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TOWARDS AN ALGEBRO-GEOMETRIC INTERPRETATION
OF THE NEUMANN SYSTEM
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Abstract. Lax equations and constants of motion for C. Neumann's
system of constrained harmonic oscillators are derived in a systematic way
from the Burchnall-Chaundy-Krichever theory of 2nd-order differential
operators D2jrq{t). The approach is based on a geometric step: to map the
algebraic curve and linebundle associated with D2 + q(t) to a larger projective
space by means of a suitable linear system. The image of D2 + q(t) is,
roughly speaking, just the Lax operator for the Neumann system.

1. Introduction. In the 1920's, J. L. Burchnall, T. W. Chaundy, and
H. F. Baker studied differential operators L = Dn + q2(t)Dn~2 + +
qn(t) (D = (d/dt)) that commute with at least one other differential operator
B of some order m relatively prime to n [2 — 5]. They realized that the
commutant

L = {diff. ops. A\[L,A] = 0}

of such an L has the structure of the affine coordinate ring of an
algebraic curve &,

L = C[xlf - , xr]/ideal ,

and, especially in Baker's paper [2], that the determination of the operator
L from the curve & requires some additional data: most important
among those, when & is a smooth affine curve, is a linebundle with a
one-dimensional space of holomorphic sections. From a suitable section,
one constructs an eigenfunction ψ of L, and then recovers L itself.

These remarkable results were largely forgotten, and eventually
rediscovered, with improvements, by Krichever [13] in the late 1970's.
His motivation was the recently established connection between commuting
differential operators and soliton solutions of integrable partial differential
equations, such as the Korteweg-de Vries equation [9, 11, 13, 14, 17].
In the last few years, the relation between linebundles over algebraic
curves and special differential operators has led to the discovery of many
amazing "coincidences". In this paper, I will explain one such "coinci-
dence", the occurrence of integrable constrained oscillator systems (par-
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ticularly, the classical one studied by C. Neumann) in the theory of
commuting differential operators, by a simple and fairly natural geometric
construction.

There is more background to be covered before the results can be
made precise. I will consider only second-order operators L = D2 + q(t)
that commute with an operator B of odd order. B will be taken to be
of minimal order amongst all the odd-order operators commuting with
L. Then there is an irreducible polynomial equation in C[L, B],

B2 - P(L) = 0

satisfied by L and B. The explicit construction of all the L's and B's
subject to this particular relation involves a common eigenfunction
Ψ(t, (x, y)) of

= xψ

Bψ = yψ .

Such a ψ exists precisely because L and B commute, and the eigenvalues
x, y are related by

y2 - P{x) - 0 .

Put differently, ψ is parametrized by the points p = (x, y) of the hyper-
elliptic curve &\ y2 — P(x) — 0, which will be assumed to be smooth. In
Section 2, further details of this theory, which goes back to Baker [2],
will be reviewed.

This is one ingredient of the present paper. The other ingredient,
an observation apparently due to J. Moser and E. Trubowitz, is a sur-
prising connection between these operators D2 + q(t) and a certain
mechanical problem proposed and solved in 1853 by C. Neumann, probably
to illustrate the power of the (then) new ultra-elliptic integrals ( =
hyper elliptic, of genus 2) [18]. Here is the "less famous Neumann
problem". Take n independent linear oscillators,

and impose an external force q,

chosen so that the constraints

(l) Σ£ = i,Σe£ = o
ί = l 1 = 1

on the displacements & are satisfied for all time. It is easy to see that
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the constraining force q must be

( 2 ) g = Σ Xi& + &
ϊ = l

The resulting system,

(3 ) ξ, + ( g xt& + ξήζj = xjξj U = 1, , n) ,

was solved via (ultra-elliptic) quadratures by Neumann for n = 3. Over
100 years later, it resurfaced in some geometric investigations ([25]—I
have not seen this paper), as a counterexample to dynamical systems
misconceptions [8], as one of a whole class of integrable Hamiltonian
equations living on coadjoint orbits of various infinite-dimensional Lie
algebras [1, 19, 21], and finally as prototype of a number of remarkable
dynamical systems related to the geometry of quadric surfaces in pro-
jective space [12, 15]. Neumann's system is clearly not a run-of-the-mill
o.d.e.

Its relation to L = D2 + q(t) is suggested by the oscillator equation
h + Qξj = xύζi O n e m a y choose [14] certain values of x in the eigenvalue
problem Lψ = xψ — say, xl9 •••,&„ — and corresponding eigenfunctions
ζi, "mf ξn (taken with specific normalizations) such that

(4) Σ S = 1 and Q(*) = Σ*A(ί) 2 + fM .

