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BOUNDEDNESS OF THE BERGMAN PROJECTOR
AND BELL'S DUALITY THEOREM

GEN KOMATSU
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Introduction. Suppose given a bounded domain Ω in Cn with smooth
boundary, and a positive integer s. In case Ω is strictly pseudo-convex,
Bell [3] has discussed the duality WΉ(Ω) c LΉ(Ω) c W8H(Ω)*, where
WΉ(Ω) denotes the space of holomorphic functions in Ω contained in
the L\Ω) Sobolev space W\Ω) of order s. He has shown that W8H(Ω)* =
W~Ή{Ω) as a Banach space and that the natural isometry A8: W8H{Ω) —•
W8H(Ω)* is given by

A8g(z) = (g,K( , z ) ) 8 f o r g e W 8 H ( Ω ) a n d z e Ω ,

where K( , •) stands for the Bergman kernel. The purpose of the present
paper is to observe that such a duality is most naturally stated in con-
nection with the following regularity condition on the Bergman projec-
tor K:

(R)S K: Wl{Ω) -* W8H{Ω) c W\Ω) is bounded .

In particular, we shall show that (R)J is equivalent to that W8H(Ω)* =
Wci'H(Ω) as a Banach space, where W~ι8H(Ω) denotes the closure of LΉ(Ω)
in W~8(Ω). Also an expression for A8 as above will be verified under
the assumption (R)J.

The regularity condition (R)J is the case without loss of derivatives
of the so-called condition R due to Bell [2] (see also Bell-Ligocka [8]),
while the condition R has been successfully used in the problem of
extending a given biholomorphic mapping smoothly to the boundary, a
problem which is expected to be solved affirmatively for pseudo-convex
domains (see Fefferman [11]). In particular, Ligocka [23] has given a
positive answer to the smooth extension problem for domains satisfying
the condition R, see also Bell-Ligocka [8], Bell [4], Bell-Catlin [7], Diederich-
Fornaess [10], and the references therein.

Observe that (R)S is satisfied if

(R)8 K: W8{Ω) -> W8H{Ω) c W\Ω) is bounded ,

which is another case of the condition R without loss of derivatives and

Research supported in part by Grant-in-Aid for Scientific Research, Ministry of Education.



454 G. KOMATSU

is known to be satisfied by a fairly wide class of pseudo-convex domains
including strictly pseudo-convex ones via Kohn's 3-Neumann theory in
[17], [19], [21], see also Kohn-Nirenberg [22] and Folland-Kohn [12]. On
the other hand, there is no known example of a domain satisfying the
condition R but actually with loss of derivatives in the sense of either
(R)J or (R)s. Our results may be regarded as giving an example in
which (R)S appears more naturally than (R)s.

The duality between W^8H(Ω) and W8H(Ω) is realized by a pairing,
which is a natural extension of the U{Ω) scalar product, but is different
from the distributional one between W"\Ω) and Wj(Ω). Such a pairing
is well-defined by virtue of a bounded right inverse Φs of K in (R)J,
an operator which is originally due to Bell [2], [3], [4]. It is somehow
surprising that such an operator exists even without assuming (R)J. As
a consequence, (R)J turns out to be equivalent to either one of

(R')S KWS(Ω) c W8H{Ω) , (R")o8 KWS(Ω) = WSH{Ω) .

This fact will be proved in Section 1, together with the well-definedness
of the pairing above. Properties of the operator Φ8 will be further dis-
cussed in Appendix.

We shall state and prove our main results in Section 2, theorems on
the duality and the isomorphism Λ8. This duality may be compared with
that between W~8(Ω) and W$(Ω), where the inverse of Λ8 corresponds to
the Green operator for the zero Dirichlet problem associated with the
Dirichlet integral (-,•)•• A s w i l 1 be seen in Section 3, it turns out that
the operator A8 admits an eigenfunction expansion, where the system of
normalized eigenfunctions is complete and orthogonal in UH(Ω) and in
W8H(Ω) simultaneously. The corresponding Fourier series expansion will
be possible for elements of LΉ(Ω), W8H{Ω) and W8H(Ω)* = WςΐH(Ω)
under the assumption (R)J.

An analogous argument is possible for the Szegδ projector and the
Szego kernel. In Section 4, we shall show the corresponding theorems
on the duality and the isomorphism.

