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0. Introduction. Let g be a complex reductive Lie algebra and θ
a non-trivial involution of g. Let g = ϊ + p be the Cartan decomposition
of g with respect to θ, i.e., ϊ = {Xeg; Θ(X) = X}, p = {Xeg; Θ(X) = -X).
Clearly ϊ is then a subalgebra of g, [f, p]cip and [p, p]at. We call the
pair (g, ϊ) a symmetric pair and p the vector space associated to (g, ϊ).

Let G be the adjoint group of g and Kθ the subgroup of the elements
in G which commute with θ. Then Kθ acts on p by the adjoint action.
Kostant and Rallis [KR] obtained several results on the orbit structure
of p under the action of Kθ. On the other hand, Kraft and Procesi
[KP1], [KP2], [KP3] studied the singularities in the closures of nilpotent
orbits of classical Lie algebras and gave a sufficient condition for an
orbit closure to be normal. The purpose of this paper is to generalize
some results of Kraft and Procesi to the following symmetric pairs

{Q' l(gl(2m, C), Stfm, C)) (e = - 1 ) .

For the simplicity of expression, we attach ε = 1 to (gl(w, C), o(n, C)) and

e = ~ l to (gl(2m, C), (βp(m9 C)).
In §1, we investigate the closure relation of nilpotent i^-orbits in

p. Let P(n) be the set of partitions of n. We frequently identify an
element of P(n) with a Young diagram of size n. Put

P(n) = \
[P{mf : = {(ax, alf α2, α2, •) e P(n)} (s = —l,n = 2m) .

In this paper, we call an element of P£ri) an ε-diagram. (Note that
the ε-diagrams here do not coincide with the ε-diagrams in the sense of
Kraft and Procesi [KP3].) It is known (Sekiguchi [S]) that there is a
one-to-one correspondence between the set of nilpotent i^-orbits in p
and P£ri) in each case. For an ε-diagram χePε(ri), we denote by C£iX

the corresponding nilpotent orbits in p. To describe the closure relation,
we define a certain partial ordering ^ in Pε(n) (for the definition, see
(1.4)). Then the closure relation is given as follows:
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THEOREM 1. For two e-diagrams λ and μ in Ps(ri), we have C,
if and only if λ ^ μ, where CBjX is the Zariski closure of C£fX.

In § 2, we study the singularities of the closures of nilpotent orbits.
If σ and η are ε-diagrams and σ ^ η, we call σ ^ η an ε-degeneration.
The main result of § 2, which is an analogue of Proposition 3.1 of [KP2]
and Theorem 12.3 of [KP3], is the following:

THEOREM 2. Let σ = (σ19 σ2, , σp) ̂  (η19 rj29 , ηq) be an ε-degeneration.
Suppose that for two integers r and 8, the first r rows and the first s
columns of Ύ] and a coincide and that (rjlf η29 , τjr) is an ε-diagram.
Denote by rf and σf the diagrams we obtain by erasing these coinciding
rows and columns of η and σ, respectively. Then σf ^ rf is an ε-
degeneration and

Sing(Ce>5?, Cε>σ) = Sing(Cε>J?/, Cε>σ/) .

(For the definition of Sing(Cβ>7, Cε><7), see (2.1).)

In § 3, we consider the normality of the closures of nilpotent orbits.
This problem was first treated in Kostant [K]. He proved that the
nilpotent variety of a complex semi-simple Lie algebra, which is the
closure of the regular nilpotent orbit, is normal. Kraft and Procesi
[KP1] showed that any closures of nilpotent orbits in the Lie algebras
of type A are normal. Moreover, they gave a sufficient condition for
the closure of a nilpotent orbit in simple Lie algebras of types JB, C and
D to be normal. The proof of Kostant for the nilpotent variety is
mainly based on the fact that the nilpotent variety is a complete inter-
section in the Lie algebra. But the closure of a irregular nilpotent orbit
is not a complete intersection in general. So Kraft and Procesi showed
that the closure of some nilpotent orbit C in classical Lie algebras is
normal by constructing a certain variety which is a complete intersection
from which the closure C can be obtained as its quotient. We prove the
following results by using the method of Kraft and Procesi [KP3].

THEOREM 4. For the symmetric pair (gl(2m, C)), 3J)(m, C))9 any
closures of nilpotent orbits in the associated vector space are normal.

This property does not hold for the symmetric pair (gl(w, C), o(n, C)).
The reason will be given in (2.4).

I express my heartfelt gratitude to Professors R. Hotta and T.
Tanisaki for kind advice and encouragement.

NOTATION. We denote by C the set of complex numbers. For a
vector space V, we denote by QΪ(V) the Lie algebra consisting of all
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endomorphisms of F. We denote by GL(V) the group consisting of all
invertible endomorphisms of F. We denote the adjoint representation of
an algebraic group (resp. Lie algebra) by Ad (resp. ad). We always
consider the Zariski topology unless we specify otherwise. Let X be an
algebraic variety and Y be a subset of X. We denote by Ϋ the (Zariski)
closure of Y. We sometimes denote the closure by Y" instead of Ϋ. If
f:S->T is a map and S1 is a subset of S, we denote by f\S1:S1->T
the restriction of / to S^

1. Closure relation.

(1.1) Preliminaries. Let ε be + 1 or — 1. A finite dimensional vector
space V over C endowed with a non-degenerate bilinear form ( , ) such
that (u, v) = ε(v, u) for all u, v e V is called a quadratic space of type
ε. Let Fbe a quadratic space of type ε of dimension n. For XegΙ(F),
we define the adjoint X*egI(F) of X by (Xu, v) = (u, X*v) for all
u,veV. Then Xι-» — X* gives an involution of the Lie algebra
Define Q(V), p(V) and G{V) by

Q(V) = {XβQl(V);X= -X*} , p(V) = {XβQl(V);X=Xη

Then G(V) is a subgroup of GL(V) with Lie algebra g(F) and acts on
P(V) by the adjoint action. In this way, we have a symmetric pair
(9l(F), g(F)) which is isomorphic to (gl(n, C), o(n, C)) if e = 1 and (gl(w, C),
βtfn/2, C)) if e = - 1 . Note that Ad(G(F)) coincides Kθ in the notation
of [KR]. From now on, we consider G(F)-orbits in p(V).

(1.2) Classification of nilpotent orbits. In order to study the geometric
structure of the closures of nilpotent G(F)-orbits in p(V), we first describe
the classification of nilpotent orbits in p(V).

Let P(n) be the set of partitions of n. We frequently identify a
partition in P(n) with a Young diagram of size n. For a partition λ e P(n),
we denote by Cλ the nilpotent orbit whose Jordan normal form has type

λ2

λ3

λ i

FIGURE 1
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λ and put C M = p(V)ΠCλ. We denote by λ* (resp. λy) the length of the
i-th row (resp. j-th. column) of the Young diagram λ as in Figure 1.

DEFINITION. Let λ 6 P(n) with \ = r. Let /3 be a permutation of
{1, 2, , r) and a a map of {1, 2, , r} into C* (the multiplicative group
of non-zero complex numbers) such that β2 = id, λ* = λ (̂<), and a(β(i)) =
εα(ΐ) for all 1 <; i ^ r. We call such a triple (λ, α, /3) an ε-datum. If a
Young diagram xeP(n) is a member of an ε-datum (λ, a, β), we call λ
an ε-diagram. We denote by Pε(n) the set of ε-diagrams in P(ri).

REMARK 1. It is easy to see that

(6 = 1)

where P(m)2 = {(αx, alf a2, α2, •) e P(ri)} with m = n/2.

