A CONDITION FOR ISOPARAMETRIC HYPERSURFACES OF S^{n} TO BE HOMOGENEOUS

Hitoshi Takagi

(Received February 10, 1984)

1. Introduction. Let M be a connected hypersurface of the n dimensional sphere S^{n} of radius 1. $O(n+1)$ acts on S^{n} as an isometry group. M is said to be homogeneous if it is an orbit of a certain subgroup of $O(n+1) . \quad M$ is said to be isoparametric if it has constant principal curvatures. If M is homogeneous then it is isoparametric. E. Cartan investigated the converse problem and he gave an affirmative answer in some special cases ([2], [3], [4], [5]). But, recently, Ozeki and Takeuchi gave examples of isoparametric hypersurfaces which are not homogeneous in [8], using a result of Münzner [7]. On the other hand, homogeneous hypersurfaces of S^{n} are investigated in detail by Hsiang and Lawson [6] and by Takagi and Takahashi [10].

In the present paper, we give an additional differential geometric condition for isoparametric hypersurfaces of S^{n} to be homogeneous, using the result to Münzner. Our main results are the following Theorems A and B. To state them, we need some notations. Let T_{1}, \cdots, T_{r} and T be tensor fields on a manifold. T is said to be generated by T_{1}, \cdots, T_{r} if T is a constant linear combination of tensor fields, each of which is a tensor product of some members of T_{1}, \cdots, T_{r} or its contraction. We denote this fact by $T=P\left(T_{1}, \cdots, T_{r}\right)$. Let M be a Riemannian manifold. Let M_{p} and M_{q} be the tangent spaces at $p, q \in M$. Then M_{p} and M_{q} are vector spaces with the inner products given by the Riemannian metric. A linear isometry L of M_{p} onto M_{q} is extended naturally to an isomorphism of the tensor algebra $T\left(M_{p}\right)$ onto $T\left(M_{q}\right)$, which is denoted also by L. For an oriented hypersurface M of S^{n}, we denote by G, H, ∇ and $\nabla^{m} H$ the first and second fundamental forms, the covariant differentiation and the m-th covariant differential, respectively. By G^{-1}, we denote the inner product for 1 -forms on M induced naturally from G.

Theorem A. Let M be an oriented isoparametric hypersurface of S^{n} with g distinct principal curvatures. Then, for any $m \geqq g-1, \nabla^{m} H$

[^0]is generated by $G, G^{-1}, H, \nabla H, \cdots, \nabla^{g-2} H$.
Theorem B. Let M be a closed isoparametric hypersurface of S^{n} with g distinct principal curvatures. Then, M is homogeneous if and only if the following condition (*) is satisfied:
(*) For every $p, q \in M$, there exists a linear isometry $L: M_{p} \rightarrow M_{q}$ satisfying $L\left(\nabla^{m} H\right)_{p}=\left(\nabla^{m} H\right)_{q}$ for each $m \leqq g-2$.
2. Proof of Theorem A. Let S^{n} be $\left\{p \in \boldsymbol{R}^{n+1} \mid\|p\|=1\right\}$, M be an oriented hypersurface of S^{n} and N be a unit vector field on M normal to M and tangent to S^{n} at every point. Define $\phi: R \times M \rightarrow S^{n}$ by $\phi(\theta, p)=$ $(\cos \theta) p+(\sin \theta) N(p)$ and $\phi_{\theta}: M \rightarrow S^{n}$ by $\phi_{\theta}(p)=\phi(\theta, p)$, where we regard $N(p)$ to be in S^{n}. Let I be an open interval containing 0 . To prove the theorem, we may assume I and M are sufficiently small so that $U=\phi(I \times M)$ is open in S^{n} and that $\phi: I \times M \rightarrow U$ is a diffeomorphism. Hence $\phi_{\theta}(M)$ is a hypersurface of S^{n} for $\theta \in I$. Define $\theta: U \rightarrow \boldsymbol{R}$ by $\theta(\phi(\delta, p))=\delta$. Then $\phi_{\theta}(M)$ is a level hypersurface of the function θ. The vector field $N=\operatorname{grad} \theta$ on U is a unit vector field normal to each level hypersurface of θ and tangent to S^{n} at every point, and $N(\phi(\theta, p))=$ $-(\sin \theta) p+(\cos \theta) N(p)$ in \boldsymbol{R}^{n+1}. For brevity, we denote by (,) or G the Riemannian metrics of M, S^{n} and \boldsymbol{R}^{n+1}. We denote by D and ∂ the covariant differentiations of S^{n} and \boldsymbol{R}^{n+1}, respectively. Then, $A=-D N$ gives a symmetric transformation of the tangent space U_{p} at $p \in U$ satisfying $A N=0$. We call a vector or vector field X on U horizontal if $(X, N)=0$.

Lemma 1. If X is horizontal, then $\left(D_{N} A\right) X=A^{2} X+X$ and moreover, for the m-th covariant differential $D^{m} A$, there exists a polynomial $P_{m}(x)$ satisfying $\left(\left(D^{m} A\right)(N, \cdots, N)\right) X=P_{m}(A) X$.

