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Introduction. Let έ?(Cd+1) and Exp(Cd+1) be the spaces of entire
functions on Cd+1 and entire functions of exponential type, respectively.
έ?\Cd+1) and Exp'(Cd+1) are the spaces dual to έ?(Cd+1) and Exp(Cd+1),
respectively. For T e Exp'(Cd+1) the Fourier-Borel transformation Pλ is
defined by

PλT(z): = {Tξ, exp(iλf z)> for z e Cd+1 ,

where λeC, λ^O, is a fixed constant (Hashizume, Kowata, Minemura
and Okamoto [2]). Martineau [4] determined the images of Exp'(Cd+1)
and some functional spaces on Cd+1 by the Fourier-Borel transformation Pλ.

Let S = Sd be the unit sphere in Rd+1 and S denote the complex
sphere in Cd+1. We put S(r) = {z e S; L(z) < r} and S[r] = {zeS; L(z) ^ r},
where L(z) is the Lie norm on Cd+1. ^(S), ^(S(r)) and έ?(S[r]) denote
the spaces of holomorphic functions on S, S(r), and S[r], respectively.
Exp(S) denotes the restriction of Exp(Cd+1) to S. Exp'(S), ^'(S),
and <P\S[r\) are the spaces dual to Exp(S), ^(S), <£?(S(r)) and
respectively. Exp'(S) can be regarded as a subspace of Exp'(Cd+1).

Morimoto [7] determined the images of Exp'(S) and έ?'(S) by the
Fourier-Borel transformation Pλ (Theorem 1.2). In this paper we will
determine the images of έ?'(S(r)) and ^'(S[r]) by the Fourier-Borel
transformation Pλ. The images are characterized explicitly in terms of
the dual Lie norm (Theorem 3.1).

Consider a complex cone M = {z e Cd+1; Σ i ί ί z) = 0, z Φ 0}, which can
be identified with the cotangent bundle of S minus its zero section. We
define for / ' e Exp'(S)

<Λ.expte-*)> (zeM).

Ff is the restriction of P_«/' to M. Ii [3] determined the images of
Hntd by F, where Hntd is the space of spherical harmonics of degree n in
dimension d + 1. Moreover if d is even, Ii [3] characterized the image
of L\S) under this mapping F. In this paper we determine the image
of L\S) for odd d (Theorem 2.4). We also determine the images of
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Exp'(S), <?'(§), <S?'(S(r)), ^'(S[r]), <?(§(r)), έ?(S[r]) and
(Theorem 2.1).

To prove our main theorems, we need, among others, Lemmas 1.3
and 1.4. Although Lemma 1.4 was proved in Ii [3], we give here a new
proof to it.

The outline of this paper was announced in [11]. The author would
like to thank Professor M. Morimoto for his helpful suggestions.

1. Preliminaries. Let d be a positive integer and d ^ 2. S = Sd =
{xeRd+1; \\x\\ = 1} denotes the uni t sphere in Rd+1, where \\x\\2 = x\ + x\ +

• + x2d+ί. ds denotes the unique O(d + 1) invariant measure on S with
I Ids = 1, where O(k) is the orthogonal group of degree k. || ||2 is the
JS

ZΛnorm on S. Hnd is the space of spherical harmonics of degree n in
dimension d + 1. For spherical harmonics, see Mϋller [8],

The Lie norm L(z) and the dual Lie norm L*(z) on Cd+1 are defined
as follows:

L(z) = L(x + iy):= [\\xf

L*(z) - L*(x + iy):= sup{|f z\

= ay~2)[\\xψ + II2/II2 + {(||x||2 - II2/H2)2 + 4(as y ) « } T ,

w h e r e z , ξeCi+1, a n d z ξ = z 1 ξ ι + z,ξ2 + + z i + ι ξ t + u x , y e R d + 1 , ( s e e
Druzkowski [1]).

We put

B(r) :={zeCd+1; L(z) < r} for 0 < r ^ 00

and

B[r] :={zeCd+1; L{z) ^ r} for 0 ^ r < 00 .

