A CONDITION FOR ISOPARAMETRIC HYPERSURFACES OF S^n TO BE HOMOGENEOUS

HITOSHI TAKAGI

(Received February 10, 1984)

1. Introduction. Let M be a connected hypersurface of the ndimensional sphere S^n of radius 1. O(n + 1) acts on S^n as an isometry group. M is said to be homogeneous if it is an orbit of a certain subgroup of O(n + 1). M is said to be isoparametric if it has constant principal curvatures. If M is homogeneous then it is isoparametric. E. Cartan investigated the converse problem and he gave an affirmative answer in some special cases ([2], [3], [4], [5]). But, recently, Ozeki and Takeuchi gave examples of isoparametric hypersurfaces which are not homogeneous in [8], using a result of Münzner [7]. On the other hand, homogeneous hypersurfaces of S^n are investigated in detail by Hsiang and Lawson [6] and by Takagi and Takahashi [10].

In the present paper, we give an additional differential geometric condition for isoparametric hypersurfaces of S^n to be homogeneous, using the result to Münzner. Our main results are the following Theorems A and B. To state them, we need some notations. Let T_1, \dots, T_r and T be tensor fields on a manifold. T is said to be generated by T_1, \dots, T_r if T is a constant linear combination of tensor fields, each of which is a tensor product of some members of T_1, \dots, T_r or its contraction. We denote this fact by $T = P(T_1, \dots, T_r)$. Let M be a Riemannian manifold. Let M_p and M_q be the tangent spaces at $p, q \in M$. Then M_p and M_q are vector spaces with the inner products given by the Riemannian metric. A linear isometry L of M_p onto M_q is extended naturally to an isomorphism of the tensor algebra $T(M_p)$ onto $T(M_q)$, which is denoted also by L. For an oriented hypersurface M of S^n , we denote by G, H, ∇ and $\nabla^m H$ the first and second fundamental forms, the covariant differentiation and the *m*-th covariant differential, respectively. By G^{-1} , we denote the inner product for 1-forms on M induced naturally from G.

THEOREM A. Let M be an oriented isoparametric hypersurface of S^n with g distinct principal curvatures. Then, for any $m \ge g - 1$, $\nabla^m H$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 59540008), Ministry of Education.

is generated by $G, G^{-1}, H, \nabla H, \dots, \nabla^{g-2}H$.

THEOREM B. Let M be a closed isoparametric hypersurface of S^n with g distinct principal curvatures. Then, M is homogeneous if and only if the following condition (*) is satisfied:

(*) For every $p, q \in M$, there exists a linear isometry L: $M_p \to M_q$ satisfying $L(\nabla^m H)_p = (\nabla^m H)_q$ for each $m \leq g - 2$.

2. Proof of Theorem A. Let S^n be $\{p \in \mathbb{R}^{n+1} | \|p\| = 1\}$, M be an oriented hypersurface of S^n and N be a unit vector field on M normal to M and tangent to S^n at every point. Define $\phi: \mathbb{R} \times \mathbb{M} \to S^n$ by $\phi(\theta, p) =$ $(\cos \theta)p + (\sin \theta)N(p)$ and $\phi_{\theta}: M \to S^n$ by $\phi_{\theta}(p) = \phi(\theta, p)$, where we regard N(p) to be in S^n . Let I be an open interval containing 0. To prove the theorem, we may assume I and M are sufficiently small so that $U = \phi(I \times M)$ is open in S^n and that $\phi: I \times M \to U$ is a diffeomorphism. Hence $\phi_{\theta}(M)$ is a hypersurface of S^n for $\theta \in I$. Define $\theta: U \to \mathbf{R}$ by $\theta(\phi(\delta, p)) = \delta$. Then $\phi_{\theta}(M)$ is a level hypersurface of the function θ . The vector field $N = \operatorname{grad} \theta$ on U is a unit vector field normal to each level hypersurface of θ and tangent to S^n at every point, and $N(\phi(\theta, p)) =$ $-(\sin\theta)p + (\cos\theta)N(p)$ in \mathbb{R}^{n+1} . For brevity, we denote by (,) or G the Riemannian metrics of M, S^n and \mathbf{R}^{n+1} . We denote by D and ∂ the covariant differentiations of S^n and ${old R}^{n+1}$, respectively. Then, A=-DNgives a symmetric transformation of the tangent space U_{p} at $p \in U$ satisfying AN = 0. We call a vector or vector field X on U horizontal if (X, N) = 0.