The following result is given in [S]

PROPOSITION 1. For a partition xeP(ri), we have Ce>λ Φ 0 if and
only if xePε(n). Moreover, CS}λ consists of a single G(V)-orbit. Thus
there is a one-to-one correspondence between the set of nilpotent G( V)-orbits
in p(V) and Pε(n).

(1.3) Good bases. Let λ be an ε-diagram in Pt(n) with \ = r and
(λ, α, β) and ε-datum. Then we have:

LEMMA 1. There exists a nilpotent element zep(V) and vectors
vt 6 V (i = 1, 2, , r) such that zavi (1 ^ i ^ r, 0 ^ a ^ %t — 1) form a
basis of V and

Λ x ,α(i) (i = β(i) and α + 6 + 1 = λ,)
(z vt, zbvj) =

(0 otherwise .

PROOF. Let XegΙ(F) be a nilpotent element with a Young diagram
λ and {XaUi; l ^ i ^ r , 0 ^ α ^ λ̂  — 1} a Jordan basis of X. Define a
bilinear form φ on F by

(#(*) (ί = £(*) a n ( ^ ^ + δ + 1 = λί)

(0 otherwise .

Then it is easy to see that φ is a non-degenerate bilinear form equivalent
to ( , ). Therefore we can choose g eGL(V) so that φ(u, v) = (flw, flfv) for
u, v e F. Since {{gXg~ι)aguif (gXg^fguj) = φ(Xauif Xbud), gXg"1 is a nil-
potent element of £( F) and #Xfir\ ^ ί (1 ^ i <; r) satisfy the lemma.

q.e.d.
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Choose zsp(V) and vt (1 ^ i ^ r) as in Lemma 1. In order to know
the closure relation of nilpotent orbits, we will construct good bases of
8(7) and p(V) for z. Put Ψ = {(i, α); 1 ^ ΐ ^ r, 0 ^ α ^ λ, - 1} and
v(i, α) = zX Then Mψ); ψey} is a basis of V. Let {u(ψ); ψeψ} be its
dual basis. This means u(φ)(v(φ'))=δ+ι+ (the Kronecker delta) for ψ, ψ' e Ψ.
For ψ, ψ' e Ψ, we define ξ(ψ, ψ') e gl( V)* by ξ(φ, ψ')(X): = u(ψ)(Xv{ψ)) for

Then fety, f ) ; ψ, ψ'eΨ} is a basis of gl(F)*. Let {e(ψ, f');
' e Ψ) be the dual basis of {ς(φ, ψ'); ψ, ψ' e Ψ}. Then we have

φ, ψ', ψ" e Ψ

[e(if a; j , b), z] = e(i, α; j , b - 1) - e(i, α + 1; i, 6) ,

where e(i, α; j , b) = 0 if (i, α) or (i, 6) is not contained in Ψ.
For ψ,ψ'eΨ, we define v(<f, ψ') eg(F)* and ^ ψ ' J e K V ) by

(X e K F)) .

Let ψ = (i, α) and ψ̂ ' = (j, b) be two elements of Ψ. We write ψ <*ψ'
if i < i or if ί = j and α < 6 + (1 — ε)/2 while we write ψ < ψ' if i < j
or if i = j and α ̂  6 - (1 - ε)/2. Since y(^, f') = -ev{f', ψ) for ψ , α/r' 6 f,
v(f,ff) with ψ <* ψ' form a basis of g(F)*. Similarly, Ύ](ψ,ψ') with
ψ<ψ' form a basis of t>(7)*, since η(ψ, ψ') = εη(f', ψ) for ψ,ψ'eψ.
Let {a?(ψ, ψf); ψ <*f'} be the dual basis of {v(φ, ψ'); ψ <* ψ'} in g(F)
and {y(ψ , ψ')\ ψ < f'} the dual basis of {η(<ψ>, ψ');ψ < ψ'} in p(V). Note
that (v(i, a), v) = a(i)u(β(i), \t — a — ΐ)(v) for all v e F . Then the following
two lemmas can be easily proved.

LEMMA 2. (i) a(i)~Mi, α; i, 6) = ξ(β(i), x,- a -1; j , b) \ g( F) /or (i, α),

(ii) If ί < j or if i = j and a < 6, ίλew as(i, α; j , 6) = a(ί)~ιe(β(i)9

λ, - α - 1; j , 6) - eaϋyXβiJ), λy - 6 - 1; i, α).
(iii) Ifε= —1, £/&eτt »(i, α; i, α) = a{i)~ιe(β(ϊ), χi — a — 1; i, α).

LEMMA 3. (i) αζi)- 1 ^, α; £ 6) = f(/3(i), λ,- α - 1; i, 6) |p( V) for (i, α),

(ii) If ί < j or if i = j and α < 6, ίfeew y(i, α; j , b) = a{iyιe(β(i),
X, - a - 1; j , 6) + εaijy'eiβU), λy - δ - 1; ΐ, α).

(iii) // ε = 1, ίftew y(i, α; i, α) = a{ϊ)~ιe{β(i), χt — a — 1; i, α).

The following lemma follows from Lemmas 2, 3.

LEMMA 4. (i) For (i, α), (i, 6) 6 ?Γ wίtf* (i, α) <* (j, 6),
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[x(i, a; j , 6), z]

(2y(i, a; i, a) — y(i, a — l i, a + 1) (ί = j and a = b — 1)

(V(i> a'> J> 6 — 1) — y(i, a — 1; j , b) otherwise ,

where we put y(ψ, ψ') = 0 if y(ψ, ψf) is not yet defined.

(ii) For (i, α), (j, b)eψ with (i, α) < (i, 6),

[2/(i α; j , 6), jj]

(2α5(i, α; i, α) — α(i, α — 1; i, α + 1) (i = j and α = & — 1)

(ίc(i, α; i , 6 — 1) — a?(i, α — 1; j , b) otherwise ,

where we put x(ψ, ψr) = 0 if x(ψ> ψ') is not yet defined.

REMARK 2. Let 8(V\y a n ( i P(V)itS be the vector subspaces defined by

β( V)u = Σ Ca(i, α; i, 6) and p( V)u = Σ Cy(i, a; j , b) .
a,b a,b

Then we have

(1.4) Closure relation. Given two partitions λ, μ e P(ri), write λ ^
if

±\>£ft
/ i A»j —— X j f-^i

i=l i=l

for all j. This is equivalent to

for all j (cf., [KP3, Proposition 2.5]). For simplicity, we call such
λ ^ μ a degeneration. In particular, if λ, μ 6 P,(n) we call λ ^ /ι an s-
degeneration.

LEMMA 5. ([H, Proposition 3.9]) Let x> μ be an adjacent degenera-
tion in P(n) (i.e., there is no partition veP(ri) such that λ > v > μ ) and
μ = (μlf μ2, , μt). Then X has one of the following forms;

(I) χ = (μ19 . . . , μ t _ v ^ + 1, j t £ i + 1 - l , μ i + 2 , •••, μ t ) for some l^i^t-1.

(II) λ = (ft, , ft_x, ft + 1, ft+1, , μβ_ly μ5 - 1, ft+1, , ft) wiίA

J"y+i < Λ = J"y-i = = ft < ft-i /or some 1 ^ i < j ^ t.

