# ON THE FOURIER-BOREL TRANSFORMATIONS OF ANALYTIC FUNCTIONALS ON THE COMPLEX SPHERE 

Ryoko Wada

(Received October 23, 1985)

Introduction. Let $\mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$ and $\operatorname{Exp}\left(\boldsymbol{C}^{d+1}\right)$ be the spaces of entire functions on $\boldsymbol{C}^{d+1}$ and entire functions of exponential type, respectively. $\mathcal{O}^{\prime}\left(\boldsymbol{C}^{d+1}\right)$ and $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{d+1}\right)$ are the spaces dual to $\mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$ and $\operatorname{Exp}\left(\boldsymbol{C}^{d+1}\right)$, respectively. For $T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{d+1}\right)$ the Fourier-Borel transformation $P_{\lambda}$ is defined by

$$
P_{\lambda} T(z):=\left\langle T_{\xi}, \exp (i \lambda \xi \cdot z)\right\rangle \quad \text { for } \quad z \in C^{d+1},
$$

where $\lambda \in \boldsymbol{C}, \lambda \neq 0$, is a fixed constant (Hashizume, Kowata, Minemura and Okamoto [2]). Martineau [4] determined the images of $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{d+1}\right)$ and some functional spaces on $\boldsymbol{C}^{d+1}$ by the Fourier-Borel transformation $P_{\lambda}$.

Let $S=S^{d}$ be the unit sphere in $R^{d+1}$ and $\widetilde{S}$ denote the complex sphere in $C^{d+1}$. We put $\widetilde{S}(r)=\{z \in \widetilde{S} ; L(z)<r\}$ and $\widetilde{S}[r]=\{z \in \widetilde{S} ; L(z) \leqq r\}$, where $L(z)$ is the Lie norm on $C^{d+1}$. $\mathcal{O}(\widetilde{S}), \mathcal{O}(\widetilde{S}(r))$ and $\mathcal{O}(\widetilde{S}[r])$ denote the spaces of holomorphic functions on $\widetilde{S}, \widetilde{S}(r)$, and $\widetilde{S}[r]$, respectively. $\operatorname{Exp}(\widetilde{S})$ denotes the restriction of $\operatorname{Exp}\left(C^{d+1}\right)$ to $\widetilde{S} . \quad \operatorname{Exp}^{\prime}(\widetilde{S}), \mathcal{O}^{\prime}(\widetilde{S}), \sigma^{\prime}(\widetilde{S}(r))$ and $\mathcal{O}^{\prime}(\widetilde{S}[r])$ are the spaces dual to $\operatorname{Exp}(\widetilde{S}), \mathcal{O}(\widetilde{S}), \mathcal{O}(\widetilde{S}(r))$ and $\mathcal{O}(\widetilde{S}[r])$, respectively. $\operatorname{Exp}^{\prime}(\widetilde{S})$ can be regarded as a subspace of $\operatorname{Exp}^{\prime}\left(C^{d+1}\right)$.

Morimoto [7] determined the images of $\operatorname{Exp}^{\prime}(\widetilde{S})$ and $\mathcal{O}^{\prime}(\widetilde{S})$ by the Fourier-Borel transformation $P_{\lambda}$ (Theorem 1.2). In this paper we will determine the images of $\mathcal{O}^{\prime}(\tilde{S}(r))$ and $\mathcal{O}^{\prime}(\tilde{S}[r])$ by the Fourier-Borel transformation $P_{\lambda}$. The images are characterized explicitly in terms of the dual Lie norm (Theorem 3.1).

Consider a complex cone $M=\left\{z \in C^{d+1} ; \sum_{j=1}^{d+1} z_{j}^{2}=0, z \neq 0\right\}$, which can be identified with the cotangent bundle of $S$ minus its zero section. We define for $f^{\prime} \in \operatorname{Exp}^{\prime}(\widetilde{\mathbb{S}})$

$$
F f^{\prime}(z)=\left\langle f_{\xi}^{\prime}, \exp (\xi \cdot z)\right\rangle \quad(z \in M)
$$

$F f^{\prime}$ is the restriction of $P_{-i} f^{\prime}$ to $M$. Ii [3] determined the images of $H_{n, d}$ by $F$, where $H_{n, d}$ is the space of spherical harmonics of degree $n$ in dimension $d+1$. Moreover if $d$ is even, Ii [3] characterized the image of $L^{2}(S)$ under this mapping $F$. In this paper we determine the image of $L^{2}(S)$ for odd $d$ (Theorem 2.4). We also determine the images of
$\operatorname{Exp}^{\prime}(\widetilde{S}), \quad \mathscr{O}^{\prime}(\widetilde{S}), \quad \mathscr{O}^{\prime}(\widetilde{S}(r)), \quad \mathscr{O}^{\prime}(\widetilde{S}[r]), \quad \mathscr{O}(\widetilde{S}(r)), \quad \mathscr{O}(\widetilde{S}[r]) \quad$ and $\quad \mathcal{O}(\widetilde{S})$ (Theorem 2.1).

To prove our main theorems, we need, among others, Lemmas 1.3 and 1.4. Although Lemma 1.4 was proved in Ii [3], we give here a new proof to it.