LEMMA 1. If X is horizontal, then $(D_N A)X = A^2X + X$ and moreover, for the m-th covariant differential $D^m A$, there exists a polynomial $P_m(x)$ satisfying $((D^m A)(N, \dots, N))X = P_m(A)X$.

PROOF. Let $X(p) \in M_p$ be an eigenvector of A with the eigenvalue $\lambda_0 = \cot \theta_0$, where $\theta_0 \in (0, \pi)$. Then, we have $\phi_{\theta} X(p) = (\sin(\theta_0 - \theta)/\sin \theta_0) X(p)$ in \mathbf{R}^{n+1} and

(1.1)
$$A(\phi_{\theta}X(p)) = (\cot(\theta_0 - \theta))\phi_{\theta}X(p) .$$

Let X be a vector field defined by $X(\phi_{\theta}(p)) = \phi_{\theta}X(p)$. Then, we have $AX = (\cot(\theta_0 - \theta))X$ and $D_N X = \partial_N X = -(\cot(\theta_0 - \theta))X$, from which follows, $(D_N A)X = D_N(AX) - A(D_N X) = (\cot^2(\theta_0 - \theta) + 1)X = A^2X + X$. Hence, for any horizontal vector X, we have $(D_N A)X = A^2X + X$, since X is a linear combination of eigenvectors of A. Now, we note that the *m*-th order derivative of $\cot(\theta_0 - \theta)$ is a polynomial in $\cot(\theta_0 - \theta)$ and that $(D^m A)$ $(N, \dots, N) = D_N \dots D_N A$ for each m. Then, the latter assertion is easily seen by induction on m. q.e.d.

 $\mathbf{242}$

A is called the Weingarten map when we regard A as a transformation of horizontal vectors.

LEMMA 2. Let V and V' be open domains of M, and $\psi: V \to V'$ be an isometry which leaves the Weingarten map A invariant. Then, there exists a unique isometry $\Psi: S^n \to S^n$ satisfying $\Psi|_V = \psi$.

PROOF. Let $\pi: U \to M$ be the projection defined by $\pi(\phi(\theta, p)) = p$. Define $\Psi: \pi^{-1}(V) \to \pi^{-1}(V')$ by $\Psi(\phi(\theta, p)) = \phi_{\theta} \circ \psi(p)$. Then $\Psi \circ \phi_{\theta} = \phi_{\theta} \circ \psi$ and $\psi \circ A = A \circ \psi$. If $X \in M_p$, then $\phi_{\theta} X = (\cos \theta)X - (\sin \theta)AX$ and $\phi_{\theta}\psi X = (\cos \theta)\psi X - (\sin \theta)\psi AX$ in \mathbb{R}^{n+1} . Hence $\|\phi_{\theta}X\| = \|\phi_{\theta} \circ \psi X\|$. On the other hand, we see $\Psi N = N$ by $\Psi \circ \phi_{\theta} = \phi_{\theta} \circ \psi$. Thus, $\Psi: \pi^{-1}(V) \to \pi^{-1}(V')$ is an isometry which is extended to an isometry Ψ of S^n , since S^n is simply connected. The uniqueness is obvious. q.e.d.

Now, we assume that M has g distinct constant principal curvatures, that is, Weingarten map A has g distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_g$ at each point, which are constant and have the same multiplicities on M. Let $\lambda_i = \cot \theta_i, \ 0 < \theta_1 < \theta_2 < \dots < \theta_g < \pi$ and m_i be the multiplicity of λ_i . Then, by (1.1), each level hypersurface of θ also has g distinct constant principal curvatures. Münzner proved the following Lemmas 3, 4 and 5 in [7].

LEMMA 3. (i)
$$\theta_i = \theta_1 + (i-1)\pi/g$$
, (ii) $m_i = m_{i+2}$, where $i + g \equiv i$.

LEMMA 4. Define the function $f: U \to \mathbf{R}$ by $f(q) = \cos(g(\theta_1 - \theta(q)))$. Then $(\operatorname{grad} f, \operatorname{grad} f) = g^2(1 - f^2)$ and $\Delta f = -g(g + n - 1)f + c$, where Δ is the Laplace operator on S^n and $c = (m_2 - m_1)g^2/2$.

LEMMA 5. Let $\hat{U} = \{rp \in \mathbb{R}^{n+1} | r > 0, p \in U\}$. Define the function $F: \hat{U} \to \mathbb{R}$ by $F(rp) = r^{g}f(p)$. Then F is a homogeneous polynomial of degree g satisfying $\Delta F = cr^{g-2}$ and $(\operatorname{grad} F, \operatorname{grad} F) = g^{2} r^{2g-2}$, where $c = (m_{2} - m_{1})g^{2}/2$ and Δ is the Laplace operator on \mathbb{R}^{n+1} .

