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1. Intoroduction. In this paper we show interpolation theorems for
linear operators in Lebesgue spaces with mixed norm and apply them to
Fourier analysis.

Let M be a measure space and Mm be an m product space ΐ[?=o M,
where Ms are copies of M. Let L\L8)=L\Mn\ L°(Mm)) be a Lebesgue space

with mixed norm (I Π |/|Λ j . Let T be a linear operator in L\L*).

Under the assumption that T is bounded in L\L8) for every permutation
of {Md; j = 0, 1, , d — 1}, we discuss the boundedness of T in the space
Lu(Mm+n)y where

1/u = (m/s + n/t)/(m + n) .

Part I deals with interpolation problem. In §2 we introduce auxiliary
holomorphic functionals Wz and F* in \z\ < 1. We divide the unit circle
into several arcs and estimate these functionals by Z/(Mn; L8(Mm))-norm
for z in an arc, where the choice of permutation of the measure spaces
{Mj} depends on the arc. This is the idea to prove our interpolation
theorems and they are given in §3. To get bounds of the functionals we
restrict the domain of Fz to functions in Πjίo71"1 LU(M3). As a conse-
quence the domain of the linear operators of Remark 1 and Theorem 3
in §3 are restricted to ΐ[Lu(Ms), but this condition is unremovable (cf.
Remark 4 in §5).

In Part II we shall apply our interpolation theorems to two problems
in Fourier analysis which are closely related. In §4 we consider the
Riesz-Bochner summing opertor se, ε > 0. For a function / on the d~
dimensional Euclidean space Rd the Riesz-Bochner mean sε(f) of order ε
is defined by

for \ξ I < 1 and = 0 otherwise, where / is the Fourier transform of / :
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For d > 1 the operator s° is not ZZ-bounded if p Φ 2 (Fefferman [5])
but s° is Lp-bounded if it is restricted to radial functions and if 2ά/(d + 1 ) <
p < 2d/(d - 1) (Herz [8]). For d = 2, ε > 0 and 4/3 <: p ^ 4, the operator
sε is Lp-bounded (Carleson and Sjolin [2]). Later, several proofs of the
Carleson-Sjδlin theorem were given (Hδrmander [9], Fefferman [6] and
Cordoba [4]).

In §§4.1-4.4 we shall prove that if ε > 0

(1.1) SΛ 2(SΛ dJ s e (/) \2dx(p)J2dxm £ const \R2(\Rd_

for all reasonable function / on Rd, where x(p) = (x0, , xd_B) and x$p) =
(x<ι-2> Xd-i)' Since the operator sε is rotation invariant (1.1) holds for any
permutation of variables (x0, xlf , xd^). Therefore our interpolation
theorem applies to sε and we get the inequality | | s e (/) | | p <̂  const \\f\\p if
ε > 0, 2d/(d + 1) ^ p ^ 2 and if / is of the form fo(xo)flxi) fd-i(Xd-i)

In §5 we consider the restriction problem of Fourier transform.
In the following, C will denote constants which may be different in

each occasion and S^(Rd) the set of functions in Rd infinitely differen-
t ia te and rapidly decreasing.

Part I. Interpolation of operators.

2. Notations and auxiliary functions. Let (M, ̂ , μ) be a σ-finite
measure space. Let d be a positive integer and (M3 , ^0}, μs), j = 0, 1, ,
<Z—1, be copies of (M, ̂ , μ). Let (M, ̂  μ) be the product measure space
Πi=5 (Mi9 ^%, μ3). For a subset p = {pQ, p19 , pm_J of {0, 1, , d - 1}
we denote {M(p), ^t(&), μ{p)) = ΠΓ^o1 (Λίpy, ̂ ^ i"Pi) For a subset p of
{0,1, , d - 1} denote Cp = {0, 1, , d - 1} - p. Thus dμ(p)(xPo, ,
a^-i) = dμPQ(xPo) dμp^_x{xPm_^ and dμ(p)xdμftp) = d/̂ .

For 1 ^ s < oo L*(M) denotes the Lebesgue space with norm 11/11,=

( J / l β ^ ) 1 / β . For 1 ^ 8, t < - and p = {p0, pl9

denotes the Lebesgue space with mixed norm

JM$P)\)M(P)

The definition for s = oo or/and t = <χ> will be obvious.
Let eZ = m + n, where m and ti are positive integers. Define u by

1/u = {mis
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For 1 <; s ^ co, s' will denote the conjugate exponent defined by 1/s +
1/s' = 1.

For simple functions w and / in (M, ̂ sf, μ) we shall define holomor-
phic functions Wz(x) and Fz(x) and estimate them in mixed Lebesgue
spaces. Our arguments are divided into two cases.

2.1. The case m^n and oo ^ t ^ s ^ 1. Let P be the family of
index sets p of {0,1, , d — 1} with card (p) = m. Let Q = {peP Oep}
and R = P - Q. For g6 Q put JS9 = {r eR card(gOr) = m - n}. Then
we have

card(P) = f d ) , card(Q) = f d "" ]) , card (Λ) = Id "
\m/ \m — 1/ \ m

and

card

Divide the unit circle 3Z> into ί ) congruent arcs /p, p e P .

