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0. Introduction. Let g be a complex reductive Lie algebra and ¢
a non-trivial involution of g. Let g = f + p be the Cartan decomposition
of g with respect to 4, i.e., ¥ = {Xeg; 6(X) = X}, p={Xeg;0X) = —X}.
Clearly t is then a subalgebra of g, [f, p]Jp and [p, pJct. We call the
pair (g, ¥) a symmetric pair and p the vector space associated to (g, f).

Let G be the adjoint group of g and K, the subgroup of the elements
in G which commute with 4. Then K, acts on p by the adjoint action.
Kostant and Rallis [KR] obtained several results on the orbit structure
of p under the action of K,. On the other hand, Kraft and Procesi
[KP1], [KP2], [KP3] studied the singularities in the closures of nilpotent
orbits of classical Lie algebras and gave a sufficient condition for an
orbit closure to be normal. The purpose of this paper is to generalize
some results of Kraft and Procesi to the following symmetric pairs

@ = {(gl(n, C), o(n, C)) (e=1)
' (gl(2m, C), 8p(m, C)) (e = —1).

For the simplicity of expression, we attach ¢ =1 to (gl(n, C), o(n, C)) and
e = —1 to (gl(2m, C), (8p(m, C)).

In §1, we investigate the closure relation of nilpotent K,-orbits in
p. Let P(n) be the set of partitions of n. We frequently identify an
element of P(n) with a Young diagram of size m. Put

P(n) (e=1)
P(m)2 = {(a’lr Ay Agy Qgy = * ') eP(n)} (5 = _1, n = Zm) .

In this paper, we call an element of P,(n) an e-diagram. (Note that
the e-diagrams here do not coincide with the e-diagrams in the sense of
Kraft and Procesi [KP3].) It is known (Sekiguchi [S]) that there is a
one-to-one correspondence between the set of nilpotent Kj-orbits in p
and P,(n) in each case. For an e¢-diagram M€ P,(n), we denote by C.,
the corresponding nilpotent orbits in p. To describe the closure relation,
we define a certain partial ordering < in P,(n) (for the definition, see
(1.4)). Then the closure relation is given as follows:

P(n) =
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THEOREM 1. For two e-diagrams x and g in P,(n), we have C,;5C,,
if and only if N = p, where C,; is the Zariski closure of C.,.

In §2, we study the singularities of the closures of nilpotent orbits.
If ¢ and 7 are e-diagrams and ¢ <7, we call ¢ < 7 an e-degeneration.
The main result of §2, which is an analogue of Proposition 8.1 of [KP2]
and Theorem 12.3 of [KP3], is the following:

THEOREM 2. Let 0=(g,, 05+, 0,) <My, Doy * + +, 1,) be am e-degeneration.
Suppose that for two integers r and s, the first r rows and the first s
columns of 1) and o coincide and that (9, N, -+, 7,) is an e-diagram.
Denote by 7' and o' the diagrams we obtain by erasing these coinciding
rows and columns of 7 and o, respectively. Then o <7 is an e-
degeneration and

Sing(c_je,ﬂ; Cs,a) = Sing(ée,v’y Cs,a’) .
(For the definition of Sing(C,,, C.,), see (2.1).)

In §3, we consider the normality of the closures of nilpotent orbits.
This problem was first treated in Kostant [K]. He proved that the
nilpotent variety of a complex semi-simple Lie algebra, which is the
closure of the regular nilpotent orbit, is normal. Kraft and Procesi
[KP1] showed that any closures of nilpotent orbits in the Lie algebras
of type A are normal. Moreover, they gave a sufficient condition for
the closure of a nilpotent orbit in simple Lie algebras of types B, C and
D to be normal. The proof of Kostant for the nilpotent variety is
mainly based on the fact that the nilpotent variety is a complete inter-
section in the Lie algebra. But the closure of a irregular nilpotent orbit
is not a complete intersection in general. So Kraft and Procesi showed
that the closure of some nilpotent orbit C in classical Lie algebras is
normal by constructing a certain variety which is a complete intersection
from which the closure C can be obtained as its quotient. We prove the
following results by using the method of Kraft and Procesi [KP3].

THEOREM 4. For the symmetric pair (gl(2m, C)), 3p(m, C)), any
closures of milpotent orbits in the associated vector space are mormal.

This property does not hold for the symmetric pair (gli(n, C), o(n, C)).

The reason will be given in (2.4).
I express my heartfelt gratitude to Professors R. Hotta and T.

Tanisaki for kind advice and encouragement.

NOTATION. We denote by C the set of complex numbers. For a
vector space V, we denote by gl(V) the Lie algebra consisting of all
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endomorphisms of V. We denote by GL(V) the group consisting of all
invertible endomorphisms of V. We denote the adjoint representation of
an algebraic group (resp. Lie algebra) by Ad (resp. ad). We always
consider the Zariski topology unless we specify otherwise. Let X be an
algebraic variety and Y be a subset of X. We denote by ¥ the (Zariski)
closure of Y. We sometimes denote the closure by Y~ instead of V. If
f:S—Tis a map and S, is a subset of S, we denote by f|S;:S, — T
the restriction of f to S..

1. Closure relation.

(1.1) Preliminaries. Let ¢ be +1or —1. A finite dimensional vector
space V over C endowed with a non-degenerate bilinear form (, ) such
that (u, v) = e(v, w) for all u,ve V is called a quadratic space of type
e. Let V be a quadratic space of type ¢ of dimension n. For Xegl(V),
we define the adjoint X*egl(V) of X by (Xu,v)= (u, X*v) for all
u,v€ V. Then X+ —X* gives an involution of the Lie algebra gi(V).
Define g(V), p(V) and G(V) by

g(V)={Xegl(V); X=—-X"}, p(V)={Xegl(V); X=X%*
G(V)={geGL(V);9* =g7}.
Then G(V) is a subgroup of GL(V) with Lie algebra g(V) and acts on
p(V) by the adjoint action. In this way, we have a symmetric pair
(gi(V), a(V)) which is isomorphic to (gl(n, C), o(n, C)) if ¢ =1 and (gl(n, C),
8p(n/2, C)) if e = —1. Note that Ad(G(V)) coincides K, in the notation
of [KR]. From now on, we consider G(V)-orbits in p(V).

(1.2) Classification of nilpotent orbits. In order to study the geometric
structure of the closures of nilpotent G(V)-orbits in p(V), we first deseribe
the classification of nilpotent orbits in p(V).

Let P(n) be the set of partitions of n. We frequently identify a
partition in P(n) with a Young diagram of size n. For a partition x € P(n),
we denote by C; the nilpotent orbit whose Jordan normal form has type

A Ay

Az )‘1 )‘2

A3

FIGUuRE 1
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» and put C,, = p(V)NC,. We denote by A, (resp. X,) the length of the
i-th row (resp. j-th column) of the Young diagram X as in Figure 1.

DEFINITION. Let ne P(n) with X, = r. Let B be a permutation of
1,2, -++, r} and ¢ a map of {1, 2, ---, r} into C* (the multiplicative group
of non-zero complex numbers) such that 5* = id, A, = N\, and a(B(t)) =
ea(t) for all 1 £ 1 < r. We call such a triple (A, a, B) an e-datum. If a
Young diagram )€ P(n) is a member of an e-datum (), o, B), we call A
an e¢-diagram. We denote by P.(n) the set of e-diagrams in P(n).