Let us denote by d?{B(r)) the space of holomorphic functions on B(r).
Then έ?(B(r)) is an FS space. έ?(B(oo)) = έ?(Cd+1) is the space of entire
functions on Cd+1. Let us define

d?(B[r]): = ind lim έ?(B(r')) .
r'>r

Then έ?(B[r]) is a DFS space.
Let N be a norm on Cd+1. For r > 0 we put

Xr>N:={fe^(Cd+ί); sup \f(z)\exv(-rN(z)) < 00} .
zeCd+l

Then Xr>iyr is a Banach space with respect to the norm

11/11,.*= sup \M\ex9(-rN(z)).
d+l
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Define

Exp(Cd+1: (r: N)): = proj lim Xr,tN for 0 ̂  r < oo ,
r'>r

Exp(C*+1: [r: iV]): = ind lim Xr,tN for 0 < r ^ oo .
r'<r

Exp(Cd+1: (r: iV)) is an FS space and Exp(C"*+1: [r: Λ/]) is a DFS space.
Exp(Cd+1) = Exp(Ci+1: [co: JV]) is independent of the choice of the norm
N and is called the space of entire functions of exponential type.

Exp'(Cd+1), ^ '(C d + 1 ), tf'iBir)) and έ?'(B[r]) denote the spaces dual to
ExptC^1), έ?(Cd+1), έ?(β(χj) and έ?(B[r]), respecrively.

S = {ze Cd+1; z\ + z\ + + z2rf+1 = 1} is the complex sphere. For
1 < r 5g oo we put

: - B(r)nS = {z = x + iyeS; \\y\\ < (r -

and for 1 ̂  r < oo

S [ r ] = B[r] f)S = {z = x + iyeS: \\y\\ Sir-

It is clear that S = SfΊiίd+1 = S[l] and S = S(oo).
Let us denote by έ?(S{r)) the space of holomorphic functions on

Six) equipped with the topology of uniform convergence on every compact
subset of Sir). We put

έ?Φ[r\): = ind lim

έ?{jS(r)) is an FS space and έ?(S[r]) is a DFS space. ^(S[l]) is the
space of real analytic functions on S. Exp(S) denotes the restriction to

^ ^'(S(r)), <?'($[r\) and Exp'(S) denote the spaces dual to
έ?iS[r\) and Exp(S), respectively. We have the following

sequence of functional spaces on S (cf. Morimoto [6], [7]):

(1.1)

If / is a function or a functional on S, we denote by fn the w-th
spherical harmonic component of /:

(1.2) fn(s) = N ( n , d ) ( f , P U s)> f o r seS,

where

(1.3) N(n, d) = dim Hn,d = (2n + d-IXn+ d - 2)1
n\{d — 1)!

and Pntd is the Legendre polynomial of degree n and of dimension d + 1.

We put LM = |M|n P»id(α */IWI) for fixed aeS. Then LΛ is the
unique homogeneous harmonic polynomial of degree n with the following
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properties:

(1.4) Ln(Ax) = Ln{%) for all AeO(d + 1) such that Aa = a .

(1.5) Ln(a) = 1 .

We see that/ n belongs to Hntd for n = 0, 1, . We can characterize
the functional spaces in (1.1) by the behavior of the spherical harmonic
development as follows.

LEMMA 1.1 (Morimoto [7, Theorems 5.1 and 6.1]). // fn is the n-th
spherical harmonic component of f, then

(1.6) fe Exp'(S) ~ lim suv(\\fn\\2/n\)1/n = 0 ,
n—K5o

(1.7) fe &>'(§)«limsupllΛHί/" < «> ,

(1.8) fe έ?'(S[r]) - lim sup||/J|i'" ^ r (1 ^ r < » ) ,
71-+OO

(1.9) /6 <^'(S(r)) — lim sup||/J||/M < r (1< r ^ ») ,
n-»oo

(1.10) /eL2(S)~{||/J|2}B=0,1)2>...6Z2,

(1.11) / € έ?(S(r)) « l i m sup||/J2

/n ^ 1/r (1< r ^ ») ,
71—>0O

(1.12) fe <?(S[r]) ~ lim sup||/n | |^ < 1/r (1 ^ r < «>) ,
n—»oo

(1.13) / e <?(§)«lim Bup||/m||i'" = 0 .
71—»OO

The Fourier-Borel transformation Pλ for a functional TreExp'(Cd+1) is
defined by

PaΓ(«) :=(Tξ, exp(iλ{ »)> for z eCd+1 ,

where λeC, λ =£ 0, is a fixed constant. We define the transformation
Pλ for a functional / ' e Exp'(S) by

