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1. Introduction. Let M be a connected hypersurface of the n-
dimensional sphere Sn of radius 1. O(n + 1) acts on Sn as an isometry
group. M is said to be homogeneous if it is an orbit of a certain sub-
group of O(n + 1). M is said to be isoparametric if it has constant
principal curvatures. If M is homogeneous then it is isoparametric.
E. Car tan investigated the converse problem and he gave an affirmative
answer in some special cases ([2], [3], [4], [5]). But, recently, Ozeki and
Takeuchi gave examples of isoparametric hypersurfaces which are not
homogeneous in [8], using a result of Mϋnzner [7]. On the other hand,
homogeneous hypersurfaces of Sn are investigated in detail by Hsiang
and Lawson [6] and by Takagi and Takahashi [10].

In the present paper, we give an additional differential geometric
condition for isoparametric hypersurfaces of Sn to be homogeneous, using
the result to Mϋnzner. Our main results are the following Theorems A
and B. To state them, we need some notations. Let Tlf •••, Tr and T
be tensor fields on a manifold. T is said to be generated by T19 •••, Tr

if T is a constant linear combination of tensor fields, each of which is
a tensor product of some members of T19 •••, Tr or its contraction. We
denote this fact by T = P(TU , Tr). Let J i b e a Riemannian manifold.
Let Mp and Mq be the tangent spaces at p, q e M. Then Mp and Mq are
vector spaces with the inner products given by the Riemannian metric.
A linear isometry L of Mp onto Mq is extended naturally to an isomorphism
of the tensor algebra T(MP) onto T(Mq), which is denoted also by L.
For an oriented hypersurface M of Sn, we denote by G, H, V and VmH
the first and second fundamental forms, the covariant differentiation and
the m-th covariant differential, respectively. By G"1, we denote the
inner product for 1-forms on M induced naturally from G.

THEOREM A. Let M be an oriented isoparametric hypersurface of
Sn with g distinct principal curvatures. Then, for any m^g — 1, VmH
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is generated by G, G~\ H, ViJ, , Vg~Ή.

THEOREM B. Let M be a closed isoparametric hyper surface of Sn

with g distinct principal curvatures. Then, M is homogeneous if and
only if the following condition (*) is satisfied:
( * ) For every p, qeM, there exists a linear isometry L: Mp —• Mq satis-
fying L(VmH)p = {VmH)q for each m ^ g - 2.

2. Proof of Theorem A. Let Sn be {peRn+1\ \\p\\ = 1}, M be an
oriented hypersurface of Sn and N be a unit vector field on M normal
to M and tangent to Sn at every point. Define φ: R x M-> Sn by φ(β, p) =
(cos#)p + (sin θ)N(p) and φθ: M-> Sn by φθ{p) = φ(β, p), where we regard
N(p) to be in Sn. Let / be an open interval containing 0. To prove
the theorem, we may assume / and M are sufficiently small so that
U = φ(IχM) is open in Sn and that φ: IxM—>U is a diffeomorphism.
Hence φθ(M) is a hypersurface of Sn for 0 e l . Define Θ:U-*R by
^(^(δ, p)) = δ. Then ^(M) is a level hypersurface of the function θ.
The vector field N = grad θ on ί7 is a unit vector field normal to each
level hypersurface of θ and tangent to Sn at every point, and N(φ(θ, p)) =
— (sin 0)p + (cos θ)N(p) in JSπ+1. For brevity, we denote by ( , ) or G
the Riemannian metrics of M, Sn and Rn+1. We denote by D and 3 the
covariant differentiations of Sn and Rn+1, respectively. Then, A = —DN
gives a symmetric transformation of the tangent space Up at p e U
satisfying AN = 0. We call a vector or vector field X on U horizontal
if (X, N) = 0.

LEMMA 1. // X is horizontal, then (DNA)X = A2X + X and moreover,
for the m-th covariant differential DmA, there exists a polynomial Pm(x)
satisfying ((DmA)(N, , N))X = Pm(A)X.