REMARK 1. It is easy to see that

P(n) (=1
Pm)  (e=—1)

where P(m)* = {(a,, a,, @, @y, *++) € P(n)} with m = n/2.

P,(n) =

The following result is given in [S].

ProOPOSITION 1. For a partition n€ P(n), we have C,; = @ if and
only if € P.(n). Moreover, C,, consists of a single G(V)-orbit. Thus
there is a one-to-one correspondence between the set of nilpotent G(V)-orbits
wm (V) and P,(n).

(1.8) Good bases. Let A be an e-diagram in P,(n) with X, = » and
(\ @, B) and e-datum. Then we have:

LEMMA 1. There exists a milpotent element ze€p(V) and wvectors
v,6V (=1,2, -+, 7) such that z2v, 1 £i1<7r,0=a N —1) form a
basis of V and

a() G=p@ and a+b+1=2»\)

“v;, ;) = .
(&0, 2'0,) {0 otherwise .

PrROOF. Let Xegl(V) be a nilpotent element with a Young diagram
»and {(Xu;1<1=7r 0<a=<x —1} a Jordan basis of X. Define a
bilinear form ¢ on V by

(X, Xu,) = {a(i) (4 = ,8('73) and a + b+ 1 =2,
0 otherwise .
Then it is easy to see that ¢ is a non-degenerate bilinear form equivalent
to (, ). Therefore we can choose g € GL(V) so that ¢(u, v) = (gu, gv) for
u,ve V. Since ((9Xg™)gu,, (9Xg )gu;) = ¢(X°u;, X’u;), gXg™* is a nil-
potent element of p(V) and ¢9Xg7, gu, (1 <1 < r) satisfy the lemma.
q.e.d.



NILPOTENT ORBITS IN CERTAIN SYMMETRIC PAIRS 445

Choose zep(V) and v, (1 <7 <) as in Lemma 1. In order to know
the closure relation of nilpotent orbits, we will construct good bases of
g(V) and p(V) for z. Put ©={G,a); 1=i=<7r, 0=a=)\—1} and
v(3, @) = 2°v;. Then {v(); v € ¥} is a basis of V. Let {u(y); € ¥} be its
dual basis. This means u()(v(y')) =0y, 4 (the Kronecker delta) for v, 4" € 7.
For 4, ¢/ € ¥, we define &(y, ¥) € g V)* by &(v, ¥')(X) : = u(¥)(Xv(y')) for
Xegl(V). Then {&(y, ¥'); 4, v’ €T} is a basis of gl(V)*. Let {e(y, ¥');
o, ¥ €T} be the dual basis of {&(y, ¥'); ¥, ¥' €¥}. Then we have

e(ar, Y W(") = Oy yrv(yf) for o, @', 4" €¥
[6(’(;, a; jy b); Z] = e(ir a, j$ b— 1) - e(iy a+ 1; .7.’ b) ’

where e(3, a; 7, b) = 0 if (4, @) or (4, b) is not contained in ¥.
For «, 4’ € ¥, we define v(y, ¥') e g(V)* and 9(y, 4') e (V) by

V(g ¥ )(X) 1= (v(¥), Xv(y)  (Xeg(V)
N, ¥NX) 1= (w(y), Xo(¥')  (Xep(V)).

Let 4 = (4, @) and o' = (4, b) be two elements of ¥. We write ¢ <* "
ifi<jorif i=7and a <b+ (1 — ¢)/2 while we write ¢ <" if 1 < j
or if =47 and a<b— (1 —¢)/2. Since v(y, ¥') = —ev(y’, ¥) for 4, ' €T,
v(r, ¥") with o <*+' form a basis of g(V)*. Similarly, 7(y, ') with
4 < o' form a basis of p(V)*, since p(y, ¢') = eny’, 4) for +, 4’ €¥.
Let {x(y, ¥'); & <* '} be the dual basis of {v(y, ¥'); ¥ <*4'} in g(V)
and {y(y, '); ¥ < o'} the dual basis of {p(y, ¥'); 4 < 4’} in p(V). Note
that (v(z, a), v) = a(@)u(B(%), n;, — a —1)(v) for all ve V. Then the following
two lemmas can be easily proved.

LEMMA 2. (1) ()™, a; ], b) = &(B®1), i—a —1; 4, b)|6(V) for (4, @),
(7, b)e?.

(ii) Ifi<jor if i=7 and a <b, then z®, a; j, b) = a(®)'e(8(2),
N — a —1; 7, b) — ea(5)'e(B(), v — b — 1; 4, a).

(ili) If e = —1, then z(1, a; 1, a) = a(t)e(B8(), »; — a — 1;1, a).

LeMMA 3. (1) a@®)™9(, a; j, b) = &B®), v—a—1; 7, b) | (V) for (3, a),
(7,b)e?.

(ii) Ifi<jor if i=J and a <b, then y(i, a; j, b) = a(i)e(B(),
M — a— 157, b) + ea(s)'e(B(3), i — b — 1;4, a).

(iii) If e =1, then Y@, a; 1, a) = a(t)*e(B(), »; — a — 1; 1, a).

The following lemma follows from Lemmas 2, 3.

LEMMA 4. (i) For (i, a), (j, b) € ¥ with (i, a) <* (4, b),
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[x(¢, @; 7, D), 2]
{2y(i,a;’£,a)—y(i,a~l;i,a—}—l) (t=7and a=b—1)
y(t,a;3,b—1) — y@&, a —1;74,b) otherwise ,
where we put Y@, ') = 0 if Y@, ¥') is not yet defined.
(i) For (1, a), (4,b)€¥ with (1, a) < (4, b),
[¥(3, a; 7, b), 2]
_{Zx(i,a;i,a)—x(i,a—l;i,a—l-l) (t=7and a=0b—1)
" |z, a3 4,0 —1) — x(3, @ — 1; 4, b) otherwise ,

where we put x(¥, ¥') = 0 if 2(r, ¥') is mot yet defined.
REMARK 2. Let g(V),; and p(V),; be the vector subspaces defined by
8(V)s = 5, Calé, a;4,) and §(V),; = 5,Cy(6, a3 5, b) -

Then we have

[g( V)i,jr Z]C'p( V)i,j ’ [‘p( V)i,jr Z]CQ(V),J ’
8(V) = @a(V); and p(V)=@p(V); -

(1.4) Closure relation. Given two partitions A, g€ P(n), write x = ¢
if

[\

i
PIPW
i=1

for all 5. This is equivalent to
DIDV=D WA

k>3 k>3

for all 7 (cf., [KP3, Proposition 2.5]). For simplicity, we call such
A = ¢ a degeneration. In particular, if \, g€ P(n) we call A\ = ¢ an &-
degeneration.

3
;_lm

LeEmMA 5. ([H, Proposition 3.9]) Let x> g be an adjacent degenera-
tion in P(n) (i.e., there is mo partition v € P(n) such that x>y > p) and
p=(ty Mty <>+, tt). Then )\ has one of the following forms;

(I) N=(t oo ey Mooy i+ 1, P =1, Py, oo+, 1) for some 1 <0 <t—1.

I »= ()uv ey Moy Mt L, Moy e, Mo M5 — 1 B, 0, )ut) with
P < 5= i, = o =p, <y, for some 1L <1< j<t.

