STABILITY OF A MECHANICAL SYSTEM WITH UNBOUNDED DISSIPATIVE FORCES

Satoru Murakami

(Received September 3, 1983)

In this article we shall be concerned with a mechanical system described by the Lagrangian equation

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}}-\frac{\partial T}{\partial q}=-\frac{\partial \Pi}{\partial q}-B(t, q) \dot{q}+G(t, q) \dot{q} \tag{1}
\end{equation*}
$$

with generalized coordinates $q \in R^{n}$ and generalized velocities $\dot{q} \in R^{n}$. Salvadori [5] gave sufficient conditions under which the equilibrium of (1) is asymptotically stable in the case where B and G are time-independent. Recently, Hatvani [2] gave the conditions of the (partial) asymptotic stability and instability for more general systems. To obtain a result of the asymptotic stability, he considered some familiar conditions and furthermore, the following:
(*) For any compact subset L of R^{n},

$$
\gamma_{L}(t):=\sup \{\|G(t, q)-B(t, q)\|: q \in L\} \in F,
$$

where F is the set of all measurable functions $\xi(t)=\xi_{1}(t)+\xi_{2}(t), \xi_{1}, \xi_{2}$: $[0, \infty) \rightarrow[0, \infty)$, such that ξ_{1} is bounded on $[0, \infty)$ and $\int_{0}^{\infty} \xi_{2}(t) d t<\infty$. If $B(t, q) \equiv t E$ (E is the unit matrix in $R^{n \times n}$) and $G(t, q) \equiv 0$, however, the condition (*) does not hold. In this article, by employing the manner developed in [3] we shall overcome this difficulty for the dissipation B which is unbounded. That is, we shall show that the equilibrium $q=$ $\dot{q}=0$ of (1) is weakly uniformly asymptotically stable under some familiar conditions and the following; for any bounded continuous function $\psi(s)$ on $[0, \infty)$ there exist a sequence of positive numbers $\left\{s_{n}\right\}$ and a positive constant $d, s_{n+1} \geqq s_{n}+d$, such that $\operatorname{tr} B(s, \psi(s)) \not \equiv 0$ on $\left[s_{n}, s_{n}+d\right]$ for all n and that

$$
\sum_{n=1}^{\infty}\left[\left[\int_{s_{n}}^{s_{n}+d} \operatorname{tr} B(s, \psi(s)) d s\right]^{-1}=\infty,\right.
$$

where $\operatorname{tr} B(s, \psi(s))$ denotes the trace of $B(s, \psi(s))$. Thus, our result is applicable to a mechanical system with unbounded B satisfying $0<\operatorname{tr} B \leqq$ $M t \cdot \log (1+t)+N, t \geqq 0$, for some positive constants M and N. In
this article, only the asymptotic stability is treated for the sake of simplicity; our theorem can be easily modified to obtain a result of the partial stability as in [2].

We denote by R^{n} the n-dimensional real Euclidean space and by $|x|$ the Euclidean norm of $x \in R^{n}$, and it is supposed that the elements of R^{n} are column vectors, and v^{T} denotes the transposed of $v \in R^{n}$. Furthermore, for any matrix $A=\left(a_{i j}\right)$ in $R^{n \times n}$, define $\|A\|=\sup \left\{|A v|: v \in R^{n}\right.$ with $|v| \leqq 1\}$ and $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}$.

Consider an ordinary differential equation

$$
\begin{equation*}
\dot{x}=f(t, x) \quad(f(t, 0) \equiv 0) \tag{2}
\end{equation*}
$$

where $f: I \times R^{n} \rightarrow R^{n}$ is continuous, $I=[0, \infty)$. Denote by $x\left(t, t_{0}, x_{0}\right)$ a noncontinuable solution of (2) through (t_{0}, x_{0}) in $I \times R^{n}$.