LEMMA 6. Denote by X the vector field $x^0\partial/\partial x^0 + \cdots + x^n\partial/\partial x^n$ in \mathbb{R}^{n+1} . Then $\partial_x \partial^k F = (g - k)\partial^k F$, where x^0, \cdots, x^n are Cartesian coordinates of \mathbb{R}^{n+1} and $\partial^k F$ denotes the k-th covariant differential.

PROOF. We note $\partial_x \partial_i = \partial_i \partial_x - \partial_i$, $\partial_i = \partial_{\partial/\partial x^i}$ and $\partial_x F = gF$, since F is a homogeneous polynomial of degree g. Then the lemma easily follows by induction on k. q.e.d.

LEMMA 7. $D^{g+1}f$ is generated by $f, D^1f, D^2f, \dots, D^{g-1}f$ and G, where D^mf denotes the m-th covariant differential.

PROOF. Let $S^n = \{(x^0, x^1, \dots, x^n) \in \mathbb{R}^{n+1} | \sum_{i=0}^n (x^i)^2 = 1\}$. We may regard

 (x^1, \dots, x^n) as a local coordinate system around $p \in U \subset S^n$. Then the function f is given by the function F as follows: $f(x^1, \dots, x^n) = F((1 - (x^1)^2 - \dots - (x^n)^2)^{1/2}, x^1, \dots, x^n)$. x^0 is a function given by $x^0(x^1, \dots, x^n) = (1 - (x^1)^2 - \dots - (x^n)^2)^{1/2}$. Here, we need a notation. Let T be a covariant tensor field of degree k on S^n . We denote by $T(i_k \cdots i_2 i_1)$ the component $T_{i_k \cdots i_2 i_1} = T(\partial/\partial x^{i_k}, \dots, \partial/\partial x^{i_2}, \partial/\partial x^{i_1})$ with respect to the basis $\partial/\partial x^1, \dots, \partial/\partial x^n$. Then we have

$$\begin{array}{ll} (1.2) \quad G(ji) = \delta_{ji} + x^j x^i / (x^0)^2 \,, \quad G^{-1}(dx^j,\,dx^i) = \delta_{ji} - x^j x^i \,, \quad D_{\partial/\partial x^j}(\partial/\partial x^i) \\ \\ &= \sum_{k=1}^n x^k G(ji) \partial/\partial x^k \,, \quad (Dx^0)(i) = -x^i / x^0 \,, \quad (D^2 x^0)(ji) = -x^0 G(ji) \,. \end{array}$$

We use the same notation as above to denote a component of a covariant tensor field T on \mathbb{R}^{n+1} with respect to the basis $\partial/\partial x^0$, $\partial/\partial x^1$, \cdots , $\partial/\partial x^n$. In this case, $(\partial_Y T)(i_k \cdots i_2 i_1) = \partial_Y (T(i_k \cdots i_2 i_1))$ for any vector field Y, which may be written as $\partial_Y T (i_k \cdots i_2 i_1)$. We denote $\partial_{\partial/\partial x^j} T$ by $\partial_j T$. Then, $\partial_j T (i_k \cdots i_2 i_1) = \partial T (j i_k \cdots i_2 i_1)$. We note $\partial^m T (j_m \cdots j_1; i_k \cdots i_1)$ is symmetric in every pair of indices j_m, \cdots, j_1 .

By Lemma 5, it is sufficient to prove

(1.3)
$$(D^k f)(i_k \cdots i_1) = \sum_{s=0}^k \sum_{\sigma} \partial^k F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(1)}} / (-x^0)^s + P(f, D^1 f, \cdots, D^{k-2} f, G)(i_k \cdots i_1),$$

where σ runs through the permutations of order k satisfying $\sigma(k) > \cdots > \sigma(s+1)$ and $\sigma(s) > \cdots > \sigma(1)$. We prove it by induction on k. It is trivial for k = 1. Hence, we assume (1.3) for 1, \cdots , k. Then, by (1.2), we have

$$\begin{aligned} (D^{k+1}f)(i_{k+1}i_k\cdots i_1) \\ &= \partial((D^kf)(i_k\cdots i_1))/\partial x^{i_{k+1}} - \sum_{t=1}^k \sum_{u=1}^n x^u G(i_{k+1}i_t)(D^kf)(i_k\cdots i_{t+1}ui_{t-1}\cdots i_1) \\ &= (I) + (II) + (III) + (IV) + (V) , \end{aligned}$$