REMARK 3. Let » and g be as above. Suppose that n, = t, -+ N, =
Eos Npsz # Mpis a0 Xy = fy, oo, X, = By, Ngpy # Fore Let N and g be the
Young diagrams we obtain from ) and g by erasing the first p rows
and first ¢ columns. Then \' and g have the forms as in Figure 2;
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69) )"[ l I % (I / W

pEs i %

Figure 2

Suppose that e = —1 and dimV =n =2m. For a partition pt= (g, -+, 1) €

P(m), we write g = (o, ttyy * <, ty ) € P(m)®:. For two partitions A and

p of P(m), we have \* = ¢ if and only if X\ = p. Moreover, \* > p is

adjacent in P_,(n) = P(m)* if and only if A > p¢ is adjacent in P(m).
Now we give the closure relation for nilpotent orbits in p(V).

THEOREM 1. For two e-diagrams \ and ¢ in P(n), we have C..o
C..if and only if » = p, where n = dimV and C.; vs the Zariski closure
Of Ce,i'

P_ROOF. The “only if” part is rather ea_sily seen as follows. Suppose
that C,;0C. ,, z€C,,and Xe€C,,. SincezeC,; = (Ad(G(V))X)", we have
2 e (Ad(G(V)X?%)~. Therefore all minors of 2z' of degree rank(X?®) + 1
are 0 and hence rank(z’) < rank(X?. Since

rank(X?) = 3\ X; and rank(z®) = 3 Z;
>t >
(cf., [KP3, (1.1)]), we have )\ = p.

We now prove the “if” part. Suppose that » > g. We may assume
that A and g are adjacent in P(n). Let (¢, a, 8) be an e-datum which
contains ¢. We note the following fact.

LEMMA 6. Let \, ¢t and (¢, a, B) be as above. In order to show
that C'MDCM,, 1t 18 sufficient to show this in the following cases:

(i) #:(py Q)y 7\':(p""]-r q_l)v B:id! a(1)=a(2)=1 (5:]4
p=q=2).

) g=@ 0,900, x=@+1,p+1,9-1,¢—1), 1) =2, BB) =4,
al)=a@) =1, a@)=ad)= -1 (= -1, p=qg=2).

PROOF. Let pt= (&, fts ) £) and X = (\yy, Mgy *+, \y), Where r =,
and k=X,. Note that r=%. Put {i, -+, %5} ={i; %N} and {5, - -+, j,} =
Gy s =0 with 9, <4, < -+ <4, and 7, < j, < -+ < j,. Since \» > p is
adjacent, we have s =2 if ¢e=1 and s =4 if ¢ = —1 (cf., Lemma 5).
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If ¢ =1, we may assume that 8 =id. If ¢ = —1, we may assume that
ta = My 2 i, =, and B(3) = 1, B(4) = 4, Choose a nilpotent element
zeC,, and a Jordan basis {z*v;1 <1 =<7, 0=a=pg — 1} of z such that

a(t) (j=pB#) and ¢ + b+ 1= p,)
(2%, 2%0;) = )
0 otherwise .
Put v(%, a) = 2%,

V.= @ (% 00 b) and V=@ (5 Coi ) -

Then we have the orthogonal decomposition V =V’ @ V, with respect to
(,). Hence V'’ and V, are quadratic spaces of type ¢ with respect to
the restrictions of (,). Put g/ = (&, «++, tt,), N = (\py =+, Ny,) and v =
(&5, +++, #5). Since V' and V, are z-stable, z is decomposed as z = (2/, z,)
where 2’ €C, (Cp(V") and z,€C, (Cp(V,). Take X'eC,; and put X =
(X', z). Then clearly XeC,,. If wecan show that 2’ € (Ad(G(V")X')" =
C.., we get
ze (AdG(VHX) = (C. ., {2})C. ; -

Thus we may assume that g = (p,q), x=({®+1,¢—1) if e =1 while
t=m04¢0,rx=@+1L,p+1,9¢-1,9¢—-1)if e= -1 withp=z¢g=1.
If ¢ =1, C., is the principal nilpotent orbit in the sense of [KR] and so
we have Q,z:)Ce,,,. Therefore we may assume that ¢ = 2. The remaining

assertions for & and B are easily checked. Thus Lemma 6 has been
proved.

Now we assume that \, #£ and (&, @, B) are as in Lemma 6. We first
consider the case ¢ = —1. Put
y=—-y2 p—130 —yB,p—1;4,0)
+y1,p—1;3,00+y1,p—1;4,0), 208)=2+1ty,

n@) =v, V) =25, V() =205, () =2"""v,—lv,+tv, (teC).
Then we know that z(f) is a nilpotent element of p(V) and {z(¢t)*v,(t);
114,05 a <)\ —1}is aJordan basis of z(t) for each teC*. Hence
2(t)eC,; if t#0 and 2(0) =z¢cC,,. This implies that C,,cC, .

Next we consider the case ¢ = 1. What we want to construct is a

morphism z: C— p(V) such that z(¢)eC,,; if ¢ 0 and 2(0) = z. For this
purpose, put

Y(a, b, ¢) = —i ayl,i—1;1,p—1)
=1

— bR i-12¢-1) - Sl p-L2i-1),
=1 i=1
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where a=(a,, @, ***, a,) €C?, b=(b;; b, -+, b)) €C? and ¢c=(c, ¢,, -+ +, ¢,) € C".
If we express z and y(a, b, ¢) by matrices with respect to the basis
w=v0,p—1),u=v1,p—2), -+, u, =v1,0), uyp, =v2,9—1), Uy, =
v2,q—2), cc, Upy, = v(2,0) of V, we have

P 0
J, 0 —A i,
Z = | o and ¥(a, b, c) = P —¢
e —t¢ O —B
where
01 o a,
01 . 0
J, = oy e a=" ,
0
0 Apeoveee a, a,
D
b 0
B = ,2 and C, = (cqr *tty Cy cl) .
by e b, b,

Put z(a,b,¢) =2+ y(a,b,c). Let T be a variable and M, (C[T]) the
ring of matrices with coefficients in C[T]. For two matrices X(7T) and
Y(T) in M, (C[T)), we write X(T)~Y(T) if there are two invertible
matrices U(T) and V(T) in M,,(C[T]) such that X(T) = U(T)Y(T)V(T).
We denote by I, the unit matrix of degree n. Then multiplying

o]
Ip+q+1io

to TI,,, — 2(a, b, ¢) from the right and erasing components other than
the first p — 1 diagonal components, we have

~L,.i 0 {0
Tl —#a, b~ O | ¢ |KT)
0 B(T) ‘e

where (T)=T*+ >, Szt a0, ,+2a,)T?* —a, and B(T)=TI,+ B—J,.

Multiplying
01, 0il
-------- el and | e
10 I,: O
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from the left and right to

0

""""""""" } ~l o KD AD) |
| - R(T) S(T)

where
P(T) = S(T) = (c, + z b, l)T" :

AT =T0 + 3, <2bt S bbyo)T** — b, , and
= i=1

1

RT)=T +z’:( At Saa )+ 3 (S o) —

t=1 2

In order that z(a, b, ¢) is nilpotent and its corresponding partition is
A=(@+1,qg—1), it is sufficient to show that the following condition
(*) holds

S(T) = P(T) = ¢,T** with ¢, #0, QT)= T+ 2b,T"*,

() RT)=T?+ S0 <2at + 'i}laia,_l)w ¢, and
t=1

R(TYQ(T) — P(T)S(T) = T**.
This condition (x) is satisfied if the following (*)" holds:

6o+ Sho, =0 @=<t<q), 2, +Sbh,=0 @<t<g—1),
i=1 i=1

-1

Q

S
+
M3
S
“e-‘

=0, ¢,#0,

P—g+t—1

-1
(=) g; CCp; T+ 2a’p-—q+t + Z QQp_gti—; = 0 2=st=q-1),

i=

qZ CiCoy + @, +Zaa =0, 2b,+ 2a,=0,

.

t

204, + Z Ay + 20 <2at + 2 ata’t-z) =0 l=t=s=p—-9,

Cf = 2b1<2ap—q+l + :?;]l. aiap—q+1—1:> .

