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STABILITY OF A MECHANICAL SYSTEM WITH
UNBOUNDED DISSIPATIVE FORCES
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(Received September 3, 1983)

In this article we shall be concerned with a mechanical system
described by the Lagrangian equation

(1) ddT_3T = _ ψ _ m m + G { t q ) . t

dt dq dq dq

with generalized coordinates qeRn and generalized velocities qeRn.
Salvadori [5] gave sufficient conditions under which the equilibrium of
(1) is asymptotically stable in the case where B and G are time-inde-
pendent. Recently, Hatvani [2] gave the conditions of the (partial)
asymptotic stability and instability for more general systems. To obtain
a result of the asymptotic stability, he considered some familiar condi-
tions and furthermore, the following:

( * ) For any compact subset L of Rn ,

VL(t): = s u p { | | G ( ί , q) - B(t, q)\\:qeL}eF,

where F is the set of all measurable functions ζ(t) = &(£) + ξ2(t), ζlf ς2:

S CO

ξ2(t)dt < oo. If
B(t, q) = tE (E is the unit matrix in RnXn) and G(t, q) Ξ= 0, however, the
condition (*) does not hold. In this article, by employing the manner
developed in [3] we shall overcome this difficulty for the dissipation B
which is unbounded. That is, we shall show that the equilibrium q =
q = 0 of (1) is weakly uniformly asymptotically stable under some familiar
conditions and the following; for any bounded continuous function ψ(s)
on [0, oo) there exist a sequence of positive numbers {sn} and a positive
constant d, sn+1 ^ sn + d, such that tr B(s, ψ(s)) ί θ on [sn, sn + d] for
all n and that

Σ \ tr B(s, ψ(s))ds =

where tτ B(s, ψ(s)) denotes the trace of B(s,ψ(s)). Thus, our result is
applicable to a mechanical system with unbounded B satisfying 0 < tr B ^
Mt - log (1 + ί) + N, t ^ 0, for some positive constants M and N. In
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this article, only the asymptotic stability is treated for the sake of
simplicity; our theorem can be easily modified to obtain a result of the
partial stability as in [2].

We denote by Rn the ^-dimensional real Euclidean space and by \x\
the Euclidean norm of x e Rn, and it is supposed that the elements of
Rn are column vectors, and vτ denotes the transposed of v e Rn. Further-
more, for any matrix A — (αiy) in RnXn, define ||A|| = sup{|Av|: v e Rn

with M ^ 1} and tr A = Σ ? = i ^ .
Consider an ordinary differential equation

(2) &=At,x)
where /: I x Rn->Rn is continuous, 1 = [0, ©o). Denote by x{t, t09 x0) a
noncontinuable solution of (2) through (t0, xQ) in I x Rn.

The zero solution of (2) is said to be;

uniformly stable if for every e > 0 there exists a 8(ε) > 0 such that
for all toeI and t ;> tQ9 \xo\ < δ(ε) implies \x(t, tOf xo)\ < ε;

weakly uniformly asymptotically stable if it is uniformly stable and
there exists a δQ > 0 such that for all ί0 e 7, |α?0| < δ0 implies |a;(ί, t0, a?0)| —• 0
as t —> oo.

For a function 7 : J x D-+ R continuous and locally Lipschitzian in
x (D is an open subset of Rn), define the derivative of V with respect
to (2) by

V{2)(t, x) - lim sup [V(t + h, x + hf(t, x)) - V(t, x)]/h .
fc-»0+

Throughout this paper we suppose the following conditions on the
system (1):

(HI) Π: q -»Π(q) e R is the potential energy, which is a continuously
differentiable function with 77(0) = 0, (dΠ/dq)(0) = 0;

(H2) T = T(q, q) = qτA(q)q/2 is the kinetic energy where A: q ->
A(q) eRnxή is a continuously differentiable symmetric matrix function
with A(0) positive definite;

(H3) I?: (t, g) -> B(t, q)eRnXn is a symmetric positive semidefinite
matrix of the dissipations, which is continuous and integrally complete,
that is,

4TB(t, q)q ^ β(t) \q\2 , t ^ 0 , q, q e Rn ,

where β:I—>I is measurable and I β(t)dt = °° on any set J =
j J

Um=i [αw, βm] such that α m < βm < α m + 1 , /3Λ - am ^ δ > 0;
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(H4) G: {t, q) —> G(ί, q) e RnXn is an antisymmetric matrix of the
gyroscopic coefficients (Gτ = — G, where Gτ denotes the transposed matrix
of G), which is continuous and ||G(ί, g)|| is bounded for all t ^ 0 whenever
\q\ is bounded.