where

$$\begin{split} (\mathbf{I}) &= \sum_{s=0}^{k} \sum_{\sigma} \left[\partial^{k+1} F(\underbrace{0 \cdots 0}_{s} i_{k+1} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) \right. \\ &\quad - \partial^{k+1} F(\underbrace{00 \cdots 0}_{s+1} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) x^{i_{k+1}} / x^{0} \right] \times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(1)}} / (-x^{0})^{s} , \\ (\mathbf{II}) &= \sum_{s=1}^{k} \sum_{\sigma} \partial^{k} F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) \times \sum_{t=1}^{s} \left[\partial(-x^{i_{\sigma(t)}} / x^{0}) / \partial x^{i_{k+1}} \right] \\ &\quad \times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(t+1)}} x^{i_{\sigma(t-1)}} \cdots x^{i_{\sigma(1)}} / (-x^{0})^{s-1} , \end{split}$$

 $\mathbf{244}$

$$\begin{aligned} \text{(III)} &= -\sum_{s=0}^{k-1} \sum_{\sigma} \sum_{t=s+1}^{k} \sum_{u=1}^{n} x^{u} G(i_{k+1} i_{\sigma(t)}) \\ &\times \partial^{k} F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(t+1)} u i_{\sigma(t-1)} \cdots i_{\sigma(s+1)}) \times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(1)}} / (-x^{0})^{s} , \\ \text{(IV)} &= -\sum_{s=1}^{k} \sum_{\sigma} \partial^{k} F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(s+1)} \times \sum_{t=1}^{s} \sum_{u=1}^{n} x^{u} G(i_{k+1} i_{\sigma(t)}) (-x^{u} / x^{0}) \\ &\times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(t+1)}} x^{i_{\sigma(t-1)}} \cdots x^{i_{\sigma(1)}} / (-x^{0})^{s-1} , \\ \text{(V)} &= P(f, D^{1} f, \cdots, D^{k-1} f, G) (i_{k+1} i_{k} \cdots i_{1}) . \end{aligned}$$

Then,

$$(I) = \sum_{s=0}^{k+1} \sum_{\tau} \partial^{k+1} F(\underbrace{0 \cdots 0}_{s} i_{\tau(k+1)} i_{\tau(k)} \cdots i_{\tau(s+1)}) \times x^{i_{\tau(s)}} \cdots x^{i_{\tau(1)}} / (-x^0)^s ,$$

where $\tau(k+1) > \tau(k) > \cdots > \tau(s+1)$ and $\tau(s) > \cdots > \tau(1)$. By (1.2),

$$(\text{II}) + (\text{IV}) = \sum_{s=1}^{k} \sum_{\sigma} \partial^{k} F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) \times \sum_{t=1}^{s} (D^{2}x^{0})(i_{k+1}i_{\sigma(t)}) \\ \times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(t+1)}} x^{i_{\sigma(t-1)}} \cdots x^{i_{\sigma(1)}}/(-x^{0})^{s-1} \\ = -\sum_{s=1}^{k} \sum_{\sigma} x^{0} \partial_{0} \partial^{k-1} F(\underbrace{0 \cdots 0}_{s-1} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) \\ \times \sum_{t=1}^{s} [x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(t+1)}} x^{i_{\sigma(t-1)}} \cdots x^{i_{\sigma(t)}}/(-x^{0})^{s-1}] \times G(i_{k+1}i_{\sigma(t)}) .$$

$$(\text{III}) = -\sum_{s=1}^{k} \sum_{\rho} \sum_{r=s}^{k} \sum_{u=1}^{n} x^{u} \partial_{u} \partial^{k-1} F(\underbrace{0 \cdots 0}_{s-1} i_{\rho(k)} \cdots i_{\rho(r+1)} i_{\rho(r-1)} \cdots i_{\rho(s)}) \\ \times [x^{i_{\rho(s-1)}} \cdots x^{i_{\rho(1)}}/(-x^{0})^{s-1}] G(i_{k+1}i_{\rho(r)}) ,$$

where $\rho(k) > \cdots > \rho(s)$ and $\rho(s-1) > \cdots > \rho(1)$. Let X be as in Lemma 6. Then, (II) + (IV) + (III) is equal to

$$-\sum_{s=1}^{k}\sum_{\rho}\sum_{r=s}^{k}\partial_{x}\partial^{k-1}F(\underbrace{0\cdots}_{s-1}0i_{\rho(k)}\cdots i_{\rho(r+1)}i_{\rho(r-1)}\cdots i_{\rho(s)})$$
$$\times [x^{i_{\rho(s-1)}}\cdots x^{i_{\rho(1)}}/(-x^{0})^{s-1}]G(i_{k+1}i_{\rho(r)}).$$