When this representation of q(t) is inserted into the eigenvalue equation

the Neumann system (3) is recovered.
Now, while it is quite easy to derive these formulas, and so to get the

Neumann system from the Baker-Burchnall-Chaundy-Krichever theory of
D2 + q(t), the actual solution (by hyperelliptic quadratures) of the Neumann
system required some inspired guesses [15, 16]. It ought to be possible
to be possible to say: take all that is known about D2 + q(t), do such-
and-such, and arrive at all that is known about the Neumann system.
This paper takes a step towards that goal. It will be shown that the
Neumann sytem provides, in a sense to be made precise, the minimal
protective model of the D2 + #(£)/curve ̂ /Baker linebundle-setup. Within
a projective model, one might be able to see the geometry of quadrics
[15] appearing, but that remains to be worked out.

The content of the rest of this paper is the following. In Section
2, I review the facts about commuting pairs of operators L, B, with
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L = D2 + q(t). As already mentiond, there arises, in a natural way, a
curve &\ y2 — P(x) = 0; moreover, there is a one-parameter family of
linebundles, {~£̂ }, such that an appropriately normalized section of SftQ

produces the common eigenfunction ψ of

Lψ = xψ

Bψ = yf

at t = ί0. The discussion is only a very concrete version of what can be
found in [10, 17].

In Section 3, I ask: how can the curve & and the family {£ft} be
realized geometrically? It will be remembered that each £ft has a one-
dimensional space of regular sections. This is not an easy geometric picture
to visualize: the linear system corresponding to Sf% is not cut out on &
by a simple family of curves. One might therefore try to increase the
dimension of the linear systems corresponding to {<Sft}, most obviously by
forming the tensor products {^ (g) £f(Z)}, with Sf{Z) the linebundle
corresponding to some ί-independent divisor Z, so that £?t ® £?{Z) has
enough sections to allow a reasonable map into projective space. This
can be done, but in very many ways, so I impose one more requirement:
I ask that the family {£ft ®J*f(Z)} correspond to a pair of commuting first-
order matrix differential operators, just as {^ft} determined the scalar
operators L, B. So, I look for a projective image of & that "respects"
the family {^}, and realizes the commutant of L in the commutant of
a first-order matrix differential operator L. An embedding cannot always
be achieved, but in any case, the least-dimensional reasonable map turns
out to produce the Neumann systm.

Exactly how, will be explained in Section 4. There I derive the
explicit formulas — constants of motion and Lax pairs — that form the
basis of [1, 15, 19, 20]. It turns out that there are two types of oscillator
systems that can arise, depending on the divisor Z used in the extension
of Sft by £?{Z). If Z is supported at Weierstrass points of ^?, one
recovers the Neumann system (3); otherwise, one arrives at another
mechanical system, studied in 1877 by E. Rosochatius [22].

Section 5 describes, very briefly, the directions of already accomplished
[23, 24] and still hoped-for generalizations, and comments on the case of
of a singular curve ^ .

Acknowledgements. The explict formulas in Section 4 were obtained
while I was supported by a fellowship at RIMS, Kyoto University, in
1980-81. The explanation given in Section 3 was invented only recently;
I am indebted to N. Ercolani and R. Schilling for discussions that
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82-K-0068, and AFOSR-83-0227.

2. Review of Baker functions and linebundles. Let L = D2 + q(t)f

and let B = D29+1 + u^D29'1 + + u2g+1(t) be the operator of minimal
odd order commuting with L. It is shown in [17] that there is only-
one such B, up to constant scalar multiples. One can learn from [3, 10,
17], furthermore, that L and B satisfy an irreducible polynomial equation

B2 = P(L) ,

where

P(x) = 2U(x-ak) .

If P has no repeated factors, the affine curve &\ y2 — P(x) — 0 will be
nonsingular; this is assumed from now on. (See Section 5 for some
comments about singular curves). Let έ% be the protective one-point
completion & U {x = y = °°}. Krichever [13] proves that a unique
common solution ψ(t, p) of

Lψ — xψ ,

Bψ = yf ,

with p — (cu, y) e &, is determined by the following requirements:

( i ) For each teC sufficiently close to 0, φ(t, p) is a meromor-
phic function on ^

(ii) The poles of p-*ψ(t, p) are in a nonspecial divisor 3 =
δ± + + δg independent of t;

(iii) ψ(t = 0, p) = l on ϋ>;
(iv) Near ooy φ(t, p)e"^1 = 1 + 0(#(~1/2)) is holomorphic.

The key to this set of conditions is that, at t = 0, all solutions of
Lψ = xψf Bψ = yψ will vanish for some pairs p = (x, y) e &. Requiring
n/r(0, p) = l therefore amounts to a normalization by dividing by 0 at
those p, which introduces poles at those points of & for all t. ψ(tf p)
is called a Baker function, in honor of H. F. Baker's original insights
[2].

A more geometric description of Krichever's conditions (5) involves
holomorphic linebundles over ^?.

First, eSf (δ) be the linebundle corresponding to the nonspecial divisor
§ = 8χ + . . . + §g in (5ii). This means: let {Ua} cover ^ , and choose fa in
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Ua so that fa has zeros only at δlf , δg. The transition functions gaβ =
fβ/fa define £f(δ). For sake of definiteness, pick a neighborhood £/«, of
oo that excludes all of <?, and take /«, = 1.