Let ao(z) and αg(^), ^ 6 Q, be functions in the Hardy space H\D) in
the unit disk D having the following properties:

Il/s a.e. in U Iq

lit a.β. in 2^

and

1/ί — 1/s a.e. in Iq

(1/s - l/t)/(card (i29)) a.e. in U/ r

0 a.e. in 3D - Iq - U / r

Re α ^ e = r e i 2 9

for each qeQ. Furthermore we assume

Imαo(O) = Imαg(O) = 0 .

By the mean value theorem we have

(2.1) «o(O) = [card(Q)/s + card (R)/t] i -— = (m/s + n/t)/d = 1/u
card (F)

and

(2 2) a (0) = l l t "" l l s + 1 / 8 "" 1 / t c a r d (^) = 0
v * } f W card(P) card (i2?) card (P)

For a non zero function w in LU(M) and 2 6 Z) define
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(2.3) W\x)

if w(x) Φ 0 and = 0 otherwise, where
A (~\ _ II Λ,, \\uγ{z)

<tt-w\Z) — II w II«

and
7 ( β ) = HLfcφϋ - λ) + (λ _ 1 ) .

n \ S / \t6 ί /

For a non zero function / in LU\M) with 1/tt' = 1 — 1/w and for
zeD define

(2.4) F'ix) = Bftoe^'^fWΓ1-1*™ Π (ί lAxW
qeQ \jM{q)

if f(x) Φ 0 and =0 otherwise, where

Bf(z)=

LEMMA 1. Lei d = m + ^, m ^ 7 i ^ l α^d °° ^ t ^ s ^ 1. Let w
and f be non zero functions LU(M) and LU\M) respectively. We have
the followings.

( i ) W°(x) = w(x) and F\x) = f(x).
(ii) Let peP and zeint(Jp). Then

(iii) Furthermore if f is of the form /0(a?0)/i(&i) Λ-ifo-i),

ll^llcv.,, = 11/11—
PROOF, (i) follows easily from (2.1) and (2.2). To prove (ii) and (iii)

we assume 1 < s <t < ©o. A proof for other cases is similar,
(ii) Assume qeQ and 2eint(J g). Then

I W*{x) |β = I AJtz) |β I w{x) | ( j I w{x) \

from which we get (ii).
Next suppose reR and z eint(Jr). Reαff(s) = 0 for g such that r$Rq

and Re aq(z) = v for q such that r e Rq, where

Therefore

I W'(x) | = I A.M I'|w(ίB) I"" Π (\\v*x)\"dμ(q))'° ,
qeS \ J /
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S = {q e Q r e R'} .

where

(2.5)

Let aer and put

(2.6) A = {q e S a g q) and B = {q e S a e q} .

Then

(2.7)

and

(2.8)

card (S) = ( m ) , card (A) = fm " J"
\ / \n— 1

card (B) =
- 1

n

if m > n and =0 if m = n.
Applying Holder's inequality with exponents (s/t) + sv card (A) — 1

we have

= IAΛaOI Π (\\w{x)\udμ{q))8V\\w{x)\ua/t Π

Iterating this process for all a in r we get

\\W°(x)\'dμ(r) ^ IAJtz) | '(J|wl"^^

Since βt ( j ) = (1 - β/ί)m/« and | A.(β) | = ||w||ru/t~!t(1/'"1/<)m/n, we have

\{\\W'\'dμ{r)J'dμ{\,τ) ^

which proves (ii).

(iii) Let fix) = fo(xo)fi(%i) fd-i(%d-i) be a non zero function in LU\M).
If q e Q and z e int (/,), then

\F'(x)\" = \B,(z)\ '\A<*)\%'(\\f(x)\%'dμ(q))'/t'~1 .

Since \Bf(z)\ = \\f\\]r'/t',

= \B,(z)\*'\\f(x)\ 'dμ = ||/||*', .
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Assume reR and z e i n t ( / r ) . Then

(2.9) I
qea

where S is defined by (2.5). Let r = {r0, rlf •• , r m _ J . Put f(r)(x) =

frofarjfrfarj ' * " frm-.j/frrm-J a Π ( l dβfinβ f(ζr) fθΓ (fr* = {0, 1, , Cί — 1} — T

similarly. Suppose αer. Since {qe S αίq} = A by definition, the ex-

ponent of fα(xα) in (2.9) equals t&V/ί' — wYv card(A) = ̂ ' . On the other

hand since {qeS αeq} = B, the exponent of \\fα\
u'dμα is — s'?;card(B) =

(1 — s'lt')(m — n)/n by (2.8). Next consider the case α&r. We remark

that α&r implies that αeq for every qeS. Thus the exponent of fα(xα)

in (2.9) is u's'lt9 and that of \\fα\
u'dμα is -S'I;card(S) = (1 - sfjtf)mln.