By Lemma 6, (II) + (III) + (IV)

$$= -\sum_{s=1}^{k} \sum_{\rho} \sum_{r=s}^{k} (g - k + 1) \partial^{k-1} F(\underbrace{0 \cdots 0}_{s-1} i_{\rho(k)} \cdots i_{\rho(r+1)} i_{\rho(r-1)} \cdots i_{\rho(s)}) \\ \times [x^{i_{\rho(s-1)}} \cdots x^{i_{\rho(1)}} / (-x^{0})^{s-1}] G(i_{k+1} i_{\rho(r)}) \\ = -(g - k + 1) \sum_{t=1}^{k} \left[\sum_{s=0}^{k-1} \sum_{\delta} \partial^{k-1} F(\underbrace{0 \cdots 0}_{s} i_{\delta T(k-1)} \cdots i_{\delta T(s+1)}) \right. \\ \left. \times x^{i_{\delta T(s)}} \cdots x^{i_{\delta T(1)}} / (-x^{0})^{s} \right] G(i_{k+1} i_{t}) ,$$

where $\gamma(s) = s$ for $s = 1, \dots, t - 1$, $\gamma(s) = s + 1$ for $s = t, \dots, k - 1$ and δ runs through the permutations of $\{\gamma(1), \dots, \gamma(k-1)\}$ satisfying $\delta\gamma(k-1) > \dots > \delta\gamma(s+1)$ and $\delta\gamma(s) > \dots > \delta\gamma(1)$. By the induction hypothesis, we have (II) + (III) + (IV)

$$= -(g - k + 1) \sum_{t=1}^{k} (D^{k-1}f)(i_k \cdots i_{t+1}i_{t-1} \cdots i_1)G(i_{k+1}i_t) + P(f, D^1f, \cdots, D^{k-3}f, G)(i_{k+1}i_k \cdots i_1) .$$

This completes the proof.

We denote also by H the covariant tensor field of degree 2 on U defined by H(X, Y) = (AX, Y).

LEMMA 8. $D^{g-1}H$ is generated by G, $D\theta$, H, DH, \cdots and $D^{g-2}H$ along each level hypersurface of θ .

PROOF. We note $H = -D^2\theta$, $f = \cos(g(\theta_1 - \theta))$ and $\theta = \theta_1 - (1/g)\cos^{-1}f$ on U. Hence we have

$$D^{m}f = (df/d\theta)D^{m}\theta + \cdots + (d^{m}f/d\theta^{m})(D\theta)^{m}$$

for every m. Conversely, we have

$$-D^{g-1}H = D^{g+1}\theta = (d\theta/df)D^{g+1}f + \cdots + (d^{g+1}\theta/df^{g+1})(Df)^{g+1}$$
.

Then, by Lemma 7, we have the assertion.

We denote by \mathscr{F} the set of all C^{∞} functions on U and by \mathscr{H}_{H} the set of all C^{∞} horizontal vector fields on U. For $X, Y \in \mathscr{H}_{H}$, we denote by $\nabla_{X}Y$ the horizontal part of $D_{X}Y$. Then $D_{X}Y = \nabla_{X}Y + H(X,Y)N$. Along M, this ∇ coincides with the covariant differentiation. Every C^{∞} covariant tensor field T of degree k on U is regarded as a field $\mathscr{H}_{H} \times \cdots \times \mathscr{H}_{H} \to \mathscr{F}$, which is denoted also by T. We define a field $\nabla T: \mathscr{H}_{H} \times \cdots \times \mathscr{H}_{H} \to \mathscr{F}$ by

$$(\nabla T)(X_{k+1}, X_k, \cdots, X_1) = X_{k+1}(T(X_k, \cdots, X_1)) - \sum_{i=1}^k T(X_k, \cdots, \nabla_{X_{k+1}}X_i, \cdots, X_1)$$

Let us consider a field $T: \mathscr{H}_H \times \cdots \times \mathscr{H}_H \to \mathscr{F}$ defined as follows:

 $T(X_k, \dots, X_i, \dots, X_1) = (D^m H)(\dots, X_k, \dots, N, \dots, X_i, \dots, N, \dots, X_1, \dots)$, where N appears m - k + 2 times in $(D^m H)(\dots)$. We call such a T fundamental field of type (m, k).