REMARK 3. Let x and μ be as above. Suppose that xt = ft, λp =
ft, λp+1 ^ ft+1 and \ = ft, , \ = /ig, Xq+1 Φ μq+1. Let λ' and μf be the
Young diagrams we obtain from X and μ by erasing the first p rows
and first q columns. Then λ' and μf have the forms as in Figure 2;
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(I) λf

(ID λ1 i

FIGURE 2

Suppose that ε = — 1 and dim V = n = 2m. For a partition μ = (μ19 , μt) e
P(m), we write μ2 = (μlf μlf , μt, μt)eP(m)2. For two partitions λ and
μ of P(m), we have λ2 ^ μ2 if and only if x^ μ. Moreover, λ2 > μ2 is
adjacent in P^{n) = P(m)2 if and only if λ > μ is adjacent in P(m).

Now we give the closure relation for nilpotent orbits in p(V).

THEOREM 1. For two ε-diagrams x and μ in P,(ri), we have C£tλz)
Cε>μ if and only if λ ^ μ, where n — d imF and C£ίλ is the Zariski closure
of Ctlλ.

PROOF. The "only if" part is rather easily seen as follows. Suppose
that CM=)Ce>//, z e Cε>μ and Xe C£fλ. Since z e Cε>λ = (Ad(G(F))X)~, we have
z'eίAάiGίVVX')-. Therefore all minors of zί of degree rank(JSΓ*) + 1
are 0 and hence rankOs*) ^ rank(JSΓ*). Since

rank(X') = Σ λ, and rank(2*) = Σ βf

(cf., [KP3, (1.1)]), we have λ ^ μ.
We now prove the "if" part. Suppose that λ > μ. We may assume

that λ and μ are adjacent in Pε(n). Let (μ, a, β) be an ε-datum which
contains μ. We note the following fact.

LEMMA 6. Let λ, μ and (μ, a, β) be as above. In order to show
that Cε)λZ)Cε>μy it is sufficient to show this in the following cases:

( i ) ' μ = (P,Q), λ = (p + l , g - l ) , /S = id, α( l) = α(2) = l (e = 1,

V ^ Q ̂  2) .
(ϋ) μ = (P, P, 9, ί), λ = (p + 1, p + 1, ? - 1, g - 1), /3(1) = 2, /3(3) - 4,

α ( l ) = «(3) = 1, α(2) = α(4) = - 1 (β = - 1 , p ^ g ^ 2).

PROOF. Let μ = (μ19 μ2, , μr) and λ = (λi, λ2, , λ j , where r = μ1

and fe = λx. Note that r^k. Put {î  , i8) = {i; /£< ^ λ j and {yif , jt} —
{i; μt = λ j with iλ < i2 < < i, and j\< j2< < iί Since λ > μ is
adjacent, we have s — 2 if ε = 1 and s = 4 if ε = — 1 (cf., Lemma 5).
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If 6 = 1, we may assume that β = id. If ε = — 1, we may assume that
μh = μh :> μH = μu and βfa) = i2, β(%) = ΐ4. Choose a nilpotent element
z e Ce>μ and a Jordan basis {zavt; 1 ^ i ^ r, 0 <; α <; μ, — 1} of z such that

, β 6 N fα(i) (i = /8(i) and α + 6 + 1 = μ<)
(zavίf zhvβ) =

(0 otherwise .

Put v(i, a) = zaVi,

V, = φ ( Σ Cv(ja, &)) and F ' = φ ( Σ Oυ(ia, b)) .
α=l 6^0 α=l 6^0

Then we have the orthogonal decomposition V = V φ Vx with respect to
( , ). Hence V and Vι are quadratic spaces of type ε with respect to
the restrictions of ( , ). Put μ' — (μh, , μia), λ' = (λ<lf , λ<8) and v —
(μjif , μjt). Since V and F x are z-stable, z is decomposed as 2 = (z', zx)
where z 'eC e ^(cί>(F')) and ^ e C . ^ c K V Ί ) ) . Take X 'eC.,^ and put X =
(X', z j . Then clearly Xe Cε>λ. If we can show that zf e (Ad(G( F'))X')" -
Ce,;/, we get

Thus we may assume that μ = (p, g), λ = (p + 1, q — 1) if ε = 1 while
μ = (P, V, Q, q), λ = (p + 1, p + 1, g - 1, g - 1) if ε = - 1 with p ^ g ^ 1.
If g = 1, Cε>λ is the principal nilpotent orbit in the sense of [KR] and so
we have Ce>;Z)Cε>ίi. Therefore we may assume that q ^ 2. The remaining
assertions for α and β are easily checked. Thus Lemma 6 has been
proved.

Now we assume that λ, μ and (μ, α, β) are as in Lemma 6. We first
consider the case ε = — 1. Put

V = -V(2, p - 1; 3, 0) - 2/(3, p - 1; 4, 0)

+ 2/(1, p - 1; 3, 0) + ?/(l, p - 1; 4, 0) , z(t) = z + ty ,

Vl(t) = vx , v2(t) = iλj » v8(ί) = zv3 , v4(t) = z3'"9"1^! — te3 + ίv4 (ί e C) .

Then we know that z(t) is a nilpotent element of J>(V) and {z(t)αVi(t);
1 ^ i ^ 4, 0 ^ α ^ λ< — 1} is a Jordan basis of z(ί) for each t e C*. Hence
z(t)eCStλ if t ^ 0 and z(0) = z6C£>Jt£. This implies that C ^ c C ^ .

Next we consider the case ε = 1. What we want to construct is a
morphism z:C—>p(V) such that z(t)eCε>x if t Φ 0 and z(0) = z. For this
purpose, put

P

y(α, b, c) = - Σ α,i/(l, i - 1; 1, p - 1)

- Σ 6,2/(2, ί - 1; 2, 9 - 1) - ± cty{l, p - 1; 2, i - 1) ,
ί=l i=l
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where a=(a1, α2, , ap) e C, b=(b1; b2, , bq) e C and c=(clt c2, , cq) e C*.
If we express z and 2/(α, δ, c) by matrices with respect to the basis

v(2, q — 2), , %P+Ϊ = v(2, 0) of F, we have

0

where

\J,\o

0 i Jq

0 1

°.
0

and 2/(α, 6, c) =

0

1

0

-*c 0

α2

-c'

-B

0

α2

0
and c' = (cg, , c2,

lbq 6 , 6 J

Put z(a, b, c) = z + y(a, b, c). Let T be a variable and Mp+q(C[T]) the
ring of matrices with coefficients in C[T]. For two matrices X(T) and
Γ(Γ) in Mp+q(C[T]), we write X(Γ)~Γ(Γ) if there are two invertible
matrices U(T) and V(T) in Mp+q(C[T]) such that X(T) = U(T)Y(T)V(T).
We denote by !„ the unit matrix of degree n. Then multiplying

0

0 J
to TIP+9 — z(α, 6, c) from the right and erasing components other than
the first p — 1 diagonal components, we have

TIp+q - z(a, b, c) ~ 0

0

0

c'

B(T)

0 '

h(T)

*e

where h(T) = T* +
Multiplying

2o*)Γ»-« -α,, and = T/, + B -Jq.

1 ! 0
and

O\ 1
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from the left and right to

e h(T)

. B(T) ! *e

respectively, we get

B(T)

h(T)

0

0

P(T) Q(T)
R(T) S(T) _

where

P(T) = S(T) = ±(ct + Σ btCt^T'-' ,
ί=l \ i=i /

Q(T) = Γ + Σ (Zbt + Σ hb^T"-* - bq , and
ί=l \ i=l /

B(T) = Γ* + Σ (20, + Σ ^Oί-^Γ'- + Σ fΣ CAJΪ"" ' - ap .
t=l \ ί=i / ί=2 V=i /

In order that z(a, b, c) is nilpotent and its corresponding partition is
λ = (p + 1, 9 — 1), it is sufficient to show that the following condition
(*) holds

S(T) = P(T) = cT*-1 with c, Φ 0, Q(Γ) = T9 + 2b,Tq-1 ,

( * ) E(T) = Γ» + Σ (2αt + Σ α iα ί_ i)Γ !'- t , and
t=l \ i=l /

R(T)Q(T) - P(T)S(T) = T"+q.