PROOF. Let X(p) 6 Mp be an eigenvector of A with the eigenvalue
λ0 = cot ΘQJ where θ0 e (0, π). Then, we have φθX(p) = (sin(0o — 0)/sin θo)X(p)
in /ίn + 1 and

(1.1) A(φθX(p)) - (cot(ί0 - θ))φθX(p).

Let X be a vector field defined by X{φθ{p)) = φθX(p) Then, we have
A X = (cot(0o - 0))-X" and DNX= dNX= -(cot(0o - ί))-3Γ, from which follows,
(Z^A)X - DN(AX) - A(DNX) = (cot2(0o - θ) + 1)X = A2X + X. Hence, for
any horizontal vector X, we have (DNA)X = A2X + X, since X is a linear
combination of eigenvectors of A. Now, we note that the m-th order
derivative of cot(0o — θ) is a polynomial in cot(0o — θ) and that (DmA)
(N, , N) = DN JD^A for each m. Then, the latter assertion is easily
seen by induction on m. q.e.d.
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A is called the Weingarten map when we regard A as a transfor-
mation of horizontal vectors.

LEMMA 2. Let V and V be open domains of M, and ψ: V—>V be
an ίsometry which leaves the Weingarten map A invariant. Then, there
exists a unique isometry Ψ: Sn —> Sn satisfying Ψ\v = ψ.

PROOF. Let π:U-^M be the projection defined by π(φ(θ,p)) = p.
Define Ψ: π~\V) -> π~\V') b y Ψ(φ(θ, p)) = φθ ° f (p). T h e n ψoφθ = φθoψ
and ψo A = Aof. If X e Mp, then φθX = (cos Θ)X - (sin Θ)AX and ^ f X =
(cos θ)ψX- (sin θ)ψAX in Rn+ι. Hence | | ^X | | = ||^oψ^X"||. On the other
hand, we see ΨN = N by ψoφθ = φθoψ. Thus, Ψ: π~\V)-> π~XV') is an
isometry which is extended to an isometry Ψ of Sπ, since Sn is simply
connected. The uniqueness is obvious. q.e.d.

Now, we assume that M has g distinct constant principal curvatures,
that is, Weingarten map A has g distinct eigenvalues χlf λ2, , Xg at
each point, which are constant and have the same multiplicities on M.
Let λ< = cot θi9 0 < θι < θ2 < < θg <π and mt be the multiplicity of xt.
Then, by (1.1), each level hypersurface of θ also has g distinct constant
principal curvatures. Mϋnzner proved the following Lemmas 3, 4 and 5
in [7].

LEMMA 3. (i) θt = θί + (i — l)π/g, (ii) mt = m ί + 2, where i + g = i.

LEMMA 4. Define the function f:U—>R by f(q) = cos(g(θ1 — θ(q))).
Then (grad/, grad/) = g\l - f2) and Δ/ = -g(g + n - 1)/ + c, where
Δ is the Laplace operator on Sn and c — (m2 — m^)g2β.

LEMMA 5. Let U = {rpe Rn+1 \ r > 0, peU}. Define the function
F:U-+R by F(rp) — r9f(p). Then F is a homogeneous polynomial of
degree g satisfying ΔF = cr9'2 and (gradi^, g r a d F ) = g2r29~2, where c =
(m2 — m^g2l2 and Δ is the Laplace operator on Rn+1.

LEMMA 6. Denote by X the vector field x°d/dx° H + xnd/dxn in Rn+1.
Then dxd

kF = (g — k)dkF, where x°, , xn are Cartesian coordinates of
Rn+1 and dkF denotes the k-th covariant differential.

PROOF. We note dxdt = d A - dif dt = dd/dxi and dxF = gF, since F
is a homogeneous polynomial of degree g. Then the lemma easily follows
by induction on k. q.e.d.