Proof. Let $X(p) \in M_{p}$ be an eigenvector of A with the eigenvalue $\lambda_{0}=\cot \theta_{0}$, where $\theta_{0} \in(0, \pi)$. Then, we have $\phi_{\theta} X(p)=\left(\sin \left(\theta_{0}-\theta\right) / \sin \theta_{0}\right) X(p)$ in \boldsymbol{R}^{n+1} and

$$
\begin{equation*}
A\left(\phi_{\theta} X(p)\right)=\left(\cot \left(\theta_{0}-\theta\right)\right) \phi_{\theta} X(p) \tag{1.1}
\end{equation*}
$$

Let X be a vector field defined by $X\left(\phi_{\theta}(p)\right)=\phi_{\theta} X(p)$. Then, we have $A X=\left(\cot \left(\theta_{0}-\theta\right)\right) X$ and $D_{N} X=\partial_{N} X=-\left(\cot \left(\theta_{0}-\theta\right)\right) X$, from which follows, $\left(D_{N} A\right) X=D_{N}(A X)-A\left(D_{N} X\right)=\left(\cot ^{2}\left(\theta_{0}-\theta\right)+1\right) X=A^{2} X+X$. Hence, for any horizontal vector X, we have $\left(D_{N} A\right) X=A^{2} X+X$, since X is a linear combination of eigenvectors of A. Now, we note that the m-th order derivative of $\cot \left(\theta_{0}-\theta\right)$ is a polynomial in $\cot \left(\theta_{0}-\theta\right)$ and that $\left(D^{m} A\right)$ $(N, \cdots, N)=D_{N} \cdots D_{N} A$ for each m. Then, the latter assertion is easily seen by induction on m.
A is called the Weingarten map when we regard A as a transformation of horizontal vectors.

Lemma 2. Let V and V^{\prime} be open domains of M, and $\psi: V \rightarrow V^{\prime}$ be an isometry which leaves the Weingarten map A invariant. Then, there exists a unique isometry $\Psi: S^{n} \rightarrow S^{n}$ satisfying $\left.\Psi\right|_{V}=\psi$.

Proof. Let $\pi: U \rightarrow M$ be the projection defined by $\pi(\phi(\theta, p))=p$. Define $\Psi: \pi^{-1}(V) \rightarrow \pi^{-1}\left(V^{\prime}\right)$ by $\Psi(\phi(\theta, p))=\phi_{\theta} \circ \psi(p)$. Then $\Psi \circ \phi_{\theta}=\phi_{\theta} \circ \psi$ and $\psi \circ A=A \circ \psi$. If $X \in M_{p}$, then $\phi_{\theta} X=(\cos \theta) X-(\sin \theta) A X$ and $\phi_{\theta} \psi X=$ $(\cos \theta) \psi X-(\sin \theta) \psi A X$ in \boldsymbol{R}^{n+1}. Hence $\left\|\phi_{\theta} X\right\|=\left\|\phi_{\theta} \circ \psi X\right\|$. On the other hand, we see $\Psi N=N$ by $\Psi \circ \phi_{\theta}=\phi_{\theta} \circ \psi$. Thus, $\Psi: \pi^{-1}(V) \rightarrow \pi^{-1}\left(V^{\prime}\right)$ is an isometry which is extended to an isometry Ψ of S^{n}, since S^{n} is simply connected. The uniqueness is obvious.
q.e.d.

Now, we assume that M has g distinct constant principal curvatures, that is, Weingarten map A has g distinct eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{g}$ at each point, which are constant and have the same multiplicities on M. Let $\lambda_{i}=\cot \theta_{i}, 0<\theta_{1}<\theta_{2}<\cdots<\theta_{g}<\pi$ and m_{i} be the multiplicity of λ_{i}. Then, by (1.1), each level hypersurface of θ also has g distinct constant principal curvatures. Münzner proved the following Lemmas 3, 4 and 5 in [7].

Lemma 3. (i) $\theta_{i}=\theta_{1}+(i-1) \pi / g$, (ii) $m_{i}=m_{i+2}$, where $i+g \equiv i$.
Lemma 4. Define the function $f: U \rightarrow \boldsymbol{R}$ by $f(q)=\cos \left(g\left(\theta_{1}-\theta(q)\right)\right)$. Then $(\operatorname{grad} f, \operatorname{grad} f)=g^{2}\left(1-f^{2}\right)$ and $\Delta f=-g(g+n-1) f+c$, where Δ is the Laplace operator on S^{n} and $c=\left(m_{2}-m_{1}\right) g^{2} / 2$.

Lemma 5. Let $\hat{U}=\left\{r p \in \boldsymbol{R}^{n+1} \mid r>0, p \in U\right\}$. Define the function $F: \hat{U} \rightarrow \boldsymbol{R}$ by $F(r p)=r^{g} f(p)$. Then F is a homogeneous polynomial of degree g satisfying $\Delta F=c r^{g-2}$ and $(\operatorname{grad} F, \operatorname{grad} F)=g^{2} r^{2 g-2}$, where $c=$ $\left(m_{2}-m_{1}\right) g^{2} / 2$ and Δ is the Laplace operator on \boldsymbol{R}^{n+1}.