The following is known:

THEOREM 1.2 (Morimoto [7, Theorem 7.1]). The transformation Pλ

establishes the linear topological isomorphisms

(1.14) P

(1.15) Px: <?'(§) Z. Exp!(C4+1) ,

where we put
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d+1) :={Fe έ?(Cd+1); ( A . + X2)F(z) = 0} ,

and Az = (d/dz,)2 + (d/dz2)
2 + + (d/dzd+1)

2.

We define a complex cone M by

M={zeCd+1;zl + z\ + ••• + s$+1 = 0, 2 Φ 0} .

Λf is identified with the cotangent bundle of S minus its zero section
(cf. Ii [3], Rawnsley [9], [10]). Pn(Cd+1) denotes the space of homogene-
ous polynomials of degree n on Cd+1. Holo(M) and Pn(M) denote the
restriction to M of έ?(Cd+ι) and Pn(Cd+1), respectively. We define the
subset JV of M by

N={z = x + iyeM;\\x\\ = \\y\\ = 1},

where x, y e Ri+1. The unit cotangent bundle to S is identified with the

subset N and we have N — O(d + 1)/O(d — 1). dN denotes the unique

0{d + 1) invariant measure on N with I ldN = 1. We define the inner

product

<<Pf Ψ)N : = \ φ(z)ψ(z)dN

and the norm

Ib lU = <<P, 9>Ψ

LEMMA 1.3. If a and β belong to S, the following formula is valid.

(1.16) ί ( g. aTiΓWdN = »' Π(f + W gn m P^ ( α . ̂  ,
Jiv Γ(w + (cί + l)/2)

P R O O F . Denote by F ( α , /3) the left hand side of (1.16). Then for
any orthogonal m a t r i x A

F(Aa, Aβ) = \ (z - Aa)n(z Aβ)mdN

ι(α? Aα + ii/ Aα)n(# - Aβ + iy - Aβ)mdN
z=x+ΐyeN

Since diV is O(d + l)-invariant we get

(1.17) F(Aa, Aβ) = F{a, β)

for any A e O(d + 1). As a function of α, F(α, β) belongs to Hntd, since
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(z ά)n e Hn d if ze M. Similarly, as a function of β, F(a, β) belongs to

Hm,d.

Suppose n Φ m. There exists an A e 0(d + 1) such that Act = β and
Aβ = a. Then (1.17) gives

(1.18) F(a, β) = F(β, a) .

If we fix a, (1.18) implies that F(a, β)eHntdΓιHm>d. Since HntdΓ\
Hm>d = {0}, we have

(1.19) F(a, β) = 0 if nΦm .

Next we assume n = m. For all A e O(d + 1) such that Aα = a we
have from (1.17) F(α, A/3) = F(Aα, Aβ) = F(α, /9). Therefore F(α, /3), as
a function of β, is a homogeneous harmonic polynomial of degree n and
satisfies (1.4). So we obtain

(1.20) F(a,β)

where

C=\ \z.a\»dN= V
)N Γ(n (d

(c.f. Rawnsley [10, Appendix]). (1.16) follows from (1.19) and (1.20).

q.e.d.

We put for / ' e Exp'(S) and z e M.

Ff(z): = <Λ', *-> .
Ff is the restriction of P_J' to M.