Therefore we have

/ Γ \ (l-β'/ί') im-n)/n

|F (s)| ' = |I

x

Thus

(2.10)

Since I B / ^ Γ = | | / 1 | /' ' r ( β ) = ||/||-«'+''-'«'/.'-i)-/. f the right hand side of

(2.10) equals | |/ | | fJ', which proves (iii).

2.2. The case n> m and oo ̂ > t ^ s ^ 1. Let

d = mfc + r

where & ̂  2 and m ̂  r > 0, so that n = m(fe — 1) + r.
We define a family P of m integers pα = {p?, pf, K-i}, 0 ̂  α < d,

as follows. If 0 <: j <k and 0 ^ 6 < m - r or if 0 ^ j < f c - l and
m — r ^ 6 < m, then

If j = fc — 1 and m — r ^b < m define

p (*-D+» = | m ( f c _ ! ) + 6 > m ( f c __ ! ) + b + if .. .f m k _ !}

U {m(k - 1) + b + r, m(fc - 1) + 6 + r + 1, , mfc + 6 - 1}

U {m(fc + 1), m(k + 1) + 1, , m(k + l) + 6 - m + r - l }

modd .

For mk ̂  a < d put
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pa = {mk, mk + 1, , mk + m — 1} modd .

We remark the followings.

(2.11) For each I = 0, 1, , m - 1, pmj+\j = 0, 1, , k - 1) are mutually
disjoint and card (U )zl pmj+ι Όpa) = d if mk ^ a < d.

(2.12) If a = mk + b mod cί for some b = 0, 1, , m — 1, then

card {i; a£pιΌ pm+ι U U pm{k-1)+\ 0 ^l < m} = r .

Let ao(z) and αα(z), m ^ α < m(fc + 1), be functions in H\D) which
satisfy the following conditions: Divide the unit circle 3D into d con-
gruent arcs Ia, a = 0, 1, , d — 1. We choose a0 and αα so that

Re α o(e") -

m - l

1/s a.e. in U It

ί a.e. in 3D - Ίj /, ,
for 1 ^ j < & and 0 <S i < m,

(1/ί - 1/s a.e. in /m ( i_1

1/s - 1/ί a.e. in Imά+ι

0 a.e. in 3Z) -

ί U / m i

and for 0 ^l < m

Re

(1/t - 1/s a.e. in Im{k_1
)+ι

(1/s - l/t)/r a.e. in U ImM
6=0

r-1

0 a.e. in 3D - 7m ( f c_ 1 ) + iU U Imk+b .
6=0

Furthermore we assmme that

Im αo(O) = Im αβ(0) = 0 .

Then we have

αo(O) = 1/u and αβ(0) = 0 for m^a < m(k + 1) .

Let 7 be a function in H\D) such that Re 7(eiθ) = 1/u — 1/t a.e. in
U^o"1 Jα and =(l/u - 1/ί) - (1/s - l/t)m/r a.e. in U ί ϋ and Im7(0) =
0. Then we have 7(0) = 0.

For a non zero function w in LU(M) define

(2.13) W(X) = AM I W(X) |««0(.)e*argW(.)

Π Π ( \ \w \udμ(pι U ?>m+z U U pm{>-lU

1=0 j=l\J
x



476 S. IGARI

if w{x) ΦQ and = 0 otherwise, where Aw(z) = | |w||ϋλ ( z ) For a non zero
function / in LU\M) put

(2.14) F*(x) = Bf(z) I f(x) | '<i-«o(.»e*arβ/(.)

if f(x) φ o and = 0 otherwise, where Bf(z) =

LEMMA 2. Let d = m + n, n > m ^1 and °° ^ t ^ s |Ξ> 1. Lei w

αt̂ cί / 6e ^oti zero functions in LU{M) and LU\M) respectively. We have
the followings.

( i ) W\x) = w(x) and F\x) = f(x) .

(ii) Let 0 ^ a < d and z e int (/α). Then

l|Wrfll(*..:p ) ^ l l w | | . .
(iii) Furthermore if f is of the form fo(xo)f1(x1) Λ_i(#d_i) ,

PROOF, (i) is obvious. To prove (ii) and (iii) we assume 1 < s < t <
oo. The other case is proved similarly.

(ii) First suppose that 0 ^ b < m and z e int(/6) If wj" + 6 ^ 0 and
if amj+ι(z) Φ 0 then j = 1, I = b and am+b(z) = 1/ί - 1/s. Thus

\W*(x)\° = \

Since \Aw(z)\ = \\w\\\ru/t

9

Next suppose that 0 < : & < m , I ^ j <k and z e int (Imj+b). Remark
that Re ao(z) = 1/ί, Re amU+1)+b(z) = 1/t - 1/s, Re amj+b(z) = 1/s - 1/ί and
Re aa(z) = 0 for a Φ 0, m i + 6, m(j + 1) + b. Thus

[Aw(z) I8 |w(a?) \U8/t([\ w \udμ{ph Upm + b U Up«w-1)+6)Y"f/'

x Q|^Γώ^(p δUpm + δU \Jpmj+b))8/t * .