The properties of the operator Φ8 needed in Section 1 have been
proved by Bell [3], [4] in case Ω is pseudo-convex. In Appendix, we
shall describe how his proof is modified to provide a proof in the general
case. More properties of Φ8 will be also involved.

It should be mentioned that Steven Bell has announced and informed
the author during the summer meeting at Oberwolfach, 1983, of the
following results:

(1) If Ω is pseudo-convex, then W£H(Ω) = W~8H(Ω) for 0 < s ^
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( 2 ) If Ω is pseudo-convex and satisfies the condition R, then W°°H(Ω)
and W~°°H(Ω) are mutually dual via a pairing which is a natural exten-
sion of the L\Ω) scalar product;
cf. Bell-Boas [24]. By virtue of (1), we do not need to consider the
closure Wά'H(Ω) as far as pseudo-convex domains are concerned, while
(2) is regarded as a Frechet space version with loss of derivatives of
our Banach (or Hubert) space result.

1. A bounded right inverse of the Bergman projector (preliminar-
ies). Let Ω be a bounded domain in Cn, n ^ 1, with smooth boundary.
Given a positive integer s fixed throughout, we denote by W\Ω) and
Wi(Ω) the L\Ω) Sobolev space of order s and the closure of C™(Ω) in
W\Ω)9 respectively, equipped with a standard scalar product ( , ). a n d
the corresponding norm || ||8. The L\Ω) scalar product and norm will
be denoted by ( , )o a n d IIΊU respectively. Denoting by Hoi (Ω) the
totality of holomorphic functions in Ω, we set

W8H(Ω) = W8(Ω) n Hoi (Ω) , UH{Ω) = L\Ω) n Hoi (Ω) ,

and regard them as Hubert subspaces of WS{Ω) and L\Ω), respectively.
Recall that the orthogonal projector K: L\Ω) -> LΉ(Ω) c L\Ω) is

called the Bergman projector associated with Ω. We are concerned with
the following regularity condition:

(R)o8 K: W!(Ω) -> WΉ(Ω) a W\Ω) is bounded .

It is somehow surprising that K has a priori a bounded right inverse
even without assuming (R)J as follows.

LEMMA 1.1. There exists a bounded linear operator Φ8: W8H(Ω) —>
WZ(Ω) such that KΦ8g = g for geW8H(Ω).

The proof of Lemma 1.1 will be given in Appendix with more
properties of Φ8. Let us here provide its immediate consequences, the
first of which is related to the negative norm || ]|_β on the L\Ω) Sobolev
space W~'(Ω) of order — s.

LEMMA 1.2. There exists a constant C8 > 0 such that

l(/,flr)ol^C.||/|U|flr||. for (/, g)e UH(Ω) x WH{Ω) .

PROOF. Since (/, g)0 = (/, KΦ8g\ = (/, Φ8g)0, it follows that C8 is re-
alized by the operator norm of Φ8 in Lemma 1.1. q.e.d.

By virtue of Lemma 1.2, it is possible to generalize ( , )o uniquely
to a pairing ( , )* on W^8H(Ω) x W8H(Ω), where W-λ

8H(Ω) stands for
the closure of LΉ{Ω) in W~8(Ω). Then,
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\(f,g)*\£C.\\f\U\g\\. for (/, g)e W^8H(Ω) x W8H{Ω) ,

with the same constant C8 as in Lemma 1.2.

REMARK 1.1. Let W~8H(Ω) = W'\Ω)(\Έίo\{Ω). In case fl is strictly
pseudo-convex, Bell [3] has proved the density statement

(D)-s WJH(Ω) = W'8H(Ω) ,

by using a stability property for the Bergman kernel due to Greene-Krantz
[13]. However, it is not known whether (D)~8 follows from (R)J or not.

Another consequence of Lemma 1.1 is in order. Though it will not
be used in what follows, it may have its own interest.

PROPOSITION 1.3. The condition (R)J is equivalent to either one of:

(R')J KWS(Ω) c WΉ(Ω) , (R")o8 KWS(Ω) = W8H(Ω) .

PROOF. By Lemma 1.1, we have KW!(Ω)z>WH(Ω), so that (R')S and
(R")ί are equivalent. Obviously, (R); implies (R')J. If (R')o

s is satisfied,
then the operator K: W!(Ω)^>WH(Ω) is closed, for if is bounded in L\Ω).
Hence, (R); follows from (R')ϊ by the closed graph theorem. q.e.d.