Put A, 1=<s=p), B, 1 <£s=<¢q) and C, 1 £ s < q) as follows;
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8 8—1
A =1, A3+1 = —(; A1A3+1—t>/2 + 24, + i2=1AiAc—i 1=s=p—9q).
(Note that A, ;. + 0= A4, _4-)/2 = 2°79).
s—1 a—1
B--1, B=—(SBB.)2 @=s=q¢-1, B=—(5BB.)
i=1 i=1

C.=(-2mvye, C=—(5BC.) @=ss=q.

P—gq+ts—1

Ap—q+- = —( >

i=1
P—1 q—1
4, = (G A+ 300

Define a,(t), b(t), ¢(t) by a;(t) = At A1 =1 =p), b(t) = Bt*¥ (1 <1=q)
and ¢, (t) = Ct***? 1 =<1 =¢q) for teC. Then they satisfy (=) if ¢ = 0.
Therefore if we define 2(f) by

Z(t) = z(al(t), %y a/p(t)r bl(t)’ tt bq(t)r cl(t)r *t %y Cq(t)) ’

we have 2(t)€C.,; (t # 0) and 2(0) = 2. This implies Ce,ZDCe,p' Thus the
proof of Theorem 1 is completed.

8—1
AiAp—q+c—i + ¢Z={ CiCs—i>/2 (2 é S é q— 1) ’

2. Singularities in the closures of nilpotent orbits.
(2.1) Smooth equivalence classes.

DeFINITION ([KP38]). Consider two varieties X, Yandletze X, ye Y.
The singularity of X at x is called smoothly equivalent to the singularity
of Y at y if there exist a variety Z, a point z€ Z and two maps

z-%.x

¢

Y

such that ¢(z) = x, ¥(2) = ¥, and ¢ and 4 are smooth at z. This clearly
defines an equivalence relation among pointed variaties (X, ). We denote
by Sing(X, z) the equivalence class to which (X, x) belongs.

Suppose that an algebraic group G acts on a variety X. Then
Sing(X, x) = Sing(X, «’) if x and ' belong to the same orbit O. In this
case we denote the equivalence class also by Sing(X, O).

REMARK 4. Let (X, z) and (Y, ¥) be pointed varieties over C. Suppose
that dim, X = dim, Y + » for some integer r = 0. Then Sing(X, z) =
Sing(Y, ¥) if and only if some neighbourhoods (in the classical topology)
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of x€ X and (y, 0) € YXC" are analyticaly isomorphic. Therefore, various
geometric properties of X at x depend only on the equivalence class
Sing(X, z), for example; X is smooth, normal, seminormal, unibranched
or has a Cohen-Macaulay or rational singularity (cf., [KP3, 12.2]).

The following theorem is the main result of this section.

THEOREM 2. Let 6 <7 be an e-degeneration. Suppose that for two
integers r and s the first r rows and the first s columns of 1) and o
coincide and that (9, 0, +-+7,) 18 an e-diagram. Denote by 7' and o
the diagrams we obtain by erasing these coincident rows and columns
of 7 and o, respectively. Then o' <7’ is an e-degeneration and

Sing(ée,rp Cs,o) = Sing(és,n" Ce,a’) .

REMARK 5. In the setting of Theorem 2, we say that the e-degen-
eration ¢ < 7 is obtained from the e-degeneration ¢’ < 7’ by addition of
rows and columns.

This is an analogue to the results of Kraft and Procesi for classical
Lie algebras ([KP3, Proposition 3.1] and [KP3, Theorem 12.3]). The proof
is similar to that for Theorem 12.3 of [KP3]. We will treat separately
the two steps “cancelling columns” and “cancelling rows”.

(2.2) Cancelling columns. Let U and V be two quadratic spaces of
type ¢ and put L(V,U):= Hom(V,U). For XeL(V,U), we define the
adjoint X*e L(U,V) by (Xv, w)y = (v, X*u), for all e U and veV.
Then (X*)* = X for Xe L(V,U). We define two morphisms

L(V, U) =5 p(U)

|

(V)
by o(X):= X*X and n(X):= XX* for Xe L(V,U). The group G(V)x
G(U) acts on L(V,U) by (9, )X = gXh™ and = and p are equivariant
with respect to the adjoint actions of G(U) and G(V) on p(U) and p(V),
respectively.

DEFINITION ([KP1]). Let X be an affine variety with an action of a
reductive group G and Y an affine variety. A morphism 7: X—Y is
called the quotient map under G if, via z, the coordinate ring of Y is
identified with the ring of G-invariant functions on X.

REMARK 6. If 7: X > Y is a quotient map under G and X, is a G-
invariant closed subset of X, then =(X,) is a closed subset of ¥ and the
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restriction 7| X,: X, —» n(X,) is also a quotient map under G (cf., [MF,
Chap. 1, §2]). If X is normal, then so is Y.

Similar to the case of classical Lie algebras in [KP3], we have the
following theorem which we can prove by using Theorem 5.6 (i) and
Theorem 6.6 of [DP].

THEOREM 8. Let U and V be two quadratic spaces of type ¢ of di-
mensions n and m, respectively. Suppose that n=m. Then z: L(V,U)—
p(U) is surjective and is the quotient map wunder G(V). On the other
hand, the image of o is the determinantal variety in (V) of the endmor-
phisms of rank <m and p:L(V,U)—Imp is a quotient map wunder
G(U).

Let D be a nilpotent element in p(V) and # its e-diagram. Put
U=ImD. As in [KP3, 4.1], we can define a bilinear form (, )y on U
by (Du, Dv); = (u, Dv), for w,ve V. Then U becomes a quadratic space
of type e. Let X :=[D:V—-UleL(V,U) and let [[.: U—>V]eL(U,V)
be the inclusion. Then we have (X)* =1, D=IX = (X)*X  and
D':=D|U=X1=X(X")* Inparticular, D'ep(U) and it follows from
the construction that D’eC,,, where 7%’ is the e-diagram we obtain
from 7 by erasing the first column. Now we consider the previous two
morphisms

L(V, U) > p(U)
.
p(V) 7(X) = XX*, oX)=X*X

in this situation. Put L'(V,U) = {Xe L(V, U); X is surjective}. Then
we have the following three lemmas whose proofs are similar to the ones
for [KP3, Lemmas 4.2 and 4.3 and Proposition 11.1].

LEMMA 7. For any Ye L'(V, U), the stabilizer of Y in G(U) s trivial
and o7 (o(Y)) ts a single orbit under G(U).

LEMMA 8. Let 7' be an e-diagram we obtain from 7 by erasing the
first columm and consider the following diagram

L(V,U) = p(U)>C.
g
p(V)oC., .
Put N, ,==n"'C.,). Then
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(i) o(N.,) =C.,e

Let ¢ be an s-diagram such that ¢ <7 and &, = 7),. Then

(ii) p™(C.,) is a single orbit under G(U)xXG(V) and is contained
in N,,NL(V,U).