The outline of this paper was announced in [11]. The author would like to thank Professor M. Morimoto for his helpful suggestions.

1. Preliminaries. Let $d$ be a positive integer and $d \geqq 2$. $\quad S=S^{d}=$ $\left\{x \in \boldsymbol{R}^{d+1} ;\|x\|=1\right\}$ denotes the unit sphere in $\boldsymbol{R}^{d+1}$, where $\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+$ $\cdots+x_{d+1}^{2}$. $d s$ denotes the unique $O(d+1)$ invariant measure on $S$ with $\int_{S} 1 d s=1$, where $O(k)$ is the orthogonal group of degree $k$. $\left\|\|_{2}\right.$ is the $L^{2}$-norm on $S . \quad H_{n, d}$ is the space of spherical harmonics of degree $n$ in dimension $d+1$. For spherical harmonics, see Müller [8],

The Lie norm $L(z)$ and the dual Lie norm $L^{*}(z)$ on $C^{d+1}$ are defined as follows:

$$
\begin{aligned}
L(z) & =L(x+i y):=\left[\|x\|^{2}+\|y\|^{2}+2\left\{\|x\|^{2}\|y\|^{2}-(x \cdot y)^{2}\right\}^{1 / 2}\right]^{1 / 2} \\
L^{*}(z) & =L^{*}(x+i y):=\sup \{|\xi \cdot z| ; L(\xi) \leqq 1\} \\
& =(1 / \sqrt{2})\left[\|x\|^{2}+\|y\|^{2}+\left\{\left(\|x\|^{2}-\|y\|^{2}\right)^{2}+4(x \cdot y)^{2}\right\}^{1 / 2}\right]^{1 / 2},
\end{aligned}
$$

where $z, \xi \in \boldsymbol{C}^{d+1}$, and $z \cdot \xi=z_{1} \xi_{1}+z_{2} \xi_{2}+\cdots+z_{d+1} \xi_{d+1}, x, y \in \boldsymbol{R}^{d+1}$, (see Drużkowski [1]).

We put

$$
\widetilde{B}(r):=\left\{z \in C^{d+1} ; L(z)<r\right\} \quad \text { for } \quad 0<r \leqq \infty
$$

and

$$
\widetilde{B}[r]:=\left\{z \in C^{d+1} ; L(z) \leqq r\right\} \quad \text { for } \quad 0 \leqq r<\infty
$$

Let us denote by $\mathcal{O}(\widetilde{B}(r))$ the space of holomorphic functions on $\widetilde{B}(r)$. Then $\mathcal{O}(\widetilde{B}(r))$ is an $F S$ space. $\mathcal{O}(\widetilde{B}(\infty))=\mathscr{O}\left(C^{d+1}\right)$ is the space of entire functions on $C^{d+1}$. Let us define

$$
\mathcal{O}(\widetilde{B}[r]):=\underset{r^{\prime}>r}{\operatorname{ind} \lim } \mathcal{O}\left(\widetilde{B}\left(r^{\prime}\right)\right)
$$

Then $\mathcal{O}(\widetilde{B}[r])$ is a DFS space.
Let $N$ be a norm on $C^{d+1}$. For $r>0$ we put

$$
X_{r, N}:=\left\{f \in \mathcal{O}\left(C^{d+1}\right) ; \sup _{z \in C^{d+1}}|f(z)| \exp (-r N(z))<\infty\right\}
$$

Then $X_{r, N}$ is a Banach space with respect to the norm

$$
\|f\|_{r, N}=\sup _{z \in C^{d+1}}|f(z)| \exp (-r N(z))
$$

Define

$$
\begin{aligned}
& \operatorname{Exp}\left(\boldsymbol{C}^{d+1}:(r: N)\right):=\underset{r^{\prime}>r}{\operatorname{proj} \lim } X_{r^{\prime}, N} \quad \text { for } \quad 0 \leqq r<\infty \\
& \operatorname{Exp}\left(\boldsymbol{C}^{d+1}:[r: N]\right):=\underset{r^{\prime}<r}{\operatorname{ind} \lim _{r^{\prime}, N}} \quad \text { for } \quad 0<r \leqq \infty
\end{aligned}
$$

$\operatorname{Exp}\left(\boldsymbol{C}^{d+1}:(r: N)\right)$ is an FS space and $\operatorname{Exp}\left(\boldsymbol{C}^{d+1}:[r: N]\right)$ is a DFS space. $\operatorname{Exp}\left(\boldsymbol{C}^{d+1}\right)=\operatorname{Exp}\left(\boldsymbol{C}^{d+1}:[\infty: N]\right)$ is independent of the choice of the norm $N$ and is called the space of entire functions of exponential type.
$\operatorname{Exp}^{\prime}\left(C^{d+1}\right), \mathscr{O}^{\prime}\left(C^{d+1}\right), \mathscr{O}^{\prime}(\widetilde{B}(r))$ and $\boldsymbol{O}^{\prime}(\widetilde{B}[r])$ denote the spaces dual to $\operatorname{Exp}\left(\boldsymbol{C}^{d+1}\right), \mathcal{O}\left(\boldsymbol{C}^{d+1}\right), \mathcal{O}(\widetilde{B}(r))$ and $\mathcal{O}(\widetilde{B}[r])$, respecrively.
$\widetilde{S}=\left\{z \in \boldsymbol{C}^{d+1} ; z_{1}^{2}+z_{2}^{2}+\cdots+z_{d+1}^{2}=1\right\}$ is the complex sphere. For $1<r \leqq \infty$ we put

$$
\widetilde{S}(r):=\widetilde{B}(r) \cap \widetilde{S}=\{z=x+i y \in \widetilde{S} ;\|y\|<(r-1 / r) / 2\}
$$

and for $1 \leqq r<\infty$

$$
\widetilde{S}[r]=\widetilde{B}[r] \cap \widetilde{S}=\{z=x+i y \in \widetilde{S}:\|y\| \leqq(r-1 / r) / 2\}
$$