The zero solution of (2) is said to be;
uniformly stable if for every $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that for all $t_{0} \in I$ and $t \geqq t_{0},\left|x_{0}\right|<\delta(\varepsilon)$ implies $\left|x\left(t, t_{0}, x_{0}\right)\right|<\varepsilon$;
weakly uniformly asymptotically stable if it is uniformly stable and there exists a $\delta_{0}>0$ such that for all $t_{0} \in I,\left|x_{0}\right|<\delta_{0}$ implies $\left|x\left(t, t_{0}, x_{0}\right)\right| \rightarrow 0$ as $t \rightarrow \infty$.

For a function $V: I \times D \rightarrow R$ continuous and locally Lipschitzian in x (D is an open subset of R^{n}), define the derivative of V with respect to (2) by

$$
\dot{V}_{(2)}(t, x)=\lim _{h \rightarrow 0^{+}} \sup [V(t+h, x+h f(t, x))-V(t, x)] / h .
$$

Throughout this paper we suppose the following conditions on the system (1):
(H1) $\Pi: q \rightarrow \Pi(q) \in R$ is the potential energy, which is a continuously differentiable function with $\Pi(0)=0,(\partial \Pi / \partial q)(0)=0$;
(H2) $T=T(q, \dot{q})=\dot{q}^{T} A(q) \dot{q} / 2$ is the kinetic energy where $A: q \rightarrow$ $A(q) \in R^{n \times n}$ is a continuously differentiable symmetric matrix function with $A(0)$ positive definite;
(H3) $B:(t, q) \rightarrow B(t, q) \in R^{n \times n}$ is a symmetric positive semidefinite matrix of the dissipations, which is continuous and integrally complete, that is,

$$
\dot{q}^{T} B(t, q) \dot{q} \geqq \beta(t)|\dot{q}|^{2}, \quad t \geqq 0, \quad q, \dot{q} \in R^{n}
$$

where $\beta: I \rightarrow I$ is measurable and $\int_{J} \beta(t) d t=\infty$ on any set $J=$ $\bigcup_{m=1}^{\infty}\left[\alpha_{m}, \beta_{m}\right]$ such that $\alpha_{m}<\beta_{m}<\alpha_{m+1}, \beta_{m}-\alpha_{m} \geqq \delta>0$;
(H4) $G:(t, q) \rightarrow G(t, q) \in R^{n \times n}$ is an antisymmetric matrix of the gyroscopic coefficients ($G^{T}=-G$, where G^{T} denotes the transposed matrix of G), which is continuous and $\|G(t, q)\|$ is bounded for all $t \geqq 0$ whenever $|q|$ is bounded.

Clearly, $q=\dot{q}=0$ is an equilibrium of the system (1). Furthermore, by (H2) we can choose an open neighborhood Ω of $0 \in R^{n}$ so that $A(q)^{-1}$ exists and is positive definite for all $q \in \Omega$ and $c_{1}|p| \leqq\left|A(q)^{-1} p\right| \leqq c_{2}|p|$, $q \in \Omega, p \in R^{n}$, for some positive numbers c_{1} and c_{2}. Set $p=A(q) \dot{q}=(\partial T / \partial \dot{q})$ and $H(q, p)=p^{T} A(q)^{-1} p / 2+\Pi(q), q \in \Omega, p \in R^{n}$. Then, the system (1) is transformed to the following Hamilton's equation

$$
\begin{align*}
\dot{q} & =\frac{\partial H}{\partial p} \\
\dot{p} & =-\frac{\partial H}{\partial q}+(G-B) A(q)^{-1} p \tag{3}
\end{align*}
$$

where $q \in \Omega, p \in R^{n}$ (cf. [4, p. 362]). Then we have:
TheOrem. In addition to (H1) through (H4), suppose the following (H5), (H6) and (H7) hold;
(H5) there exist strictly increasing continuous functions $a, b: I \rightarrow I$ with $a(0)=0$ and $b(0)=0$ such that for all $q \in \Omega$ we have

$$
a(|q|) \leqq \Pi(q) \leqq b(|q|) ;
$$

(H6) for every $\alpha_{1}, \alpha_{2}\left(0<\alpha_{1}<\alpha_{2}\right)$ there exists an $\eta>0$ such that

$$
|\operatorname{grad} \Pi(q)| \geqq \eta \quad\left(\alpha_{1} \leqq|q| \leqq \alpha_{2}, q \in \Omega\right) ;
$$