Then we have:

LEMMA 1.4 (cf. Ii [3]). The transformation F: f -> Ff is a one-to-
one linear mapping of Hnd onto Pn(M) and we have

(1.21) <f,9>s = Cn(Ff,Fg}N for f,geHn,d,

where

</, g>8 =

and

(Λ 99\ r - nl Γ(n+ (d + ΐ)/2)N(n, d)

PROOF. It is known that there exists a system of N(n, d) points
α2, , <*κintd) 6 S such that Pn,d(αfc ), fc = 1, 2, , ΛΓ(n, d), is a basis
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of Hntd. Therefore for every feHntd, there exist alf α2, , aN{ntd) eC
such that

N(n,d)

(1.23) f(s) = Σ akPnΛ<Xk s) « e S
fc=l

(see, for example, Mϋller [8, Theorem 3]). If z belongs to M, then

Ff{z) = " I f ak \ Pn>d(<*
fc=l JS

N(n,d) oo

k=i m=0

since (s 2:)m 6 Hmtd and Hn}d±Hm>d Ίί m Φ n. This shows that

(1.24) F/(2!) = Σ , " Λah • zT .
*=i n\ N(n, d)

Thus Ff belongs to P.(Λf). For /(s) = Σίiΐ>d) α*Pn,i(«* «) and g(s) =
Σ 2 V 1 6»P.,i(α* s) 6 fl.fί we have

(1.25) </,ff>s= Σ akbλ Pn,i(ak s)PU«ι s)ds

i<zk,it*N(n,d) N(n, a)

On the other hand we have from (1.24) and (1.16)

— 2 - ——r^—T^TΓ — —

w! iV(̂ , d)Γ(n + (d + l)/2) fctWi iV(n, d) n'd

(1.25) and (1.26) give (1.21) and (1.22). (1.21) shows that F is injective.
Since dim Pn(M) = N(n, d), we can prove the surjectivity of F. q.e.d.

2. Integral transformation F. Now we define the following sub-
spaces of Holo(ikΓ):

(2.1) Exp(ikf, r) := Π {f eHolo(M); sup|^) |exp(-r ' | |^ | | ) < ^} ,
r'>r zeM

(2.2) Exp[ikf, r] := U {f eHolo(M); sup|ψ(s)|exp(-r'||z||) < ^} ,
r'<r zeif

(2.3) Exp(M) = Expfilί, oo] ,

where ||z|| = ||a; + iy\\ = (\\xψ + ||y||2)1/2 for x,yeRd+1.
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Our first main theorem in this paper is the following:

THEOREM 2.1.

(2.4) F is a one-to-one linear mapping of Exp'(S) onto Holo(M) .

(2.5) F is a one-to-one linear mapping of έ?\S) onto Exp(ikf) .

(2.6) F is a one-to-one linear mapping of έ?f(S[r\) onto

E x p ( M , r / i / T ) for l ^ r < oo .

( 2 . 7 ) F is a one-to-one linear mapping of έ?'{S{r)) onto

Exp[ikf, r/VΎ] for 1 <r ^ oo .

(2.8) F is a one-to-one linear mapping of έ?(S(r)) onto

E x p ( M , l / ( i / ϊ r ) ) for l ^ r < oo .

(2.9) F is a one-to-one linear mapping of έ?(S[r]) onto

Exp[M, l/(i/ϊr)] for K r ^ oo .

(2.10) F is a one-to-one linear mapping of #(§) onto Exp(M, 0) .

PROOF. By (1.14) F is a linear mapping of Exp'(S) into Holo(ikf).
Conversely, if ψ belongs to Holo(M) there exist ψ e έ?(Cd+1) and ψn e
Pn(Cd+1) (n = 0, 1, , ) such that

ψ\M = ψ and φ(z) = Σ Ϋ («)

for any zeCd+1. It is known that

for any p > 0. We put \\ψ||oo/2> = sup,UN=v2> IfOOl and ψn = ψn\M. If z
belongs to N then \\z\\ = l/ΊΓ. Hence we get from (2.11)

(2.12) sup \ψn(z)\ = sup

Put ί Γ n : = supze^|fn(2;)|. (2.12) implies that lim supn_oo KHn ̂  1/p for any
p > 0. Hence we see

(2.13) lim sup iq / w = 0 .
71—>0O

From Lemma 1.4 there exist fn e Hn>d (n = 0, 1, •) such that

(2.14) Ffn = ψn

and
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(2.15) II/JI, = i/C. H .̂IU .
Since VTΪ% = {(»! Γ(w + (d + l)/2)N(n, d))/Γ((d +1)/2)}1/2 < αΓ(n + d), where
a is a constant independent of n, (2.13) and (2.15) give

(2.16) | |/. | | t ^ oΓ(n + d)ΛΓB

and

(2.17) liinsup (Jj-H/JI,)17* = 0 .