Next, define a holomorphic linebundle .2^' as follows: The transition
functions g'aβ are = 1 if neither a nor /3 are oo, while

(6) gUp) = e-^ in Ua Π E7« .

One can check that ^ ' has Chern class zero; it corresponds to the

divisor

zeros — poles, on the affine curve ^ , of any Baker
(7) function associated to & (i.e., any function determined by the

properties (5), with possibly different δ).

Set &\ = <Sf{δ) ® =5^'. Now I verify that a normalized holomorphic

section σ of Sf% defines a Baker function with the properties (5). The

transition functions of Sft

 a r e

( 8 ) haβ= fβ/fa, a,βΦ

haoo = e-**fa .

The section σ satisfies, in local coordinates,

0> = haβσa .

Away from ©o,

fβ fa d e f

is meromorphic with poles at most δ. At o

J a

so F = (σa/fa) = Oooβ^*: F continues as (holomorphic function) xeVχt up
to oo.

At t = 0, the meromorphic function F must be identically 1, because
δ is nonspecial; in particular, σDO(oo) ^ o for small t, and so it can be
normalized to be 1. Hence, F has poles δ, is==l at t = 0, and goes like
βVχί(l + •••) at oo; it must therefore coincide with the Baker function
described by (5).

The linebundles J2ft have a useful alternate description. Prom (7),
one can write Sfi = Sf(z(t) — δ), where z(t) is the zero divisor of ψ,
which turns out to depend on t (whereas the pole divisor δ does not).
Then &>t s £f(δ) 0 &ΐ s ^f(δ) (g) ̂ ^(^(ί) - δ), whence
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2

(9)
z(t) is often called the "tied" or "auxiliary" spectrum in the literature
on Hill's equation [14].

REMARK. One can see quite easily that the dependence of q upon t
amounts to linear motion in the Jacobian. Because -2^+ t 2 = Sfix

(the transition functions (6) of the two sides are equal), t —> Sf% is a local
one-parameter subgroup of Pic o(^) = Jac(^) . £έ\ may then be thought
of as a subgroup of Jac(^F) as well, via the isomorphism between Pic o(^)
and Pic σ(^) provided by tensoring with some fixed basepoint ^ of
Chern class g.

3. Augmenting the Baker bundle. With these preliminaries disposed
of, the relation between the Neumann system and the operator L can
be investigated. Let D2 + q(f)9 the curve ^ , and the bundle £?t =
Sf(S) (x) JZf? be given. The construction—whose details are postponed to
the next section—is, in outline, as follows.

Taking a nonspecial divisor Z of degree g, one forms bundles &\ =
£?{δ) (x) jSf(Z) ® £ft. From g + 1 appropriate holomorphic sections, one
builds a vector Baker function,

, P)
(10) Ψ(t, p) =

This Ψ will have poles in 8 + Z, and exponential behavior at g + 1
points of ^ . As in the case of a single Baker function ψ discussed
earlier, there are commuting differential operators L and B, now (g + 1) x
(flr + 1) matrices, of which f is a common eigenfunction. The statement
[L, B] = 0 amounts to the Neumann system; this representation is es-
sentially the Kac-Moody Lax pair of [1, 19].

The key steps are the construction of the vector Baker function Ψ
in (10) from the original ψ, and the calculation of the matrix operators
L and B. If taken in isolation, they appear to be quite unmotivated.
This section is intended to make the whole procedure seem reasonable.

As just mentioned, one first augments the bundle £f% = cS (̂δ) (g) Sfi
by tensoring with the bundle of a divisor Z. There are two reasons for
trying this even if the Neumann system were of no concern.

(1) The resulting ^ ' s have more independent holomorphic sections
than the original j£?t\ these can be used to map & to a protective space.
From a geometric point of view, it would be interesting to have concrete
models for the whole setup—to have the important pole divisor δ cut out
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by hyperplanes, for instance. When one remembers the (still mysterious)
geometric setting of the Neumann system [12, 15], the idea of constructing
a protective model of the Baker function begins to seem quite sensible.

(2) One might inquire whether the commutative algebra generated
by the scalar operators L, B has a "representation" by a commutative
algebra of matrix operators. This concept must first be defined, of
course, but the construction adopted here is a reasonable possibility. In
this paper, I admit only first order matrix operators. Higher order
operators seem to lead to interesting geometry, but have not been
explored in any detail.

In this paper, both topics, whatever their independent interest, are
used only as motivation. The specific question posed, which combines
(1) and (2), is this:

Find the divisor(s) Z of smallest degree for which £f(δ) (g) £f(Z) (g)
Sfi defines a commuting pair of first-order matix differential opera-
tors.

It is necessary to summarize certain results on commuting matrix
differential operators, mostly due to Krichever [13]. (Several proofs
in [13] are wrong; the only correct argument I know of is given in
[23]).