Clearly, q = q = 0 is an equilibrium of the system (1). Furthermore,
by (H2) we can choose an open neighborhood Ω of 0 6 Rn so that A(g)"1

exists and is positive definite for all qeΩ and cλ\p\ 5g {Aiq^pl <i c2|ί>|f
qeΩ, pe Rn, for some positive numbers cx and c2. Set p = A(g)ί = (βT/dq)
and Ufa, p) = pτA(q)~1p/2 + /7(g), g 6 Ω, peRn. Then, the system (1) is
transformed to the following Hamilton's equation

dp
( 3 ) ^

P = - ~ + (G -
dg

where ^ e β , pei?7 1 (cf. [4, p. 362]). Then we have:

THEOREM. In addition to (HI) through (H4), suppose the following
(H5), (H6) and (H7) hold;

(H5) ίfeere βccisί strictly increasing continuous functions a,b:I—>I
with α(0) = 0 ami 6(0) = 0 such that for all qeΩ we have

a(\q\) £ Π{q) £ b(\q\)

(H6) for every au a2(0 < ax < a2) there exists an rj > 0 such that

|grad Π(q)\ ̂ η {a, ^ \q\ ^a2fqeΩ);

(H7) for any bounded continuous function r̂(s) on I there exist ά
sequence of positive numbers {sn} and a positive constant d, sn+1 jΞ> sn + df

such that tr B(s, ψ(s)) φ. 0 on [sn, sn + d] for all n and that
oo rc8n+d η- i

Σ tr B{s, ψ(s))ds =
n=l LJβ w J

Then the equilibrium q = q = 0 of (1) is weakly uniformly asymptotically
stable.

To prove this Theorem we need the following lemma, which is an
extension of [3, Lemma 2] to a matrix valued function.

LEMMA. Let B(s) be a symmetric positive semi-definite matrix valued
function and u(s) a vector valued function on [0, oo), respectively, such
that B(s) satisfies the same condition as (H7) for B(s, ψ(s)) and that

(4) Γu(s)τB(s)u(s)ds <
Jo
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Then there exist a constant dQ > 0 and a sequence {tn}, tn+1 ^ tn + d0,

B(s)u(s)ds —> 0 as n —> oo uniformly for t e [0, c£0].

PROOF. We shall show that the assertion in lemma holds for a sub-
sequence of {sn} and d0 = d, where {sn} and d are the ones given in the
same condition as (H7) on B(s). Indeed, suppose that this is not the
case. Then there exist a d > 0, a positive integer k0 and a sequence
{vk}, 0 ^ vk ^ d, such that for all k ^ k0 we have

I r β&+vjfe _ 2 I c*k+vk — —

δ ^ J S(s)u(s)ds = I B(s)1/2B(s)1/2u(s)ds

For each i, 1 ^ i ^ n, denote by et the vector whose j-ih component is
1 if j = i and 0 if j Φ i, and set 6,(8) = 5(s)1/2eie By the Schwarz
inequality we have

S Σ | Γ
Ϊ = I 1 Jβh

' bi(s)τB(s)mu(s)ds

^ Σ

tr B(s)ds\\ J

Thus,

Σ \ ^ jB(s)d8 ^ δ"1 Σ \ u(s)τB(s)u(s)ds
J fc = fe0LJβfc JΣ

^ δ"1 Γ u(s)τB(s)u(s)ds <
J8Ao

by (4). Consequently, Σ?=i \ t r B(s)ds < °°, which is a contradic-

tion. Hence, the assertion in lemma holds. q.e.d.

PROOF OF THEOREM. It suffices to show that the solution q = p = 0
of (3) is weakly uniformly asymptotically stable. Set V(q, p) = H(q, p).
Then, by (H2) and (H5) we have

( 5 ) a(\q\) + m \p\2 :£ V(g, p) ^ b(\q\) + M\p\2

for some positive constants m and M whenever q e Ω, pe Rn. Moreover,
for any qeΩ and peRn we have Vw(q, p) = (dH/dq)τq + {dHjdpfp -
(A(qΓp)τ x (G - B)A(ff)-1p - -(A( er