(iii) =w(0o™XC.,)) = C., where ¢’ is an e-diagram we obtain from o
by erasing the first colummn.

LEMMA 9. (i) = 4s smooth in L' := L'(V, U).
(i) o(L") = {Aep(V); rank(4) = m} and p|L': L' — o(L') is locally
trivial in the classical topology with typical fibre G(U).

We can prove the following part of Theorem 2 in the same way as
[KP3, Proposition 13.5] by using the above three lemmas.

PROPOSITION 2. Suppose that the e-degeneration o <7 1is obtained
Jrom the e-degemeration o' < 7' by addition of columms. Then

Sing(ée,m Cs,a) = Sing(ée,q’r Cs,a’) .

(2.8) Cancelling rows. To prove the remaining part of Theorem 2,
we need the following concept.

DEFINITION. Let X be a variety with an action of an algebraic
group G. A cross section at a point € X is defined to be a locally closed
subvariety S of X such that €S and the map GxS— X, ((g, 8) — gs)
is smooth at (e, x).

REMARK 7. Let V be a vector space with a linear G-action and X
a closed G-invariant subvariety of V. Let N be a subspace of V com-
plementary to the tangent space T,(Gz) foranxe X. Put S=N+2)NX.
Then S is a cross section at x. If X is irreducible or equidimensional,
then we have dim, S = codim(X, Gz) (cf., [KP3, 12.4]).

PROPOSITION 3. Suppose that an s-degeneration o =7 1is obtained
from an e-degeneration ¢’ < 7' by addition of rows. Then

Sing(és,m Cs,q) = Sing(ée,n’) Ce,a’) .

PrOOF. If 6 = (0,0, -+, 0,) and = (Y, Py +*+, 7,), then ¢’ and 7’
are written as ¢’ = (o, -+, 0,) and ¥ = (9, +++, ) with (o, -+, 0,) =
®y +++, 1,) for some integer s. Put v = (¢, --+, 7,). Let (g, a, B) be an
e-datum which contains ¢. We may assume that 8 =1id if ¢e=1 and
BRI+ 1)=21+2, B2i1+2)=21+1 (1 =0)if e= —1. Choose EcC,,
and the Jordan basis {E*v;;1 <1 =<7, 0<a =0, — 1} of E such that

a(t) B@)=jand a+b+1=0)

(Ea’l),;, Eb‘vj) = .
0 otherwise .
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Let W and V' be subspaces spanned by {E°v;;1<1<s,0<a <0, —1}
and {E%v;s<i1<7, 0=a=o0,— 1}, respectively. Then we have an
orthogonal decomposition V= W@ V'. With respect to the restrictions
of (,), Wand V'’ become quadratic spaces of type . Since W and V'’
are E-stable, E is decomposed as E = (F, E') where FeC,, (Cp(W)) and
E'eC., (cp(V"). Take D'eC,, (cp(V') and put D = (F, D'). Then
DeC,,. Now we use the notations of Remark 2 in (1.3) for z = £ and
A =o0. It is easy to see that

p(W) = @S‘ PV, V)= ,é?s,-p( V)i
g(W)=i§§sg(V)i,,- and g(V’)=E§@§j9(V)i,j-

Put
Y=@ p(V); and X=@ o(V).;.

Then we have
pV)=pW)Dp VDY, oV)=9W)DaV)DX,
[X, ElcX, |Y, EF]lcX,
[s(W), E]cp(W), [p(W), E]lcg(W),
[a(V"), E1cp(V"), [p(V'), E]lcg(V"),
gi(V)=p(W)DpV)DsW)Ds(V)DYD X.
Take vector subspaces N, N,, N,, N, of gl(V) such that

(W) D p(V') = [g(W) D a(V'), E]DN,,
gW)Da(V') =[p(W)Dp(V'), EID N, ,
Y=[X EION,, X=[Y, E]®N,.
Then we have
gl(V) =[gV), EI® N, p(V)=I[g(V), E]ION,,
g W) D gl(V") = [ W) D s(V"), EID N’
W)@ p(V") =[s(W)Ds(V'), E1D Ny ,
where
N=NONONDON,, N=NON,, N=NON,, N,=N,.
By putting
S=(N+ E)Nn(AdGL(V))D)-, S,=(N,+ E)NnAAG(V))D)~,
S =N+ E)N(AAGL(W)XxGL(V")D)~,
S = (Ny + E)N(AAG(W)xG(V")D)~,
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we get cross sections of the closures of the orbits containing D at E
under the actions of GL(V), G(V), GL(V') and G(V’), respectively.
Moreover we have
dim; S = codim((Ad(GL(V))D)~, AA(GL(V))E) ,
dim; S’ = codim(Ad(GL(W)x GL(V"))D)~, AA(GL(W)xGL(V"))E)
by Remark 7. By [KP2, Proposition 3.1], we have dim;S’ = dim;S. By
the normality of a closure of a conjugacy class in gl(V), (Ad(GL(V))D)~
is normal at E ([KP1]). But since Sing(S, E) = Sing((Ad(GL(V))D)~, E),
S is normal at E (cf., Remark 4). Since S’ is a closed subset of S, S’
and S coincide in a suitable neighbourhood of E.
On the other hand, we have
S'Np(V) = p(V)NN' + E}In{p(V)N(AAGL(W)x GL(V"))D)"}
= {p(V)NN' + E}np(V)N{gl(W)D s V" N{AAGL(W)x GL(V"))D}~
= {p(V)NN'+ E}n{p(W) D p(V')N(AAGL(W)x GL(V")) D)7}
= (N, + E) N(AdG(W)xG(V")D)~ = S; .
Hence SNp(V)DS,08; = S'Np(V). Therefore, S, and S; also coincide in
a suitable neighbourhood of E. Thus we get
Sing(C. ,, E) = Sing(C.,,xC.,, (F, E") .
But since F' is a smooth point of Q,y, we have
Sing(C. ,, E) = Sing(C. ., E') . q.e.d.
(2.4) Singularities of minimal degenerations.

DEFINITION. Let ¢ < 7 be an e-degeneration.
(i) We say that ¢ < 7 is minimal if there is no e-diagram v such
that ¢ <y < 7.

(ii) We say that ¢ <% is irreducible if it cannot be obtained by
addition of rows and columns in a nontrivial way.

Here we shall give a desecription of smooth equivalence classes of
minimal e-degenerations.

REMARK 8. (i) Let X be an element of p(V). Then we have
dim 3,,(X) — dim 3,,(X) = dim g(V) — dim p(V)

by [KR, Proposition 5], where 3,,,(X) and 3,,,(X) are the centralizers of
X in g(V) and p(V), respectively. It follows from this that

dim GL(V)X = 2dim G(V)X .
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(ii) In the setting of Theorem 2, we have
COdim(és,?" Ce,a’) = COdim(ée,m Ce,n)
by (i) above and [KP2, Proposition 3.1].

and only if ¢ < % is minimal.

457

Moreover ¢’ < 7’ is minimal if

(iii) Any e-degeneration is obtained in a unique way from an irre-
ducible e-degeneration by addition of rows and columns.