Integrate both sides with respect to dμ(pmj+b) and apply Holder's inequality
with exponents s/t + (1 — s/t) = 1. Then we get
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which proves (ii) by the same way as above.

Finally suppose that 0 ̂  6 < r and z e int (Imk+h). By definition

(2.15) \W*(x)\' = \Aw(z)\°\w(x)\U8/t

m—

X ]
1=0

;1((|w| ^(p l up" + 'u up"<*-1)+I))α "t)/r •

Recall t h a t pmk+h = {mk, mk + 1, , mk + m — 1} mod d. Let a e pmk+b

and set A = {Z; α ί ̂ U p m + I U Up m ( f c ~ 1 ) + i , 0 ̂  I < m} and £ = {Zg A; 0 ̂
Z < m}. Then by (2.12) card(A) = r . F u r t h e r m o r e we have pι{Jm+ι\J
• upw ( f c- 1 ) + ίU2>m f e + & = {0, 1, , d - 1}. Applying Holder's inequality to
(2.15) wi th exponents s/t + r ( l — s/£)/r = 1, we have

\\W\ dμa ̂  \

G \ (l-β/ί)/r

I w\"dμ(pι U p m + I U Up» ! 4 -» + ί U {α}))

/Γ \(i-β/ί)/r

X Π f \ l Γ ^ ( l U m + ί U U m ( f c 1 ) + ι ) )

Iterating this process for all aepmk+b and using (2.11), we get finally

\\Wz\°dμ(pmk+b) ^ I^.«(«)lβ(JIw| dj"(p"*+6))#/YjIwl cϊA

Integrating both sides with respect to dμ(ζpmk+h) we get

since \Aw(z)\ = \\w\\S-u/t)-ull/ -1/t)m/r, which proves (ii).
To prove the equality (iii) we consider only the case z e int (Imk+h)

with 0 5g 6 < r. A proof for other cases follows from similar arguments
to (ii). By the definition (2.14)

W - l

X \ί(^\f\%'dμ(pι\Jpι+m\J

Assume aepmk+h and A is the set defined in (ii). Since card(A) = r the

exponent of fa(xa) in | i^ z | 8 ' is u's'jt' + r*u'(l — s'ltf)jr = u' and the one of

\\fa\u'dμa equals (m - r)(l — s'/t')/r. If α ί pm f c + δ the term containing / β in

is

\»(l-β7ί')/r

)G \
\f.\%'dμ.)
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Thus

x

Since 15,001 = ||/| |;;c ( 1/ '-i/*')-(i/.'-i/*') /r]f w e g e t

which proves (iii).

REMARK 1. If d = mk for some k ^ 3, then Lemma 2.2 (iii) holds
for functions / of the form

3. Interpolation theorems. Let eZ = m + w. Let P be the family
of m integers defined in 2.1 or 2.2 according to m^ n or m < n and Ip,
peP, be arcs in §2. Let (M, ̂ , μ) and (iV, ^Vlv) be σ-finite measure
spaces. (M(p), ^T(p), / (̂p)), (M, ̂  jδ), (ΛΓ(p), ̂ T(p), v(p)) and (N, Jϊ V)
will denote the product spaces defined in §2.

THEOREM 1. Let T be a linear operator of simple functions on
(M, ̂ tf μ) to measurable functions on (N, ̂ Vl v). Let v(eίθ) be a measurable
function in dD such that 1 ^v(eίθ) ^ ©o. Define v by

2π

Let 1 ^ u0 ^ uλ ^ co α^cί

(3.1) 1/u = (m/u0 + n/nj/d .

Suppose that
/O ON II Ύ^ΛIS II . Λ < ^ / ^ / ^ < ^ \ 11 - . . I]

for simple functions w and eiθ e int (Jp), p e P, where C(eίθ) is measurable
on dD. Then

(3.3) \\Tw\\v^C\\w\\uf

where

C=expί logC(0—•
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REMARK 1. If 1 <; ux ^ u0 ^ «>, (3.3) holds for w of the form
wo(xo)w1(x1) wd-i(xd-i) under the assumption (3.2) with w as above.
This is a consequence of Lemma 2 (see also [1]), but in general we
cannot conclude (3.3) for all w in LU(M). We shall give a counter example
in §5, Remark 4.

REMARK 2. The family of the spaces Lυ{eiθ)(N) in Theorem 1 is re-
placed by more general family of Banach spaces B[z], z e 3D, which is
introduced by Coifman, Cwikel, Rochberg, Sagher and Weiss [3].

PROOF. Let Pz(eiθ), z = reiτ e Dy be the Poisson kernel (1 - r2)/(l - 2r
cos(0 — τ) + r 2). Denote by v'{eίθ) the conjugate exponent of v(eiθ). Let
V\z) be a holomorphic function in D such that

Re V'{eίθ) = llv\eiθ) = 1 - l/v(eiθ) a.e.

and

ImF'(O) = 0 .

Such a function exists in the space H\D) and F'(0) = 1 — 1/v = 1/v'.
Suppose w and g are non null simple functions in N and ||ff||,/ = 1.