(H7) for any bounded continuous function $\psi(s)$ on I there exist a sequence of positive numbers $\left\{s_{n}\right\}$ and a positive constant $d, s_{n+1} \geqq s_{n}+d$, such that $\operatorname{tr} B(s, \psi(s)) \not \equiv 0$ on $\left[s_{n}, s_{n}+d\right]$ for all n and that

$$
\sum_{n=1}^{\infty}\left[\int_{s_{n}}^{s_{n}+d} \operatorname{tr} B(s, \psi(s)) d s\right]^{-1}=\infty
$$

Then the equilibrium $q=\dot{q}=0$ of (1) is weakly uniformly asymptotically stable.

To prove this Theorem we need the following lemma, which is an extension of [3, Lemma 2] to a matrix valued function.

Lemma. Let $\bar{B}(s)$ be a symmetric positive semi-definite matrix valued function and $u(s)$ a vector valued function on $[0, \infty)$, respectively, such that $\bar{B}(s)$ satisfies the same condition as (H7) for $B(s, \psi(s))$ and that

$$
\begin{equation*}
\int_{0}^{\infty} u(s)^{T} \bar{B}(s) u(s) d s<\infty . \tag{4}
\end{equation*}
$$

Then there exist a constant $d_{0}>0$ and a sequence $\left\{t_{n}\right\}, t_{n+1} \geqq t_{n}+d_{0}$, such that $\int_{t_{n}}^{t_{n}+t} \bar{B}(s) u(s) d s \rightarrow 0$ as $n \rightarrow \infty$ uniformly for $t \in\left[0, d_{0}\right]$.

Proof. We shall show that the assertion in lemma holds for a subsequence of $\left\{s_{n}\right\}$ and $d_{0}=d$, where $\left\{s_{n}\right\}$ and d are the ones given in the same condition as (H7) on $\bar{B}(s)$. Indeed, suppose that this is not the case. Then there exist a $\delta>0$, a positive integer k_{0} and a sequence $\left\{v_{k}\right\}, 0 \leqq v_{k} \leqq d$, such that for all $k \geqq k_{0}$ we have

$$
\delta \leqq\left|\int_{s_{k}}^{s_{k}+v_{k}} \bar{B}(s) u(s) d s\right|^{2}=\left|\int_{s_{k}}^{s_{k}+v_{k}} \bar{B}(s)^{1 / 2} \bar{B}(s)^{1 / 2} u(s) d s\right|^{2}
$$

For each $i, 1 \leqq i \leqq n$, denote by e_{i} the vector whose j-th component is 1 if $j=i$ and 0 if $j \neq i$, and set $b_{i}(s)=\bar{B}(s)^{1 / 2} e_{i}$. By the Schwarz inequality we have