It is clear that $S=\widetilde{S} \cap R^{d+1}=\widetilde{S}[1]$ and $\widetilde{S}=\widetilde{S}(\infty)$.
Let us denote by $\mathcal{O}(\widetilde{S}(r))$ the space of holomorphic functions on $\tilde{S}(r)$ equipped with the topology of uniform convergence on every compact subset of $\widetilde{S}(r)$. We put

$$
\mathcal{O}(\widetilde{S}[r]):=\operatorname{ind} \lim _{r^{\prime}>r} \mathcal{O}\left(\widetilde{S}\left(r^{\prime}\right)\right)
$$

$\mathcal{O}(\tilde{S}(r))$ is an FS space and $\mathcal{O}(\widetilde{S}[r])$ is a DFS space. $\mathcal{O}(\widetilde{S}[1])$ is the space of real analytic functions on $S . \operatorname{Exp}(\widetilde{S})$ denotes the restriction to $\widetilde{S}$ of $\operatorname{Exp}\left(C^{d+1}\right) . \quad \sigma^{\prime}(\widetilde{S}(r)), \sigma^{\prime}(\widetilde{S}[r])$ and $\operatorname{Exp}^{\prime}(\widetilde{S})$ denote the spaces dual to $\mathcal{O}(\widetilde{S}(r)), \mathcal{O}(\widetilde{S}[r])$ and $\operatorname{Exp}(\widetilde{S})$, respectively. We have the following sequence of functional spaces on $\widetilde{S}$ (cf. Morimoto [6], [7]):

$$
\begin{equation*}
\operatorname{Exp}^{\prime}(\widetilde{S}) \supset \wp^{\prime}(\widetilde{S}) \supset \varnothing^{\prime}(\widetilde{S}[r]) \supset \varnothing^{\prime}(\widetilde{S}(r)) \supset \varnothing^{\prime}(\widetilde{S}[1]) \tag{1.1}
\end{equation*}
$$

If $f$ is a function or a functional on $S$, we denote by $f_{n}$ the $n$-th spherical harmonic component of $f$ :

$$
\begin{equation*}
f_{n}(s)=N(n, d)\left\langle f, P_{n, d}(\quad \cdot s)\right\rangle \quad \text { for } \quad s \in S, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
N(n, d)=\operatorname{dim} H_{n, d}=\frac{(2 n+d-1)(n+d-2)!}{n!(d-1)!} \tag{1.3}
\end{equation*}
$$

and $P_{n, d}$ is the Legendre polynomial of degree $n$ and of dimension $d+1$.
We put $L_{n}(x)=\|x\|^{n} P_{n, d}(\alpha \cdot x /\|x\|)$ for fixed $\alpha \in S$. Then $L_{n}$ is the unique homogeneous harmonic polynomial of degree $n$ with the following
properties:

$$
\begin{gather*}
L_{n}(A x)=L_{n}(x) \quad \text { for all } A \in O(d+1) \text { such that } A \alpha=\alpha .  \tag{1.4}\\
L_{n}(\alpha)=1 \tag{1.5}
\end{gather*}
$$

We see that $f_{n}$ belongs to $H_{n, d}$ for $n=0,1, \cdots$. We can characterize the functional spaces in (1.1) by the behavior of the spherical harmonic development as follows.

Lemma 1.1 (Morimoto [7, Theorems 5.1 and 6.1]). If $f_{n}$ is the $n$-th spherical harmonic component of $f$, then

$$
\begin{equation*}
f \in \operatorname{Exp}^{\prime}(\widetilde{S}) \Leftrightarrow \limsup _{n \rightarrow \infty}\left(\left\|f_{n}\right\|_{2} / n!\right)^{1 / n}=0 \tag{1.6}
\end{equation*}
$$

$$
\begin{gather*}
f \in \mathcal{O}^{\prime}(\widetilde{S}) \Leftrightarrow \lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{1 / n}<\infty,  \tag{1.7}\\
f \in \mathcal{O}^{\prime}(\widetilde{S}[r]) \Leftrightarrow \underset{n \rightarrow \infty}{\lim \sup }\left\|f_{n}\right\|_{2}^{1 / n} \leqq r \quad(1 \leqq r<\infty), \\
f \in \mathcal{O}^{\prime}(\widetilde{S}(r)) \Leftrightarrow \underset{n \rightarrow \infty}{\lim \sup _{n}\left\|f_{n}\right\|_{2}^{1 / n}<r \quad(1<r \leqq \infty),} \\
f \in L^{2}(S) \Leftrightarrow\left\{\left\|f_{n}\right\|_{2}\right\}_{n=0,1,2, \ldots} \in l^{2}, \\
f \in \mathcal{O}(\widetilde{S}(r)) \Leftrightarrow \limsup _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{1 / n} \leqq 1 / r \quad(1<r \leqq \infty), \\
f \in \mathcal{O}(\widetilde{S}[r]) \Leftrightarrow \limsup _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{1 / n}<1 / r \quad(1 \leqq r<\infty), \\
f \in \mathcal{O}(\widetilde{S}) \Leftrightarrow \limsup _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{1 / n}=0 .
\end{gather*}
$$