REMARK 1.2. The situation in Proposition 1.3 will be more clarified
if we make Φ8 canonical as in [3]. Denoting by W%HL(Ω) the null space
of K: Wo(Ω) —• LΉ(Ω), we have the orthogonal decomposition WZ(Ω) =
WSHL(Ω)®WSHL(Ω)L

9 where WSHL(Ω)L stands for the orthogonal com-
plement of WQH1(Ω) in Wo(Ω). By using the orthogonal projector
Pos: WS(Ω) -> WSHL{Ω)L c W£(Ω), we define

Φ?an = Po8Φs: WSH(Ω) — WSH\ΩY ,

which is bounded and injective. Moreover, setting

K8^ = K: WSHHΩ)1 -> LΉ{Ω) ,

we have that K!&nΦ
8

c&ng = g for ge W8H(Ω). Hence, (R')J is equivalent to
either one of the following conditions:

(1) Φcan is surjective;
(2 ) Φcan is a Banach space isomorphism;
( 3 ) KUTiH\Ωy c WΉ(Ω);
(4 ) iζfan: WϊHL(Ω)L -> W8H(Ω) is a Banach space isomorphism.

REMARK 1.3. Observe that (R)J follows from

(R)s K: WS(Ω) -* W8H(Ω) c W\Ω) is bounded .

It has been known (cf. Kohn [21]) that (R)s holds if the 3-Neumann problem
for (0, l)-forms is subelliptic. This fact is implicitly involved in the
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proof of the smoothness of the 3-Neumann solutions, see Kohn-Nirenberg
[22] and Folland-Kohn [12]. In particular, (R)8 is satisfied by a fairly
wide class of pseudo-convex domains including strictly pseudo-convex
ones, see Kohn [17], [19], [21].

Notice that (R)8 always holds when n = 1, for the 3-Neumann problem
reduces to the zero Dirichlet problem in this case.

2. A duality theorem and an isomorphism theorem. We are in a
position to state and prove our main results. We shall reformulate
Bell's results in [3], established for a strictly pseudo-convex domain Ω,
in connection with the regularity condition (R)J on the Bergman pro-
jector K.

Let us begin with a duality theorem. We are concerned with the
duality statement

(*)8 W^HiΩ) and W*H(Ω) are mutually dual as Banach spaces
via the pairing (-,•)#;

that is, the mappings W~X

8H{Ω) 3 f i— (/, )He W8H(Ω)* and W8H(Ω)3g\-+
( , g)H e W~ιH(Ω)* are Banach space isomorphisms, where the dual space
X * of a Banach space Xis regarded to consist of the totality of bounded
conjugate linear functionals on X.

THEOREM 1 (duality theorem). The conditions (R)8. and (*)8 are
equivalent.

The next theorem is concerned with an isomorphism, which is natu-
rally related to the duality (*)8. Let K(zfw) for z,weΩ denote the
Bergman kernel associated with Ω, which is the reproducing kernel as-
sociated with L2H(Ω) and is related with the Bergman projector K by

(2.1) Ku(z) = (u, K{ -, z)\ for u e L\Ω) and z e Ω .

THEOREM 2 (isomorphism theorem). // (R)s holds, then a Banach
space isomorphism A8: W8H(Ω) —> WϊγH(Ω) is given by

(2.2) Λ8g(z) = (g, K( , z))8 for ge W8H{Ω) a n d z e Ω ,

which satisfies

(2.3) (g, h). = (Λ g, h)H for g,heW8H(Ω).

PROOF OF THEOREM 1. Since WS(Ω) is dense in L\Ω) and K is
bounded in L2(Ω), it follows that (R)J implies the following density con-
dition

(D)8 W8H{Ω) is dense in LΉ(Ω) .
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Let us assume (D)8. Then, we may consider the duality

(2.4) W8H{Ω) ̂  LΉ{Ω) = LΉ{Ω)* ^ WΉ{Ω)* ,

where the second inclusion is given by the adjoint operator of the first
one, so that both inclusions are dense and continuous with the operator
norms ^ 1. More precisely, by virtue of F. Riesz' theorem, there exists
a linear surjective isometry Λ~8: WΉ(Ω)* —• W'H(Ω) such that