$$
\begin{aligned}
\delta & \leqq \sum_{i=1}^{n}\left|\int_{s_{k}}^{s_{k}+v_{k}} b_{i}(s)^{T} \bar{B}(s)^{1 / 2} u(s) d s\right|^{2} \\
& \leqq \sum_{i=1}^{n}\left[\int_{s_{k}}^{s_{k}+v_{k}} b_{i}(s)^{T} b_{i}(s) d s\right]\left[\int_{s_{k}}^{s_{k}+v_{k}} u(s)^{T} \bar{B}(s) u(s) d s\right] \\
& =\left[\int_{s_{k}}^{s_{k}+v_{k}}\left(\sum_{i=1}^{n} e_{i}^{T} \bar{B}(s) e_{i}\right) d s\right]\left[\int_{s_{k}}^{s_{k}+v_{k}} u(s)^{T} \bar{B}(s) u(s) d s\right] \\
& \leqq\left[\int_{s_{k}}^{s_{k}+d} \operatorname{tr} \bar{B}(s) d s\right]\left[\int_{s_{k}}^{s_{k}+d} u(s)^{T} \bar{B}(s) u(s) d s\right] .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{k=k_{0}}^{\infty}\left[\int_{s_{k}}^{s_{k}+d} \operatorname{tr} \bar{B}(s) d s\right]^{-1} & \leqq \delta^{-1} \sum_{k=k_{0}}^{\infty}\left[\int_{s_{k}}^{s_{k}+d} u(s)^{T} \bar{B}(s) u(s) d s\right] \\
& \leqq \delta^{-1} \int_{s_{k_{0}}}^{\infty} u(s)^{T} \bar{B}(s) u(s) d s<\infty
\end{aligned}
$$

by (4). Consequently, $\sum_{k=1}^{\infty}\left[\int_{s_{k}}^{s_{k}+d} \operatorname{tr} \bar{B}(s) d s\right]^{-1}<\infty$, which is a contradiction. Hence, the assertion in lemma holds.
q.e.d.

Proof of Theorem. It suffices to show that the solution $q=p=0$ of (3) is weakly uniformly asymptotically stable. Set $V(q, p)=H(q, p)$. Then, by (H2) and (H5) we have

$$
\begin{equation*}
a(|q|)+m|p|^{2} \leqq V(q, p) \leqq b(|q|)+M|p|^{2} \tag{5}
\end{equation*}
$$

for some positive constants m and M whenever $q \in \Omega, p \in R^{n}$. Moreover, for any $q \in \Omega$ and $p \in R^{n}$ we have $\dot{V}_{(3)}(q, p)=(\partial H / \partial q)^{T} \dot{q}+(\partial H / \partial p)^{T} \dot{p}=$ $\left(A(q)^{-1} p\right)^{T} \times(G-B) A(q)^{-1} p=-\left(A(q)^{-1} p\right)^{T} B A(q)^{-1} p \leqq-\beta(t)\left|A(q)^{-1} p\right|^{2} \leqq$ $-c_{1}^{2} \beta(t)|p|^{2} \leqq 0$ by (H3), since G is antisymmetric. Consequently, the solution $q=p=0$ of (3) is uniformly stable. Hence, we can choose a
$\delta_{0}>0$ so that $(q(t), p(t)) \in S \times S, t \geqq t_{0}$, whenever $\left|\left(q_{0}, p_{0}\right)\right|<\delta_{0}$, where $S:=\left\{q \in R^{n}:|q| \leqq r\right\}, S \subset \Omega$, for a constant $r>0$, and $p(t):=p\left(t, t_{0}, q_{0}, p_{0}\right)$ and $q(t):=q\left(t, t_{0}, q_{0}, p_{0}\right)$. It remains only to show that $(q(t), p(t)) \rightarrow(0,0)$ as $t \rightarrow \infty$. First, we shall show that $p(t) \rightarrow 0$ as $t \rightarrow \infty$. Suppose that this is not the case. Then there exist a constant $k>0$ and a sequence $\left\{T_{n}\right\}, T_{n} \rightarrow \infty$ as $n \rightarrow \infty$, sucn that $\left|p\left(T_{n}\right)\right| \geqq k$ for all n. Consider a function $W(q, p)$ defined by $W(q, p)=p^{T} A(q)^{-1} p / 2=V(q, p)-\Pi(q), q$, $p \in S$. Set $c=\inf \{W(q, p):|q| \leqq r, k \leqq|p| \leqq r\}$. Since $A(q)^{-1}, q \in \Omega$, is positive definite, we have $c>0$. Furthermore, we have

$$
\begin{align*}
\frac{d}{d t} V(q(t), p(t)) & \leqq-\left[A(q(t))^{-1} p(t)\right]^{T} B A(q(t))^{-1} p(t) \tag{6}\\
& \leqq-c_{1}^{2} \beta(t)|p(t)|^{2} \leqq 0
\end{align*}
$$

and consequently

$$
\begin{equation*}
\int^{\infty} \beta(s)|p(s)|^{2} d s<\infty \tag{7}
\end{equation*}
$$