The Fourier-Borel transformation $P_{\lambda}$ for a functional $T \in \operatorname{Exp}^{\prime}\left(C^{d+1}\right)$ is defined by

$$
P_{\lambda} T(z):=\left\langle T_{\xi}, \exp (i \lambda \xi \cdot z)\right\rangle \quad \text { for } \quad z \in C^{d+1}
$$

where $\lambda \in C, \lambda \neq 0$, is a fixed constant. We define the transformation $P_{\lambda}$ for a functional $f^{\prime} \in \operatorname{Exp}^{\prime}(\widetilde{\mathbb{S}})$ by

$$
P_{\lambda} f^{\prime}(z):=\left\langle f_{\xi}^{\prime}, \exp i \lambda(\xi \cdot z)\right\rangle .
$$

The following is known:
TheOrem 1.2 (Morimoto [7, Theorem 7.1]). The transformation $P_{\lambda}$ establishes the linear topological isomorphisms

$$
\begin{align*}
& P_{\lambda}: \operatorname{Exp}^{\prime}(\widetilde{S}) \xrightarrow{\sim} \mathcal{O}_{\lambda}\left(C^{d+1}\right),  \tag{1.14}\\
& P_{\lambda}: \mathcal{O}^{\prime}(\widetilde{S}) \xrightarrow{\sim} \operatorname{Exp}_{\lambda}\left(C^{d+1}\right), \tag{1.15}
\end{align*}
$$

$$
\begin{aligned}
& \mathcal{O}_{\lambda}\left(\boldsymbol{C}^{d+1}\right):=\left\{F \in \mathcal{O}\left(\boldsymbol{C}^{d+1}\right) ;\left(\Delta_{z}+\lambda^{2}\right) F(z)=0\right\}, \\
& \operatorname{Exp}_{\lambda}\left(\boldsymbol{C}^{d+1}\right):=\operatorname{Exp}\left(\boldsymbol{C}^{d+1}\right) \cap \mathcal{O}_{\lambda}\left(\boldsymbol{C}^{d+1}\right),
\end{aligned}
$$

and $\Delta_{z}=\left(\partial / \partial z_{1}\right)^{2}+\left(\partial / \partial z_{2}\right)^{2}+\cdots+\left(\partial / \partial z_{d+1}\right)^{2}$.
We define a complex cone $M$ by

$$
M=\left\{z \in \boldsymbol{C}^{d+1} ; z_{1}^{2}+z_{2}^{2}+\cdots+z_{d+1}^{2}=0, z \neq 0\right\}
$$

$M$ is identified with the cotangent bundle of $S$ minus its zero section (cf. Ii [3], Rawnsley [9], [10]). $P_{n}\left(\boldsymbol{C}^{d+1}\right)$ denotes the space of homogeneous polynomials of degree $n$ on $C^{d+1} . \operatorname{Holo}(M)$ and $P_{n}(M)$ denote the restriction to $M$ of $\mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$ and $P_{n}\left(\boldsymbol{C}^{d+1}\right)$, respectively. We define the subset $N$ of $M$ by

$$
N=\{z=x+i y \in M ;\|x\|=\|y\|=1\}
$$

where $x, y \in \boldsymbol{R}^{d+1}$. The unit cotangent bundle to $S$ is identified with the subset $N$ and we have $N \simeq O(d+1) / O(d-1)$. $d N$ denotes the unique $O(d+1)$ invariant measure on $N$ with $\int_{N} 1 d N=1$. We define the inner product

$$
\langle\varphi, \psi\rangle_{N}:=\int_{N} \varphi(z) \overline{\psi(z)} d N
$$

and the norm

$$
\|\varphi\|_{N}=\langle\varphi, \varphi\rangle_{N}^{1 / 2}
$$

Lemma 1.3. If $\alpha$ and $\beta$ belong to $S$, the following formula is valid.

$$
\begin{equation*}
\int_{N}(z \cdot \alpha)^{n} \overline{(z \cdot \beta)^{m}} d N=\frac{n!\Gamma((d+1) / 2)}{\Gamma(n+(d+1) / 2)} \delta_{n m} P_{n, d}(\alpha \cdot \beta) \tag{1.16}
\end{equation*}
$$

Proof. Denote by $F(\alpha, \beta)$ the left hand side of (1.16). Then for any orthogonal matrix $A$

$$
\begin{aligned}
F(A \alpha, A \beta) & =\int_{N}(z \cdot A \alpha)^{n} \overline{(z \cdot A \beta)^{m}} d N \\
& =\int_{z=x+i y \in N}(x \cdot A \alpha+i y \cdot A \alpha)^{n} \overline{(x \cdot A \beta+i y \cdot A \beta)^{m}} d N \\
& =\int_{N}\left(A^{-1} z \cdot \alpha\right)^{n} \overline{\left(A^{-1} z \cdot \beta\right)^{m}} d N .
\end{aligned}
$$