LEMMA 9. Let T be a fundamental field of type (m, k). Then, T is generated by G, G^{-1} , H, ∇H , \cdots , $\nabla^{k-3}H$ and $\nabla^{k-2}H$.

PROOF. Let T_1 , T_2 and T_3 be fundamental fields defined by

246

q.e.d.

q.e.d.

$$T_1(X_2, X_1) = (D^m H)(N, \dots, N; X_2, X_1)$$

$$T_2(X_1) = (D^m H)(N, \dots, N; N, X_1)$$

$$T_3 = (D^m H)(N, \dots, N; N, N) .$$

Then, by Lemma 1, $T_1 = P(H, G, G^{-1})$, $T_2 = 0$ and $T_3 = 0$. Let S and S' be fundamental fields of type (m, k) defined by

$$S(X_k, \dots, X_i, \dots X_1) = (D^m H)(\dots, N, X_i, \dots)$$

$$S'(X_k, \dots, X_i, \dots, X_1) = (D^m H)(\dots, X_i, N, \dots),$$

where we transposed only N and X_i in $(D^mH)(\cdots)$. Then, by the Ricci formula, S' - S is generated by G and fundamental fields of types $(m-2, j), j \leq k$, as S^n has the constant curvature. Repeating the transpositions as above, we arrive at one of the fundamental fields T, T' and T'' defined as follows:

$$T(X_k, \dots, X_1) = (D^m H)(X_k, \dots, X_3, N, \dots, N; X_2, X_1)$$

$$T'(X_k, \dots, X_1) = (D^m H)(X_k, \dots, X_2, N, \dots, N; N, X_1)$$

$$T''(X_k, \dots, X_1) = (D^m H)(X_k, \dots, X_1, N, \dots, N; N, N).$$

T-S, T'-S or T''-S is generated by G and fundamental fields of types $(m-2, j), j \leq k$. Hence it is sufficient to prove the assertion only for the fields T, T' and T''. We prove it by induction on m. We assume it is valid for $0, 1, \dots, m$. Let T be a fundamental field of type (m + 1, k + 1) defined by

$$T(X_{k+1}, X_k, \dots, X_1) = (D^{m+1}H)(X_{k+1}, X_k, \dots, X_3, N, \dots, N; X_2, X_1) .$$

But the right hand term is written as follows:

$$\begin{split} X_{k+1}((D^{m}H)(X_{k}, \cdots, X_{3}, N, \cdots, N; X_{2}, X_{1})) \\ &- \sum_{i=3}^{k} (D^{m}H)(X_{k}, \cdots, D_{X_{k+1}}X_{i}, \cdots, X_{3}, N, \cdots, N; X_{2}, X_{1}) \\ &- \sum (D^{m}H)(X_{k}, \cdots, X_{3}, N, \cdots, D_{X_{k+1}}N, \cdots, N; X_{2}, X_{1}) \\ &- (D^{m}H)(X_{k}, \cdots, X_{3}, N, \cdots, N; D_{X_{k+1}}X_{2}, X_{1}) \\ &- (D^{m}H)(X_{k}, \cdots, X_{3}, N, \cdots, N; X_{2}, D_{X_{k+1}}X_{1}) \\ &= X_{k+1}((D^{m}H)(X_{k}, \cdots, X_{3}, N, \cdots, N; X_{2}, X_{1})) \\ &- \sum_{i=3}^{k} (D^{m}H)(X_{k}, \cdots, X_{3}, N, \cdots, N; X_{2}, X_{1})) \\ &- (D^{m}H)(X_{k}, \cdots, X_{3}, N, \cdots, N; \nabla_{X_{k+1}}X_{2}, X_{1}) \\ &- (D^{m}H)(X_{k}, \cdots, X_{3}, N, \cdots, N; X_{2}, \nabla_{X_{k+1}}X_{1}) \\ &- \sum_{i=3}^{k} H(X_{k+1}, X_{i})(D^{m}H)(X_{k}, \cdots, N, \cdots, X_{3}, N, \cdots, N; X_{2}, X_{1}) \end{split}$$

H. TAKAGI

+
$$\sum (D^{m}H)(X_{k}, \dots, X_{3}, N, \dots, AX_{k+1}, \dots, N; X_{2}, X_{1})$$

- $H(X_{k+1}, X_{2})(D^{m}H)(X_{k}, \dots, X_{3}, N, \dots, N; N, X_{1})$
- $H(X_{k+1}, X_{1})(D^{m}H)(X_{k}, \dots, X_{3}, N, \dots, N; X_{2}, N)$.