On a smooth curve ^ of genus g > 0, let there be given a function
h, with distinct simple poles 6 = bλ + + blf and a nonspecial divisor
A of degree of g + I — 1. Let Clf , Ct be distinct constants.

There exist unique functions ψa(t, p), such that
( i ) ψa is meromorphic on & — b with poles at worst A, (11)
(ϋ) ψa(t, P) = e°βk^\δaβ + - •) near bβ.

holomorphic

The φa(t, p) turn out to be analytic for small t away from peb, A. There
is then a unique first-order, I x I matrix differential operator L, L =
C~ιD + P (D = (d/dt), C = diag(d, , C,)) such that

(12) LΨ(ί, p) = h(p)Ψ(t, p) .

Ψ is the vector (ψu , ̂ r,)*.
As in Section 2, there is a linebundle description. Let ^ft

[a) be the
bundle with all transition functions = 1, except for gβba(p) = e~c«hlp)t in
Z7̂Π Uha. The functions ψ19 , α/rz define independent holomorphic sections
of the bundle

(13)

The dependence of ^ upon t is again linear in the Jacobian.
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PROPOSITION 1. Let & be a smooth a fine hyper elliptic curve of
genus g > 0, as at the beginning of Section 2. Let £ft = J*f(δ) 0 Sft be
a Baker bundle on &, as in section 2. £fx 0 £f(Z) is isomorphic to a
bundle (13) of a vector Baker function, i.e.,

(14) £f{$) 0 ^ 0 £?(Z) = £f(d + Z) 0 j ^ ( 1 ) ® - . <g> Sft{l) ,

/or any divisor Z of degree g such that 3 + Z is nonspecial, but for no
Z of smaller degree.

PROOF. Let Z be a divisor of degree I — 1. The possibility of an
isomorphism (14) will turn out to be determined solely by the degree of
Z, which must be one less than the number of poles of h. There are
two conditions that restrict h:

( i ) The function h has I simple poles on &\ call them blf , bt.
(Note: it is not assumed that bx + + bt is nonspecial).

(ii) there is an isomorphism Sf% = *£ft

ω 0 ' - 0 ~S^U), or

£ft

ω 0 ''' ® £?ta) 0 C^Γ1) = trivial bundle .

Suppose that this holds. Then the bundle on the left has a nonvanishing
holomorphic section σ, which defines a nonvanishing function F mero-
morphic on & — {oo9 blf , 6J (oo is the point x = y = oo from earlier),
with the behavior

(15) F{p) = ec«h{p)tσba(p) near ba ,

β) near oo .

G = log F is well defined, meromorphic on &9 with simple poles °o 9 b19

• , bt. Conversely, if such a G exists, (ii) is easily seen to be true. So
(ii) can be replaced by (ii'): there is a function G with simple poles oo +
&!+••••+&!. If I ^ <7, then 6X + + bι is a special divisor, and so
has a piece of the form b[ + τb[ + b'2 + τb[ + , where r is the hyperel-
liptic involution. One can then form the product Π(x — b'k) G, which
has a pole of order ^ I + 1 at oo and no other poles. But the function
y has a pole of order 2g + 1 at oo, and that is the minimal odd-order
pole there. Hence 2g + l ^ l + l^g + l9 oτ g <* 0 — contradiction.

It follows that I *> g + 1, and in fact for I = g + 1, requirements
(i), (ii') can be met. Let b = bx + + δ f f+i be a nonspecial divisor (not
including oo), and let h be a function with simple poles 6. There is a
unique h with a zero /&(#) = (l/\/x(p)) + at oo. The function G(p) =
-x{p)h(p) then satisfies (ii), and eaip)* satisfies (15). •

It should be understood that this proposition says only that there
are commuting first-order matrix operators L, B (of rank at least g + 1)
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whose dependence on t leads to the same straight line in the Jacobian
as does the dependence of q(f) on t; the identification of Pic2ff(^P) and

with Jac(^P),

depends on Z, but not on h, because any two of the bundles denoted
above by ^ft

ω ® (x) .Sft

{3+1) are isomorphic. It is evident that there
must be a close relation between L, B and L, B, but ίfeαί the Neumann
system (3) emerges is seen only after specific choices of Z and of sections
of the augmented bundle are made.

4. Calculation of Neumann and Rosochatius systems. This section
finally gives the concrete formulas only alluded to so far:

( i ) the expression (4) of q(t) in terms of selected eigenfunctions;
(ii) the construction of the vector Baker function Ψ in terms of

the scalar Baker function ψ;
(iii) the explicit form of the Lax pair [L, B] = 0 for the Neumann

and Rosochatius systems.

A. TRACE FORMULAS. Fix a curve &: y2 = Πiϊί1 (χ — α*)> and fix a
Baker function ψ(t, p) with poles in a nonspecial divisor d.

LEMMA 1 [6]. There is a unique differential Ω with zeros δ and a
double pole of the form ( — x + holomorphic)dx~~1/2 at ©°.