Lemma 6. Denote by X the vector field $x^{0} \partial / \partial x^{0}+\cdots+x^{n} \partial / \partial x^{n}$ in \boldsymbol{R}^{n+1}. Then $\partial_{X} \partial^{k} F=(g-k) \partial^{k} F$, where x^{0}, \cdots, x^{n} are Cartesian coordinates of \boldsymbol{R}^{n+1} and $\partial^{k} F$ denotes the k-th covariant differential.

Proof. We note $\partial_{X} \partial_{i}=\partial_{i} \partial_{X}-\partial_{i}, \partial_{i}=\partial_{\partial / \partial x^{i}}$ and $\partial_{X} F=g F$, since F is a homogeneous polynomial of degree g. Then the lemma easily follows by induction on k. q.e.d.

Lemma 7. $D^{g+1} f$ is generated by $f, D^{1} f, D^{2} f, \cdots, D^{g-1} f$ and G, where $D^{m} f$ denotes the m-th covariant differential.

Proof. Let $S^{n}=\left\{\left(x^{0}, x^{1}, \cdots, x^{n}\right) \in \boldsymbol{R}^{n+1} \mid \sum_{i=0}^{n}\left(x^{i}\right)^{2}=1\right\}$. We may regard
$\left(x^{1}, \cdots, x^{n}\right)$ as a local coordinate system around $p \in U \subset S^{n}$. Then the function f is given by the function F as follows: $f\left(x^{1}, \cdots, x^{n}\right)=F((1-$ $\left.\left.\left(x^{1}\right)^{2}-\cdots-\left(x^{n}\right)^{2}\right)^{1 / 2}, x^{1}, \cdots, x^{n}\right) . \quad x^{0}$ is a function given by $x^{0}\left(x^{1}, \cdots, x^{n}\right)=$ $\left(1-\left(x^{1}\right)^{2}-\cdots-\left(x^{n}\right)^{2}\right)^{1 / 2}$. Here, we need a notation. Let T be a covariant tensor field of degree k on S^{n}. We denote by $T\left(i_{k} \cdots i_{2} i_{1}\right)$ the component $T_{i_{k} \cdots i_{2} i_{1}}=T\left(\partial / \partial x^{i_{k}}, \cdots, \partial / \partial x^{i_{2}}, \partial / \partial x^{i_{1}}\right)$ with respect to the basis $\partial / \partial x^{1}, \cdots, \partial / \partial x^{n}$. Then we have

$$
\begin{align*}
G(j i) & =\delta_{j i}+x^{j} x^{i} /\left(x^{0}\right)^{2}, \quad G^{-1}\left(d x^{j}, d x^{i}\right)=\delta_{j i}-x^{j} x^{i}, \quad D_{\partial / \partial x^{j}}\left(\partial / \partial x^{i}\right) \tag{1.2}\\
& =\sum_{h=1}^{n} x^{h} G(j i) \partial / \partial x^{h}, \quad\left(D x^{0}\right)(i)=-x^{i} / x^{0}, \quad\left(D^{2} x^{0}\right)(j i)=-x^{0} G(j i) .
\end{align*}
$$

We use the same notation as above to denote a component of a covariant tensor field T on \boldsymbol{R}^{n+1} with respect to the basis $\partial / \partial x^{0}, \partial / \partial x^{1}, \cdots, \partial / \partial x^{n}$. In this case, $\left(\partial_{Y} T\right)\left(i_{k} \cdots i_{2} i_{1}\right)=\partial_{Y}\left(T\left(i_{k} \cdots i_{2} i_{1}\right)\right)$ for any vector field Y, which may be written as $\partial_{Y} T\left(i_{k} \cdots i_{2} i_{1}\right)$. We denote $\partial_{\partial / \partial x} T$ by $\partial_{j} T$. Then, $\partial_{j} T\left(i_{k} \cdots i_{2} i_{1}\right)=\partial T\left(j i_{k} \cdots i_{2} i_{1}\right)$. We note $\partial^{m} T\left(j_{m} \cdots j_{1} ; i_{k} \cdots i_{1}\right)$ is symmetric in every pair of indices j_{m}, \cdots, j_{1}.

By Lemma 5, it is sufficient to prove

$$
\begin{align*}
& \left(D^{k} f\right)\left(i_{k} \cdots i_{1}\right) \tag{1.3}\\
& =\sum_{s=0}^{k} \sum_{\sigma} \partial^{k} F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(1)} /(}-x^{0})^{s} \\
& \quad \quad+P\left(f, D^{1} f, \cdots, D^{k-2} f, G\right)\left(i_{k} \cdots i_{1}\right),
\end{align*}
$$

where σ runs through the permutations of order k satisfying $\sigma(k)>\cdots>$ $\sigma(s+1)$ and $\sigma(s)>\cdots>\sigma(1)$. We prove it by induction on k. It is trivial for $k=1$. Hence, we assume (1.3) for $1, \cdots, k$. Then, by (1.2), we have