Define Wz by (2.3) or (2.13) and Gz = e

i&τsβ{x)\g\υfvf{z). Put

= ί TWz-Gzdv .
JiV

Φ(z) belongs to the class N+(D), which consists of holomorphic functions

φ in D such that supo<r<i I log+1φ(reίθ)\dθ < °° and
JdD

(3.4) l o g \ φ ( z ) \ ^

for z e D where log+a; = max (0, log $) (see [3]).
Let peP and assume z = etθeint(/„). Then by Holder's inequality

and (3.2)

|Φ(«)1 ^ I|ΓTP||.,.,I|G | | . ' M ^ C(fi)\\W>\\ι%0,.ιS,)\\G>\\..w .

By Lemma 1 or 2 we have ||ϊΓ*||(1,1>t,o:p) S \\w\\»> Furthermore we have

IIG I U , = ||sf| |^'ω = l . Thus

\Φ(z)\^C(z)\\w\\u.

Applying Jensen's inequality (3.4) to Φ and « = 0 w e get

Iφ(0)I ^ exp J 8 Dlog C(eiβ)-^-\\w||. .

Taking supremum over # such that ||flr||,» = 1 we get (3.3).
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We can generalize Theorem 1 for analytic family of operators
zeD. {Tz} is said to be an analytic family if

φ(z) = [ TzWz-G*dv
JN

belongs to N+(D) for every simple function w and g on N.

THEOREM 1'. Let {Tz} be an analytic family of operators. Under
the assumption of Theorem 1 if

(3.2/ \\Tzw\U^C(z)\\w\\{Uι>U0:p)

for z = eίθ 6 mt{Ip), peP, then we have

(3.3)' \\Tw\\v^C\\w\\u.

THEOREM 2. Let T be a linear operator of simple functions on M to
measurable functions on N. Let 1 ^ u0 ^ uγ ^ °o and 1 ^ vι ^ vQ ^ oo.
Suppose that

\\Tw\\{υiiVo:p) ^ C(p)\\w\\{UltUQ:p)

for all w and pe P.

if

(3.5) 1/u = (m/u0 + n/u^/d and 1/v = (m/v0 + n/vj/d

then

\\Tw\\υ^C\\w\\u

where C = (ΠpβpC(p)) 1 / c a r d ( P ) .

PROOF. Let w and g be non null simple functions on M and N
respectively. Define Wz and Gz by (2.3) with respect to indices (u0, ut)
and (vΌ9 v[) respectively. Put

Φ(z) = \ TWz'Gzdv .

Obviously Φ(z)eN+(D). If peP and z e i n t ( / p ) , by Holder ?s inequality
and our assumption

\Φ(z)\ ^ ||ΓW! | | ( ^ ! p ) | | G ||(.ί>.4:,, ^ C(p)\\ T^II^^IIG-l lc^: , , .

Since 1 ^ v'o ̂  v[ ̂  °°, the last two terms are estimated by Lemma 1 or 2
and consequently the last term is bounded by C(p) \\ w \\u \\ g \\v>. By Jensen's
inequality (3.4) we get

which proves our theorem,
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THEOREM 3. Let T be a linear operator of simple functions on M of
the form fo(xo)fi(Xi) fd-i(%d-i) to measurable functions on N. Let 1 ^
ut ^ u0 ^ oo and 1 :£ vλ ^ v0 ^ °o. Suppose that

\\Tf\\in,v,.p)ίίC(p)\\f\l»M

for all simple function f on the above form and pe P.
If u and v are defined by (3.5), then

\\Tf\\.£C\\f\\u

for all f of product form, where C= ILepC(p) 1 / c a r d ( p ).

PROOF. Assume m ^ n. For simple non null functions w(x) on M

and f(x) on N of product form define W* and Fz by (2.3) and (2.4) with

{vΌ, v[) and (u0, uλ) respectively. Remark that Fz is of product form too.

Put Φ{z) = [τFz Wzdv. If p 6 P and z e int (Ip),

\Φ(z)\ ^ il ϊTF'-HC X.^ΛII W*llc ί. i=« ^ crcp)||2^-IIC X.^ΛIIW*llc-ί. ί=« •

Since 1 <̂  v[ <; v[ ^ °°, Lemma 1 is applied to the last term and we get
our theorem by the same method as in the proof of Theorem 2.

A proof for the case m < n proceeds similarly applying Lemma 2.

Part II . Applications to Fourier analysis.

4. Riesz-Bochner operator. Our aim in this section is to show
Theorem 6 in §4.4. The idea of the proof is to estimate sε(f) in the
mixed Lebesgue space L\R2; L\Rd~2)) applying the two dimensional
argument due to Cordoba [4] and to use our interpolation theorem.