LEMMA 7. D9+1f is generated by f Dγf, D2f , D9~ιf and G, where
Dmf denotes the m-th covariant differential.

PROOF. Let Sn = {(x°, x\ , xn) e Rn+1 \ Σ? = o (x1)2 = 1}. We may regard
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(x\ , xn) as a local coordinate system around peUaS71. Then the
function / is given by the function F as follows: f(x\ , xn) = F((l —
(x1)2 (xn)ψ\ x\ , xn). x° is a function given by x\x\ , xn) =
(1 — (x1)2 (xn)2)1/2. Here, we need a notation. Let T be a covariant
tensor field of degree k on Sn. We denote by T(ίk ί2ii) the component
Tik...hh= T(d/dxίk, , d/dx% d/dxh) with respect to the basis d/dx\ , 3/3α>\
Then we have

(1.2) G(ji) = 8it + xWKx0)2 , G-\dx>\ dx1) = δJt - xW , D

= Σ xhG(ji)d/dxh , (Dx°)(i) = -^Vα;0 , (D2x°)(ji) = -x°G(ji) .
h=l

We use the same notation as above to denote a component of a covariant
tensor field T on jβn+1 with respect to the basis d/dx°, d/dx\ , d/dxn. In
this case, (dγT)(ik ίaij = dγ (T(ik i2it)) for any vector field Y, which
may be written as dγT (ik v i j . We denote dd/dxjT by d̂ -T. Then,
Ŝ Γ (i* i2ίi) = 3Γ (jit igij. We note 3mΓ (jw j\; ik i j is sym-
metric in every pair of indices j m , , j \ .

By Lemma 5, it is sufficient to prove

(1.3)

= Σ Σ 3*̂ (0ΣΣ

where σ runs through the permutations of order k satisfying σ{k) > >
σ(s 4- 1) and σ(s)> •• >σ(l) . We prove it by induction on k. It is
trivial for k = 1. Hence, we assume (1.3) for 1, ••-,&. Then, by (1.2),
we have

(D fc+1/)(W* h)
k n

= d((Dkf)(% i^/fo ' i+i - Σ Σ x"G(ik+1it)(Dkf)(ίk i f + 1wt t_, •••»,)

= (I) + (II) + (III) + (IV) + (V) ,
where

( I ) = Σ Σ [ j ^
8

- dk+1F(00 0ia(k) iα { i +i,)αj i*+Vί» 0]xx ί σ { 8 ) ^ ω / ( -

β + l

(Π) = Σ Σ d " F ( 0 j ^ 0 i . w i . ( . + 1 ) ) x Σ [S(—** «»/aj°)/aa!«*+χ]
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(Hi) = - Σ Σ Σ Σ« M G(w o ( ί ) )
8=0 a t=s+l u = l

x 3kF(0 0iσ{k) iait+vuiou-u iα(β+1)) x x**™ &*•<*>/(-&°) ,

(IV) = - Σ Σ W O <W.(W i.(.+1) x Σ Σ χ G(ik+ιiβlt))(-x'/xv)
8=1 a * « ' ί = l « = 1

(V) = P(/, Z)1/, . , Z)*-1/, G)(i*+1i* id .

Then,

fc+l

(I) = Σ Σ P+'Fdl^Jtirt+aitM ir(.+1)) x aŝ w x*»K-x°)' ,
8

where τ(fc + 1) > τ(fc) > > τ(s + 1) and r(s) > > r(l). By (1.2),

(ID + (IV) = Σ Σ a*f(Oj—oi.(1) *.,.+«) x Σ ΦV)(4+1iα>)
s

χa;'«M . a ̂ fί+Da W - i ) . . . χ{oiu/( — x0)'-1

= - Σ Σ x ' d ^ - ' F φ - pΐ.tt, ΐ.,.+1))
s-l

x Σ [^ίσ(8)
 X'Ή+VX**"-!* x'tw/i-x0)9-1] x G(ik+1iσ{t)) .