$$
\begin{aligned}
& \left(D^{k+1} f\right)\left(i_{k+1} i_{k} \cdots i_{1}\right) \\
& \quad=\partial\left(\left(D^{k} f\right)\left(i_{k} \cdots i_{1}\right)\right) / \partial x^{i_{k+1}}-\sum_{t=1}^{k} \sum_{u=1}^{n} x^{u} G\left(i_{k+1} i_{t}\right)\left(D^{k} f\right)\left(i_{k} \cdots i_{t+1} u i_{t-1} \cdots i_{1}\right) \\
& \quad=(\mathrm{I})+(\mathrm{II})+(\mathrm{III})+(\mathrm{IV})+(\mathrm{V})
\end{aligned}
$$

where

$$
\begin{aligned}
(\mathrm{I})= & \sum_{s=0}^{k} \sum_{\sigma}[\partial^{k+1} F(\underbrace{0 \cdots 0}_{s} i_{k+1} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) \\
& -\partial^{k+1} F(\underbrace{\left.\left.00 \cdots i_{\sigma(k)} \cdots i_{\sigma(s+1)}\right) x^{i_{k+1} / x^{0}}\right] \times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(1)}} /\left(-x^{0}\right)^{s},}_{s+1} \\
(\mathrm{II})= & \sum_{s=1}^{k} \sum_{\sigma} \partial^{k} F \underbrace{(0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) \times \sum_{t=1}^{s}\left[\partial\left(-x^{i_{\sigma(t)} /} / x^{0}\right) / \partial x^{i_{k+1}}\right] \\
& \times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(t+1)} x_{\sigma(t-1)} \cdots x^{i_{\sigma(1)}} /\left(-x^{0}\right)^{s-1},}
\end{aligned}
$$

$$
\begin{aligned}
(\mathrm{III})= & -\sum_{s=0}^{k-1} \sum_{\sigma} \sum_{t=s+1}^{k} \sum_{u=1}^{n} x^{u} G\left(i_{k+1} i_{\sigma(t)}\right) \\
& \times \partial^{k} F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(t+1)} u i_{\sigma(t-1)} \cdots i_{\sigma(s+1)}) \times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(1)} /\left(-x^{0}\right)^{s},} \\
(\mathrm{IV})= & -\sum_{s=1}^{k} \sum_{\sigma} \partial^{k} F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(s+1)} \times \sum_{t=1}^{s} \sum_{u=1}^{n} x^{u} G\left(i_{k+1} i_{\sigma(t)}\right)\left(-x^{u} / x^{0}\right) \\
& \times x^{i}{ }_{\sigma(s)} \cdots x^{i_{\sigma(t+1)}} x^{i} \sigma(t-1)
\end{aligned} \cdots x^{i_{\sigma(1)} /\left(-x^{0}\right)^{s-1}},
$$

Then,
(I) $=\sum_{s=0}^{k+1} \sum_{\tau} \partial^{k+1} F(\underbrace{0 \cdots 0}_{s} i_{\tau(k+1)} i_{\tau(k)} \cdots i_{\tau(s+1)}) \times x^{i_{\tau}(s)} \cdots x^{i_{\tau(1)}} /\left(-x^{0}\right)^{s}$,
where $\tau(k+1)>\tau(k)>\cdots>\tau(s+1)$ and $\tau(s)>\cdots>\tau(1)$. By (1.2),
(II) $+(\mathrm{IV})=\sum_{s=1}^{k} \sum_{\sigma} \partial^{k} F(\underbrace{0 \cdots 0}_{s} i_{\sigma(k)} \cdots i_{\sigma(s+1)}) \times \sum_{t=1}^{s}\left(D^{2} x^{0}\right)\left(i_{k+1} i_{\sigma(t)}\right)$
$\times x^{i_{\sigma(s)}} \cdots x^{i_{\sigma(t+1)}} x^{i_{\sigma}(t-1)} \cdots x^{i_{\sigma}(1)} /\left(-x^{0}\right)^{s-1}$
$=-\sum_{s=1}^{k} \sum_{\sigma} x^{0} \partial_{0} \partial^{k-1} F(\underbrace{0 \cdots 0}_{s-1} i_{\sigma(k)} \cdots i_{\sigma(s+1)})$
$\times \sum_{t=1}^{s}\left[x^{i_{\sigma}(s)} \cdots x^{i_{\sigma(t+1)}} x^{i_{\sigma(t-1)}} \cdots x^{i_{\sigma}(1)} /\left(-x^{0}\right)^{s-1}\right] \times G\left(i_{k+1} i_{\sigma(t)}\right)$.
(III) $=-\sum_{s=1}^{k} \sum_{\rho} \sum_{r=s}^{k} \sum_{u=1}^{n} x^{u} \partial_{u} \partial^{k-1} F(\underbrace{0 \cdots 0}_{s-1} i_{\rho(k)} \cdots i_{\rho(r+1)} i_{\rho(r-1)} \cdots i_{\rho(s)})$
$\times\left[x^{i} \rho(s-1) \cdots x^{i_{\rho(1)}} /\left(-x^{0}\right)^{s-1}\right] G\left(i_{k+1} i_{\rho(r)}\right)$,
where $\rho(k)>\cdots>\rho(s)$ and $\rho(s-1)>\cdots>\rho(1)$. Let X be as in Lemma 6. Then, $(\mathrm{II})+(\mathrm{IV})+(\mathrm{III})$ is equal to

$$
\begin{gathered}
-\sum_{s=1}^{k} \sum_{\rho} \sum_{r=s}^{k} \partial_{X} \partial^{k-1} F(\underbrace{0 \cdots 0}_{s-1} i_{\rho(k)} \cdots i_{\rho(r+1)} i_{\rho(r-1)} \cdots i_{\rho(s)}) \\
\times\left[x^{i_{\rho(s-1)}} \cdots x^{i_{\rho(1)} /(} /\left(-x^{0}\right)^{s-1}\right] G\left(i_{k+1} i_{\rho(r)}\right) .
\end{gathered}
$$