4.1. We introduce the operator s as follows. Let φ be a C°°-function
on the real line such that s u p p ^ c ( — 1, 1) and φ ^ 0. Fix 0 < δ < 1/4.
For a function / in S^(Rd) define s(f) by the Fourier transform;

Now we shall consider a decomposition of s(/). In the following p
denotes the set {0, 1, , d — 3} and use the notations x = x{p) — (xQ, xlt

-, Xd-i) a n ( i S = a?(Cp) = {xd-2, Xd-i) for xeRd. Let ψ be a C°°-function
on the real line such that suppα/rc( —5, 5), ψ ^ 0 and ψ — 1 on (—4, 4).
For a positive integer k put pk =_1 - <5fc if 0 < Sfcjg (2 - i/Ύ)/2 and
(1 - ( ι / T - 1 + δk)2)ι/2 if (2 - V 2 )/2 < δfc < 2 - i/Y. Let f
|Ofc(cos δ /̂OiΓΐ, sin δ1/2p^b) ΐor 6 = 0, 1, and put

If ξ esupp0((l — I |2)δ-1), then ψk>b(ξ) Φ 0 for some k and b and the
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number of such (fc, &)'s is uniformly bounded. If we put Ψktb(ξ) =
Ψk,b(Θ/Έn,jψι,j(ξ) where the denominator does not vanish, then {Ψktb\ is a
partition of unity of the support of φ((l — | l2)^"1).

Let {ξa(p)} be a sequence in Rd~2 such that

Put

and Ψ'(ξ) =
Let us define s£>6(/) by

Furthermore put

βM(/) = Σ «:.»(/) and «•(/) = Σ «.»(/)
α fc,6

We get a decomposition of s(f);

In the following we denote the Fourier transform with respect to
x(p) and x(ζp) by ^ ^ and ^\v respectively. Thus / =

LEMMA 3. We have

\ . ( L J«(ΛΓ*»(p)Ycto(Cp) ^ C ( (f Σ Σ IsUf) \2dx(p))2dχ(Rp)
JK2 \Jilrf-2 / JΛ2 \Jiid-2 β A ) 6 /

for f in S^{Rd), where the constant C is independent of f and δ.

PROOF. Since ^~p8i,h(f) = Ψa^psk}b(f) and since supp Ψa (α = 1, 2,
intersect at most 10d~2 times,

„ \8kth(f)(x, x)\2dx ^ 1 0 d " 2 Σ ( „ \8lth(f)(x, x)\2dx
Rd-2 a JRd-2

for all x. Therefore it suffices to show that

(4 2)

Dividing the sum Σfc.δ **,*(/) ίn*° 100 sums we may assume s(/) =
Σβioo».ι(/). If yioo*..(fi | ) i ( ( l - I (?t 5) I2)*"1) ^ 0 for some f, then
l̂oo Ĉf, ^ ( ( 1 - I (f, 7)) l2)^'1) = 0 for any j Φk,b and ^. Thus the

support of ^(Σ»s10ot,&(/))( , 5), A; = l, 2, •••, are disjoint for each x in
iί2. In order to prove (4.2) we may assume s(f) = Σ smk)100b(f) where
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< δ-1/zpk/200. We denote simply «»,»(/) for smk,mb(f)
By Parseval relation we have

\Ri_2\ , x)

Thus

=Σ

Put

ί*.

Then the last sum equals, by convolution relation,

ΣΣΣΣ
fc b,b' I c,c

SUBLEMMA. // (b, e) Φ {V, c'), then

σιk,t;i,c)(ξ, V, ξ)'σφ,b'.,,,c'i(ξ, V, 1)) = 0 .

Granting for a moment this sublemma we have

V,

which is carried by Fourier transform with respect to f and then ξ, rj
to the sum

Σ Σ
k,b l,e

= Σ Σ

Since &~vs%JJ) = Ψa^>sk>b(f) and {suppF*} intersect finitely, the last
term does not exceed

Thus a proof is complete.
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PROOF OF SUBLEMMA. Fix f and η in Rd~2. Then the sublemma
follows from the fact that supp $kth(f)(ξ, •) + supp 8lt,(f)(f), -),b,c = O, 1,
• ••, are disjoint. In fact, supp sk>h(f)(ξ, •) is contained in the annulus
{pk — δδjOfc1 ^ HI <; ρk + Sδpk1} and a disk of radius <5<51/2 centered at
£M(Cp). Therefore a proof is reduced to the two dimensional case which
is well known if k = I (see Fefferman [6]). If k Φ I, we can prove it by
a similar way with more careful computation.

4.2. Let M ^ Nn ̂  1 and εn > 0 (n = 1, 2, •) and On be rotations
in Rd which fix the first d — 2 coordinates. Let Sn = {(£, #d_2, ̂ . J e Rd;
\x\< εnM, \xd_2\ < εnNn, \xd_x\ < ε j and Rn = OTOSn. For a function / on
iJd define Mn(f) by

! [ f{x-y)dy.

LEMMA 4. There exists a constant C such that

\ ί\ Λ 2*Z\Mn(fn)Nx(p))*dx(tp)^C(\ogMy\ (\

for all fn in ̂ (Rd) and M>2.

PROOF. Let i o b e a non-negative function on R2 and put

I = \ \ Λ Σ IMJM i) \*w(x)dxdx .