ί = l

(in) = - Σ Σ Σ Σ i r - e . a * - 1 ^ 0t,(4) i,(r+1,v,,_u *„.,)
8 = 1 0̂ r = 8 M = l "̂  •» '

where jθ(fc) > > /θ(β) and |θ(s — 1) > > p(ΐ). Let X be as in Lemma
6. Then, (II) + (IV) + (III) is equal to

- Σ Σ Σ 3x3^^(0 0i,,», W+uW-i) in.))
8=1 p r=β " '

By Lemma 6, (II) + (III) + (IV)

8=1 |0 r=β ^-—«—'
0i

X [a;V.-i> . . . x V α i / ί - ϊ Ή G ί i j + Λ , ,

= -to - k + 1) Σ [ Σ Σ ̂ -



246 H. TAKAGI

where τ(s) = s for s = 1, , t — 1, 7(s) = s + 1 for s = ί, , fc — 1 and
δ runs through the permutations of {7(1), , 7(fc — 1)} satisfying
δΎ(k - 1) > > δΎ(s + 1) and δy(s) > > <?7(1). By the induction
hypothesis, we have (II) + (III) + (IV)

= -(ff - fc + 1) Σ (£ f c -W* W*-i iJG(ik+ιit)

+ P(/, Z)1/, .. , D*-3/, G ) ( w * id .

This completes the proof. q.e.d.

We denote also by H the covariant tensor field of degree 2 on U
defined by H(X, Y) = (AX, Γ).

LEMMA 8. Ό9~γH is generated by G, Dθ, H, DH, and D9~Ή along
each level hypersurface of θ.

P R O O F . We note H = -D2Θ, f = cos(g(^1 - θ)) and Θ = ΘL- (1/^cos" 1 /

on U. Hence we have

Dmf = (df/dθ)Dmθ + + (dmf/dθm)(Dθ)m

for every m. Conversely, we have

-Dβ~Ή = D9+1Θ = (dθ/df)D9+1f + + (d9+1θ/df9+1)(Df)9+1 .

Then, by Lemma 7, we have the assertion. q.e.d.

We denote by ^ the set of all C°° functions on U and by £fH the
set of all C°° horizontal vector fields on U. For X, 7 e ^ , we denote
by VXY the horizontal part of DXY. Then DXY = VXY + H(X, Y)N.
Along My this V coincides with the covariant differentiation. Every
C°° covariant tensor field T of degree k on U is regarded as a field

x x J2fH -> ̂ 7 which is denoted also by T. We define a field
by

Let us consider a field Γ: ^g^x γ.<3fH-^^r defined as follows:

T(Xk, , Xu . , X1) = (DmH)(- , Xfc, , N, , Xit , ΛΓ, , X,, . .) ,

where N appears m — k + 2 times in (DmH)( ). We call such a T
fundamental field of type (m, k).

LEMMA 9. Let T be a fundamental field of type (m, k). Then, T is
generated by G, G~\ H, ViJ, , Vk~zH and Vk~Ή.

PROOF. Let Tlf T2 and Γ3 be fundamental fields defined by
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, N; X2,

T2(X,) = (D»H)(N, , N; N, XJ

Then, by Lemma 1, 2\ - P(H, G, G"1), T2 = 0 and T3 - 0. Let S and S'
be fundamental fields of type (m, k) defined by

S(Xk9 , X,, Xχ) = (#•#)(• , ΛΓ, X,, . •)

S'(Xk9 , X< , XJ - (D H)( , X,, iSΓ, •) ,

where we transposed only N and Xt in (DmH)( ). Then, by the
Ricci formula, S' — S is generated by G and fundamental fields of types
(m — 2, j), j <; fc, as Sn has the constant curvature. Repeating the
transpositions as above, we arrive at one of the fundamental fields T, Tf

and T" defined as follows:

T(Xk9 , Xx) = (DmH)(Xk, , X8, JV, — , iV; X2, X,)

T\Xk9 , X,) = (DmH){Xk, , X2, N9 , ΛΓ; iV, XJ

Γ"(X t, , X,) - {ΣrH){Xk9 , Xlf iV, , ΛΓ; ΛΓ, ΛΓ) .