This condition (*) is satisfied if the following (*)' holds:

ct + Σ Mi-* = 0 (2 ^ ί ^ ?) , 26, + Σ &
1=1 ϊ=l

i

(2 ^ t ^ g - 1) ,

Σ cfit_t + 2α,_,+t + Σ αi^-ί+t-ί = 0 (2 ^ ί ^ g - 1) ,

g-i p-i

Σ Cfiq-i + ap + Σ diap-i — 0 , 26X + 2αL = 0 ,

Σ
ϊ = l

2αt+1 + Σ Wt+i-t + 26/2α, + Σ a^Jλ = 0 (1 ^ t ^ p - ?) ,
ϊ l \ ί=l /

Put As (1 ^ s ^ p), JB8 (1 ^ s g g) and Cs (1 ^ s ^ q) as follows;
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A, = 1, A,+ι = -ί± u J / 2 + 2A, + ΣM-i (1 ^ β ̂  p - g) .
\i=l / i=l

(Note that Ap_g+1 + (Σ?=ί A<Ap.g+1_<)/2 - 2*- ).

(2 £ β ^ g - 1) , * • =

Cι = (_2-?+2)1/2 , Cβ = -(£B,C._<) (2 ^ 8 £ q) .

-* + Σ CΛ-i)

Define at(t), bt(t)f φ) by α,(ί) = Att
2i (1 ^ i ^ p), 64(t) = ^f i (1 ^ ΐ ^ g)

and c^ί) = Cit2i+p-q (1 ^ i ^ g) for t e C. Then they satisfy (*)' if t Φ 0.
Therefore if we define z(t) by

sfaίt), , αp(t), Wί), , 6ff(ί), cx(ί), , cf(ί)) ,

we have z(t)eCε>x (ί =£ 0) and ^(0) = z. This implies C£tXZ)Cε>μ. Thus the
proof of Theorem 1 is completed.

2. Singularities in the closures of nilpotent orbits.

(2.1) Smooth equivalence classes.

DEFINITION ([KP3]). Consider two varieties X, Yand let xeX, ye Y.
The singularity of X at x is called smoothly equivalent to the singularity
of Y at y if there exist a variety Z, a point zeZ and two maps

λ
Y

such that φ(z) = #, ψ(z) = #, and ^ and ψ are smooth at z. This clearly
defines an equivalence relation among pointed variaties (X, x). We denote
by Sing(X, x) the equivalence class to which (X, x) belongs.

Suppose that an algebraic group G acts on a variety X. Then
Sing(X, x) = Sing(X, x') if a? and xf belong to the same orbit 0. In this
case we denote the equivalence class also by Sing(X, 0).

REMARK 4. Let {X, x) and (Y, y) be pointed varieties over C. Suppose
that dimx X = dimy Y + r for some integer r ^ 0. Then Sing(X, a?) =

, y) if and only if some neighbourhoods (in the classical topology)
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of x 6 X and (y, 0) e YxCr are analyticaly isomorphic. Therefore, various
geometric properties of I at a; depend only on the equivalence class
Sing(X, x), for example; X is smooth, normal, seminormal, unibranched
or has a Cohen-Macaulay or rational singularity (cf., [KP3, 12.2]).

The following theorem is the main result of this section.

THEOREM 2. Let σ ^rj be an ε-degeneration. Suppose that for two
integers r and s the first r rows and the first s columns of Ύ) and σ
coincide and that (τjί9ηi9 τjr) is an ε-diagram. Denote by rf and σ'
the diagrams we obtain by erasing these coincident rows and columns
of Ύ] and σ, respectively. Then σr ^ rf is an ε-degeneration and

Sing(C.i9, C.,.) = Sing(C£,,,, C.,,0 .

REMARK 5. In the setting of Theorem 2, we say that the ε-degen-
eration σ ^ Ύ] is obtained from the ε-degeneration σr rg if by addition of
rows and columns.

This is an analogue to the results of Kraft and Procesi for classical
Lie algebras ([KP3, Proposition 3.1] and [KP3, Theorem 12.3]). The proof
is similar to that for Theorem 12.3 of [KP3]. We will treat separately
the two steps "cancelling columns" and "cancelling rows".

(2.2) Cancelling columns. Let U and V be two quadratic spaces of
type ε and put L(V, U) : = Hom(F, U). For XeL(V, U), we define the
a d j o i n t X*eL(U,V) b y (Xv, u ) π = (v, X * u ) v f o r a l l ueU a n d veV.
Then (X*)* = X for XeL(V, U). We define two morphisms

by p{X) := X*X and π{X) := XX* for XeL{V, U). The group G(V)x
G{U) acts on L(V, U) by (g, h)X = gXh'1 and π and p are equivariant
with respect to the adjoint actions of G( U) and G( V) on p( U) and J)( V),
respectively.

DEFINITION ([KP1]). Let X be an affine variety with an action of a
reductive group G and Y an affine variety. A morphism π:X-+Y is
called the quotient map under G if, via π, the coordinate ring of Y is
identified with the ring of G-invariant functions on X.

REMARK 6. If π: X-+Y is a quotient map under G and Xx is a G-
invariant closed subset of X, then π(Xx) is a closed subset of Y and the
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restriction π\X±: X1-^π{X^) is also a quotient map under G (cf., [MF,
Chap. 1, §2]). If X is normal, then so is Y.

Similar to the case of classical Lie algebras in [KP3], we have the
following theorem which we can prove by using Theorem 5.6 (i) and
Theorem 6.6 of [DP].

THEOREM 3. Let U and V be two quadratic spaces of type e of di-
mensions n and m, respectively. Suppose that n^m. Then π: L(V, 17)—>
p(U) is surjective and is the quotient map under G(V). On the other
hand, the image of p is the determinantal variety in p( V) of the endmor-
phisms of rank ^ m and p: L{ V, U) —> Im p is a quotient map under
G(U).

Let D be a nilpotent element in p(V) and rj its ε-diagram. Put
U = Im D. As in [KP3, 4.1], we can define a bilinear form ( , )π on U
by (Du, Dv)χj = (u, Dv)v for u, v e V. Then U becomes a quadratic space
of type ε. Let X' := [D:V^ U] eL(V, U) and let [I: U->V]eL(U,V)
be the inclusion. Then we have (XT = I, D = IX' == (JΓ)*J5Γ and
U : = Ώ\U = XΊ = X\xy. In particular, D' e«Ϊ7) and it follows from
the construction that Dr 6 C£>9?,, where ^' is the ε-diagram we obtain
from Ύ] by erasing the first column. Now we consider the previous two
morphisms

Ί
in this situation. Put L'(V, U) = {XeL(V, U); X is surjective}. Then
we have the following three lemmas whose proofs are similar to the ones
for [KP3, Lemmas 4.2 and 4.3 and Proposition 11.1].

LEMMA 7. For any YeL'(V, U), the stabilizer of Yin G(U) is trivial
and p~\p(Y)) is a single orbit under G(U).

LEMMA 8. Let rf be an ε-diagram we obtain from f] by erasing the
first column and consider the following diagram

Put Nε,η = τr\CtΛ). Then
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( i ) p(Nε>v) = Cε>v.
Let σ be an ε-diagram such that σ ^ rj and σγ = fj^ Then
(ii) p~\Cεiσ) is a single orbit under G(U)xG(V) and is contained

in Nε,ηf)L\V,U).
(iii) π(p~~\Cttσ)) — Cεy where σf is an ε-diagram we obtain from σ

by erasing the first column.