(2.5) {Λ~*f, g)8 = (/, g\ for (/, g) e UH(Ω) x W°H(Ω) ,

a relation which determines Λ'8 uniquely. Then, the duality (2.4)
between WΉ{Ω)* and W*H(Ω) is realized by a pairing defined by

W8H(ΩY x W8H(Ω) 3 (/, g) H> {Λ~8f, g)8eC ,

which is a natural generalization of ( , )o In particular, the norm
HHII- on W8H(Ω)* satisfies and is uniquely determined by

I l l/I l l- . = s u p { | ( / , g)0\;geW8H(Ω), \\g\\8 = 1}

for feLΉ(Ω). On the other hand, by virtue of Lemma 1.2, the second
inclusion in (2.4) extends uniquely to W^H(Ω) >̂ W8H(Ω)*, and | | |/ | | |_. ^
C.||/| |_ f for feWjH(D); moreover,

Ill/Ill-. = sup{|(/, g)H\; geW*H(Ω), \\g\\8 = 1} .

Hence, recalling that W8H(Ω) is a Hubert space, which is reflexive, we
see that (*)β holds if and only if W8H{Ω)* = W^HiΩ) as a Banach space
(possibly with different norms), which is further equivalent to the exis-
tence of a constant C8 > 0 such that

(2.6) 11/11-.̂  GHI/IIU for feUH(Ω).

Suppose that (R); holds, so that (D)8 is satisfied. Then, by using
the duality (2.4), we have, for (/, u)eLΉ(Ω) x T70

8(i2), that

where \\K\\8>8 stands for the operator norm of K in (R)J. Hence, recalling
that W~8(Ω) is defined by the duality

(2.7) WZ(Ω) -> L\Ω) = L\Ω)* — Wtψ)* = W~8(Ω) ,

we get (2.6) with C/ = ||ίΓ||8,8, obtaining (*)8.
We next observe that (*)8 implies (D)8. In fact, if (*)8 holds and

/ e LΉ{Ω) satisfies (/, g)H = (/, g\ = 0 for any g e WSH(Ω), then / - 0 e
W-fHiΩ), obtaining (D)s.

Suppose that (*)s is satisfied, so that (D)8 is valid and that (2.6) holds
with some C's > 0. Then, taking the duality (2.7) into account again,
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we have, for (/, u)eLΉ(Ω) x Wί(Ω), that

\(f9κu\\ = \(ffu)o\ύ c:\\\f\\u\u\\Λ.
Therefore, by virtue of the duality (2.4), we get KueW8H(Ω) and
\\Ku\\8^ Cs\\u\\8f obtaining (R)J. (Incidentally, the least possible C[ is
attained by || jBΓ||βpβ.) q.e.d.

PROOF OF THEOREM 2. Let us begin with observing that (R); implies

(2.8) K( ,z)e W8H(Ω) for z e Ω ,

so that the right hand side of (2.2) makes sense. In order to prove
(2.8), we recall that JSΓ( , •) is sesqui-holomorphic and Hermitian sym-
metric. It then follows from (2.1) and the mean value property for
harmonic functions that

K(w, z) = (φz, K{ -, w)\ = Kφz(w) for z, w e Ω ,

where φz e C™(Ω) is radially symmetric around z and satisfies (φz, l)0 = 1,
an expression which is due to Bell [2], cf. also Kerzman [14]. Hence,
(R)os implies (2.8).

It is easy to see that the desired isomorphism A8 is given by A8 —
(A~8)-1 with A'8 in the proof of Theorem 1, if we recall that W£H(Ω) =
W8H(Ω)* as a Banach space. In fact, (2.3) follows from (2.5). Setting
g = K(-,z) in (2.5), we have, by (2.1), that

f ( z ) = U~8f, K( , z ) \ f o r / e U H { Ω ) a n d z e Ω ,

implying (2.2). q.e.d.

REMARK 2.1. Suppose that Ω is pseudo-convex. Then, the density
condition (D)8 is valid by virtue of Kohn's weighted 3-Neumann theory
in [20]. More precisely, the space W°°H(Ω) = C°°φ) Π Hoi (fl) is dense
both in W8H{Ω) and in UH{Ω), see Catlin [9].