T - S, Γ' - S or T" - S is generated by G and fundamental fields of
types (m — 2, j), j ^ fc. Hence it is sufficient to prove the assertion only
for the fields T, Tr and T". We prove it by induction on m. We assume
it is valid for 0,1, , m. Let T be a fundamental field of type (m + 1,
k + 1) defined by

fry v V" V\ / Dm+l ZTN/ V V" V* Λ7" Λf. V V\

But the right hand term is written as follows:

Xk+1((DmH)(Xk, , X3, N9 , N; X2, XJ)

- Σ (D"H)(Xk, , i)χ f c + 1X^ * * •> ^3, iV, , N; X2, X,)

{JJ rL){Λk, , A3, iV, , JJχk+ιIS, , iV; A2, A J

-(D"H){Xk, •• ,X3,N, -',N;

-(D">H)(Xk, ••',XS,N,' ',N;X2,

= Xk+1((DmH)(Xk, •• ,Xι,N, ,N;X2,

- Σ (DmH)(Xk, , VX i + 1X ί f , Xt, N, , N; Xιt XL)
i=3

-(DmH)(Xk, •• ,X,,Λ7, •• ,Λ7;-

-(D™H)(Xk, . . . , X , , Λ 7 , . . . , Λ Γ ; .

- Σ H(Xk+1, Xt)(BΉχXk, ••-,N,'- ,XS,N, ,N;X,,X1)
i=3
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+ Σ (DmH)(Xk, , Xz, N, , AXh+1, , N; X2, XJ

- H(Xk+1, X2)(DmH)(Xk, , Xz, N, , N; N, Xx)

- H(Xk+1, XMD HXXu, , XZ9 N, , N; X» N) .

The above equality says T = VS + R, where S is a fundamental field of
t y p e ( m , fc) d e f i n e d b y S ( X k , • - - , X 1 ) = ( D m H ) ( X k , ---, X 9 , N , ---, N; X 2 , X,)
and R is a field generated by fundamental fields of types (n, j), where
n ^ m and j ^ fc + 1. Hence, by assumption, T = P(G, G~\ ίί, , ψ-Ή).
The proofs for T" and T" are similar to the above. So we omit them,
noting

(DmH)(N, - ,N,X,N, --,N;N,N) = 0 for Xejg?H. q.e.d.

LEMMA 10. Regard DmH as a fundamental field of type (m, m + 2).
Then DmH = VmH + R, where R is a field generated by G, G~\ H, VH,
. . . , Vm~Ή.

PROOF. Note that

(DmH)(Xm+2y , Xz\ X2y X\)

+ ΣH(Xm+2, XMD*-*H)(Xm+1, -•>, Xi+U N, X ( _ l f , Xt; Xt, XJ .

Then, we get the assertion by Lemma 9 and induction on m. q.e.d.

By Lemmas 8 and 10, we complete the proof of Theorem A.

3. Proof of Theorem B. First, we note the following result due
to Mϋnzner ([7]).

LEMMA 11. Let M be a connected closed isoparametric hypersurface
of Sn with g distinct principal curvatures. Then, the function f in
Lemma 4 is extended to a unique analytic function on Sn denoted also
by f such that M = f~\tu, tλ = cos(^) e ( —1, 1).

REMARK, (i) In particular, M is oriented by

iV=0- 1 ( l-/ 2 )- 1 / 2 grad/ .