Then, by (7) we can easily conclude that there exist an $\varepsilon>0, \varepsilon<k$, and a sequence $\left\{\tau_{n}\right\}, T_{n-1}<\tau_{n}<T_{n}$ for all n, such that $\sup \{W(q, p)$: $|q| \leqq r,|p|=\varepsilon\}<c / 2$ and that $\left|p\left(\tau_{n}\right)\right|=\varepsilon$ and $\varepsilon \leqq|p(t)|$ on $\left[\tau_{n}, T_{n}\right.$] for all n. Now, we have $\dot{W}_{(3)}(q, p)=\dot{V}_{(3)}(q, p)-(\partial \Pi / \partial q)^{T} \dot{q} \leqq-(\partial \Pi / \partial q)^{T} A(q)^{-1} p \leqq N$, $q, p \in S$, for a constant N. Hence $c / 2 \leqq W\left(q\left(T_{n}\right), p\left(T_{n}\right)\right)-W\left(q\left(\tau_{n}\right), p\left(\tau_{n}\right)\right) \leqq$ $N\left(T_{n}-\tau_{n}\right)$ for all n, and consequently $\sum_{n=1}^{\infty}\left[\int_{\tau_{n}}^{T_{n}} \beta(s) d s\right]=\infty$ by (H3). On the other hand, $\sum_{n=1}^{\infty}\left[\int_{\tau_{n}}^{T_{n}} \beta(s) d s\right] \leqq \varepsilon^{-2} \int^{\infty} \beta(s)|p(s)|^{2} d s<\infty$ by (7), a contradiction. Thus, $p(t) \xrightarrow{\tau_{n}} 0$ as $t \rightarrow \infty$. Next, we shall show that $q(t) \rightarrow 0$ as $t \rightarrow \infty$. By (6) we have

$$
\begin{equation*}
\int^{\infty} u(s)^{T} \bar{B}(s) u(s) d s<\infty, \tag{8}
\end{equation*}
$$

where $\bar{B}(s):=B(s, q(s))$ and $u(s):=A(q(s))^{-1} p(s)$. Applying Lemma to $\bar{B}(s)$ and $u(s)$, it follows from (H7) and (8) that there exist a positive constant d_{0} and a sequence $\left\{t_{n}\right\}, t_{n+1} \geqq t_{n}+d_{0}$, such that

$$
\begin{equation*}
\int_{t_{n}}^{t_{n}+t} \bar{B}(s) u(s) d s \rightarrow 0 \text { as } n \rightarrow \infty \text { uniformly for } t \in\left[0, d_{0}\right] \tag{9}
\end{equation*}
$$

Taking a subsequence if necessary, we may assume that $q\left(t_{n}\right) \rightarrow q_{0}$ as $n \rightarrow \infty$ for a point q_{0}. We shall show $q_{0}=0$. Consider the functions $p_{n}(t):=p\left(t_{n}+t\right)$ and $q_{n}(t):=q\left(t_{n}+t\right), n=1,2, \cdots$, defined for $t \in\left[0, d_{0}\right]$. Since $\left|q_{n}(t)\right| \leqq r$ and $\left|\dot{q}_{n}(t)\right| \leqq\left|A\left(q_{n}(t)\right)^{-1} p_{n}(t)\right| \leqq c_{2} r$ on [$\left.0, d_{0}\right]$, taking a subsequence if necessary, Ascoli's theorem implies that $q_{n}(t) \rightarrow \psi(t)$ as $n \rightarrow \infty$ uniformly on $\left[0, d_{0}\right]$ for some continuous function $\psi(t)$. Integrating the equation of \dot{p} in (3) over $\left[t_{n}, t_{n}+t\right], 0 \leqq t \leqq d_{0}$, we have