By Lemma 6, (II) + (III) + (IV)

$$
\begin{aligned}
& =-\sum_{s=1}^{k} \sum_{\rho} \sum_{r=s}^{k}(g-k+1) \partial^{k-1} F(\underbrace{0 \cdots 0}_{s-1} i_{\rho(k)} \cdots i_{\rho(r+1)} i_{\rho(r-1)} \cdots i_{\rho(s)}) \\
& \quad \times\left[x^{i_{\rho}(s-1)} \cdots x^{i_{\rho(1)}} /\left(-x^{0}\right)^{s-1}\right] G\left(i_{k+1} i_{\rho(r)}\right) \\
& =- \\
& \quad(g-k+1) \sum_{t=1}^{k}[\sum_{s=0}^{k-1} \sum_{\delta} \partial^{k-1} F(\underbrace{0 \cdots 0}_{s} i_{\delta \gamma(k-1)} \cdots i_{\left.\delta r_{(s+1)}\right)}) \\
& \quad \times x^{\left.i_{\delta r(s)} \cdots x^{i_{\delta \gamma(1)}} /\left(-x^{0}\right)^{s}\right] G\left(i_{k+1} i_{t}\right),}
\end{aligned}
$$

where $\gamma(s)=s$ for $s=1, \cdots, t-1, \gamma(s)=s+1$ for $s=t, \cdots, k-1$ and δ runs through the permutations of $\{\gamma(1), \cdots, \gamma(k-1)\}$ satisfying $\delta \gamma(k-1)>\cdots>\delta \gamma(s+1)$ and $\delta \gamma(s)>\cdots>\delta \gamma(1)$. By the induction hypothesis, we have (II) + (III) + (IV)

$$
\begin{gathered}
=-(g-k+1) \sum_{t=1}^{k}\left(D^{k-1} f\right)\left(i_{k} \cdots i_{t+1} i_{t-1} \cdots i_{1}\right) G\left(i_{k+1} i_{t}\right) \\
+P\left(f, D^{1} f, \cdots, D^{k-3} f, G\right)\left(i_{k+1} i_{k} \cdots i_{1}\right) .
\end{gathered}
$$

This completes the proof. q.e.d.

We denote also by H the covariant tensor field of degree 2 on U defined by $H(X, Y)=(A X, Y)$.

Lemma 8. $\quad D^{g-1} H$ is generated by $G, D \theta, H, D H, \cdots$ and $D^{g-2} H$ along each level hypersurface of θ.

Proof. We note $H=-D^{2} \theta, f=\cos \left(g\left(\theta_{1}-\theta\right)\right)$ and $\theta=\theta_{1}-(1 / g) \cos ^{-1} f$ on U. Hence we have

$$
D^{m} f=(d f / d \theta) D^{m} \theta+\cdots+\left(d^{m} f / d \theta^{m}\right)(D \theta)^{m}
$$

for every m. Conversely, we have

$$
-D^{g-1} H=D^{g+1} \theta=(d \theta / d f) D^{g+1} f+\cdots+\left(d^{g+1} \theta / d f^{g+1}\right)(D f)^{g+1}
$$

Then, by Lemma 7, we have the assertion.
q.e.d.

We denote by \mathscr{F} the set of all C^{∞} functions on U and by \mathscr{X}_{H} the set of all C^{∞} horizontal vector fields on U. For $X, Y \in \mathscr{X}_{H}$, we denote by $\nabla_{X} Y$ the horizontal part of $D_{X} Y$. Then $D_{X} Y=\nabla_{X} Y+H(X, Y) N$. Along M, this ∇ coincides with the covariant differentiation. Every C^{∞} covariant tensor field T of degree k on U is regarded as a field $\mathscr{X}_{H} \times \cdots \times \mathscr{Z}_{H} \rightarrow \mathscr{F}$, which is denoted also by T. We define a field $\nabla T: \mathscr{X}_{H} \times \cdots \times \mathscr{X}_{H} \rightarrow \mathscr{F}$ by
$(\nabla T)\left(X_{k+1}, X_{k}, \cdots, X_{1}\right)=X_{k+1}\left(T\left(X_{k}, \cdots, X_{1}\right)\right)-\sum_{i=1}^{k} T\left(X_{k}, \cdots, \nabla_{X_{k+1}} X_{i}, \cdots, X_{1}\right)$.
Let us consider a field $T: \mathscr{X}_{H} \times \cdots \times \mathscr{X}_{H} \rightarrow \mathscr{F}$ defined as follows:
$T\left(X_{k}, \cdots, X_{i}, \cdots, X_{1}\right)=\left(D^{m} H\right)\left(\cdots, X_{k}, \cdots, N, \cdots, X_{i}, \cdots, N, \cdots, X_{1}, \cdots\right)$, where N appears $m-k+2$ times in $\left(D^{m} H\right)(\cdots \cdots)$. We call such a T fundamental field of type (m, k).