PROOF. By the Riemann-Roch theorem,

dim{/|(/) + δ - 2oo ^ 0} - dim{α>|(α>) ̂  δ - 2oo} = (g - 2) - ^ + 1 .

Since δ is nonspecial, the dimension of the first space is zero, and
so there is just one differential Ω — up to scalar multiples—with (42) ^
δ — 2oo. Q must have poles, because δ is nonspecial; it cannot have a
simple pole at °°, because Σ r e s β = 0, so that Ω has a double pole at
oo. The desired normalization can of course be achieved. Π

DEFINITION 1. [6] Let <?' be the (necessarily nonspecial) divisor of
degree g such that the 2g zeros of Ω are δ + δ'. Let φ(t, p) be the
uniquely determined Baker function which

( i ) is Ξ 1 at t = 0,
(ii) is meromorphic on & with poles δ',
(iii) has behavior e~v^(l + •••) at oo,

holomorphic

δ' and φ are said to be dual to δ, ψ, respectively.

REMARK 1. The lemma and definition work for arbitrary curves ^ ,
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not necessarily hyperelliptic [6, 23], If ^ is hyperelliptic, and if τ is
the hyperelliptic involution, then δ' = τδ and φ(t, p) — ψ(t, τp).

REMARK 2. The differential Ω has a simple expression in terms of
ψ and φ. When & is the hyperelliptic curve under discussion, one
checks easily that

(16) Ω= d x

, p\ φ(t, p))

where W is the Wronskian, ψφ — ψφ. For non-hyperelliptic &9 the
Wronskian is replaced by the Lagrange bilinear form (ψ; φ) familiar from
the theory of boundary value problems for ordinary differential operators
(see [23, 24]).

Because the exponential factors cancel, the product ψφ is meromorphic
on &\ in fact, it is rational in x. The differential ψφΩ has no poles
except °o, because (by definition) Ω has zeros at the poles of ψ and
φ. One now picks a function h with selected poles; the identity
Σp 6 ReSphψφΩ = 0 will lead to identies for eigenfunctions analogous to
the constraint Σ ίi — 1 i n e ( ϊ u (1) °f *^ e Introduction.

NOTATION. Fix a nonspecial divisor 6 of degree g + 1, b = bL + +
bg+1, with all bό distinct, and different from 8 and <χ>. There exists a
unique function h with poles in 6 and a zero at oo 9 normalized to h(p) =
#(p)~1/2 + as p —> oo, and regular at all other points of ^ . h has #
finite zeros; let Z = ^ + + Zg be that divisor. Assume that Z Π 8 =
φ, and that Z + <? is nonspecial. (One could become embroiled in catalog-
ing non-generic situations, which is not interesting—hence, these assump-
tions are convenient).

PROPOSITION 2. Let

Then

g+i

sr+i

(18) Σ iiVi + ξiVi = 0 .

(19) 'OiX&Vj + tίήi = ϊ(ί)

Furthermore, the ξίt τηs satisfy the coupled Neumann systems
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(20) I + ( Σ XiξtVi + £iVt)ξi =

Vi + ( Σ x&Vi + ϊiVi)Vi

PROOF. Suppose that (17) is known to be true. (18) is just the
^-derivative of (17). Differentiate (18) once more, and use (17) and the
eigenvalue equations ξd = (xό — q)ςJf r/j = {xά — q)ηά: (19) drops out. To
get (20), replace q by the expression (19) just derived in the eigenvalue
equations for ξjf ηό.

To prove (17), consider the differential hψφΩ. Because of the
normalization at oo of the four quantities, there is a simple pole at oo
with residue — 1. The other poles are at the bj9 with residues

.eahΩφ(fi, b3)φ{t, bs) =
bj Qθl

= 0 now gives (17). Π

REMARKS. (1) If τbj = bj for some j (τ is the hyperelliptic involution),
then φ(t9 bj), which is always ψ(t, τbά), coincides with ψ(t, bό), so that
ζs = ηά. If τbj = bj for all j = 1, , g + 1, then (17)-(20) reduce to the
original Neumann equations (1) — (3). (2) ψ(fi, b) = φ(t, b) implies τb = 6.
Indeed, let x(b) = xOf y(b) = yQ. Then f, φ satisfy Lf = xof, Lφ = xQφ,
resp. Bψ = yoψ, Bφ = —yoφ. If ψ=Φ, the last two equations force y0 =
— Vo, or y0 — 0, and thus τb — b. (3) Note that all equations, (17)-(20), are
invariant under the substitutions

(21) ξd -> cίjξj, Ύ]ό -> aj% .

If zbj = b3; so that ξ3- = ηά, then aά = aj1 in (21), or aά — ± 1 . Otherwise,
any a3- e C* is allowed. We return to these symmetry groups later on.

B. LAX PAIRS. The next topic to be taken up, which a priori has
no relation to the Neumann system, is the explicit description of the
augmented linebundle from Section 3.