From the view-point of Remark 8, for the classification of the minimal
e-degerations, one should first describe the minimal irreducible e-degene-

rations. They are given in Table 1.
TABLE 1
€ 1 1 -1 -1
Vi (n) 2,13 (m, m) (22, 13m4)
o (n—1,1) 1" m—-1,m—1,1,1) 12m
codim(C.,,, C:,,) 1 n—1 4 4(m—1)
Sing(Ce,y, C:, o) Tn Ta* Ym Ym*

The notations z,, ¥, ¥, and y% in Table 1 are defined as follow.
(g6, C), 0(6, C))

(5.1) :

£
(4,2) :
(4,17 /
(3%) S
(3,2,1) -/x?
(2) e
(3,1) "\
(27,17 \
(2,1 x*

X2

FiGure 3

(6%)
(5%,1%)
(4% 2
(47,1
(3%
(32,221
(2%)
(3%,1°)
(24,14
(2%,1%)

(1)

1%

(91(12, C), 3p(6, C))

/
e
N
X

4

v
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As in Sekiguchi [S], «, (resp. ¥,) is the smooth equivalence class of
the variety defined by z" + 4* =0 in C* (resp. 2 + ¥* + s + ¥: + yi =0
in C°) at the origin. On the other hand, x} (resp. ¥}) is the smooth
equivalence class of the closure of the nonzero minimal nilpotent orbit
in p(V) at 0, where dimV =#n and ¢ = 1 (resp. dimV = 2m and ¢ = —1).
Since the origin of the variety defined by z" + %* = 0 is not a normal

point, the closure of a nilpotent orbit in p(V) is not normal in general
when ¢ = 1.

ExAMPLE. The closure relation and the minimal singularities of the
closures of nilpotent orbits in (gl(6, C), 0(6, C)) and (gl(12, C), 8p(6, C)) are
given as in Figure 3. (Note that a* = z, and ¥ = ¥,.)

3. Normality of the closures of nilpotent orbits in (gl(2m, C),
8p(m, C)).

(3.1) Dimension formula. In this section, we prove that the closures
of nilpotent orbits in p(V) are normal in case ¢ = —1. For this, we need
a certain dimension formula. The normality is not true in case ¢ =1
as in (2.4). But we will also give this formula in case ¢ = 1, since the
formula suggests the difficulty in giving a sufficient condition for the
closure of a nilpotent orbit to be normal.

Let U and V be two quadratic spaces of type e. By putting (, ygr =
(,)e+(,), UV is a quadratic space of type e. Put §=gi(UPYV)
and define two involutions ¢ and @ of § as a Lie algebra by ¢(X) = —X*
and 0(X) = JXJ* for Xeg, where

7= [0 “‘11;\ )

Note that X+ X* gives a linear anti-involution (i.e., (XY)* = Y*X*) of
d as an associative algebra and ¢ is a linear involution of § as an as-

sociative algebra. Since
A B *_ A* C*
¢ D| |B* D*

for Aegi(U), BeL(V,U), CeL(U,V), Degl(V), we have -0 =6-0.
Hence we have a direct sum decomposition

d=@nHPGENIHBE Ng)D@E@°Na™",

where §° = {X€§; o(X) = X} for a linear map z:§—§. Here §°Ng§~ and
d°Ng~’ are given by
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anNnafl — 0 B .
gng - _B* O,BGL(V,U) ’

- - 0 B
a’na’? = {[B* O}; Be L(V, U)} .

Define ¢/, g, G, G’ and G by

g:=¢=g(U)Psl(V), g:=ang=gU)DaV),
G:=GLUDV), & :=G"=GLU)XGL(V),
G:={9eG39*=97"1=GU)xXG(V).

Then the group G’ acts on ¢ and the group G acts on §g°Ng~’ by the
adjoint action. Since the map

LV, U)—gng? Bu——»[ °© B

RGN —B* 0

is a G-equivariant isomorphism, we can identify g°Ng=? with L(V,U) as
G-modules.

PROPOSITION 4. Let k be an algebraically closed field with char(k) = 2
and § = gl(n, k). Let 6 be a linear involution of the associative algebra
g and X+— X* a linear anti-involution of the associative algebra § com-
muting with 6. Put

=9, G=gnNGLn k) and G={gecG;g9*=g7"}.

Then G’ acts on §% and G acts on g°NG~° by the adjoint action, where
o X)=—X* For X,Yead’Ng? X and Y are conjugate under G if
and only if they are conjugate under G’

PROOF. Suppose that Y = gXg= for some g€ G’. Then we have
gXg9™* = (9*)*Xg* and hence

99*€Zy(X):={heG;hX = Xh}.

Put v = ¢g7Y(g*) '€ Zyz(X). We note the following fact which is easily
checked by the Chinese remainder theorem; for a non-singular matrix
AeGL(n, k), there exists a polynomial f(T)e€k[T] such that A = f(A4)%
Take a polynomial f(T)ek[T] so that » = f(v)>. It is easy to see
that f(v) € Zo(X) and f(v)* = f(v). Hence g7(g*)™" = v = f(v)* = flv)f(v)*
and hence gf(v) € G. Thus Y = gXg™* = (9f(v)) X(gf(v))™* with gf(v) eG.
q.e.d.

In order to classify G-orbits in {Ae L(V,U); A*A is nilpotent}, we
first describe the classification of nilpotent G' = GL(U)x GL(V)-orbits in
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0 A
50 = {[B 0} AeL(V,U), BeL(U,V)

due to [KP1]. For any nilpotent element X of g~%, we can take a Jordan
basis

(Xu;l<i=<r,0fa=sn —1JU{X351 <=7, 0=b=p;—1}

of X such that u,€ U and v;€ V. By letting a string

A 7
abab - - - . (resp. baba ++-.)

correspond to {X°u; 0 < a <\, — 1} (resp. {X*v; 0 < b < y¢; — 1}), we get a
diagram 7, which is the sum of such strings. For example, if )\, =3
(r,=1) and ¢, =5, ¢, =2 (r, = 2), then

Tz = babab
aba
ba .

Such a diagram is called an ab-diagram. It is easy to see that the ab-
diagram 7 is independent of the choice of a Jordan basis. Therefore,
we call 7, the ab-diagram of X. If X and Y are nilpotent elements of

~

3% we see that t, = 7y if and only if X and Y are conjugate under G’.
Thus we have a one-to-one correspondence between the set of nilpotent
G’-orbits in 37 and the set of ab-diagrams 7z such that n,(r) = dimU and
ns(z) = dimV, where n,(z) (resp. my(z)) is the number of a’s (resp. b’s)
m 7.

By Proposition 4 and the above classification, G-orbits in {A € L(V, U);
A*A is nilpotent} ~{Xeg°Ng?% X is nilpotent} are classified by the ab-
diagrams 7 such that n,(z) =dimU and m(z) = dim V. The following
dimension formula plays an important role in proving the normality of

the closures of nilpotent orbits.

PROPOSITION 5. Let X be an element of L(V,U) such that X*X 1is
nilpotent. Let Oy be the G = G(U)X G(V)-orbit of X and t the ab-diagram
of X. Also let

L(V, U) = p(U)
|
p(V)

be the maps introduced in (2.2). Denote by a, (resp. b,) the number of the
rows of T of length ¢ starting with a (resp. b) and put
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4, = Zdaibi .

45 od

Then we have
dim 0, = %(dim 2(0y) + dim o(0y) + nm — 4.) — -Z—(’n +m— o),

where o(z) is the number of the rows of t having odd length, m = dimU
and n =dimV.

The proof of this proposition is given in (3.3).