Lemma 9. Let T be a fundamental field of type (m, k). Then, T is generated by $G, G^{-1}, H, \nabla H, \cdots, \nabla^{k-3} H$ and $\nabla^{k-2} H$.

Proof. Let T_{1}, T_{2} and T_{3} be fundamental fields defined by

$$
\begin{aligned}
& T_{1}\left(X_{2}, X_{1}\right)=\left(D^{m} H\right)\left(N, \cdots, N ; X_{2}, X_{1}\right) \\
& T_{2}\left(X_{1}\right)=\left(D^{m} H\right)\left(N, \cdots, N ; N, X_{1}\right) \\
& T_{3}=\left(D^{m} H\right)(N, \cdots, N ; N, N) .
\end{aligned}
$$

Then, by Lemma $1, T_{1}=P\left(H, G, G^{-1}\right), T_{2}=0$ and $T_{3}=0 . \quad$ Let S and S^{\prime} be fundamental fields of type (m, k) defined by

$$
\begin{aligned}
& S\left(X_{k}, \cdots, X_{i}, \cdots X_{1}\right)=\left(D^{m} H\right)\left(\cdots, N, X_{i}, \cdots\right) \\
& S^{\prime}\left(X_{k}, \cdots, X_{i} \cdots, X_{1}\right)=\left(D^{m} H\right)\left(\cdots, X_{i}, N, \cdots\right),
\end{aligned}
$$

where we transposed only N and X_{i} in $\left(D^{m} H\right)(\cdots \cdots)$. Then, by the Ricci formula, $S^{\prime}-S$ is generated by G and fundamental fields of types ($m-2, j$), $j \leqq k$, as S^{n} has the constant curvature. Repeating the transpositions as above, we arrive at one of the fundamental fields T, T^{\prime} and $T^{\prime \prime}$ defined as follows:

$$
\begin{aligned}
& T\left(X_{k}, \cdots, X_{1}\right)=\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; X_{2}, X_{1}\right) \\
& T^{\prime}\left(X_{k}, \cdots, X_{1}\right)=\left(D^{m} H\right)\left(X_{k}, \cdots, X_{2}, N, \cdots, N ; N, X_{1}\right) \\
& T^{\prime \prime}\left(X_{k}, \cdots, X_{1}\right)=\left(D^{m} H\right)\left(X_{k}, \cdots, X_{1}, N, \cdots, N ; N, N\right)
\end{aligned}
$$

$T-S, T^{\prime}-S$ or $T^{\prime \prime}-S$ is generated by G and fundamental fields of types $(m-2, j), j \leqq k$. Hence it is sufficient to prove the assertion only for the fields T, T^{\prime} and $T^{\prime \prime}$. We prove it by induction on m. We assume it is valid for $0,1, \cdots, m$. Let T be a fundamental field of type $(m+1$, $k+1$) defined by

$$
T\left(X_{k+1}, X_{k}, \cdots, X_{1}\right)=\left(D^{m+1} H\right)\left(X_{k+1}, X_{k}, \cdots, X_{3}, N, \cdots, N ; X_{2}, X_{1}\right)
$$

But the right hand term is written as follows:

$$
\begin{aligned}
& X_{k+1}\left(\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; X_{2}, X_{1}\right)\right) \\
& \quad-\sum_{i=3}^{k}\left(D^{m} H\right)\left(X_{k}, \cdots, D_{X_{k+1}} X_{i}, \cdots, X_{3}, N, \cdots, N ; X_{2}, X_{1}\right) \\
& \quad-\quad \sum^{m}\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, D_{X_{k+1}} N, \cdots, N ; X_{2}, X_{1}\right) \\
& \quad-\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; D_{X_{k+1}} X_{2}, X_{1}\right) \\
& \quad-\quad\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; X_{2}, D_{X_{k+1}} X_{1}\right) \\
& = \\
& \quad X_{k+1}\left(\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; X_{2}, X_{1}\right)\right) \\
& \quad-\sum_{i=3}^{k}\left(D^{m} H\right)\left(X_{k}, \cdots, \nabla_{X_{k+1}} X_{i}, \cdots, X_{3}, N, \cdots, N ; X_{2}, X_{1}\right) \\
& \quad-\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; \nabla_{X_{k+1}} X_{2}, X_{1}\right) \\
& \quad-\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; X_{2}, \nabla_{X_{k+1}} X_{1}\right) \\
& \quad-\sum_{i=3}^{k} H\left(X_{k+1}, X_{i}\right)\left(D^{m} H\right)\left(X_{k}, \cdots, N, \cdots, X_{3}, N, \cdots, N ; X_{2}, X_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, A X_{k+1}, \cdots, N ; X_{2}, X_{1}\right) \\
& -H\left(X_{k+1}, X_{2}\right)\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; N, X_{1}\right) \\
& -H\left(X_{k+1}, X_{1}\right)\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; X_{2}, N\right) .
\end{aligned}
$$