LEMMA 9. (i) π is smooth in V : = L'(V, U).
(ii) /o(L') = {A6t>(Vr);rank(A) = m} and p\L'\ V -* p(V) is locally

trivial in the classical topology with typical fibre G(U).

We can prove the following part of Theorem 2 in the same way as
[KP3, Proposition 13.5] by using the above three lemmas.

PROPOSITION 2. Suppose that the ε-degeneration σ ^η is obtained
from the ε-degeneration σr ^ rf by addition of columns. Then

Sing(C.,,, Cε,σ) = Sing(Ce,,,, C.,.,) .

(2.3) Cancelling rows. To prove the remaining part of Theorem 2,
we need the following concept.

DEFINITION. Let X be a variety with an action of an algebraic
group G. A cross section at a point x e X is defined to be a locally closed
subvariety S of X such that xeS and the map GxS-+ X, {{g, s) ι—• gs)
is smooth at (β, x).

REMARK 7. Let V be a vector space with a linear G-action and X
a closed G-invariant subvariety of V. Let N be a subspace of V com-
plementary to the tangent space Tx(Gx) for znxeX. Put S = (N+x)Γ\X.
Then S is a cross section at x. If X is irreducible or equidimensional,
then we have d im x S=: codim(X, Gx) (cf., [KP3, 12.4]).

PROPOSITION 3. Suppose that an ε-degeneration σ ^f] is obtained
from an ε-degeneration σf ^ rf by addition of rows. Then

Sing(Cif,, C U = Sing(Cε,,,, Cεy) .

PROOF. If σ = (σlf σ2, , σr) and η = (η19 η2, , ηt), then σr and rf
are written as σf = (σ8t , σr) and rf = (η8, , ηt) with (σlf , σ8) =
(̂ i» * •» 7 ) f o r s o m e integer s. Put i; = (OΊ, , σ8). Let (σ, α, /3) be an
ε-datum which contains σ. We may assume that β = id if ε = 1 and
β(2i + 1) = 2% + 2, /3(2i + 2) = 2i + 1 (ΐ ^ 0) if ε = - 1 . Choose EeCε>σ

and the Jordan basis {EaVi, 1 ^ i ^ r, 0 ^ α ^ σ̂  — 1} of J57 such that

(α(i) (β(i) = i and α + 6 + 1 = σt)*vif Ehvό) = .
(0 otherwise .
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Let W and V be subspaces spanned by {Eavt; l ^ i ^ s , O ^ α ^ ^ — 1}
and {EaVi, s < i < r, 0 <̂  α ^ σt — 1}, respectively. Then we have an
orthogonal decomposition V= W@V. With respect to the restrictions
of ( , ), W and V become quadratic spaces of type e. Since W and V
are unstable, E is decomposed as E = (i*7, £") where FeCε>v (dp(W)) and
E'eCε,σ, (ap(V')). Take D'eC £ Y ( c « F ' ) ) and put D=(F,D'). Then
DeCeV. Now we use the notations of Remark 2 in (1.3) for z — E and
λ = σ. It is easy to see that

Q(W) = φ^QiVXj and g(F') = φ β(V)u .

Put

Y= Φ P(V)U and X= G

Then we have

\X,E\cX, [Y,E)<zX,

[Q(W), E]ap(W) , [p(W), E]CZQ(W) ,

[β( V), E] c « F') , [K F'), ^ cfl( F') ,

Take vector subspaces Nίt Nv Nt, iV4 of gl(F) such that

fl(W) φ fl(F') = [p(W) φ t)(F'), E] φ iV2 ,

Γ = [X, # ] φ iV3, X=[Y,E]®Ni.

Then we have

βK V) = [βK F), ί7] φ iV, ί>( F) = [β( F), ί?] φ No,

9l( TΓ) φ gl( V) = [9I( W) φ gl( F'), S] φ N',

P( W) Φ p( V) = [β( T7) φ β( 7'), £7] Φ Ni,

where

N=N1®Nΐ®N3®Ni, Nΰ = N1®Nz, N' = N1φN1, Ni

By putting

S = (N + £7) Γi (Ad(GL( V))D)- , So = (No + E) Π (Ad(G( 7))D)~

S' = (N' + E)Π(Ad(GL(W)xGL(V'))D)- ,

SO = (Ni + E)0 (Ad(G( W) x G( V'))D)- ,
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we get cross sections of the closures of the orbits containing D at E
under the actions of GL(V), G(V), GL{V') and G(V), respectively.
Moreover we have

dim* S = codim((Ad(GL( F))£>Γ, Ad(GL(V))E) ,

dim^S' = codim(Ad(GL(W)xGL(V'))D)-, Ad(GL(W)xGL(V'))E)

by Remark 7. By [KP2, Proposition 3.1], we have dim^S' = dim^S. By
the normality of a closure of a conjugacy class in gl(F), (Ad(GL( F))D)~
is normal at E ([KP1]). But since Sing(S, E) = Sing((Ad(GL( V))D)', E),
S is normal at E (cf., Remark 4). Since S' is a closed subset of S, S'
and S coincide in a suitable neighbourhood of E.

On the other hand, we have

s' n ft v) = {ft v) n (isr + #)} n {ft F) n (Ad(GL( WO X GL( r ))D)-}
= {ft F) fl iSΓ' + E) n K F) ΓΊ {gl( W) θ gl( V')) n {Ad(GL( IT) X GL( V'))D}-

= {ft F) Π N' + £7} n {ft W) 0 ft F') n ((Ad(GL( TΓ) x GL( V'))D)-}

Hence SnftF)=)S0=)S; = S'nftF). Therefore, So and S'o also coincide in
a suitable neighbourhood of E. Thus we get

Sing(C.,,, E) = Sing(C£,vxCe,,,, (F, E')) .

But since F is a smooth point of Cβ|V> we have

Sing(C.f9> £7) = Sing(C6,r, £") . q.e.d.

(2.4) Singularities of minimal degenerations.

DEFINITION. Let σ < rj be an ε-degeneration.
(i) We say that σ < η is minimal if there is no ε-diagram v such

that σ < v < Ύ],
(ii) We say that σ < η is irreducible if it cannot be obtained by

addition of rows and columns in a nontrivial way.

Here we shall give a description of smooth equivalence classes of
minimal ε-degenerations.

REMARK 8. (i) Let X be an element of ftF). Then we have

dim3β(7)(X) - dimδ,(F)(X) = dimg(F) - dim ftF)

by [KR, Proposition 5], where ίQ(V)(X) and $P(V)(X) are the centralizers of
X in g(F) and ftF), respectively. It follows from this that

dim GL( V)X - 2 dim G( V)X .
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(ii) In the setting of Theorem 2, we have

codim(Ce>3?,, C.,,0 = codim(Ce,,, Ce>σ)

by (i) above and [KP2, Proposition 3.1]. Moreover σ' ^ rf is minimal if
and only if σ ^ η is minimal.

(iii) Any ε-degeneration is obtained in a unique way from an irre-
ducible ε-degeneration by addition of rows and columns.

From the view-point of Remark 8, for the classification of the minimal
ε-degerations, one should first describe the minimal irreducible ε-degene-
rations. They are given in Table 1.