PROPOSITION 3. Let W(f, g) = fg — fg be the Wronskian (of functions
of t). The functions

(22) l β , v) = ̂ fi- W^; P) ' «*> h» , S = l , : . , g + 1 ,
h(p) x(p) - Xj

are holomorphίc sections^ of a linebundle £f(β)(&Jϊf(Z)(&£ft. {Ac-
cording to the notation set down at the beginning of this section, Z is
the divisor of finite zeros of h).

(*) Here and below, I use the expression "are holomorphic sections" as convenient, if
inaccurate, abbreviation for "are obtained from holomorphic sections".
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PROOF. All that needs to be checked is that each Xό has poles
independent of t in δ + Z, and that X3{t, p) ~ e^1 x holomorphic function
near oo. This is immediate: W(<f, φ) has poles δ because ψ does, (1/h)
has poles Z. The two poles at x = x3, i.e. at b3 , τb3, are cancelled by the
zero of 1/h at b3 and the zero of W(ψ(t, p), φ(t, b3)) at p = τb3 (ψ(t, τb3) =
φ(t, bj)). The condition at oo is obviously satisfied. •

COROLLARY. The functions

(23) ψβ, p) = χ,(ί, p)e-«>w

are holomorphic sections of a lίnebundle

(24)

PROOF. The exponential singularity at oo is cancelled, and the
required exponential growth at b19 •• ,&5+1 is introduced. (Compare the
proof of Proposition 1). •

It will be seen shortly that the functions (23) are g + 1 independent
holomorphic sections of the bundle (24), which has precisely that many
sections since δ + Z is nonspecial. Hence, one can appeal to Krichever's
theory [13] of commuting matrix differential operators, and, as already
mentioned, construct operators L, B of which the vector function Ψ =
(Ψί9 '''fψg+iY is a common eigenfunction.

PROPOSITION 4.

(25) Ψ = (-JΓΛ

where X = diag(^, , xg+1

PROOF. The calculation is familiar from [13], and can be disposed
of quickly. One shows that

(26) Ψi(t, p) = (c&s + ...)e-M p ) a ! ( p ) ί

(c, = some nonzero constant) near p = bj. It follows that the ψt are
independent holomorphic sections of the bundle (24). One then shows
that Ψ - LΨ has behavior

(27)
h(p)

near each b3 . Since it has all the right poles, each component of Ψ
LΨ is a holomorphic section of (24), hence expressible in the basis
for the j t h component,
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(ψ - LΨ)ά = Σ a^ .

In view of (26) and (27), all ai3- must vanish, which establishes (25). So,
the only thing to calculate is the expansion of φt(tf p) near each b3; this}
is easy but tedious. Only the results are recorded here:

Near b3, j ^i:

(28a) * ( t , v)
h{p)(x3 -x%)

Near &*:

(28b) ^(ί, p) = Γ-JL +
Li/ft

Here hιl\ = lim^δ. h(p)(x(p) — xt) (this is zero if τ6{ = 6J.
Everything follows from these formulas; the relation (16) between

Ω and W(ψ, φ) is essential here. •

PROPOSITION 5. ¥ satisfies the equation

(29) QΨ = (-Xh2 + (w (x) f - Ύ] (X) f)fe - η ® ξ)?Γ = - ^ 2 ? F
def

PROOF. In view of (25), the relation to be proved can be written

(30) hΨ - Ύ] (x) ζψ + αΛ2y = 0 .

As before, the idea is to show that each component of the left side of
(30) is a holomorphic section of the bundle (24), vanishing at the bό. So,
one writes

near 6̂ , and substitutes this into the left side of (30). The result, which
does not require the detailed expressions for the various coefficients, is
(for the ΐ-th component) (Atj - (llv/'p])yiξj + 0(l/h))e-hxt, near 6y. To check
that the 0(1) term vanishes, one needs to know Atj. Now Aijf for i Φ j ,
is given in (28a), and one sees easily that AiS = (l/v f̂tO^ξy. To verify
that Au = (l/\/Pi)Ί}iξif one must carry the expansion in (28b) through
0(l/Λ), which is again straightforward, but long, so the details wil be
omitted. •

COROLLARY. The Neumann equations admit the Lax representation

(31) Q - [L, Q] .

PROOF. Direct computation, using the Neumann equation, (20). •



NEUMANN SYSTEM 421

REMARKS. (1) Krichever's method [13] provides a 2nd-order matrix
differential operator B satisfying

BΨ = xhΨ ,

and commuting with L. Because [L, B] = 0, B maps ker (L — hi) to
itself. On ker(L — hi), B is represented by a matrix depending on h:
that matrix is precisely — (Q).

It is easier to discover Q than B, once the basic eigenvalue equation
Ψ = LΨ is given; fewer terms in the expansion of Ψ are required.
Therefore, I did not follow the commuting-matrix-differential-operator
route, but it is straightforward to deduce those formulas from Proposi-
tion 5.

( 2 ) Equation (31) was given a Lie-algebraic interpretation in [1, 19,
21], for the case where ζό = η5 for all j . So far, I have not been able
to fit Lie algebras into my setup in any natural way; on the other hand,
the connection with the operator D2 + q is entirely foreign to the dis-
cussion in [1, 19, 21].