iP) rBA(j)- lP ^ -/9(«) I A{q)^p |2 ^
—clβ(t)\p\2 ^ 0 by (H3), since G is antisymmetric. Consequently, the
solution q = p = 0 of (3) is uniformly stable. Hence, we can choose a
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<50 > 0 so that (g(ί), p(t))eS x S, t^ t0, whenever |(g0, po)| < δ0, where
S: = {q e Rn: \q\ <ί r}, SaΩ, for a constant r > 0, and p(t): = p(ί, t0, g0, p0)
and g(ί): = g(ί, t0, q0, p0). It remains only to show that (g(£), p(ί)) —> (0, 0)
as t —> oo. First, we shall show that p(ί) —> 0 as t —• oo. Suppose that
this is not the case. Then there exist a constant & > 0 and a sequence
{Tn}y Tn-+ oo as w-»oo, sucn that |p(Tn)| ^ k for all w. Consider a
function TF(g, p) defined by W(q, p) = pτA{q)-ιpj2 = V(g, p) - /7(g), g,
p e iS. Set c = inf {TΓ(g, p): |g| ^ r, k ^ b | ^ r}. Since A(g)"1, qeΩ, is
positive definite, we have c > 0. Furthermore, we have

(6) A

and consequently

( 7 ) ^β(s)\p(s)\2ds <

Then, by (7) we can easily conclude that there exist an ε > 0, ε < k,

and a sequence {τj, Γ n - 1 < τn < ϊ1,, for all n, such that sup{W(g, p):

\q\ ̂  r, |p| = ε} < c/2 and that |p(rn)| = ε and ε ^ |p(ί)| on [τn, Γ J for all

w. Now, we have Ww(qf p) - F(3)(g, p) - (dΠ/dq)τq ^ -tftf/SgfAίg)-^ ^ i^,

g, p 6 S, for a constant i\Γ. Hence c/2 ^ TΓ(g(Γn), p(Γn)) - TΓ(g(τn), p(τn)) ^

N(Tn-τn) for all w, and consequently ΣΓ=i [ Γ * i9(s)d!βΊ = °° by (H3).

On the other hand, Σn=i[JΓ"/3(s)ώs] ^ ε~2 ^°° β(s)\p(s)\2ds < oo by (7), a

contradiction. Thus, p(t) —*Q as ί—>oo. Next, we shall show that

q(t) -> 0 as ί -> oo. By (6) we have

( 8 ) ^ u(s)τB(sMs)ds < oo ,

where B(s): = B(s, q(s)) and u(s): = A(g(8))-Ip(«). Applying Lemma to
B(s) and u(s), it follows from (H7) and (8) that there exist a positive
constant d0 and a sequence {£n}, tn+1 *^tn + d0, such that

(9 ) [tn+t B(s)u(s)ds - ^ O a s n ^ o o uniformly for 16 [0, d0] .

Taking a subsequence if necessary, we may assume that g(ίn) —> g0 as
^ —> oo for a point g0. We shall show q0 = 0. Consider the functions
P»(ί): = P(fn + «) and gn(t): = g(ίn + ί ) , n = l ,2 , , defined for t e [0, d0]-
Since |gn(ί)| ^ r and |ί n(ί) | ^ |A(gn(i))-xpn(i)| ^ c2r on [0, do]9 taking a sub-
sequence if necessary, Ascoli's theorem implies that qn(t) —> ψ(ί) as n —> oo
uniformly on [0, d0] for some continuous function ψ(t). Integrating the
equation of p in (3) over [tn, tn + t], 0 <; t ^ d0, we have
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(10)

G(s, q(s))u(s)ds —

Letting w -> oo in (10), by (9), (H4) and the fact that p(t) -> 0 as t -> oo,
grad Π(ψ(s))ds = 0 on [0, cί0], that is, grad Π(ψ{t)) = 0 and

consequently ψ(ί) Ξ 0 on [0, d0] by (H6). Thus, q0 = ψ(0) = 0. Then, for
t^tnwe have α(|?(ί)|) ̂  7(g(ί), p(ί)) ^ 7(ί(O, P(O) by (5) and (6). Thus,
since V(q(tn), p(tn))->0 as n->°°, we conclude that a(\q(t)\) ^ 0 as ί —>°o
and hence g(ί) —> 0 as t —> oo. q.e.d.

REMARK. In order to obtain a result similar to Theorem, Hatvani
[2] imposed the condition (*) on (1), which is different from (H7). Under
the condition (*), however, without applying Lemma we can directly

deduce that \ grad Π(ψ(s))ds = 0 on [0, d0] from (10) in the proof of
Jo

Theorem given above, that is, our argument is applicable also to this
case. Furthermore, note that the condition (*) does not hold in the
case where G = 0 and B = B(t, q) with 0 < tr B ^ Mt log (1 + ί) + N,
t ^ 0, for some positive constants M and N. As easily checked, however,
(H7) in Theorem is satisfied in this case. On the other hand, it should
be noted that Artstein and Infante [1] obtained a solution of the second
order scalar differential equation x + tax + x = 0, which is an example
of (1) with B = ta, not tending to 0 as t —> ©o in the case a > 1.
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