Since $d N$ is $O(d+1)$-invariant we get

$$
\begin{equation*}
F(A \alpha, A \beta)=F(\alpha, \beta) \tag{1.17}
\end{equation*}
$$

for any $A \in O(d+1)$. As a function of $\alpha, F(\alpha, \beta)$ belongs to $H_{n, d}$, since
$(z \cdot \alpha)^{n} \in H_{n, d}$ if $z \in M$. Similarly, as a function of $\beta, F(\alpha, \beta)$ belongs to $H_{m, d}$.

Suppose $n \neq m$. There exists an $A \in O(d+1)$ such that $A \alpha=\beta$ and $A \beta=\alpha$. Then (1.17) gives

$$
\begin{equation*}
F(\alpha, \beta)=F(\beta, \alpha) \tag{1.18}
\end{equation*}
$$

If we fix $\alpha$, (1.18) implies that $F(\alpha, \beta) \in H_{n, d} \cap H_{m, d}$. Since $H_{n, d} \cap$ $H_{m, d}=\{0\}$, we have

$$
\begin{equation*}
F(\alpha, \beta) \equiv 0 \quad \text { if } \quad n \neq m \tag{1.19}
\end{equation*}
$$

Next we assume $n=m$. For all $A \in O(d+1)$ such that $A \alpha=\alpha$ we have from (1.17) $F(\alpha, A \beta)=F(A \alpha, A \beta)=F(\alpha, \beta)$. Therefore $F(\alpha, \beta)$, as a function of $\beta$, is a homogeneous harmonic polynomial of degree $n$ and satisfies (1.4). So we obtain

$$
\begin{equation*}
F(\alpha, \beta)=C P_{n, d}(\alpha \cdot \beta) \tag{1.20}
\end{equation*}
$$

where

$$
C=\int_{N}|z \cdot \alpha|^{2 n} d N=\frac{n!\Gamma((d+1) / 2)}{\Gamma(n+(d+1) / 2)}
$$

(c.f. Rawnsley [10, Appendix]). (1.16) follows from (1.19) and (1.20). q.e.d.

We put for $f^{\prime} \in \operatorname{Exp}^{\prime}(\widetilde{S})$ and $z \in M$.

$$
F f^{\prime}(z):=\left\langle f_{\xi}^{\prime}, e^{\xi \cdot z}\right\rangle
$$

$F f^{\prime}$ is the restriction of $P_{-i} f^{\prime}$ to $M$.
Then we have:
Lemma 1.4 (cf. Ii [3]). The transformation $F: f^{\prime} \rightarrow F f^{\prime}$ is a one-toone linear mapping of $H_{n, d}$ onto $P_{n}(M)$ and we have

$$
\begin{equation*}
\langle f, g\rangle_{S}=C_{n}\langle F f, F g\rangle_{N} \quad \text { for } \quad f, g \in H_{n, d} \tag{1.21}
\end{equation*}
$$

where

$$
\langle f, g\rangle_{s}=\int_{S} f(s) \overline{g(s)} d s
$$

and

$$
\begin{equation*}
C_{n}=\frac{n!\Gamma(n+(d+1) / 2) N(n, d)}{\Gamma((d+1) / 2)} \tag{1.22}
\end{equation*}
$$

Proof. It is known that there exists a system of $N(n, d)$ points $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N(n, d)} \in S$ such that $P_{n, d}\left(\alpha_{k} \cdot \quad\right), k=1,2, \cdots, N(n, d)$, is a basis
of $H_{n, d}$. Therefore for every $f \in H_{n, d}$, there exist $a_{1}, a_{2}, \cdots, a_{N(n, d)} \in C$ such that

$$
\begin{equation*}
f(s)=\sum_{k=1}^{N(n, d)} a_{k} P_{n, d}\left(\alpha_{k} \cdot s\right) \quad s \in S \tag{1.23}
\end{equation*}
$$

(see, for example, Müller [8, Theorem 3]). If $z$ belongs to $M$, then

$$
\begin{aligned}
F f(z) & =\sum_{k=1}^{N(n, d)} a_{k} \int_{S} P_{n, d}\left(\alpha_{k} \cdot s\right) e^{s \cdot z} d s \\
& =\sum_{k=1}^{N(n, d)} a_{k} \sum_{m=0}^{\infty}(m!)^{-1} \int_{S} P_{n, d}(\alpha \cdot s)(s \cdot z)^{m} d s \\
& =\sum_{k=1}^{N(n, d)} \frac{a_{k}}{n!} \int_{S} P_{n, d}\left(\alpha_{k} \cdot s\right)(s \cdot z)^{n} d s,
\end{aligned}
$$

since $(s \cdot z)^{m} \in H_{m, d}$ and $H_{n, d} \perp H_{m, d}$ if $m \neq n$. This shows that

$$
\begin{equation*}
F f(z)=\sum_{k=1}^{N(n, d)} \frac{a_{k}}{n!N(n, d)}\left(\alpha_{k} \cdot z\right)^{n} \tag{1.24}
\end{equation*}
$$