Hence, we can define H, Af over M.
(ii) Let φ:RxM-+Sn be as in Section 2. Define Φ: (-1, 1)xM->Sn

by φ(t, p^φdcos-1 ^-cos" 1 t)/g, p). Then, f(Φ(t, p)) - ί, U= Φ((-l, 1) x M)
is open in Sn and Φ: ( — 1, ϊ)xM-+U is a diffeomorphism.

Let π:M->M be the universal covering. Then, by the pull back,
M has the structure G, H> A, V, which are briefly denoted also by
G,H,A,V, . . . .
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LEMMA 12. Under the condition (*) in Theorem B, M admits a
transitive group of isometries leaving A invariant.

PROOF. Since our proof is quite similar to that in Singer [9] and
Ambrose and Singer [1], we only give a sketch. Let B be the orthonormal
frame bundle over M. Let j g , , j \ be a sequence of g integers, where
1 ^ jg, •••$ jι£n — l. Let ρ[jg j j : B^R9~ι be a mapping defined by

(Ph\ J'J)(6) - (HO'Ji), VHUJJJ, , V°-*H(jg jj2j\)) ,

where 6 = (<?; Yi, •--, Yn-d and V - 2 # ( i m .. jJJ,) = (V-2iί) (Γ im, ,F,3;
yi2, Yh). Let |O = {^[^ j\]} be the finite sequence of all such p[jg iJ 's.
Then p can be regarded as a mapping of B to iί*7"1 + + JB*"1. Let
C = {b e B\ p(jb) = <o(α)}, where α = (p; Xx, , Xn_i) is a fixed element of
B satisfying H(Xjf Xt) — Xfi^. Let C be the component of C containing
α. Under the condition (*), C is a subbundle of B with the structure
group K, where K is the component of the group K— {h e O(n — l)\p(ah) =
p(a)} containing the identity. Let (α><y) and (a><) be the Riemannian
connection form and the canonical form. Let Et and Eiό be the vector
fields dual to ωt and β)^. Let o(n — 1) and ϊ be the Lie algebra of
0{n — 1) and K. A bi-invariant metric of O(n — 1) gives the orthogonal
decomposition o(n — 1) = ϊ + m. Let 7 be the orthogonal projection of
o{n — 1) onto ϊ, (φiό) = Ί{ωia) and τtj = φiS — ωi3. Then (φtj) defines a

connection form of C and τi5(Ek) is constant on C for each i, j and fc.
Here, we used the fact that dp(Ek(b)) has the expression

{. ..;VH(kj2j\), , V°-Ή(kjg i J J ; -} ,

which is the same for every b e C, by Theorem A. Then, on C, dα^ and
dφij are constant linear combinations of wedge products of ωt and φu.
Here, we note that the curvature form (flo ) of the Riemannian connection
is written as Ωtj = (λtλ,- + l)(α)t Λ a),-) on C. Though C is not always
simply connected, it has the group structure such that {ωj and some
members of {φi3) give the Maurer Cartan form, and C acts on M as
transitive group of isometries; Frame b = (g;Y19 •• ,Fn_1) corresponds to
an isometry ψ such that (̂-X<) = Yu where a = (p; Xlf , Yn_1) is the
fixed frame. Hence it is obvious that f ° 4 = Aoψ. q.e.d.

By Lemma 12, ikf is locally homogeneous, that is, for every p, qeM,
there exist neighborhoods V and V of p and g in Λf, respectively and
an isometry ψ\V-*V leaving A invariant. Then, by Lemma 2, there
exists an isometry Ψ: Sn —> Sn such that Ψ \v — ψ. To prove Theorem B,
it is sufficient to show Ψ(M) = M. But it is obvious by Lemma 11 and
the fact that M and Ψ(M) are closed isoparametric hypersurfaces and
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that Mf)Ψ(M) contains the open subset V. The necessity of (*) is also
obvious.

REMARK. Mϋnzner ([7]) proved that, for a connected isoparametric
hypersurface of Sn, g is 1, 2, 3, 4 or 6.
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