TABLE 1

£

V
σ

codim(Ce,,y, Cε>σ)

Smg(Cε,v, Ce, a)

1

(n)

(n-1,1)
1

1

(2,1 7 1 " 2 )

l n

n-1

Xn*

- 1

(m, m)

(m-l,m-l, 1,1)

4

Vm

- 1

( 2 2 , l 2 m " 4 )

l2m

4(m-l)

ym*

The notations xn, x*f ym and yt in Table 1 are defined as follow.

X 0(6,0) (9l(12, C),i
(6)

(5,

(4,

(4,

(3 2

(3,

(23;

(3,

(2 2,

1)

2)

I2)

)

2,1)

)

1)

I2)

χ2

(62)

(5M2)

( 4 2 , 2 2 )

(4 2 ,1 4 )

(34)

( 3 2 , 2 M 2 ) J

(26)

(3 2 ,1 6 )

2/6

2/4

2/3

2/2

FlGURK 3

(2\1 8

(I12)
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As in Sekiguchi [S], xn (resp. ym) is the smooth equivalence class of
the variety defined by xn + y2 = 0 in C2 (resp. xm + yl + yl + y\ + y\ = $
in C5) at the origin. On the other hand, x* (resp. y*) is the smooth
equivalence class of the closure of the nonzero minimal nilpotent orbit
in p(V) at 0, where d i m F = n and ε = 1 (resp. d i m F = 2m and ε = —1).
Since the origin of the variety defined by xn + y2 — 0 is not a normal
point, the closure of a nilpotent orbit in p(V) is not normal in general
when ε = 1.

EXAMPLE. The closure relation and the minimal singularities of the
closures of nilpotent orbits in (gl(6, C), o(6, C)) and (gl(12, C), 8 (̂6, C)) are
given as in Figure 3. (Note that xt = x2 and yt = y2.)

3. Normality of the closures of nilpotent orbits in (gl(2m, C),
, C)).

(3.1) Dimension formula. In this section, we prove that the closures
of nilpotent orbits in p(V) are normal in case ε = — 1. For this, we need
a certain dimension formula. The normality is not true in case ε = 1
as in (2.4). But we will also give this formula in case ε = 1, since the
formula suggests the difficulty in giving a sufficient condition for the
closure of a nilpotent orbit to be normal.

Let U and V be two quadratic spaces of type ε. By putting ( , ) U Θ v —
( , )u + ( , )v> U@ V is a quadratic space of type ε. Put § = gl(£7φ V)
and define two involutions σ and θ of g as a Lie algebra by σ(X) = — X*
and Θ(X) = JXJ-1 for Xeg, where

0

Note that X H + X * gives a linear anti-involution (i.e., (JET)* = Γ*X*) of
g as an associative algebra and θ is a linear involution of g as an as-
sociative algebra. Since

"A* C*~
\ A

c D
#* D*

for AeflldO, B6L(V,I/"), CeL(U,V), DegΙ(F), we have σ θ = θ-σ.
Hence we have a direct sum decomposition

9 = (δ n δ ) Θ (§• n §-') Θ (δ- n gθ Θ ( r β n δ"9),
where §r = {X e g; r(X) = X} for a linear map r: g -> g. Here g" Π Q~β and
g~ffΠg"* are given by
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0 B~,
_B. 0\;BeL(V,U)i,

Define g', g, G, G' and G by

g ' : = 9* = &(U)@QI(V) , g : = g^ΓΊg^ =

G:= GL{U® V) , G' := GΘ = GL(U)xGL(V) ,

G := {geG' g* = g-1} = G(U)xG(V) .

Then the group G' acts on g"̂  and the group G acts on g'ng"* by the
adjoint action. Since the map

0 B~

is a G-equivariant isomorphism, we can identify g* Π Q~θ with L( F, U) as
G-modules.

PROPOSITION 4. Let k be an algebraically closed field with char(A ) Φ 2
and Q = QΪ(n, k). Let θ be a linear involution of the associative algebra
g and X\-^>X* a linear anti-involution of the associative algebra g com-
muting with θ. Put

9' = 9* , Gf = g'nGL(^, k) and G = {g e G'; g* = g~1} .

Then G' acts on Q~Θ and G acts on Q'ΠQΓ* by the adjoint action, where
σ(X) = —X*. For X, ΓegσΠg~*, X and Y are conjugate under G if
and only if they are conjugate under G'

PROOF. Suppose that Y = gXg'1 for some g e G'. Then we have
gXg~x = {g*)~1Xg* and hence

gg* e ZG.(X) :={he G'\ hX = Xh) .

Put v = g~ι(g*)~ιeZG,(X). We note the following fact which is easily
checked by the Chinese remainder theorem; for a non-singular matrix
AeGL(n, &), there exists a polynomial f(T)ek[T] such that A = f(A)\

Take a polynomial f(T)ek[T] so that v = f(vf. It is easy to see
that f(v) e ZG,(X) and f(v)* = f{v). Hence ( Γ ^ T 1 = v= f{vf = f(v)f{v)*
and hence gf{v) e G. Thus Y = gXg~x = {gf{v))X{gf{v))~ι with gf(v) e G.

q.e.d.

In order to classify G-orbits in {AeL(V, U); A*A is nilpotent}, we
first describe the classification of nilpotent G' = GL( U) x GL{ F)-orbits in
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AeL{V,U), BeL{U,V)

due to [KP1]. For any nilpotent element X of Q~Θ, we can take a Jordan
basis

{X'Ui', 1 ̂  i ^ rί9 0 ̂  a ^ λ4 - 1} U {X V> 1 ̂  i ^ r2, 0 ̂  6 ̂  μ, - 1}

of X such that u^V and v, 6 F. By letting a string

α6α& . (resp. baba .)

correspond to {X^; 0 <̂  α ̂  λ< — 1} (resp. {Xhvj) 0 tS-b ̂ L μj — 1}), we get a
diagram τ x which is the sum of such strings. For example, if xι — 3
{rγ = 1) and μγ = 5, μ2 = 2 (r2 = 2), then

7 X = babab

aba

ba .

Such a diagram is called an α6-diagram. It is easy to see that the ab-
diagram τx is independent of the choice of a Jordan basis. Therefore,
we call τx the α6-diagram of X. If X and Y are nilpotent elements of
cfθ, we see that τx = τγ if and only if X and F are conjugate under G\
Thus we have a one-to-one correspondence between the set of nilpotent
G'-orbits in g~θ and the set of αfr-diagrams τ such that na{τ) = dim Z7 and

Ub{T) = dimF, where nβ(r) (resp. %(τ)) is the number of α's (resp. 6's)
in τ.

By Proposition 4 and the above classification, G-orbits in {AeL{V, U);
A*A is nilpotent} ~{X€Q°ns~θ; X is nilpotent} are classified by the ab-
diagrams τ such that na{τ) — dim V and nb{τ) = dim V. The following
dimension formula plays an important role in proving the normality of
the closures of nilpotent orbits.

PROPOSITION 5. Let X be an element of L{V, U) such that X*X is
nilpotent. Let Ox be the G — G{U)xG{ V)-orbit of X and τ the ab-diagram
of X. Also let

Ί
XV)

be the maps introduced in (2.2). Denote by at {resp. bt) the number of the
rows of τ of length i starting with a {resp. b) and put
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τ = Σ «Λ
i\ odd

Then we have

dim 0x = —(dim π(0x) + dim p(Qz) + nm — JΓ) — —{n + m — o(τ)) ,
2 4

where o(τ) is the number of the rows of τ having odd length, m = dimU
and n — dimF.

The proof of this proposition is given in (3.3).