Thus $F f$ belongs to $P_{n}(M)$. For $f(s)=\sum_{k=1}^{N(n, d)} a_{k} P_{n, d}\left(\alpha_{k} \cdot s\right)$ and $g(s)=$ $\sum_{k=1}^{N(n, d)} b_{k} P_{n, d}\left(\alpha_{k} \cdot s\right) \in H_{n, d}$ we have

$$
\begin{align*}
\langle f, g\rangle_{S} & =\sum_{1 \leqq k, l \leqq N(n, d)} a_{k} \bar{b}_{l} \int_{S} P_{n, d}\left(\alpha_{k} \cdot s\right) P_{n, d}\left(\alpha_{l} \cdot s\right) d s  \tag{1.25}\\
& =\sum_{1 \leqq k, l \leqq N(n, d)} \frac{a_{k} \bar{b}_{l}}{N(n, d)} P_{n, d}\left(\alpha_{k} \cdot \alpha_{l}\right) .
\end{align*}
$$

On the other hand we have from (1.24) and (1.16)

$$
\begin{align*}
\langle F f, F g\rangle_{N} & =\sum_{1 \leq k, l \leq N(n, d)} \frac{a_{k} \bar{b}_{l}}{(n!N(n, d))^{2}} \frac{n!\Gamma((d+1) / 2)}{\Gamma(n+(d+1) / 2)} P_{n, d}\left(\alpha_{k} \cdot \alpha_{l}\right)  \tag{1.26}\\
& =\frac{\Gamma((d+1) / 2)}{n!N(n, d) \Gamma(n+(d+1) / 2)} \sum_{k, l=1}^{N(n, d)} \frac{a_{k} \bar{b}_{l}}{N(n, d)} P_{n, d}\left(\alpha_{k} \cdot \alpha_{l}\right) .
\end{align*}
$$

(1.25) and (1.26) give (1.21) and (1.22). (1.21) shows that $F$ is injective. Since $\operatorname{dim} P_{n}(M)=N(n, d)$, we can prove the surjectivity of $F$. q.e.d.
2. Integral transformation $F$. Now we define the following subspaces of $\operatorname{Holo}(M)$ :
(2.1) $\operatorname{Exp}(M, r):=\bigcap_{r^{\prime}>r}\left\{\psi \in \operatorname{Holo}(M) ; \sup _{z \in M}|\psi(z)| \exp \left(-r^{\prime}\|z\|\right)<\infty\right\}$,
(2.2) $\operatorname{Exp}[M, r]:=\bigcup_{r^{\prime}<r}\left\{\left\{\in \operatorname{Holo}(M) ; \sup _{z \in M}|\psi(z)| \exp \left(-r^{\prime}\|z\|\right)<\infty\right\}\right.$,

$$
\begin{equation*}
\operatorname{Exp}(M)=\operatorname{Exp}[M, \infty], \tag{2.3}
\end{equation*}
$$

where $\|z\|=\|x+i y\|=\left(\|x\|^{2}+\|y\|^{2}\right)^{1 / 2}$ for $x, y \in \boldsymbol{R}^{d+1}$.

Our first main theorem in this paper is the following:
Theorem 2.1.
(2.4) $\quad F$ is a one-to-one linear mapping of $\operatorname{Exp}^{\prime}(\widetilde{\mathbb{S}})$ onto $\operatorname{Holo}(M)$. $F$ is a one-to-one linear mapping of $\mathcal{O}^{\prime}(\widetilde{S})$ onto $\operatorname{Exp}(M)$. $F$ is a one-to-one linear mapping of $\mathcal{O}^{\prime}(\widetilde{S}[r])$ onto $\operatorname{Exp}(M, r / \sqrt{2})$ for $1 \leqq r<\infty$.
$F$ is a one-to-one linear mapping of $\mathcal{O}^{\prime}(\tilde{\mathrm{S}}(r))$ onto $\operatorname{Exp}[M, r / \sqrt{2}]$ for $1<r \leqq \infty$.
$F$ is a one-to-one linear mapping of $\mathcal{O}(\widetilde{\mathbf{S}}(r))$ onto $\operatorname{Exp}(M, 1 /(\sqrt{2} r))$ for $1 \leqq r<\infty$. $F$ is a one-to-one linear mapping of $\mathcal{O}(\widetilde{S}[r])$ onto $\operatorname{Exp}[M, 1 /(\sqrt{2} r)]$ for $1<r \leqq \infty$.
(2.10) $\quad F$ is a one-to-one linear mapping of $\mathcal{O}(\widetilde{S})$ onto $\operatorname{Exp}(M, 0)$.