/ ' : = Σ " = o Λ belongs to Exp'(S) by (1.6) and (2.17). Moreover, (2.14)
implies that

Ff\z) = <//, e»-> = Σ t fn(s)e'-'ds = ±Ffn{z) = ψ(z) .

Therefore, we get F(Exp'(S)) = Holo(M).
Let / ' = Σn=o/ή 6 Exp'(S) and Ff = 0. From the proof of Lemma 1.4,

{(z a)n; aeS} spans Pn{M). From this fact and (1.16) we see that Pn(M) _L
Pm(M) with respect to < , >^ if m Φ n. Hence Ff'n = 0 on N, because
Ffή is in Pn(M). Thus Ff'n — 0 on M, since Ffή is a homogeneous poly-
nomial. Therefore, we obtain f'n = 0 and / ' = 0 by Lemma 1.4. Hence
we have (2.4).

F is a one-to-one linear mapping of <?\§) into Exp(Λf) from (1.15)
and (2.4). Conversely, if ψ belongs to Exp(Λf), there exists ψ e έ?(Cd+1)
such that ψ\M = ψ and that for some positive constants C and A

(2.18) \f(z)\ ^ CeAUzU for any ε e M.

We put ψ = Σn=o 'fn

 a n ( i ^nlir = n̂> where ψn is given by (2.11). (2.11)
and (2.18) imply

Kn = sup \fn(z)\ ^ sup p~n \ψ(tz)\
zeN zeN,\t\=p

^ sup p~nCeAUtzU ^ sup _ | θ ~ n C e ^ l u " ,
xeN,\t\=p 11*11=^2

since tNcM for any ίeC\{0}. Hence we have

(2.19) Kn ^ p-nCe^Ap for any p > 0 .

Since infί/ίrV^; ^ > 0} = (VTAe/n)11 we get

(2.20) Kn <, C(\/ΎAe/n)n .

There exist fneHn>d (n = 0,1, 2, •) which satisfy (2.14) and (2.15). By
(2.16) and (2.20) we have

fu\\t ^ aCΓ(n -

Since limsup^oo {nne~nv/2πnjn\)1/n = 1 by Stirling's formula, we have
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(2.21) lim sup \\fn\\\/n ^ lim sup {aCΓ(n + dXι/ΎAeln)nnne~n\/2πΰln\γ/n

n-*<χ> n—*oo

= V~2A < ~> .

(2.21) and (1.7) show that / ' = Σ"=o/»e^'(S) and we have (2.5).
Let / ' = Σ"=o/ή be in <?'(S[r\) (1 ^ r < °°) and put f = Σ»=o<<K =

Ff. Then we have for zeM

(2.22) ψ(z) = </;, exp(ί z)> = Σ ί
n=0 JS

= Σ Σ - M f:(.s)(S'Z)mds

n=0 m=0 <ftl\ JS

= Σ -V
since (s z)m e Hnyd and Hmtd J_ i?W)d \ί n Φ m. (2.22) implies that
(2.23) t n ( z ) = _

For 2; = x + iy e M we get

(2.24) sup |s s|2 - sup |M|2 |β (x/\\x\\) + is (y/\\v\\)\2 ^ \\x\\2 ^ 11̂ 1172 .
seS aeS

From (2.23) and (2.24) we see that

(2.25) \ψM\ ^^ll/ iUIMIΛ/n*.

If we put p := limsupn_oo ll/ήll̂ 71, then p ^ r by (1.8) and for any e > 0
there exists kε > 0 such that

(2.26) sup H/ ilϊ'* < p + ε ^ r + e .