$$
\begin{align*}
p\left(t_{n}\right. & +t)-p\left(t_{n}\right)=-\int_{t_{n}}^{t_{n}+t} \frac{\partial H}{\partial q}(q(s), p(s)) d s \tag{10}\\
& +\int_{t_{n}}^{t_{n}+t} G(s, q(s)) u(s) d s-\int_{t_{n}}^{t_{n}+t} \bar{B}(s) u(s) d s
\end{align*}
$$

Letting $n \rightarrow \infty$ in (10), by (9), (H4) and the fact that $p(t) \rightarrow 0$ as $t \rightarrow \infty$, we have $\int_{0}^{t} \operatorname{grad} \Pi(\psi(s)) d s \equiv 0$ on $\left[0, d_{0}\right]$, that is, $\operatorname{grad} \Pi(\psi(t)) \equiv 0$ and consequently $\psi(t) \equiv 0$ on [$0, d_{0}$] by (H6). Thus, $q_{0}=\psi(0)=0$. Then, for $t \geqq t_{n}$ we have $a(|q(t)|) \leqq V(q(t), p(t)) \leqq V\left(q\left(t_{n}\right), p\left(t_{n}\right)\right)$ by (5) and (6). Thus, since $V\left(q\left(t_{n}\right), p\left(t_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, we conclude that $\alpha(|q(t)|) \rightarrow 0$ as $t \rightarrow \infty$ and hence $q(t) \rightarrow 0$ as $t \rightarrow \infty$.
q.e.d.

Remark. In order to obtain a result similar to Theorem, Hatvani [2] imposed the condition (*) on (1), which is different from (H7). Under the condition (*), however, without applying Lemma we can directly deduce that $\int_{0}^{t} \operatorname{grad} \Pi(\psi(s)) d s \equiv 0$ on $\left[0, d_{0}\right]$ from (10) in the proof of Theorem given above, that is, our argument is applicable also to this case. Furthermore, note that the condition $\left(^{*}\right)$ does not hold in the case where $G \equiv 0$ and $B=B(t, q)$ with $0<\operatorname{tr} B \leqq M t \cdot \log (1+t)+N$, $t \geqq 0$, for some positive constants M and N. As easily checked, however, (H7) in Theorem is satisfied in this case. On the other hand, it should be noted that Artstein and Infante [1] obtained a solution of the second order scalar differential equation $\ddot{x}+t^{\alpha} \dot{x}+x=0$, which is an example of (1) with $B=t^{\alpha}$, not tending to 0 as $t \rightarrow \infty$ in the case $\alpha>1$.

References

[1] Z. Artstein and E. F. Infante, On the asymptotic stability of oscillations with unbounded damping, Quart. Appl. Math. 34 (1976), 195-199.
[2] L. Hatvani, A generalization of the Barbashin-Krasovskij theorems to the partial stability in nonautonomous systems, Colloq. Math. Soc. János Bolyai 30. Qualitative theory of differential equations Szeged (Hungary), (1979), 381-409.
[3] S. Murakami, Asymptotic behavior of solutions of ordinary differential equations, Tôhoku Math. J. 34 (1982), 559-574.
[4] N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Second Method, Applied Mathematical Sciences, Vol. 22, Springer-Verlag, New York-Heidelberg-Berlin, 1977.
[5] L. Salvadori, Sull' estenzione ai sistemi dissipativi del criterio di stabilitá del Routh, Ricerche Mat. 15 (1966), 162-167.
[6] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Applied Mathematical Sciences, Vol. 14, Springer-Verlag, New York-Heidelberg-Berlin, 1975.

Department of Liberal Arts and Engineering Sciences
Hachinohe Technical College
Hachinohe 031
Japan