Finally, so that the discussion in Section 3 is not left completely up
in the air, I should comment on the "projective model" mentioned there.

The map p —> [ψ^t, p): : ψg+1(ff p)] is, for fixed t, a well defined
map from & to P9, because the linear system associated with £f{δ) (g)
^f(Z) (g) j ^ ( 1 ) (x) ••• ®£?t

{9+ι), of degree 2g, has no base points. When
g = 2, the image of & is a plane quartic of genus 2, so it must have
one double point (this was explained to me by Nick Ercolani). Further-
more, it seems to lie in a very nice way on Kummer's quadric surface—
but that is only a tantalizing observation (Ercolani's) so far. If g > 2,
the map is an embedding, i.e., it separates points and directions, off a
2-dimensional set of divisors 6 = 6X + + bg+ί.

Once the curve is so embedded in P9, the zero divisor z(t) of ψ
defining the bundle Sf% = £f(z(t)) (see Sec. 3) can be related to hyper-
planes. This follows from the formula [23]

9+1

ψ(t, p) = Σ %(*)Zy(ί, v)
1

the image of & is intersected by the plane Σ 2 ? Λ = 0 precisely in Z+z(t).
I hope that these ideas will soon lead to a truly geometric version

of the Burchnall-Baker-Chaundy-Krichever theory. At the moment, they
are just a reassuring background to help one keep other calculations in
some perspective.

C. INTEGRABILITY. From a Lax equation like (31), Q = [L, Q], one
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tries to deduce complete integrability of the system of o.d.e.'s it repre-
sents; the procedure is reasonably standard by now [1]. Only the main
features, and their relation to the underlying curve ^?, need be outlined.

It is natural and convenient to view the coupled Neumann system
as a Hamiltonian system, and to this end ξj and ήά are replaced by new
variables, the momenta us and vs. So, the system to be considered is
now

(32) ζd = Uj , ήj = Vj

subject to the constraints

(33) Σ ξiVi = 1 f Σ ξiVi + VWi = 0 .

For details about Hamiltonian mechanics with constraints, see, e.g., [7,
16]. Likewise, ξ3- and ή5 are replaced by uά and vό in the definitions (25)
and (29) of L and Q.

It was seen above that (32) and (33) imply (31), Q = [L, Q]. Conver-
sely, Q = [L, Q], with the constraint (33), implies (32) [19] provided that
all bj are Weierstrass points, so that & = ηjf us = vd for all j (the original
Neumann system). If some bά are not Weierstrass points, one can scale
ζj - * fie~/(ί)> VJ -* Vief{t)> UJ -> uβe~f{t), Vj -> Vjβf{t), where /(*) is an arbitrary

function of t. It is clear that L, Q are unaffected, since the e±f cancel
each other in all terms, but equation (32) not invariant under this scaling.
Specifically, (31) does not imply the two equations ξd = ujf ή5 = vά.

One can get rid of this scaling freedom by a sort of elimination of
angular momentum. Set

and define

2cj == 2WjT) =

This last expression is, up to a factor ρjf just the Wronskian W(ψ(t, δ? ),
Φ(t, bj)), which is independent of t, and is zero iff τbά = bj. (32) and (33)
transform to

(34) Tj = Sj, έj = XjTj - ( Σ Xiή + si - ^jTj - °± ,

subject to

(35) Σ r ϊ = l , Σ r A = 0.

(34), (35) is a mechanical system studied by Rosochatius [22]. See the
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Appendix in [15] for details; the reduction that converts (32), (33) into
(34), (35) is there credited to P. Deift.

Correspondingly, Q = [L, Q] turns into Q = [L, Q], where L = — Xh +
s (g) r — r(g)s — (c/r) ® r — r (8) (c/r) + (c/r2), Q = — h2 + h(s(g)r — r (g) s —
(c/r) (g) r — r ® (c/r)) — r(g)r, and this Lax representation, together with
the constranints (35), does imply (34). It was given a Lie-algebraic
interpretation in [20].

Once one knows that a Lax equation Q = [L, Q] (or Q = [L, Q]) is
equivalent to the Neumann system (or to the Rosochatius system), one
has a tested procedure to prove integrability in the sense of Liouville.

( i ) Q = [L, Q] implies that the characteristic equation of Q, det
(Q — XI) = 0, is independent of t. This equation is a polynomial in h
and λ, and the coefficients of the various terms haxβ are integrals of the
Neumann system.

(ii) One proves that there are enough integrals in involution.
(iii) One linearizes the Neumann equations on the Jacobian of the

algebraic curve det(Q — XI) = 0.
This program is carried out in full in [1]. In the present context,

some of it is automatic, and some of it cannot be done without intro-
duction of new techniques. Property (ii) falls into the second category.
My starting point was a curve and a scalar Baker function, and the
end-result was one particular solution of the Neumann system. The
Hamiltonian structure, however, involves the whole (£, η, u, v) phase-
space, and there seems to be no way to study it one curve & at a
time, so to say. Property (iii), on the other hand, is essentially built
in, because the linearization of the scalar equation [L, B] = 0 for q{t)
was assumed from the beginning (cf. Section 3).