By (2.25) and (2.26) we have

(2.27) \ir(z)\ ^ Σ \ψSz)\ ̂  Σ'd/ΛDII/.IIUIIίll/v^)-
n=0 τι=0

+ Σ (l/w!)(r + β)M|«||/τ/2")- ̂  Ceexp((r

for all zeM, where Cε is a constant. From (2.27) we see that ψe
Exp(M, r/i/T). _Therefore, ί7 is a one-to-one linear mapping of έ?\S[r])
into Exp(M, r/i/Y). Conversely, if ψ = Σ~=o α̂ n belongs to Exp(Af, r/i/Y),
then there exists φ = Σn=0 ψn e ^(Cd + 1) such that #1* = ψ , ^ 1 ^ = ψn and
that

(2.28) sup |^2θexp(-rΊ|z||/i/~2~)| < °° for any r' > r .
zeN
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(2.18), (2.20) and (2.28) imply

(2.29) Kn £ CΛr'elnT

for any r'>r and a constant Cr . If Ffn = ψn for /„ 6 HnΛ (n = 0,1, 2, •),
from (2.16) and (2.29) we have

lira sup | |Λir ^ r'
n-»oo

for any r' > r. Hence we get

(2.30) limsupll/J^^r
n-*oo

and (1.8) and (2.30) imply / ' = Σ»=o/»e 0"(S[r\). Thus we have (2.6).
Similarly, we get from (1.9)

F(έ?'(S(r)))c:Exv[M, r/i/T] .

On the other hand, if ψ = Σ"=o ψn belongs to Exp[ϋί, r/]/~2], there exists

ψ = Σ»=o Ψn 6 ^(C i + 1 ) such that φ\M = f, ψn\M = ψ n and that

(2.31) supHKz)exp(-r'||z||/i/2~)| < °°
»eJf

for some r' < r. (2.31) implies

(2.32) Kn ̂  C(r'ejnr ,

where C is a constant. For /„ e Hnιd (n = 0,l, •) such that if/n = -fn,
(2.16) and (2.32) give

(2.33) limsup||/J|Γ^r'<r.
n-+oo

(1.9) and (2.33) show / ' = Σ?=o/« 6 ^'(S(r)) and we obtain (2.7).
Using (1.11), (1.12) and (1.13) we can prove (2.8)-(2.10) similarly.

q.e.d.

Next we consider the image of L2(S) by F.

LEMMA 2.2 (c.f. Ii [3, Lemma 2.1]). We denote the modified Bessel
function Kv by

S oo

exp(-r cosh t)coshvtdt (Rev > -(1/2), 0 < r < <*>) ,
0

K_£r) = KXr)

and define the function pd(r) as follows:

(2.34) pd(r): =
Σ αίr

ί+1ίΓί(2r) (if d is odd)
1=0

Σ αίr
ί+(1/2)ίΓί_(1/2)(2r) (if d is even) .

1=0
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Then we can uniquely determine k and at (I = 0, 1, •••,&) which satisfy

(2.35) Γ rM-ιpd(r)dr = Cn for all n = 0,1, 2, .
Jo

PROOF. It is known that

(2.36)

where a > 0 and Re μ > |Re v\.
First we assume that d is odd. From (2.34) and (2.36) we get

(2.37) j " r^-^CrJdr = (1/4) g <g ^
If (2.35) is valid, from (1.3), (1.22) and (2.37) we have

(2.38) § \aιΓ(n + ±±±)r(n + I + ^ ± 1 )

= Cr(n + d + 1 )r(n + d - 1)(2Λ + d - 1)

for any w = 0, 1, 2, , where C is a positive constant. Thus we have

(2.39) g aιr(n + I + ±±±-)/r(n + ^ ± 1 )

= AC(2n + d- l)Γ(n + d- ΐ)/r(n + d + 1\ .