REMARK 2.2. The duality (2.4) may be compared with (2.7), in which
A~8 corresponds to the Green operator Aό8: W~8(Ω) —> WS(Ω) for the zero
Dirichlet problem associated with the Dirichlet integral ( , ), on WS(Ω) x
WS(Ω). The inverse Al = (Ao8)'1 is realized by an elliptic partial differ-
ential operator, for one may integrate by parts, cf. (2.2).

3. Fourier series expansion in terms of a doubly orthogonal system.
Suppose that the density condition (D)8 holds. Noticing that the inclu-
sions in (2.4) are compact, we may discuss the eigenfunction expansion
of A8 in a standard manner. It will turn out that every element of
W8H(Ω)* admits a Fourier series expansion in terms of a system of
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eigenfunctions of A8. Taking account of Theorem 1, we shall have:

THEOREM 3 (expansion theorem). // (R)J is satisfied, then there exists
a complete orthonormal system {h$5 of UΉ(Ω), which is also orthogonal
in W8H{Ω), such that

/ = Σ (/, Λ})irΛJ for feWjH(Ω),
3

where the series in the right hand side converges in W~8(Ω). Moreover,
every h) is an eigenf unction of A\

PROOF. Suppose that (D)8 is satisfied. By using the inclusions in
(2.4), we can realize Λ~8: W8H(Ω)* -» W*H(Ω) as a linear operator Ai8 in
UH(Ω), which is compact and injective with dense range. By using
(2.5), we have

(/, Aι8h\ = (A~L

8f, Aι8h\ = {A~L

8f, h\ for f,he UH{Ω) ,

so that Ai8 is self-adjoint and positive. Thus, the inverse A'L = (Ai8)'1

is a self-ad joint realization of A8 in UH(Ω).
Observe that Al8 admits an eigenfunction expansion

Aϊ8f = Σ λ K/, Λ})oΛJ for feUH{Ω),

with λj ^ λ}+1 > 0 and lim λ} = 0, where {ft,}},- is a complete orthonormal
system of L2H(Ω). Notice that

Al8h) = λ}Λ} , Aih'i = (λ})-^} ,

so that hϊeW8H(Ω). Then, by (2.5),

(ΛJ, Λί). = (λj)-1^* , WO" 1- || Λ} | | ϊ .

That is, {h8-\j is orthogonal also in W8H{Ω); thus, the name a doubly
orthogonal system. Setting g) = (λJ)1/2Λ}, we obtain a complete ortho-
normal system {g$s of W8H(Ω).

Every element g e UH{Ω) admits a unique Fourier series expansion

ff = Σ (Λ ΛJλΛJ with ||flr||J = ΣIG7,Λ})ol2.
3 3

If ge W8H(Ω), then (g, Λ})0ΛJ - (g, gfi.g% so that

(3.1) llβrlil l l i
Moreover, given geLΉ(Ω), we see that geWH(Ω) if and only if the
right hand side of (3.1) is finite. In fact, if we identify LΉ(Ω) with
the space (ϊ2) of square summable complex sequences via the correspon-
dence
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LΉ{Ω) 3 Σ ttjfcj ~ {α,}, e (I1) ,
3

then TFβJΪ(i2) corresponds to

(w°) = {{αj}y e (Z2); Σ (MH^-I 2 < + oo}.

The scalar products with the norms on UH(Ω) and W8H(Ω) are trans-
planted on (Z2) and (w8), respectively, as follows:

(ίαy}y, 0/Wo = Σ <*A , II {**}, IIS = Σ I «i I2 ,
3 3

({<},-, WW. = Σ ( M ) " 1 ^ , || {α}}, ||28 = Σ (λ})-Ί «512

Let us consider the duality

(3.2) (w8) ^ (ί2) = (Z2)* ̂  (wf)* ,

which is a copy of (2.4). Then, (w8)* consists of the totality of complex
sequences {α"}y such that

l l . Σ } | 5 | ,

and the duality (3.2) between (w8)* and (w8) is realized by a pairing
defined by

(w8)* x (w8) 3 ({α}% {α5W i - Σ α}'5} e C .
i

In other words, every element / e WΉ(Ω)* admits a unique Fourier
series expansion

(3.3) / = Σα"ΛJ in TΓ8ίί(i2)* with | | |/ | | |L. = Σ λ}|α}Ί2 .
3 3

Suppose that (R)J holds, so that W8H(Ω)* = W^Hψ) as a Banach
space. Then, the Fourier series expansion in (3.3) converges in W~*(Ω),
and the coefficients are given by a" = (/, h's)H. Therefore, the proof is
finished. q.e.d.