The above equality says $T=\nabla S+R$, where S is a fundamental field of type (m, k) defined by $S\left(X_{k}, \cdots, X_{1}\right)=\left(D^{m} H\right)\left(X_{k}, \cdots, X_{3}, N, \cdots, N ; X_{2}, X_{1}\right)$ and R is a field generated by fundamental fields of types (n, j), where $n \leqq m$ and $j \leqq k+1$. Hence, by assumption, $T=P\left(G, G^{-1}, H, \cdots, \nabla^{k-1} H\right)$. The proofs for T^{\prime} and $T^{\prime \prime}$ are similar to the above. So we omit them, noting

$$
\left(D^{m} H\right)(N, \cdots, N, X, N, \cdots, N ; N, N)=0 \quad \text { for } \quad X \in \mathscr{X}_{H} . \quad \text { q.e.d. }
$$

Lemma 10. Regard $D^{m} H$ as a fundamental field of type $(m, m+2)$. Then $D^{m} H=\nabla^{m} H+R$, where R is a field generated by $G, G^{-1}, H, \nabla H$, $\cdots, \nabla^{m-2} H$.

Proof. Note that

$$
\begin{aligned}
& \left(D^{m} H\right)\left(X_{m+2}, \cdots, X_{3} ; X_{2}, X_{1}\right) \\
& \quad=\left(\nabla D^{m-1} H\right)\left(X_{m+2}, \cdots, X_{3} ; X_{2}, X_{1}\right) \\
& \quad \quad+\sum_{i=1}^{m+1} H\left(X_{m+2}, X_{i}\right)\left(D^{m-1} H\right)\left(X_{m+1}, \cdots, X_{i+1}, N, X_{i-1}, \cdots, X_{3} ; X_{2}, X_{1}\right)
\end{aligned}
$$

Then, we get the assertion by Lemma 9 and induction on m. q.e.d.
By Lemmas 8 and 10, we complete the proof of Theorem A.
3. Proof of Theorem B. First, we note the following result due to Münzner ([7]).

Lemma 11. Let M be a connected closed isoparametric hypersurface of S^{n} with g distinct principal curvatures. Then, the function f in Lemma 4 is extended to a unique analytic function on S^{n} denoted also by f such that $M=f^{-1}\left(t_{1}\right), t_{1}=\cos \left(g \theta_{1}\right) \in(-1,1)$.

Remark. (i) In particular, M is oriented by

$$
N=g^{-1}\left(1-f^{2}\right)^{-1 / 2} \operatorname{grad} f
$$

Hence, we can define H, A, \cdots over M.
(ii) Let $\phi: R \times M \rightarrow S^{n}$ be as in Section 2. Define $\Phi:(-1,1) \times M \rightarrow S^{n}$ by $\Phi(t, p)=\phi\left(\left(\cos ^{-1} t_{1}-\cos ^{-1} t\right) / g, p\right)$. Then, $f(\Phi(t, p))=t, U=\Phi((-1,1) \times M)$ is open in S^{n} and $\Phi:(-1,1) \times M \rightarrow U$ is a diffeomorphism.

Let $\pi: \widetilde{M} \rightarrow M$ be the universal covering. Then, by the pull back, \widetilde{M} has the structure $\widetilde{G}, \tilde{H}, \tilde{A}, \tilde{\nabla}, \cdots$ which are briefly denoted also by G, H, A, ∇, \cdots.

Lemma 12. Under the condition (*) in Theorem B, \widetilde{M} admits a transitive group of isometries leaving A invariant.

Proof. Since our proof is quite similar to that in Singer [9] and Ambrose and Singer [1], we only give a sketch. Let B be the orthonormal frame bundle over \widetilde{M}. Let j_{g}, \cdots, j_{1} be a sequence of g integers, where $1 \leqq j_{g}, \cdots, j_{1} \leqq n-1$. Let $\rho\left[j_{g} \cdots j_{1}\right]: B \rightarrow \boldsymbol{R}^{g-1}$ be a mapping defined by

$$
\left(\rho\left[j_{g} \cdots j_{1}\right]\right)(b)=\left(H\left(j_{2} j_{1}\right), \nabla H\left(j_{3} j_{2} j_{1}\right), \cdots, \nabla^{g-2} H\left(j_{g} \cdots j_{3} j_{2} j_{1}\right)\right),
$$