The above equality says $T = \nabla S + R$, where S is a fundamental field of type (m, k) defined by $S(X_k, \dots, X_1) = (D^m H)(X_k, \dots, X_3, N, \dots, N; X_2, X_1)$ and R is a field generated by fundamental fields of types (n, j), where $n \leq m$ and $j \leq k + 1$. Hence, by assumption, $T = P(G, G^{-1}, H, \dots, \nabla^{k-1}H)$. The proofs for T' and T" are similar to the above. So we omit them, noting

$$(D^{\mathfrak{m}}H)(N, \dots, N, X, N, \dots, N; N, N) = 0$$
 for $X \in \mathscr{H}_{H}$. q.e.d.

LEMMA 10. Regard D^mH as a fundamental field of type (m, m + 2). Then $D^mH = \nabla^mH + R$, where R is a field generated by G, G^{-1} , H, ∇H , \cdots , $\nabla^{m-2}H$.

PROOF. Note that

$$\begin{aligned} (D^{m}H)(X_{m+2}, \cdots, X_{3}; X_{2}, X_{1}) \\ &= (\nabla D^{m-1}H)(X_{m+2}, \cdots, X_{3}; X_{2}, X_{1}) \\ &+ \sum_{i=1}^{m+1} H(X_{m+2}, X_{i})(D^{m-1}H)(X_{m+1}, \cdots, X_{i+1}, N, X_{i-1}, \cdots, X_{3}; X_{2}, X_{1}) \;. \end{aligned}$$

Then, we get the assertion by Lemma 9 and induction on m. q.e.d.

By Lemmas 8 and 10, we complete the proof of Theorem A.

3. Proof of Theorem B. First, we note the following result due to Münzner ([7]).

LEMMA 11. Let M be a connected closed isoparametric hypersurface of S^n with g distinct principal curvatures. Then, the function f in Lemma 4 is extended to a unique analytic function on S^n denoted also by f such that $M = f^{-1}(t_1), t_1 = \cos(g\theta_1) \in (-1, 1).$

REMARK. (i) In particular, M is oriented by

$$N = g^{-1}(1 - f^2)^{-1/2} \operatorname{grad} f$$
 .

Hence, we can define H, A, \cdots over M.

(ii) Let $\phi: \mathbb{R} \times M \to S^n$ be as in Section 2. Define $\Phi: (-1, 1) \times M \to S^n$ by $\Phi(t, p) = \phi((\cos^{-1}t_1 - \cos^{-1}t)/g, p)$. Then, $f(\Phi(t, p)) = t$, $U = \Phi((-1, 1) \times M)$ is open in S^n and $\Phi: (-1, 1) \times M \to U$ is a diffeomorphism.

Let $\pi: \widetilde{M} \to M$ be the universal covering. Then, by the pull back, \widetilde{M} has the structure $\widetilde{G}, \widetilde{H}, \widetilde{A}, \widetilde{\nabla}, \cdots$ which are briefly denoted also by G, H, A, ∇, \cdots . LEMMA 12. Under the condition (*) in Theorem B, \tilde{M} admits a transitive group of isometries leaving A invariant.

PROOF. Since our proof is quite similar to that in Singer [9] and Ambrose and Singer [1], we only give a sketch. Let B be the orthonormal frame bundle over \tilde{M} . Let j_g, \dots, j_1 be a sequence of g integers, where $1 \leq j_g, \dots, j_1 \leq n-1$. Let $\rho[j_g \dots j_1]: B \to \mathbb{R}^{g^{-1}}$ be a mapping defined by

$$(\rho[j_{g}\cdots j_{1}])(b) = (H(j_{2}j_{1}), \nabla H(j_{3}j_{2}j_{1}), \cdots, \nabla^{g-2}H(j_{g}\cdots j_{3}j_{2}j_{1}))$$