By Schwarz's inequality

(flc, χ)\2 ^ τ s

Substituting this inequality we have

I I MJn(x, x)2w(x)dxdx

•̂C 1 I 101 01) \ fJnififϊΊ l jf (/Ϋ* — 01 *Ϋ* — ΊJίOiiί^V'λ/iOί'/i^V*
== \\Jn\s7f yj\ U'yU'y —-~\Ajζn\JU y , •(/ y)W\Jj)\JϋJj\XJύ

Put

Then the last integral is bounded by

\Rl\RdJfn(y,v)\2dy)w(y)dy.

Thus
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I £\(\Σ,\fJv,v)\idv)w(y)dy,

which does not exceed, by Schwarz's inequality,

(j(JΣ \LIw)#)1/2(JW\y)dyJ2

Therefore our proof is complete if we show that

(4.3) (W2dy ^ C(log M)λw2dy

with a constant independent of M or w.

In fact, put

Since On is a rotation which fixes the first d — 2 coordinates,

for some rectangle In of size 2εnx2εniVn. Therefore

W(y) ^ sup —- \ w(y + x)dx
i \I\3i

where the sup runs over all rectangles /in R2 of eccentricity <^M. Thus
(4.3) follows from Cordoba's theorem ([4]).

REMARK 3. Let Rζ be the set obtained from Rn expanding by the
factor 2μ and Mζ be the operator Mn defined by the set R%. Our proof
shows that Lemma 4 holds if Mn{fn) is replaced by Σ~=o 2~μMζ(fn)9 in
which form we apply it later.

4.3. Let Pn = {ξ = (&_„ ξd^); nd1/2 ^ ζd_, < (n + l)^2} be strips in R2

and for feS^{Rd) fn be the projection defined by

where Xn is the characteristic function of Pn.

LEMMA 5. We have

for f in ^{Rd)9 where C is a constant independent of f and δ.

PROOF. Let t% be the operator defined by
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We remark that

In fact, if f = (f, I) = (f(p), f(Cp)) 6 supp $,,(/), then -10δ < | |(p)| 2 -
( l - ^ I X l O δ , which implies f ((|f(p)p - (1 - #))/3δ) = 1. Obviously
Ψ(\ζ(p) - ξa(P)\W) = 1.

Since tl is defined by a multiplier depending only on the first d — 2
variables f(p) and since Σ*Σ^((l£(p)l 2 - (1 - ι°ί))/W (|f(p) -
is uniformly bounded,

Σ Σ ί „ I «(/,)(*, i) l 2 ^ ^ cί |/,(s, ϊ) |*dίB
fc JΛd~2 Jil»-2

Σ Σ „

for all δei ί 2 . Therefore by Lemma 3 it suffices to show that

(4 4) US*-. ? g ι*'θ i # ^ l(L> Σ i
Now Sfcj6(/) = Σ n Sk,b(fn) Since for each 6 the support of S^t inter-

sects the support of Xn at most 11 times, we have Σ& l«ί,&(/) Γ ^
11 Σn Σδ |β*f6(/n) I2 On the other hand for each n the support of Xn

intersects the support of Sr

JMOOδ(& = 0, 1, , δ"1/2|θfc/200) at most a time.
We denote such a 6 by b(n). Thus

(4.5) Σ Σ I sUf) I2 ^ i i Σ I sa

kMn)(fn) I2

a k,b n,a,k

Next we remark that 8ΪMn)(fn) has a representation

Sk,b(n)(fn) — Kk,b{n)*tk(fn) >

where KkMπ)(ζ) = Ψ°(ζ)ΨkMn)(ζ)Φ(a - If l1^"1).
Assume for a moment b(ri) = 0. Then by an elementary calculus

\KhtO(x)\ ^ C M i m « i -^ϊ 1 | β»r i ί / 9ϊ^ . t | -M«^_ 1 | -

for every s, t, u ^ 0, where CβιttU ̂  CΣy±o+* ll^cy) IU with a constant C
independent of φ.

L e t i?£,0 b e a s e t s u c h t h a t i2g,0 = {(x, xd_2, xd_{) e R d ; \x\ <: 2μδ~\ \xd_2\ ^
2 ^ δ " 1

f \xd^\ ^2μδ~1/2} and i2g,6 = Ok>bR
μ

k,Q where OA>& is a rotation such that
Okib(x, 1, 0) = % cos δ 1 7 2 ^ ^ , sin δ^p^b). Then i ζ ^ is bounded by

Therefore

I "kMn) '

By (4.5) and Lemma 4 with Remark 3 we have
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1)8ί ( ( Σ \tκfn)Πx)dx,
Jjt2\Jn,α,fc /

which completes a proof.