REMARK 3.1. Under the condition (D)8, the spaces W8H(Ω) and
WΉ(Ω)* are characterized by decreasing and growth conditions, respec-
tively, on the Fourier coefficients relative to the eigenvalues of the
operator Λ8. This fact may be compared with a characterization of the
I/2 Sobolev spaces defined on the torus, where —\a\2 is the eigenvalue
of the Laplacian associated with the eigenfunctions eia".

4. The case of the Szegό projector. An argument similar to that
in the preceding sections is also possible for the Szegδ projector in place
of the Bergman projector. In order to describe it, we begin with recal-
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ling the definitions of the Szegδ kernel and the Szegδ projector.
Let L\H{Ω) denote the total i ty of holomorphic functions in Ω posses-

sing t h e U boundary values, equipped with t h e L\dΩ) scalar product.
Recall t h a t L\H(Ω) admits the reproducing kernel Kb(z, w) for z, weΩ,
which is called the Szego kernel associated with Ω. Correspondingly,
the orthogonal projector Kb: L\dΩ) -+ LΉb(dΩ) c L\dΩ), where LΉb(dΩ) =
L\H(Ω)\iQ9 is called the Szego projector associated with Ω.

Sett ing W8Hb(dΩ) = W\dΩ) Π LΉh(dΩ), let us consider the following
condition:

(R6)
8 Kb: W*(dΩ) -> W°Hb(dΩ) c W*(dΩ) is bounded ,

implying that

(DbY WΉb{dΩ) is dense in LΉb(dΩ) .

The situation here is much simpler than that before, for Wo(dΩ) = W8(dΩ)
so that W~8(dΩ) = W8(dΩ)*. Hence, we have obviously that

I </, g) I ̂  || / IU.II g ||. for (/, g) e W^8Hb{dΩ) x W8Hb{dΩ) ,

where WΓi'Hb(dΩ) denotes the closure of LΉb(dΩ) in W~8(dΩ), and < , •>
stands for the sesqui-linear distribution pairing on W~8(dΩ) x W*(dΩ).
Then, as in Section 2, we first have:

THEOREM 1& (duality theorem). The condition (Rb)
8 is satisfied if and

only if

(*&)8 Wci8Hb(dΩ) and W8Hb{dΩ) are mutually dual as Banach spaces
via the pairing < , •>.

The proof is analogous to that of Theorem 1, and we shall not repeat
it here. Let us only remark that if (R6)

s is satisfied, then there exists
a constant C[ > 0 such that

lll/HL^II/m^C ill/HU for feUHb(dΩ),
where ||| |IU. denotes the norm on W8Hh{dΩY1 and the least possible C/
is attained by the operator norm ||i£&||8>8 of Kb in (R6)

8.
Corresponding to Theorem 2, we next have:

THEOREM 2δ (isomorphism theorem). If (R6)
8 holds, then a Banach

space isomorphism Λs

b: W
8Hb(dΩ) —> Wci8Hb(dΩ) is given by

Λlg(z) = {g, Kb{ , z)\ for g e W8Hb(dΩ) and z e Ω ,

which satisfies

(<7, h)s = (A\g, h) for g,he WsHb(dΩ) .

Again, the previous proof applies, if we notice that (R6)
8 implies
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K b ( - , z ) e W Ή b ( d Ω ) f o r zeΩ.

This fact is a consequence of the following expression due to Kerzman-
Stein [15]:

where P(z, ζ) for (z, ζ) 6 Ω x dΩ stands for the ordinary Poisson kernel;
in fact, for z, w e Ω,

Kb(w, z) = f P(z, ζ)Kb(w, ζ)dS(ζ) = [KbP(z,
JdΩ

where dS denotes the surface element of dΩ.

It will be now obvious that we have:

THEOREM 3δ (expansion theorem). // (R6)
8 is satisfied, then there

exists a complete orthonormal system {hs^ of L2Hb(dΩ), which is also
orthogonal in WΉb(dΩ), such that

/ = Σ</,Λ}>λ} for feW« Hb(dΩ)f
3

where the series in the right hand side converges in W~8(dΩ). Moreover,
every h) is an eig en function of A\.