(3.2) Normality of closures of nilpotent orbits. Let Fbe a quadratic
space of type ε and Dep(V) be a nilpotent element with G(F)-orbit
CD = C£tV. In (2.2) we have canonically defined a non-degenerate ε-form
(i.e., (u, v) — e(v, u)) on D(V) such that two maps

x\
V \ > Ώ( V) (D = IX': the canonical decomposition)

are adjoint (i.e., (XT = I) and that D\D(V) = X'leQ,,,, where rf is the
e-diagram we obtain from η by erasing the first column. Repeating this
we get a sequence of quadratic spaces

V0:=V, V i : = Z ) ( n •••, F 4 : = D\V), •••,

Vt:= D\V) Φ 0 , Vt+ι:= Dt+\V) = 0 ,

of type ε and we have D\VieC^^c^FJ, where rf is the ε-diagram we
obtain from η by erasing the first i columns.

Now we consider the variety

ZdM:= L(V0, VJxLW, F2)x xL(Vt_u Vt)

defined by the following equations;

( * ) X\X\ — Xi X L X<LX% — X* XZJ * * y Xt_γXt-ι = X*Xt , XtXf ~ 0 .

The group G(V0)xG(V1)x ••• xG{Vt) acts on M by the action

(QO, ffi, , 9t)(Xu X* , -3Γ«) = (9iXi9o\ giXzgϊ1, , gtXt9T-ι).

Clearly Z is stable under G( Fo) x G( FJ x x G( F,). As in [KP3, 5.2], we
have the following:

REMARK 8. (i) For any (Xlf X2, , Xt) e Z, we have

(ii) Put X; := i)I F ^ i F ^ ^ F ^ L ί F ^ F , ) . Then (X;, z;, . . . , XI) e

z.
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(iii) By (i) we can define a map φ: Z-^CεtV by φ(Xlf , Xt) — X*XX.
The map φ is clearly G(F0)-equivariant and hence φ(Z)uCε>r

Let

be the map introduced in (2.2) and put

Then p(NεtVi) = C6>vi by Lemma 8. We see that Z is the iterated fibre
product as in Figure 4:

Z - > • - > • - > - > . - + Ne,ηt-ι->Ct,ηt = 0

1 1 1 i l l

I 1

1 I

1 1

FIGURE 4

Note that G( V%) x G( F^J-orbits in {XeLCF^, F,); X*X is nilpotent} are
classified by the αδ-diagrams τ such that na(τ) = dim F* and %(r) = dim Vt_x

as in (3.1). Hence for such an α6-diagram τ, we denote by Oτ the cor-
responding orbit. We also denote by ττ(r) (resp. p(τ)) the Young diagram
we obtain from τ by erasing δ's (resp. α's). Then we have τr(Or) = Cε>ff(r)

and p(Oτ) = C£>/0(Γ) as in [KP3, 6.4]. Consider the finite set A of strings
X = (jlf r2, , τt) of αδ-diagrams r< corresponding to a nonempty orbit
0 Γ ( c L ( 7 w , Vt) satisfying the following:

(a) π(Zi) - ρ(τi+1) (i.e., π(Or.) = p(Ou+ί))
for i = 1, , t.

(b) π{zt) = 0 (i.e., π(Orί) = 0).
Let λ = (r l f , r t) e i4 and put σ< = π(r<) = ^(τ<+i) (ί = 1, , ί), σ = (j0 =
pfa) and ίτt = π(r t). Then we have Cε>σi<zCε>ηi = CDW. as in [KP3, 8.1].
Put
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Zx = {(Xlf . . , Xt)eZ; X,e Or<} - Zf](OTlx xOΓ() .

Then we can see that Zλ is the iterated fibre product as in Figure 5,
where λf := (τ<+1, , τt).

Zχ->Zλl->Zχ2-+ -> Zχt_2 -> Oτt -> Cε,σt = 0

1 1 1 1 1

• - > • - > • - > ->oτt_1->ce,σf_1

1 1 1 1
1 1 1

1 1 1 '
• ->O r 2 ->C e ,, 2

1 1

o r i->c e, σ i

1
Cε.σo

FIGURE 5

Since the maps

oH->cε>σi

ϊ

are smooth, all the maps and the varieties in this diagram are smooth.
If ε = —1, then G(Vi) is isomorphic to Sp(mif C) (rrii = dim VJ2) and hence
Zλ is irreducible. Now Z is a disjoint union

Z = U Zλ .

As in [KP3, 8.1], the dimension of Zλ is given as follows by Proposition 5.

PROPOSITION 6. For any λ = (r l f φ- , r t) e 4, tί

dim Z, = i - dim Cε,σ {

Δχ = Σ Δτ. , o(λ) = Σ ofa) and τ&< = dim V* .

PROPOSITION 7. Le£ σ be an ε-diagram such that Cε>σaCD = C£>9 (i.e.,
σ ^Tj) and φ: Z-^>CD the map in Remark 8. Then

(i) dim Φ~\Cε>σ) = (1/2) dim C£tσ + Σ<=S {(l/2)^n i+1 - (ε/4)(^ + ni+1)} +
max{(ε/4)o(λ) - (1/2)J2; λ = fa, , r4) e /I, |θfa) = σ}.

(ii) If ε= — 1 , we have
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codim(Z, φ-\C.,.)) ^ - | codim(CB, C,..) .
Δ

PROOF. Since φ"\Ctta) is the union of Zλ for λ = (τ19 , τt) e A with
^(Γ l) z= af (i) follows from Proposition 6.

(ii) Let τ\ be the αδ-diagram of X\ = D I F ^ e ^ F ^ , V%) and λ' =

(τ[, "',τ't)eΛ. For any λ = (r l f , τt) e A with p{τd = σ, we have

dim Zr - dim Z; = -i-(dim C.,9 - dim Cε>σ) - -~(J r - 4 ) + -ί(o(λ) - o(λ'))

by Proposition 6. Since X't: F,__i —> V< is surjective, each row of τ\ starts
with 6 (cf. [KP1, Remark 2]). Thus we have αέ = 0 and hence Δr = 0.

Now we claim that o(λ) ̂  o(λ") Since /o(rl) = ^"S ττ(rί) = )yί and ίy*
is the ε-diagram we obtain from rf~ι by erasing the first column, in each
row of τ'i the number of the α's is one fewer than the number of &'s.
Therefore, the length of each row of τ\ is odd and hence we have
ofc) = Ivf'1 \ — \ff\ — n*(τ'i) — na(τ'i) where |rf \ is the size of the Young
diagram rf. Let Aj (resp. Bά) be the number of the α's (resp. δ's) in the
^'-th row of τ,. Then

= Σ \Bj-Ajl ^ I Σ ^ -A,)! = nh{τ\)-na{τ\) - o(τt)
ό ό

and hence o(x) ̂  o(x).
Thus dim Zr - dim Z; ^ (l/2)codim(CZ), Cε>σ) and hence Z r has the

maximal dimension among all Zλ with xeA. Since ^ = \JλeΛZλ is a finite
union, we have ά\mZr = dimϋΓ. Then (ii) easily follows from this, q.e.d.

PROPOSITION 8. Suppose that ε = — 1. Then:
(i) The scheme Z defined by the equations (*) is irreducible, reduced

(hence Z is a variety) and a complete intersection in M.
(ii) The map φ: Z—>CD is the quotient map under G ( F J x xG( Vt).