where $b=\left(q ; Y_{1}, \cdots, Y_{n-1}\right)$ and $\nabla^{m-2} H\left(j_{m} \cdots j_{3} j_{2} j_{1}\right)=\left(\nabla^{m-2} H\right)\left(Y_{j_{m}}, \cdots, Y_{j_{3}}\right.$; $\left.Y_{j_{2}}, Y_{j_{1}}\right)$. Let $\rho=\left\{\rho\left[j_{g} \cdots j_{1}\right]\right\}$ be the finite sequence of all such $\rho\left[j_{g} \cdots j_{1}\right]$'s. Then ρ can be regarded as a mapping of B to $\boldsymbol{R}^{g-1}+\cdots+\boldsymbol{R}^{g-1}$. Let $\bar{C}=\{b \in B \mid \rho(b)=\rho(a)\}$, where $a=\left(p ; X_{1}, \cdots, X_{n-1}\right)$ is a fixed element of B satisfying $H\left(X_{j}, X_{i}\right)=\lambda_{j} \delta_{j i}$. Let C be the component of \bar{C} containing a. Under the condition (*), C is a subbundle of B with the structure group K, where K is the component of the group $\bar{K}=\{h \in O(n-1) \mid \rho(\alpha h)=$ $\rho(a)$ \} containing the identity. Let ($\omega_{i j}$) and (ω_{i}) be the Riemannian connection form and the canonical form. Let E_{i} and $E_{i j}$ be the vector fields dual to ω_{i} and $\omega_{i j}$. Let $\mathfrak{p}(n-1)$ and \mathfrak{f} be the Lie algebra of $O(n-1)$ and K. A bi-invariant metric of $O(n-1)$ gives the orthogonal decomposition $\mathfrak{p}(n-1)=\mathfrak{f}+\mathfrak{m}$. Let γ be the orthogonal projection of $\mathfrak{o}(n-1)$ onto $\mathfrak{f},\left(\phi_{i j}\right)=\gamma\left(\omega_{i j}\right)$ and $\tau_{i j}=\phi_{i j}-\omega_{i j}$. Then ($\phi_{i j}$) defines a connection form of C and $\tau_{i j}\left(E_{k}\right)$ is constant on C for each i, j and k. Here, we used the fact that $d \rho\left(E_{k}(b)\right)$ has the expression

$$
\left\{\cdots ; \nabla H\left(k j_{2} j_{1}\right), \cdots, \nabla^{g-1} H\left(k j_{g} \cdots j_{2} j_{1}\right) ; \cdots\right\},
$$

which is the same for every $b \in C$, by Theorem A. Then, on $C, d \omega_{i}$ and $d \phi_{i j}$ are constant linear combinations of wedge products of ω_{i} and $\phi_{i j}$. Here, we note that the curvature form $\left(\Omega_{i j}\right)$ of the Riemannian connection is written as $\Omega_{i j}=\left(\lambda_{i} \lambda_{j}+1\right)\left(\omega_{i} \wedge \omega_{j}\right)$ on C. Though C is not always simply connected, it has the group structure such that $\left\{\omega_{i}\right\}$ and some members of $\left\{\phi_{i j}\right\}$ give the Maurer Cartan form, and C acts on \widetilde{M} as transitive group of isometries; Frame $b=\left(q ; Y_{1}, \cdots, Y_{n-1}\right)$ corresponds to an isometry ψ such that $\psi\left(X_{i}\right)=Y_{i}$, where $a=\left(p ; X_{1}, \cdots, Y_{n-1}\right)$ is the fixed frame. Hence it is obvious that $\psi \circ A=A \circ \psi$. q.e.d.

By Lemma $12, M$ is locally homogeneous, that is, for every $p, q \in M$, there exist neighborhoods V and V^{\prime} of p and q in M, respectively and an isometry $\psi: V \rightarrow V^{\prime}$ leaving A invariant. Then, by Lemma 2, there exists an isometry $\Psi: S^{n} \rightarrow S^{n}$ such that $\left.\Psi\right|_{V}=\psi$. To prove Theorem B, it is sufficient to show $\Psi(M)=M$. But it is obvious by Lemma 11 and the fact that M and $\Psi(M)$ are closed isoparametric hypersurfaces and
that $M \cap \Psi(M)$ contains the open subset V^{\prime}. The necessity of (${ }^{*}$) is also obvious.

Remark. Münzner ([7]) proved that, for a connected isoparametric hypersurface of S^{n}, g is $1,2,3,4$ or 6 .

References

[1] W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647-669.
[2] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. di Mat. 17 (1938), 177-191.
[3] E. Cartan, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Zeit. 45 (1939), 335-367.
[4] E. Cartan, Sur quelques familles remarquables d'hypersurfaces, C. R. Congrès Math. Liège, 1939, 30-41.
[5] E. Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques sphériques à 5 et 9 dimensions, Atti Fond. Volta 9 (1939), 443-461.
[6] W. Y. Hsiang and H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Diff. Geom. 5 (1971), 1-38.
[7] H. F. Münzner, Isoparametrische Hyperflächen in Sphären, I, II, Math. Ann. 251 (1980), 57-71; 256 (1981), 215-232.
[8] H. Ozeki and M. Takeuchi, On some types of isoparametric hypersurfaces in spheres, I, II, Tôhoku Math. J. 27 (1975), 515-559; 28 (1976), 7-55.
[9] I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697.
[10] R. Takagi and T. Takahashi, On the principal curvatures of homogeneous hypersurfaces in a sphere, Diff. Geom. in honor of K. Yano, Kinokuniya, Tokyo, 1972, 469-481.
Department of Mathematics
College of General Education
Tôhoku University
Sendai, 980
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 59540008), Ministry of Education.