Property (i) does fit naturally and nontrivially into the framework
of this paper. The fact that det (Q — XI) = 0 is independent of t can be
understood from Proposition 5, which precedes the derivation of Q =
[L, Q]. It said that QΨ = -xhΨ; this implies det(Q + xh2l) = 0, which
is a polynomial equation satisfied by the meromorphic functions x and
h on ^?, and should not depend on t.

The explicit integrals of the coupled Neumann system (20) can be
derived very neatly by the following intrinsic method. For j = 1, ,
g + 1, define the meromorphic differentials

t, p),
ω

3 x(p) - Xj

= 0 leads to the formula
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(36) GiA= ξiVj + Σ ^ ~ WM>U* - &*»> = G,
def kiΦi) χk — χ

o

where Gy — — Res6yα)y; ζ/ηs is the residue at °o, and the kth term in the
sum is obviously the residue at &*.. With some calculation, one finds that
G) = Λίί}8 if τbj = bjt resp. Λ ^ ' if τδy ^ δy; the ΛiΛ are the coefficients
in the Laurent series of h at bjf h(p) = felf'ί^"1 + /&ίy) H , η = Vx(p) — xj9

resp., η = &(p) - &y. As in [15], Σ G3 = Σ ί i % = 1» a n d generically, gf
of the g + 1 expressions (36) are independent. It was observed earlier
that the quantities

(37) usηs - ξjVs = pjW{ψ(t, bά\ φ(fi, 6,-))

are also independent of t. The value of (37) is (l/2)h{J\ if τbά Φ 6y; if
r6y = 6y, then fy = % and %y = vy, so (37) vanishes.

Altogether, then, there are g independent integrals (36), and as many
integrals (37) as there are non-Weierstrass points among the bά. Observe
that the values of these integrals depend only on the choice of h on the
curve &. All the integrals are in involution, but I have only a compu-
tational, not a function theoretic, proof of this fact, copied from [7, 15].

5. Conclusion. This study is the result of an attempt to generalize
the geometry of quadrics, as shown by Moser [15] to be related to the
Neumann system, to nonhyperelliptic situations. The obvious idea is to
replace D2 + q by—say — Dz + qD + p (related to the Boussinesq equation),
to find the corresponding "Neumann" system, its Q = [L, Q] representa-
tion, and then to develop the geometry. It turned out to be difficult
even to get started, because the understanding of the Neumann-D2 + q
connections was at the level of observations and inspired guesses. So,
as a first step, I tried to derive the basic facts about the Neumann
system in a systematic way from the Baker function theory of D2 + q.
This was the topic of the present paper. There are now two ways to go.

First, the analytical treatment in Section 4 can be generalized to
other L, B pairs. This turns out to be nontrivial; the hyperelliptic case
is in many ways misleading. R. Schilling [23, 24] obtained Neumann
systems, and their representations by two types of Lax equations Q =
[I/, Q], for very general pairs L, B of commuting matrix or scalar
differential operators of arbitrary order. In the process, most calculations
in Section 4 are seen in a more natural setting.

Second, the geometric picture hinted at in Section 3 should be
developed, first to explain the geometry of quadrics in [12, 15] and then
to produce analogous, and presumably new, geometric structures associated



NEUMANN SYSTEM 425

with Schilling's general Neumann systems. That work has barely begun.
In this whole development, singular curves & have not been

admitted, even though the coefficients q(t) associated with some of these
curves are among the most interesting in soliton theory: multi-soliton
and rational potentials. To some extent, the theory carries over un-
changed: as long as the function h is regular at singular points, all
results remain valid. The new wrinkle comes about as follows. The
differential Ω will have poles at singular points; if h is regular at a
singular point, then Σbranches at? Tle&kψφΩ — 0. If, however, h is not
regular at p, even if it has no pole there, the singular point will con-
tribute a term to Σ Res hψφΩ. In other words, one can trade off poles
of h for irregular behavior at singular points. In the most interesting
example—the multi-soliton case—, the curve is &\ y2 = x JH(x — a3)

2,
and h — (Π? G& — α, )/l/) This h has only one pole, at x = y = 0, but is
not regular at the double points. The Neumann variables £y are the
values of the Baker function ψ at these double points and at x = y = 0,
and the representation (α0 = 0)

Q = Σ a& + ξ)

is the most natural one, because the eigenvalues and eigenfunctions
occurring there are the ones encountered in inverse scattering theory
(compare [11], formula (3.13)).

Krichever's theory as used in Proposition 4 does not apply in such
singular situations, however, and since there was no readily available
substitute, I excluded singular curves. It may be interesting, once the
results of this paper have been made more geometric, to study singular
curves as well.
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