PROOF. Consider the map

ζ: M = Π L( V,_lf Vt) - h
ί l

defined by ζ(X,, , Xt): = (X,X* - X*XV X2X* - XfXz, , XtX*). Then
Z, as a scheme, is the scheme-theoretic fibre ζ'^O). As in [KP3, 5.5], ζ
is smooth in M' : = {(X19 , Xt); all Z, are surjective} = 111=1 L\Vt_lf V,).
In particular Z is smooth in Z*: = Z n M'. Since x ; = D| F ^ 6 L( F ^ 1 ? F,)
is surjective, (X[, •• ,Zί) is contained in Z' and hence Z' Φ 0 . Thus
codim(M, ^ ' ) = dim iV. By the property of the α6-diagram τ\ of X\ stated
in the proof of Proposition 7, λ' = (τ[, •••, rj) is the only element of Λ
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such that piτj = r). Since

dim Zr - dim Zλ ^ — c o d i m ^ , C£>σ)
/ml

for λ = (τlf , ττ) e A with <j = p(τ[)9 only ί̂ . has the maximal dimension
among all Zλ. Since ZxaZf, we have codim(M, Z) = dim JV and hence Z
is a complete intersection in M.

Since each Zx (xeA) is irreducible, the irreducible components of Z
are of the form Zλ. But since dimZλ < dimZ = dimikf — dimiSΓ for λ e 4
with λ Φ X and since each irreducible component of the fibre ζ~1(0) = Z
must have dimension ^ dim M — dim N, Zλ. is the only irreducible com-
ponent of Z and hence Z is irreducible.

Since Z is irreducible, smooth in Zf and a complete intersection in
ikf, ^ is reduced.

(ii) is proved by Theorem 3 as in the proof of [KP3, Theorem 5.3 (i)].
q.e.d.

Now we give the main result of this section.

THEOREM 4. Suppose that ε = — 1. Then the closure CD of the
nilpotent G(V)-orbit CD in p(V) is a normal variety.

PROOF. Let S(Z) be the singular locus of Z. Since Zr is smooth
and Z is a disjoint union

we have

Let σ0 be an ε-diagram such that σ0 < V and dim φ~\Cttσo) is maximal.
Then we have

codim(Z, S{Z)) ^ coding, φ~\C.9θJ) ̂  ^ c o d i m ^ , CεJ

by Proposition 7 (ii). By Remark 8 (ii) and Table 1 in (2.4), it is easy
to see that codim^, CεtO0) ̂  4. Thus Z is non-sigular in codimension 1
and a complete intersection in M. Hence Z is normal. Since φ:Z-^CD

is a quotient map, CD is also normal. q.e.d.

(3.3) Proof of the dimension formula. We now prove Proposition 5.
We use the notations introduced in (3.1).

Let XeQ°f]Q~θ be a non-zero nilpotent element. Since Θ\Q°: 9σ—>βσ is
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an involution, (gσ, gσ Π Qθ) is a symmetric pair. By Kostant and Rallis
[KR, Proposition 4], we can take a normal S-triple (H, X, Y) which con-
tains X as a nilpositive element (i.e., HβQσf)&θ, YeQσΓ)Q~θ). Then g is
decomposed as

Put

P = Θ 9* and δ = φ

The f is a parabolic subalgebra of g and p = g0 0 fί is a Levi decomposi-
tion. By the representation theory of §I2, we have the following lemma.

LEMMA 10. (a) j;(X): = {A e g; [A, X] = 0}cf
(b) le i i 2 := φ^ 2 9ί and adX:j3—»n2 is surjective.

Since g' and g are fl-stable, H defines the Z-graduations of g' and g,
both induced by the Z-graduation of g. Hence pr: = p Π g' (resp. p : = p Π g)
is a parabolic subalgebra of g' (resp. g) with a Levi decomposition

(resp. J> = ft, θ n » 9 0 : = 8 0 n g , n : = n n 0) .

LEMMA 11. Lei Oχ (resp. Ox) 6e the orbit of X under G' {resp. G).
Then we have

(a) dim O'x = dim tt' + dim vί, dim Ox = dim π + dim π2.
(b) dim xζ = 2 dim n2.

PROOF, (a) Since iϊegσng ( 9, we have a direct sum decomposition

On the other hand, since [X, if]eg"*, [X9Q~Θ]C:Q9 and fί2 = [X, p]
(Lemma 10), we have

[X, p] = [X, pΠQσΠQθ] = π 2 n g σ n g - ' = rt2.

By Lemma 10 (a), we have

3 β , (X)c£ng' = p' , $Q(X) := {AeQ; [A, X] = 0}cpng = p .

Thus

dim O'x = dim[g', X] = dim g' — dim fo(X) = dim g' — dim y(

= dim g' — (dim pf — dim n2) = (dim g' — dim pf) + dim n2

= dim π' + dim π2 .
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Similarly we have dim Ox — dim π + dim π2.
(b) Since JH = HJ and J(Q° Π Q~θ) = <Γσ Π 9~Λ we have

δ"^nδi) = δ~σnδ~'nδ«

for all ieZ. In particular,

Jn2 = J(gσ n §"* n π2) = Q-° n §-' n fi2.

But since

we have dim n2 = 2 dim π2. q.e.d.

As in (3.1), we identify L(V,U) with β'Γlfl"' via the G(U)xG(V)-
equivariant isomorphism

Γ 0 BΊ

«v .iD=S-nϊ*, B~[_B. 0\.
The following lemma easily follows from [KP1, Proposition 5.3] and
Remark 8, (i).

LEMMA 12. Let Ox (resp. Ox) be the orbit of

under G' = GL(U)xGL(V) (resp. G = G(U)xG(V)) and τ be the ab-
diagram of X. Let C'a{X) (resp. Cδ'(Z)) be the orbit of π(X) = X*XeQΪ(U)
(resp. p(X) = XX*egI(F)) under GL(U) (resp. GL(V)). Then we have

(a) dim Ox = (l/2)(dim Cr

a{X) + dim C'HZ)) + nm — AτJ where n — dim V
and m = dim U.

(b) dim Cβ'(Z) = 2 dim π(Ox), dim C'HX) = 2 dim ρ(Ox).

Now we prove Proposition 5.

PROOF OF PROPOSITION 5. If U = φ € [/< and F = φ,- Vy are the weight
space decompositions of U and V with respect to H (i.e., £/* = {ue U;
Hu = iu} and Vs = {v e V; Hv = jv}) we find

θ9K^)Φ(Θ

9o - (Θ 9l( Ut)) 0 g( Uo) 0 ( 0 gϊ( Vά)) 0 g( Vo) (as vector spaces)
ί>0 j>0

as in [KP3, 7.7]. Put da = dim Uo and db = dim Vo. Then we have

2 dim g0 - dim go = 2 dim g( Uo) + 2 dim g( Vo) - dim gϊ( Uo) - dim gl( Vo)
= d.W. - e) + cZδ(d6 - ε) - d2

α - d\ = -ε(da + db) .
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By Lemma 11, we have

4 dim Ox — 2 dim Ox = 4 dim π — 2 dim n' .

Since 9 — π 0 g0 0 n and g' ~ v! 0 g$ 0 n' as vector spaces, we have

4 dim 0 x — 2 dim Oχ = 2(dim g - dim g0) — (dim g' — dim gj)

= 2 dim g - dim g' + ε(da + dh) .

Since g = g(C/)0g(F) and g' - gI(C/)0gI(F),

4 dim 0x — 2 dim 0^ = — ε(m + w -- dα — dh) .

Hence we have

dim 0x = —(dim 7r(0x) + dim /θ(Oz) + mn — Aτ) — —(m + n — da — db)

by using Lemma 12. But then da-\- dh — dim Uo + dim Vo coincides with
the number of the rows of odd length of the Young diagram of

and hence da + db = o(τ). q.e.d.
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