REMARK 4.1. Corresponding to Proposition 1.3, we have, without
change of the proof, that (Rδ)

s is equivalent to either one of:

(RO8 KhW
8{dΩ) c W8Hb(dΩ) , (RΠ8 KbW\dΩ) = W8Hb(dΩ) .

We also have the orthogonal decomposition W8(dΩ) = W8Ht(dΩ) φ
W8Ht{dΩ)\ where WH£(dΩ) denotes the null space of Kb: W\dΩ) -»
LΉb(dΩ), and WaH£(dQ)L stands for the orthogonal complement of
W'HHdΩ) in W\dΩ). Then, (R'b)

8 holds if and only if Kb: W8Ht(dΩ)L ->
W8Hb{BΩ) is a Banach space isomorphism.

REMARK 4.2. It is easy to see that (R6)
8 holds if the 96-Neumann

problem is subelliptic, as in the case of the Bergman projector stated in
Remark 1.3. In particular, (R6)

s is satisfied by a strictly pseudo-convex
domain in Cn with n ^ 3, see Kohn [18] and Folland-Kohn [12].

Notice that (R6)
8 always holds when n = 1, a fact which is seen, for

instance, from an expression of the Szego projector in terms of the
Cauchy projector due to Kerzman-Stein [16].

Appendix. PROPERTIES OF THE OPERATOR Φ8. Let us here prove
Lemma 1.1 with more properties of Φ8. After reviewing a construction
of Φ8, we shall state and prove these properties of Φ8. Remarks will be
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added finally.

A.I. CONSTRUCTION OF Φ8 The operator Φ8 given here is a revised
version, due to Barrett [1], of the one given originally by Bell [2], [3], [4].

Let r e C°°(Cn; R) be a smooth defining function of Ω, that is, Ω =
{zeCn; r(z) < 0} and dr Φ 0 on dΩ. We cover Ω by relatively open sets
UQ, Ulf , Un in such a way that Uo c Ω and rt Φ 0 on Ut for 1 ^ ΐ ^ w,
where r£ = dr/dZi. Let {̂  }y be a smooth partition of unity subordinate
to the covering {Uό}ό of Ω, that is, <j>όeC~(Uτ) and Σ & = l We then
define Φ8 by setting

(A.I) Φ*u = φQu + ^ - ± (Γί) ( M ) >
s ! <=i

where 27 is the formal adjoint of Γt defined by Γ ^ = (rl)"1 du/dzif so
that T[u = -diu/rj/dzt.

If one wants Φβ to be in a more intrinsic form, then one may also set

(A.I)' Φ'u = ̂ oW + 4 U A | g - Ί [ ( l - φo)u] ,

where tf denotes the formal adjoint of 9, and σ(d, dr) stands for the
principal symbol of 3 in the direction dr.

A.2. PROPERTIES OF Φ8. Assuming Ω to be pseudo-convex, Bell has
proved Lemma 1.1 in [3], [4]; he also mentioned in [4] that the assump-
tion of pseudo-convexity is superfluous. Since no literature on Lemma
1.1 is found for a general domain, we shall describe how BelPs proof in
[3], [4] is modified to provide a proof in the general case. The properties
of Φ8 in Lemma 1.1 are involved in the following:

PROPOSITION A.I. The differential operator Φ8 in (A.I) or (A.I)' satis-
fies the following properties, where s' is supposed to be a non-negative
integer:

(A.2) Φ8: W8Ή{Ω) -• W8\Ω) is bounded

(A.3) Φ8W8Ή(Ω) c Wi\Ω) for s' ^ s

(A.4) KΦ8g = g for ge UH{Ω)

(A.5) KΦ8u = Ku for u e W8(Ω) .