where $b = (q; Y_1, \dots, Y_{n-1})$ and $\nabla^{m-2}H(j_m \dots j_s j_2 j_1) = (\nabla^{m-2}H)(Y_{j_m}, \dots, Y_{j_3}; Y_{j_2}, Y_{j_1})$. Let $\rho = \{\rho[j_g \dots j_1]\}$ be the finite sequence of all such $\rho[j_g \dots j_1]$'s. Then ρ can be regarded as a mapping of B to $\mathbb{R}^{g-1} + \dots + \mathbb{R}^{g-1}$. Let $\overline{C} = \{b \in B \mid \rho(b) = \rho(a)\}$, where $a = (p; X_1, \dots, X_{n-1})$ is a fixed element of B satisfying $H(X_j, X_i) = \lambda_j \delta_{j_i}$. Let C be the component of \overline{C} containing a. Under the condition (*), C is a subbundle of B with the structure group K, where K is the component of the group $\overline{K} = \{h \in O(n-1) \mid \rho(ah) = \rho(a)\}$ containing the identity. Let (ω_{ij}) and (ω_i) be the Riemannian connection form and the canonical form. Let E_i and E_{ij} be the vector fields dual to ω_i and ω_{ij} . Let o(n-1) and \mathfrak{k} be the orthogonal projection of o(n-1) and K. A bi-invariant metric of O(n-1) gives the orthogonal decomposition $o(n-1) = \mathfrak{k} + \mathfrak{m}$. Let γ be the orthogonal projection of o(n-1) onto \mathfrak{k} , $(\phi_{ij}) = \gamma(\omega_{ij})$ and $\tau_{ij} = \phi_{ij} - \omega_{ij}$. Then (ϕ_{ij}) defines a connection form of C and $\tau_{ij}(E_k)$ is constant on C for each i, j and k. Here, we used the fact that $d\rho(E_k(b))$ has the expression

$$\{\cdots; \nabla H(kj_2j_1), \cdots, \nabla^{g-1}H(kj_g\cdots j_2j_1); \cdots\}$$

which is the same for every $b \in C$, by Theorem A. Then, on C, $d\omega_i$ and $d\phi_{ij}$ are constant linear combinations of wedge products of ω_i and ϕ_{ij} . Here, we note that the curvature form (Ω_{ij}) of the Riemannian connection is written as $\Omega_{ij} = (\lambda_i \lambda_j + 1)(\omega_i \wedge \omega_j)$ on C. Though C is not always simply connected, it has the group structure such that $\{\omega_i\}$ and some members of $\{\phi_{ij}\}$ give the Maurer Cartan form, and C acts on \tilde{M} as transitive group of isometries; Frame $b = (q; Y_1, \dots, Y_{n-1})$ corresponds to an isometry ψ such that $\psi(X_i) = Y_i$, where $a = (p; X_1, \dots, Y_{n-1})$ is the fixed frame. Hence it is obvious that $\psi \circ A = A \circ \psi$.

By Lemma 12, M is locally homogeneous, that is, for every $p, q \in M$, there exist neighborhoods V and V' of p and q in M, respectively and an isometry $\psi: V \to V'$ leaving A invariant. Then, by Lemma 2, there exists an isometry $\Psi: S^n \to S^n$ such that $\Psi|_V = \psi$. To prove Theorem B, it is sufficient to show $\Psi(M) = M$. But it is obvious by Lemma 11 and the fact that M and $\Psi(M)$ are closed isoparametric hypersurfaces and that $M \cap \Psi(M)$ contains the open subset V'. The necessity of (*) is also obvious.

REMARK. Münzner ([7]) proved that, for a connected isoparametric hypersurface of S^n , g is 1, 2, 3, 4 or 6.

References

- W. AMBROSE AND I. M. SINGER, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647-669.
- [2] E. CARTAN, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. di Mat. 17 (1938), 177-191.
- [3] E. CARTAN, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Zeit. 45 (1939), 335-367.
- [4] E. CARTAN, Sur quelques familles remarquables d'hypersurfaces, C. R. Congrès Math. Liège, 1939, 30-41.
- [5] E. CARTAN, Sur des familles remarquables d'hypersurfaces isoparamétriques sphériques à 5 et 9 dimensions, Atti Fond. Volta 9 (1939), 443-461.
- [6] W. Y. HSIANG AND H. B. LAWSON, Minimal submanifolds of low cohomogeneity, J. Diff. Geom. 5 (1971), 1-38.
- [7] H.F. MÜNZNER, Isoparametrische Hyperflächen in Sphären, I, II, Math. Ann. 251 (1980), 57-71; 256 (1981), 215-232.
- [8] H. OZEKI AND M. TAKEUCHI, On some types of isoparametric hypersurfaces in spheres, I, II, Tôhoku Math. J. 27 (1975), 515-559; 28 (1976), 7-55.
- [9] I. M. SINGER, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697.
- [10] R. TAKAGI AND T. TAKAHASHI, On the principal curvatures of homogeneous hypersurfaces in a sphere, Diff. Geom. in honor of K. Yano, Kinokuniya, Tokyo, 1972, 469-481.

DEPARTMENT OF MATHEMATICS COLLEGE OF GENERAL EDUCATION TÔHOKU UNIVERSITY SENDAI, 980 JAPAN

250