LEMMA 6. There exists a constant C such that

(4.6) J Λ 2 ( S Λ d _ 2 Σ I fn

for all f in

PROOF. Let H = L\Rd~2). Then the left hand side of (4.6) is written
as

Now we apply an jff-valued version of Carleson's theorem (cf. Rubio
de Francia [10]) to get a bound of the above integral

THEOREM 4. Let 0 < δ < 1/4. Then

\(\\s(f)\2dx(p))2dx$p) ^

for f 6 ^{Rd), where C is a constant depending only on d, φ and ψ,
more precisely C ^ CdiΨΣ^t\ \\φ{5) lU

Now choose a function φf so that φ'eC°°(— ©o, oo)f supple(1/4,1),
φ' ^ 0 and Σ?=-i^'(2feί) = 1 for 0 < ί < 1. Let e > 0 and put 0(ί) = ίy(ί).
Define sε

k(f) by

Then

By Theorem 4

Summing over fc = — 1, 0,1, it follows

THEOREM 5. If ε > 0, then

(1.1)
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for f e ^{Rd), where C is a constant independent of f.

4.4. Let P be the family of subsets p of {0, 1, , d — 1} such that

card (p) = d — 2. Since the operator sε is rotation invariant, (1.1) implies

that

for / e <9*(Rd) and peP. By duality

(4.7) \\*mM.r »

Applying Theorem 3 to (4.7) and then an interpolation theorem for
multilinear operators (cf. [1]) we get

THEOREM 6. Let e > 0 and 2d/(d + 1) ^ u ^ 2. Then

for all f in ^{Rd) of the form /0(a0)/i(&i) Λ-ife-i).

5. Restriction problem of Fourier transform. We apply our inter-
polation theorem to a restriction problem of Fourier transform. By a
theorem in Tomas [11], if 1 ^ u < 2(d + l)/(d + 3),

for / e ^(Rd) where dσ(ζ) is the surface element and C is independent of
/. The inequality fails for u > 2(d + l)/(d + 3) but a simple argument
shows that (5.1) holds for 1 <̂  u < 2d/(d + 1) if the functions / are radial.

T H E O R E M 7. If d~^2, l ^ u ^ 2d/(d + 1) and f is a function in

of the form f(x) = /0(α0)/i(»i) Λ-ife-i), then

(5.2)

PROOF. We assume d > 2 but a careful reading shows that our proof
applies to the case d = 2. Let wffe^(Rd) and assume suppw(f)c
{|fol > °} β y Fubini's theorem

(5.3)

where

Sw(x) =

Therefore our problem reduces to an estimate of the following integral;
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\Sw(x)\'dx1-- dxd_1
(5.4)

We introduce the polar coordinates: ςt = cos θlf ξ2 = sin θx cos θ2f ζ5 =
sin θ1 sin θ2 cos θz, , f^ = sin 0X sin θd_2 cos θd_lf ξ0 = sin ^ sin 0d_2sin θd_λ.
Then the last integral is transformed to

where ω(θ, η) = | fo% l1/2w(f)^W Πi=ί sin^*"1 ^ exp[-i(f0 -
the image of S4"1 Π supp w by the mapping of ξ to θ.

Now fix Ύ] and introduce new variables

p, = cos Θ1-Ύ]19

p2 = sin ^i cos θ2 — Ύ)2,

and is

ρd_± = sin ^ sin 02 sin 0d_2 cos ^ ^ — 7]d_1 .

Consider the Jacobian |dp/dθ\ = |sin^"1 θ1 sind~2^2 sinθd^\. The inner
integral of (5.5) is transformed to

\Rd_1

dχi *' dxd_^ω(θ, -i^A + + p^x^

where J is the image of D by the mapping of θ to p. ω(θ, η)l\ dp/dθ \ is
infinitely differentiate in p since w(ξ) vanishes near ξ0 = 0. Therefore
by Fourier inversion formula the last integral equals

at p = 0. Since £ = 27 if p = 0, the last term coincides with

(2π)i-11 ίo 11 w(f) Γ/l sin ^ sin ί t sin θd_, \ = (2π)d-1 \ w(ξ) |2 .

Thus by (5.4) and (5.5)

\ I Sw(x) Πx, • dx^ = -1- \ I w(ξ) \*dσ{ζ)

Applying the reversed Holder's inequality to (5.3) we get

(J^ift i ι/ω ι^(ί))
1/2 ^ ^

from which we have
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) 1 / 2Ifil l/(ί)i2^(ί))1/2 ̂  - p ^ L d ^ J / l 1 ^ # ' ' dx^dxi+ι

Let P be the set of d — 1 indices in {0,1, c2 — 1} and 7P, p eP, be
disjoint arcs in 3D of length 2τr/d. Let dp(z) be functions in the Hardy
class H\D) such that Reδp(eiθ) = 1 a.e. in Ip and =0 a.e. in dD — Ip, and
Im δp(0) = 0. Then <5p(0) = 1/d. Identify p with j such that j g p and
define a mapping Tz by

Applying Theorem 1' with M = Bd and N = S'1'1 we get Theorem 7.

REMARK 4. If (5.2) is valid for every / in S^{Rd), then we have

(5.6) ί L , i/(ί) Πσ{ξ)T ^ C|| / |U d + 1 )

for / such that supp/c{£; |£/|f| - (1,1, , DlVT\ < ifrVT}. Thus by
rotation (5.6) holds for all / in S^{Rd), which contradicts the optimality
of Tomas's condition.
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