Proof. By (1.14) $F$ is a linear mapping of $\operatorname{Exp}^{\prime}(\tilde{\mathbb{S}})$ into $\operatorname{Holo}(M)$. Conversely, if $\psi$ belongs to $\operatorname{Holo}(M)$ there exist $\tilde{\psi} \in \mathcal{O}\left(C^{d+1}\right)$ and $\tilde{\psi}_{n} \in$ $P_{n}\left(\boldsymbol{C}^{d+1}\right)(n=0,1, \cdots$,$) such that$

$$
\left.\tilde{\psi}\right|_{u}=\psi \quad \text { and } \quad \tilde{\psi}(z)=\sum_{n=0}^{\infty} \tilde{\psi}_{n}(z)
$$

for any $z \in \boldsymbol{C}^{d+1}$. It is known that

$$
\begin{equation*}
\tilde{\psi}_{n}(z)=\frac{1}{2 i \pi} \oint_{|t|=\rho} \frac{\tilde{\psi}(t z)}{t^{n+1}} d t \tag{2.11}
\end{equation*}
$$

for any $\rho>0$. We put $\|\tilde{\psi}\|_{\infty}, \sqrt{2} \rho=\sup _{\|z \mid\|=\sqrt{2} \rho}|\tilde{\psi}(z)|$ and $\psi_{n}=\left.\tilde{\psi}_{n}\right|_{\mu}$. If $z$ belongs to $N$ then $\|z\|=\sqrt{\mathbf{2}}$. Hence we get from (2.11)

$$
\begin{equation*}
\sup _{z \in N}\left|\psi_{n}(z)\right|=\sup _{z \in N}\left|\frac{1}{2 i \pi} \oint_{|t|=\rho} \frac{\tilde{\psi}(t z)}{t^{n+1}} d t\right| \leqq \rho^{-n}\|\tilde{\psi}\|_{\infty, \sqrt{2} \rho} . \tag{2.12}
\end{equation*}
$$

Put $K_{n}:=\sup _{z_{e N}}\left|\psi_{n}(z)\right| . \quad$ (2.12) implies that $\lim \sup _{n \rightarrow \infty} K_{n}^{1 / n} \leqq 1 / \rho$ for any $\rho>0$. Hence we see

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{n}^{1 / n}=0 . \tag{2.13}
\end{equation*}
$$

From Lemma 1.4 there exist $f_{n} \in H_{n, d}(n=0,1, \cdots)$ such that

$$
\begin{equation*}
F f_{n}=\psi_{n} \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f_{n}\right\|_{2}=\sqrt{C_{n}}\left\|\psi_{n}\right\|_{N} \tag{2.15}
\end{equation*}
$$

Since $\sqrt{C_{n}}=\{(n!\Gamma(n+(d+1) / 2) N(n, d)) / \Gamma((d+1) / 2)\}^{1 / 2}<a \Gamma(n+d)$, where $a$ is a constant independent of $n$, (2.13) and (2.15) give

$$
\begin{equation*}
\left\|f_{n}\right\|_{2} \leqq a \Gamma(n+d) K_{n} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\frac{1}{n!}\left\|f_{n}\right\|_{2}\right)^{1 / n}=0 . \tag{2.17}
\end{equation*}
$$

$f^{\prime}:=\sum_{n=0}^{\infty} f_{n}$ belongs to $\operatorname{Exp}^{\prime}(\widetilde{S})$ by (1.6) and (2.17). Moreover, (2.14) implies that

$$
F f^{\prime}(z)=\left\langle f_{\xi}^{\prime}, e^{f \cdot z}\right\rangle=\sum_{n=0}^{\infty} \int_{S} f_{n}(s) e^{s \cdot z} d s=\sum_{n=0}^{\infty} F f_{n}(z)=\psi(z)
$$

Therefore, we get $F\left(\operatorname{Exp}^{\prime}(\widetilde{S})\right)=\operatorname{Holo}(M)$.
Let $f^{\prime}=\sum_{n=0}^{\infty} f_{n}^{\prime} \in \operatorname{Exp}^{\prime}(\widetilde{S})$ and $F f^{\prime}=0$. From the proof of Lemma 1.4, $\left\{(z \cdot \alpha)^{n} ; \alpha \in S\right\}$ spans $P_{n}(M)$. From this fact and (1.16) we see that $P_{n}(M) \perp$ $P_{m}(M)$ with respect to $\langle,\rangle_{N}$ if $m \neq n$. Hence $F f_{n}^{\prime}=0$ on $N$, because $F f_{n}^{\prime}$ is in $P_{n}(M)$. Thus $F f_{n}^{\prime}=0$ on $M$, since $F f_{n}^{\prime}$ is a homogeneous polynomial. Therefore, we obtain $f_{n}^{\prime}=0$ and $f^{\prime}=0$ by Lemma 1.4. Hence we have (2.4).
$F$ is a one-to-one linear mapping of $\mathcal{O}^{\prime}(\widetilde{S})$ into $\operatorname{Exp}(M)$ from (1.15) and (2.4). Conversely, if $\psi$ belongs to $\operatorname{Exp}(M)$, there exists $\tilde{\psi} \in \mathcal{O}\left(C^{d+1}\right)$ such that $\left.\tilde{\psi}\right|_{M}=\psi$ and that for some positive constants $C$ and $A$

$$
\begin{equation*}
|\widetilde{\psi}(z)| \leqq C e^{4\|z\|} \quad \text { for any } \quad z \in M . \tag{2.18}
\end{equation*}
$$