Since d ^ 3, we have d — 1 ^ (d + l)/2. Hence the right hand side of
(2.39) is a polynomial of n of degree (d — l)/2. Thus we obtain

(2.40) k = (d- l)/2 ,

and

(2.41) αfc = 8 C > 0 ,

and we can determine α0, alf , α^.! uniquely.
Next we assume that d is even. (2.34) and (2.36) imply

(2.42) Γ r^-'plrW = i- Σ α,r(n + A±!)r( Λ + i + A)
Jo 4 i=o \ 2 / \ 2 /

and we get similarly

(2.43) g αΣr(^ + I + γ)/r(Λ + A)

d - l)Γ(n + d l)/r(n +
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for n = 0, 1, 2, . Therefore we get

(2.44) k = d/2

and

(2.45) ak = 8C > 0 ,

and α0, alt •••, αΛ_! are determined uniquely. q.e.d.

REMARK 2.3. ( 1 ) Since it is known that

for w = 0, 1, 2, , there exists a polynomial Pd/2(r) of degree d/2 such
that pd(r) = e~2rPd/2(r), if d is even. This fact coincides with a result of
Ii ([3, Lemma 2.1]). Though Kv(r) is not defined at r = 0, pd(0) is well
defined for even d by this fact.

( 2 ) If d is odd, we have for r > 0

(2.46) \pd(r)\ ^

(d-l)/2

= e- 2V / 2P ( d_ 1 ) / 2(r) ,Σ |,|
1=0

where P(d_i,/2 is a polynomial of degree (d — l)/2, since 0 ^ ίΓz(r) ^ ϋΓz+1/2(r).
Hence /Od(r) is well defined at r = 0.

( 3 ) If cZ is odd, by (2.41) α(d_1)/2 > 0. Hence we have for r > 0

pΛ(r) ^ akr
k+1Kk(2r) - | I +

where we put k : = (d — l)/2. Therefore |θd(r) > 0 for r sufficiently large.
For even d it is trivial by (1) that pd(r) > 0 for r sufficiently large.
Now we define a measure μd on M by

(2.47) \j{z)dμd{z) = jo°° rd-^Nf{rz')dN{z'))

We define a subspace P(Af) of Holo(M) by

(2.48) P{M) :={ψeHolo(M); (ψ, f>Jf <

where

(2.49) (ψ, y ) ^ = ( f{z)φiz)dμd{z) .

By Remark 2.3, (3) we can prove the following in the same way as
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in the proof of Ii [3, Theorem 2.5].

THEOREM 2.4 (cf. Ii [3, Theorem 2.5]). F is a unitary isomorphism
of L2(S) onto P(M) with respect to < , ) s and < , ) J f .

REMARK 2.5. Similarly, we can prove for odd d the results in Ii [3,
Corollary 2.6-Theorem 2.11] given for even d.

3. The Fourier-Borel transformations of ^'(S(r)) and £?\S[r]).
In this section we consider the images of έ?\S(r)) and έ?\S[r]) by the
Fourier-Borel transformation Px. Our second main theorem in this paper
is the following:

THEOREM 3.1. The transformation Pλ establishes linear topological
isomorphisms

(3.1) Pλ: έ?'(S(r)) Z Exp,(Cd+1: [|λ| r: L*]) (1< r ^ ~) ,

(3.2) Pλ: έ?'(S[r]) Z Exp,(Cd+1: (|λ|r: L*)) (1 ^ r < oo) ,

where

Exp;(Cd+1: [|λ|r: L*]) : = ^,(Cd + 1)nExp(Cd + 1: [|λ|r: L*])

and

Exp,(Cd+1: (|λ|r: L*)) : = ^(C d + 1)nExp(C d + 1 : (|λ|r: L*)) .

We need the following theorem in order to prove the theorem.

THEOREM 3.2 (Martineau [4]). Suppose λeC, λ Φ 0. T%e Fourier-
Borel transformation Pλ establishes the linear topological isomorphisms

(3.3) Pλ: <?'(B[r]) Z Exp(Cd+1: (|λ| r: L*)) ,

(3.4) P,: £?'{B{χ)) Z Exp(Cd+1: [|λ| r: L*]) .

PROOF OF THEOREM 3.1. Since ^'(S(r))cExp'(S)n^'(5(r)) we have

^(^'(S(r)))cExp,(Cd + 1: [|λ|r: L*])

by (1.14) and (3.4). Hence Px is a one-to-one linear mapping of έ?'(S(r))
into Exp,(Cd+1: [|λ| r:L*]).