(3.2) Normality of closures of nilpotent orbits. Let V be a quadratic
space of type ¢ and Dep(V) be a nilpotent element with G(V)-orbit
C, = C.,. In (2.2) we have canonically defined a non-degenerate e-form
(i.e., (u, v) = &(v, u)) on D(V) such that two maps

X .
V:I D(V) (D= IX': the canonical decomposition)

are adjoint (i.e., (X)* = I) and that D|ID(V) = X'IeC,,, where 7’ is the
e-diagram we obtain from 7 by erasing the first column. Repeating this
we get a sequence of quadratic spaces

Vo:=V, Vii=D(V),---, V,i=D¥(V), .-,
VtZ:‘Dt(V)ioy Vt+1::Dt+l(V):0r

of type ¢ and we have D|V,eC, , Cp(V,), where 7' is the e-diagram we
obtain from 7 by erasing the first ¢ columns.
Now we consider the variety

ZCM:= LV, V)XL(V,, V)X «++ X L(V,_,, V)
defined by the following equations;
(%) XXF=XX, X.XFf=X3X; -+, X, X}, =XX,, X,Xr=0.
The group G(V) xG(V,) X -+ xG(V,) acts on M by the action
(9o 91y *++5 9)( Xy Xy« -+, X)) = (9. X190, 9. X077 -+ -5 9. X,957) -

Clearly Z is stable under G(V,))XG(V)x -+ xG(V,). Asin [KP3, 5.2], we
have the following:

REMARK 8. (i) For any (X, X,, -+, X,) € Z, we have
*X, € C'me asq.

(ii) Put X;:=D|V, 2V, ,»V,e(V,, V). Then(X;, X;, -+, Xp)€
Z.
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(iii) By (i) we can define a map ¢: Z—C,, by ¢(X,, - -+, X,) = X*X,.
The map ¢ is clearly G(V,)-equivariant and hence ¢(Z)>C,,.

Let

L(Viy, V) —— p(V)2C.,
/|
p(V,_)DC, i1t
be the map introduced in (2.2) and put
N, yi-1:= w7C. )

Then o(N,,) =C,, by Lemma 8 We see that Z is the iterated fibre
product as in Figure 4:

z . > e =3 e e e e . S . Ns,,]t—l—>(7;,,]t =0

! ! ! A \ {

. — . > e > e e e s e — Nm]t—z—)cs_”t—l
! !

. - > Cpt—2

. - . - - >

) { !

. — Ne,,)x - C, 72

{ !

N.,,—>C..pt

4

Cep

FI1GURE 4

Note that G(V;) x G(V,_)-orbits in {Xe L(V,_, V,); X*X is nilpotent} are
classified by the ab-diagrams z such that n,(z) = dim V, and #n,(z) =dim V,_,
as in (3.1). Hence for such an ab-diagram z, we denote by O, the cor-
responding orbit. We also denote by n(z) (resp. p(z)) the Young diagram
we obtain from 7 by erasing b’s (resp. a’s). Then we have 7(0,) = C, .,
and 0(0,) = C.,. as in [KP3, 6.4]. Consider the finite set 4 of strings
A= (T, Ty ***, T, Of ab-diagrams 7, corresponding to a nonempty orbit
0., cL(V,_, V,) satisfying the following:

(@) =n(z) = p(ziy) (.e., n(0;) = p(0.,,,)
fori=1, ---, t.

(b) z(z,) =0 (i.e., (0, = 0).
Let x=(zy, *+*,7)€4 and put o, =n(z;) = p(tyy) =1,--, %), 0 =0,=
o(z,) and ¢, = xn(z;). Then we have C,, cC, ;= Cpy, as in [KP3, 8.1].
Put
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Zl = {()(11 tt Xt)eZ; Xieor,;} = Zn(o‘rlx M Xort) .
Then we can see that Z, is the iterated fibre product as in Figure 5,
where N, := (Tiqy * %) To)s

noZy > Zyy—> - - v =23 30, —C.o, =0
U ! l
O _)Ott 1_)Ceo'1
U ! !
s —> ¢ e e e —_ Cs 0t—o
U !
U !
i Ofg - Cs,02
RN
Orl - Cc,ol
!
Cs,ao
FIGURE 5
Since the maps
‘ O‘z‘i - CE,O‘
!
C‘»"i—l

are smooth, all the maps and the varieties in this diagram are smooth.
If ¢ = —1, then G(V,) is isomorphic to Sp(m;, C) (m, = dim V,/2) and hence
Z, is irreducible. Now Z is a disjoint union

Z= UZX.

ied

As in [KP8, 8.1], the dimension of Z, is given as follows by Proposition 5.

PROPOSITION 6. For any : = (7, 3+, 7)) € 4, we have

dlm Zx = 'l dlm Cs a + g {‘l—nznzﬂ - i(ni + nz+1)} - ida + —6‘0(7\') ’
2 ! i=0 (2 4J 2 4

where

4; = Et] 4., on) = i o(z,) and m,=dimV,.
i=1 i=1

PROPOSITION 7. Let ¢ be an e-diagram such that C,,cC, = C., (i.e.,
6 <) and ¢: Z— Cp, the map in Remark 8. Then

(i) dim¢™X(C,,) = (1/2)dim C,, + = {A/2)nm, — (6/4)(; + 1)} +
max{(e/4)o(\) — (1/2) 45\ = (T3, * -, T) € 4, p(z;) = o}

(i) If e = —1, we have
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codim(Z, $7(C..) Z 3eodim(C, C.)

ProoF. Since ¢7*(C,,) is the union of Z; for » = (¢, -+, 7,) € 4 with
o(z,) = o, (i) follows from Proposition 6.

(i) Let 7; be the ab-diagram of X; = D|V,_ e L(V,_,,V,) and \ =
(ty *++, 1) €A. For any n = (¢, +++, 7)) € A with p(zr,) = g, we have

dim Z — dim Z, = %(dim C., —dimC,,) — —;—(Al- —4)+ _‘11.(0@) )

by Proposition 6. Since X;: V,_, — V, is surjective, each row of z; starts
with b (cf. [KP1, Remark 2]). Thus we have a, = 0 and hence 4;,. = 0.

Now we claim that o(\) = o(\"). Since po(z;) = '™, n(z) = 7* and 7*
is the e-diagram we obtain from 7' by erasing the first column, in each
row of 7; the number of the a’s is one fewer than the number of b’s.
Therefore, the length of each row of z; is odd and hence we have
o(ty) = |97 — | 9| = my(z;) — m,(z:) where || is the size of the Young
diagram 7’. Let A; (resp. B;) be the number of the a’s (resp. b’s) in the
j-th row of z,. Then

o(z) = {ji Bi— A;#0} = 53| By— 4] 2 |5 (B~ 4] = mu(e) = ma(z)) = 0(z)

and hence o(\) = o(\).

Thus dim Z,. — dim Z, = (1/2)codim(C,, C.,) and hence Z,. has the
maximal dimension among all Z;, with x € 4. Since Z = U,.,Z, is a finite
union, we have dim Z,- = dim Z. Then (ii) easily follows from this. q.e.d.

PROPOSITION 8. Suppose that ¢ = —1. Then:

(i) The scheme Z defined by the equations (x) is irreducible, reduced
(hence Z is a variety) anql_ a comPlete intersection in M.

(ii) The map ¢: Z — C, is the quotient map under G(V) X« X G(V,).