A.3. PROOF OF PROPOSITION A.I IN THE PSEUDO-CONVEX CASE. The

following argument is essentially due to Bell [3], [4]. Suppose that Ω
is pseudo-convex. Then, W°°H{Ω) is dense in W*Ή(Ω) for any s', see
Remark 2.1. Given h e W^HiΩ), we have, integrating by parts, that
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(A.6) (Φ8u, h)0 = (Φ8-1™, h\ = = (u, Λ)o for u e W8(Ω) ,

which remains valid for heL2H(Ω)y obtaining (A.5). By a similar use
of integration by parts,

\\Φ8g\\8> ^ C8>s>\\g\\8> w i t h s o m e c o n s t a n t C8>8> > 0 ,

first for geW°°H(Ω) and then for geW8Ή(Ω), implying (A.2). Since
Φ8W0OH{Ω)c.C~(Ω)C\WZ{Ω), (A.3) follows from (A.2). As in (A.6), we
have (Φ8g, h\ = (g, h\, first for g, h e W°°H(Ω) and then for g, h e LΉ{Ω)
by virtue of (A.2), obtaining (A.4). Therefore, the proof is finished in
case Ω is pseudo-convex.

A.4. A CUT-OFF FUNCTION. If Ω is not necessarily pseudo-convex,
then we have to be more careful on the boundary integrals arising from
integration by parts. We then need a cut-off function χε, depending on
a small parameter ε > 0, which translates the growth rate of the
"boundary integrals" to negative powers of s.

Given ε > 0 small, let Xε denote the characteristic function of the
set Ωε = {zeΩ; distance (z, dΩ) > ε}. In order to mollify Xε, we choose

a non-negative function φ e C™{Cn) such that I φdV = 1 and supp (φ) c

{zeCn; \z\ < 1}, where dV denotes the standard volume element of Cn.
Setting φε{z) = ε~2nφ(z/ε), we define χε by

l(z) - J Uz - w)φε{w)dV{w) = J φε(z - w)Xε(w)dV(w) .

Then, χε satisfies χε e C0°°(Ω), 0 <: χε ^ 1 and χε = 1 on Ω2ε. Moreover, for
a non-zero multi-index α e Zln,

(A.7) supp (D«χε) c Ω\Ω2ε , r | α | | D«χε \ £ Cα ,

with some constant Cα > 0 independent of ε, where D — (Dlf , D2n)
denotes the standard differentiation with respect to the real coordinates
in Cn divided by the imaginary unit ( —1)1/2.

A.5. PROOF OF PROPOSITION A.I. In order to prove (A.5), we take
(u, h) e W8(Ω) x LΉ(Ω). Taking account of (A.7), we have, integrating
by parts, that

(L(Φ8u - Φ8~ιu), h\^0 as ε -> 0 ,

obtaining (A.5). By a similar use of integration by parts, we get

U Σ
\α\<>8'

for g e W8Ή{Ω), with some constant C8)8> > 0, implying (A.2). Taking
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(A.2) into account, we obtain (A.4) as in the proof of (A.5). In order
to prove (A.3), it suffices to show that

(Φsg, Dav\ = (DaΦ8g, v\ for (g, v) e W8Ή(Ω) x C°°(Ω) ,

whenever \a\ ^ s' ^ s, a fact which follows from

(LΦ8g, Dav)0 - (LDaΦ8g, v)0 -> 0 as ε -> 0 .

Therefore, t h e proof is completed.

A.6. MISCELLANEOUS REMARKS. Since Φ8: W8+S'(Ω) -> WS'(Ω) is con-

t inuous, it follows from (A.5) t h a t t h e following two conditions a re

equivalent:

(R)00 K: C°°(Ω) - • C°°(Ω) is continuous

(R)°°o K: W?(Ω) = Π WS\Ω) -> C°°(i2) is c o n t i n u o u s ,
s'>0

either of which is called the condition R. The equivalence of (R)°° and
(R)S° has been observed by Barrett [1], see also Bell-Boas [6].

By (A.5), we have KWS

Q\Ω) z> KW8+8'(Ω), so that

Π KWi\Ω) - Π KW8\Ω) 3 W°H(Ω) .
s'>0 s'>0

Then, it may be natural to ask whether

(A.8) KWS°(Ω) 3 W°°H(Ω) ,

which is actually valid. Assuming Ω to be strictly pseudo-convex, Bell
has proved (A.8) in [3], where he must have used (A.2) with s' = s — 1.
Subsequently, an elegant proof of (A.8) in the general case has been
given by Bell-Catlin [7], which is based on the fact that

(A.9) (Δu, h)0 = 0 for (u, h) e WZ{Ω) x UH(Ω) ,

where Δ stands for the real Laplacian. For an another application of
(A.9) in a context similar to that in [7], see Bell [5].
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