Conversely, let ψ be in Expλ(Cd+1: [|λ|r: L*]). If we put ψ\M = ψ,
there exist r' < r and C > 0 such that

\ψ(z)\ ̂  Cexp(|λ|r'L*(^)) = Cexp(|λ|r'|

for any zeM. So we get

(3.5) \Ψ(-iz/\)\ ^ Cexp(r' \\z\\/vΎ) for v̂  e
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Now we put ψ_i/λ(z): = f(—ίz/x). Then ψ_i/λ belongs to Exp[Λf, r/ι/2~] from
(3.5). By (2.7) there exists / ' e <?'(β{r)) such that

(3.6) Ff = f_i/λ .

Since ψeέ?λ(Cd+1), we can find Λ'eExp'(S) such that ψ = Pλh
f by (1.14).

Since ψ(-izlx) = Pλh'(-iz/x) = Fh\z) for all zeM, we have from (3.6)

(3.7) FK = Ff .

By Theorem 2.1 and (3.7) we get hf = / ' and φ e Pλ(έ?\§(r))). Pλ and P,"1

are continuous by (3.4) and the closed graph theorem. Therefore, we
obtain (3.1). Using (3.3) and (2.6), we can prove (3.2) similarly, q.e.d.

Now we define the topology of Holo(ikf) to be the quotient topology
0>(Cd+1)lJ?{M) since Holo(M) = έ?(Cd+1)\M, where we put ^{M)\ —
{/ e έ?(Cd+1)ιJ = 0 on M). We also define^ the topologies of Exp(M),
Exp(M, r/i/"2~) (1 ^ r < oo) and Exp[M, r\V 2 ] (1 < r ^ oo) similarly since
we have Exp(M) = Exp(Cd+1)U, Exp(M, r/i/Y) = Exp(Cd+1: (r: L*))\M (1 ^
r < oo) and Exp[M, r/i/"2~] = Exp(Cd+1: [r: L*])L ( 1 < r ^ oo) by Theorem
2.1.

Then by Theorems 1.2, 2.1 and 3.1 and the closed graph theorem,
we have:

COROLLARY 3.3. The transformation F establishes the following
linear topological isomorphisms

(3.8) F: Exp'(S) Z Holo(M) .

(3.9) F: <?'(§) Z Exp(M) .

(3.10) F: έ?\S[r]) Z Exp(M, rjVΎ) for 1 ^ r < oo .

(3.11) F: έ?\S(r)) Z Exp[Λf, r/VΎ] for 1 < r ^ oo .

COROLLARY 3.4. (i) For any fe έ?(Cd+1) there exists a unique g e
έ?λ(Cd+1) such that f = g on M.

(ii) For any feέ?(Cd+1) such that sup# β J f |/(s) |exp(-A| |z | |) < oo for
an A > 0, there exists a unique g e Exp;(Cd+1) such that f = g on M.

(iii) Assume that l ^ r < o o . For any feέ?(Cd+1) such that
suPs6Jf|/(2)|exp( — |λ | r ' | | z | | / i/2) < °° for ^rf > r, there exists a unique
g 6 Exp ;(Cd+1: (|λ|r: L*)) such that f = g on M.

(iv) Assume that l < r ^ o o . For any feέ?(Cd+1) such that

sup f β J f |/(2)| exp( — |λ|r f | |ί8;||/i/2) < oo for some r' < r, there exists a unique
geΈxpλ(Cd+1: [\x\r: L*]) such that f=gonM.
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PROOF, (i) If / belongs to έ?(Cd+i) f_m also belongs to έ?(Cd+1).
Then by Corollary 3.3 there exists / ' e Exp'(S) such that Ff = f_i/λ on
M. If we put g = Pλf, g belongs to έ?λ(Cd+1) and / = g on M by (1.14).
The uniqueness follows from the injectivity of F.

By Theorem 1.2, Theorem 3.1 and Corollary 3.3 we can prove (ii),
(iii), (iv) similarly. q.e.d.

REMARK. When d = 1 (the case of the unit circle), Corollary 3.4 is
known (see Morimoto [5]).
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