ProOF. Consider the map
t t
M= 11;11 L(V,_, V) _’il;[l‘p(vz) =:N

defined by {(X,, - -+, X,) := (X, X} — X} X, X, X} — X*X,, ---, X,X}). Then
Z, as a scheme, is the scheme-theoretic fibre {7'(0). As in [KP8, 5.5], ¢
is smooth in M':= {(X,, ---, X,); all X, are surjective} = [[i-, L'(V,_;, Vo).
In particular Z is smooth in Z’':= ZNM’'. Since X; = D|V,_,e L(V,_, V)
is surjective, (X;, ---, X;) is contained in Z’' and hence Z’ # @. Thus
codim(M, Z') = dim N. By the property of the ab-diagram z; of X; stated
in the proof of Proposition 7, \' = (z;, -+, 7;) is the only element of 4
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such that o(z;) = . Since
dim Z, — dim Z, = _;.codim(é,,, C..)

for » = (7, *++, 7.) €4 with ¢ = p(z;), only Z,. has the maximal dimension
among all Z,. Since Z,,cZ’', we have codim(M, Z) = dim N and hence Z
is a complete intersection in M.

Since each Z; (» € 4) is irreducible, the irreducible components of Z
are of the form Z,. But since dim Z, < dim Z = dim M — dim N for ne 4
with A # )\ and since each irreducible component of the fibre {*(0) = Z
must have dimension = dim M — dim N, Z,. is the only irreducible com-

ponent of Z and hence Z is irreducible.
Since Z is irreducible, smooth in Z’ and a complete intersection in

M, Z is reduced.
(ii) is proved by Theorem 3 as in the proof of [KP3, Theorem 5.3 (i)].
q.e.d.

Now we give the main result of this section.

THEOREM 4. Suppose that ¢ = —1. Then the closure C, of the
nilpotent G(V)-orbit Cp, in p(V) is a normal variety.

ProOF. Let S(Z) be the singular locus of Z. Since Z,. is smooth
and Z is a disjoint union

Z = Zp U (09795_1(05,0)) ’

we have
S(Z)c Ugs™(C...) -
o<1

Let o, be an e-diagram such that ¢, <% and dim¢(C,,) is maximal.
Then we have

codim(Z, 8(Z)) = codim(Z, $7(C. ,))) = -;—codim(C‘D, C....)

by Proposition 7 (ii). By Remark 8 (ii) and Table 1 in (2.4), it is easy
to see that codim(C,, C..) = 4. Thus Z is non-sigular in codimension 1
and a complete intersection in M. Hence Z is normal. Since ¢: Z—C,
is a quotient map, C, is also normal. q.e.d.

(3.8) Proof of the dimension formula. We now prove Proposition 5.
We use the notations introduced in (3.1).

Let Xe€g’Ng~’ be a non-zero nilpotent element. Since 4|§°: §° — g’ is
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an involution, (3% g°N@&’) is a symmetric pair. By Kostant and Rallis
[KR, Proposition 4], we can take a normal S-triple (H, X, Y) which con-
tains X as a nilpositive element (i.e., Heg°Ng’, Yed’Ng?. Then § is
decomposed as

d=0438, §:={4eg[H A]=1i4}.
Put

The p is a parabolic subalgebra of § and p = g, @ 1t is a Levi decomposi-
tion. By the representation theory of 3l,, we have the following lemma.

LEMMA 10. (a) #(X):={A4eg;[4, X]=0}cCh

b)Xen,:= P, 8 and ad X:p— &, is surjective.

Since g’ and g are H-stable, H defines the Z-graduations of g’ and g,
both induced by the Z-graduation of §. Hence ' := pNg’ (resp. p:= pNg)
is a parabolic subalgebra of ¢ (resp. g) with a Levi decomposition

Y=g@n, g:=g8Nng, n:=0ng
(resp. p=g,B1n, g:=8Ng, n:=inNg).

LEMMA 11. Let O% (resp. Oy) be the orbit of X under G' (resp. G).
Then we have

(a) dim O% = dim1n’ + dimn;, dim O; = dimn + dim n,.
(b) dimn; = 2dimn,.

PrOOF. (a) Since Heg’°Ng’, we have a direct sum decomposition
P=mnena) @ dnangH G dnang B ®dNgNg™) .
On the other hand, since [X, §’]cg™? [X,a7%cg and #, =[X, p]
(Lemma 10), we have
[Xr ‘p’] = [X’ 5“@9] = ﬁzng_o = n; ’
[X, 9] = [X, PN Nl = ®HNG° NG =1, .
By Lemma 10 (a), we have
3 X)ChNg =9, 3(X):={Adeg[4, X]=0lchng="»p.
Thus
dim Oy = dim[¢, X] = dim ¢’ — dim 3,(X) = dim ¢’ — dim 3,(X)
=dimg — (dim p’ — dimn;) = (dim g’ — dim p’) + dim n;
=dimn’ + dimmn; .
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Similarly we have dim Oy = dim nt + dim n,.
(b) Since JH = HJ and J@°Ng% =3 °Ng? we have
J@°N§’'NG) =3°N3g N8,
for all 1€ Z. In particular,
Jn, = J@ NG N™) =3°NG'NH, .
But since
=@ N§’'NHLGE NG’ N =nd Jn,,

we have dimn, = 2dim n,. g.e.d.

As in (3.1), we identify L(V,U) with g°Nng? via the G(U)xG(V)-
equivariant isomorphism

—B* O
The following lemma easily follows from [KP1, Proposition 5.3] and
Remark 8, (i).

LEMMA 12. Let O% (resp. Oy) be the orbit of

X [ 0 X}e”"n”—"
“l-x* o788

under G = GL(U)XGL(V) (resp. G = GIU)XG(V)) and t be the ab-
diagram of X. Let C,zx (resp. Cix,) be the orbit of n(X) = X*Xegl(U)
(resp. p(X) = XX*egl(V)) under GL(U) (resp. GL(V)). Then we have

(@) dim O% = (1/2)(dim C] 4, + dim C;x,) + mwm — 4., where n = dimV
and m = dim U.

(b) dim C; 5, = 2dim 7(0y), dim C}x, = 2dim p(Oy).

Now we prove Proposition 5.

~ o~ O B
LV, ) =505, Bu—»[ }

PROOF OF PROPOSITION 5. If U=, U, and V = @; V; are the weight
space decompositions of U and V with respect to H (i.e., U, ={ucU;
Hu = iu} and V; = {ve V; Hv = jv}) we find

g = (@ al(Uy) © (EP gi(vy) ,
g = (;Q gi(Uy)) @ 9(U,) (J_ég gl(V;)) D a(V,) (as vector spaces)
as in [KP3, 7.7]. Put d, = dim U, and d, = dim V,. Then we have

2dim g, — dim g} = 2dim g(U,) + 2dimg(V;) — dim gl(U,) — dim gi(V,)
=d(d, — &) + dy(dy — &) —di —d} = —e(ds + db) -
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By Lemma 11, we have
4dim Oy — 2dim Oy = 4dimn — 2dimn’ .
Since g=n@P g, Pn and ¢ =’ P g P n’ as vector spaces, we have
4dim Oy — 2dim O% = 2(dim g — dim g,) — (dim ¢ — dim g;)
=2dimg — dimg + &(d, + d;) .
Since g = g(U) D g(V) and g’ = gl(U) D gl(V),
4dim Oy — 2dim Oy = —em +n —d, — d;) -

Hence we have
dim 0, = %(dim 2(0y) + dim 0(Oy) + mm — 4.) — —z(m Fn—d, —dy)

by using Lemma 12. But then d, + d, = dim U, + dim V, coincides with
the number of the rows of odd length of the Young diagram of

0O X
X =
_x o
and hence d, + d, = o(z). q.e.d.
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