NAGANO [8]. / / (M, g) is an Einstein manifold: S = eg
with c > 0, then Cx — 0 for each X with 0 < X < 2c.

THEOREM 4.3. Let f: (ikf, g) —> (M, g) be the canonical isometric
imbedding of an irreducible symmetric R-space (M, g). Then, f is stable
if and only if M is simply connected.

PROOF. By Corollary of Theorem 4.2, / is stable if and only if
Ex = 0 for each X with 0 ^ X < 1/2. We prove the assertion in the
following four cases separately.

( i ) ikf is of Hermitian type.
(ii) M is not of Hermitian type, n^M) is finite and g is an Einstein

metric: S — eg.
(iii) M is not of Hermitian type, K^M) is finite and g is not an

Einstein metric.
(iv) M is of type U(r).
In case (i), it^M) = 0 and (M, g) is an Einstein manifold: S = eg

with c = 1/4 by (3.2). Thus Eo = 0 and \ = 1/2 by Theorem 2.4. There-
fore Bx = 0 for 0 < X < 1/2 by (4.3). Moreover, by Theorem of Nagano
Cx = 0 for 0 < A, < 1/2. Thus by (4.2) Ex = 0 for 0 < X < 1/2, and hence
/ is stable.

In case (ii), in the same way as (i) we get Eo = 0 and Bx = 0 for
0 < X < 1/2. From §3 we see that

0 <=> 0 < c < 1/4 .

Thus, if n^M) = 0 / is stable by the same reasoning as in case (i). If
nx(M) ^ 0, we have 0 < 2c < 1/2 and dim E2C = dim C2C = dim f > 0 by
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Theorem of Yano. Thus / is not stable.
In case (iii), M = Qp,fl(J8)(3 ^ p < q), n^M) = Z2 and 0 < cl =

(p - 2)/2(p + <? - 2) < 1/4. Thus 0 < 2c, < 1/2 and dim JE2fll ^ dim C2Ci ^
dim SO(p) > 0 by Theorem of Yano. Thus / is not stable.

In case (iv), n^M) = Z and so dim2£0 = 1. Hence / is not stable.
q.e.d.

REMARK 2. From the proof we see:
In case (i), n{f) = dim* Aut°(M);
In case (ii), n(f) = dim}) if n^M) = 0, and %{f) ^ dim/°(M, g) if

0.

THEOREM 4.4. Let (M, g) be a connected Hermitian symmetric space
of compact type and M a compact connected totally real totally geodesic
submanifold of (M, g) with dim M = dimc M. Then, M is a stable minimal
submanifold if and only if M is simply connected.

PROOF. It is easily seen that the stability of M in (Af, g) for a
TRG-pair ((ii?, g), M) is invariant under the equivalence of TRG-pairs and
that for the direct product ((M, g), M) = ((Mu ft), M,) x((Mu ft), M2), M
is stable in (Mf g) if and only if each Mt is stable in (Mif ft) (i = 1, 2).
Thus the assertion follows from Theorems 1.2 and 4.3. q.e.d.
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