We put $\tilde{\psi}=\sum_{n=0}^{\infty} \tilde{\psi}_{n}$ and $\left.\tilde{\psi}_{n}\right|_{M}=\psi_{n}$, where $\tilde{\psi}_{n}$ is given by (2.11). (2.11) and (2.18) imply

$$
\begin{aligned}
K_{n} & =\sup _{z \in N}\left|\psi_{n}(z)\right| \leqq \sup _{z \in N,|t|=\rho} \rho^{-n}|\psi(t z)| \\
& \leqq \sup _{z \in N,|t|=\rho} \rho^{-n} C e^{A| | z z| |} \leqq \sup _{\| z| |=\sqrt{2}} \rho^{-n} C e^{A \rho| | z| |},
\end{aligned}
$$

since $t N \subset M$ for any $t \in C \backslash\{0\}$. Hence we have

$$
\begin{equation*}
K_{n} \leqq \rho^{-n} C e^{\sqrt{2} A \rho} \quad \text { for any } \quad \rho>0 \tag{2.19}
\end{equation*}
$$

Since $\inf \left\{\rho^{-n} e^{\sqrt{2} A \rho} ; \rho>0\right\}=(\sqrt{2} A e / n)^{n}$ we get

$$
\begin{equation*}
K_{n} \leqq C(\sqrt{2} A e / n)^{n} \tag{2.20}
\end{equation*}
$$

There exist $f_{n} \in H_{n, d}(n=0,1,2, \cdots)$ which satisfy (2.14) and (2.15). By (2.16) and (2.20) we have

$$
\left\|f_{n}\right\|_{2} \leqq a C \Gamma(n+d)(\sqrt{2} A e / n)^{n}
$$

Since $\lim \sup _{n \rightarrow \infty}\left(n^{n} e^{-n} \sqrt{2 \pi n} / n!\right)^{1 / n}=1$ by Stirling's formula, we have
(2.21) $\quad \underset{n \rightarrow \infty}{\lim \sup }\left\|f_{n}\right\|_{2}^{1 / n} \leqq \limsup _{n \rightarrow \infty}\left\{a C \Gamma(n+d)(\sqrt{2} A e / n)^{n} n^{n} e^{-n} \sqrt{2 \pi n} / n!\right\}^{1 / n}$

$$
=\sqrt{2} A<\infty .
$$

(2.21) and (1.7) show that $f^{\prime}=\sum_{n=0}^{\infty} f_{n} \in \mathcal{O}^{\prime}(\widetilde{S})$ and we have (2.5).

Let $f^{\prime}=\sum_{n=0}^{\infty} f_{n}^{\prime}$ be in $\mathcal{O}^{\prime}(\widetilde{S}[r])(1 \leqq r<\infty)$ and put $\psi=\sum_{n=0}^{\infty} \psi_{n}=$ $F f^{\prime}$. Then we have for $z \in M$

$$
\begin{align*}
\psi(z) & =\left\langle f_{\xi}^{\prime}, \exp (\xi \cdot z)\right\rangle=\sum_{n=0}^{\infty} \int_{S} f_{n}^{\prime}(s) e^{\varepsilon \cdot z} d s  \tag{2.22}\\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{m!} \int_{S} f_{n}^{\prime}(s)(s \cdot z)^{m} d s \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int_{S} f_{n}^{\prime}(s)(s \cdot z)^{n} d s,
\end{align*}
$$

since $(s \cdot z)^{m} \in H_{n, d}$ and $H_{m, d} \perp H_{n, d}$ if $n \neq m$. (2.22) implies that

$$
\begin{equation*}
\psi_{n}(z)=\frac{1}{n!} \int_{S} f_{n}^{\prime}(s)(s \cdot z)^{n} d s \tag{2.23}
\end{equation*}
$$

For $z=x+i y \in M$ we get

$$
\begin{equation*}
\sup _{s \in S}|s \cdot z|^{2}=\sup _{s \in S}\|x\|^{2}|s \cdot(x /\|x\|)+i s \cdot(y /\|y\|)|^{2} \leqq\|x\|^{2} \leqq\|z\|^{2} / 2 \tag{2.24}
\end{equation*}
$$

From (2.23) and (2.24) we see that

$$
\begin{equation*}
\left|\psi_{n}(z)\right| \leqq \frac{1}{n!}\left\|f_{n}^{\prime}\right\|_{2}(\|z\| / V \overline{2})^{n} \tag{2.25}
\end{equation*}
$$

If we put $\rho:=\lim \sup _{n \rightarrow \infty}\left\|f_{n}^{\prime}\right\|_{2}^{1 / n}$, then $\rho \leqq r$ by (1.8) and for any $\varepsilon>0$ there exists $k_{\varepsilon}>0$ such that

$$
\begin{equation*}
\sup _{k \leq k_{k}}\left\|f_{k}^{\prime}\right\| \|_{2}^{1 / k}<\rho+\varepsilon \leqq r+\varepsilon . \tag{2.26}
\end{equation*}
$$

By (2.25) and (2.26) we have

$$
\begin{align*}
|\psi(z)| \leqq & \sum_{n=0}^{\infty}\left|\psi_{n}(z)\right| \leqq \sum_{n=0}^{k_{\varepsilon}-1}(1 / n!)\left\|f_{n}^{\prime}\right\|_{2}(\|z\| / V \overline{2})^{m}  \tag{2.27}\\
& +\sum_{n=k_{\varepsilon}}^{\infty}(1 / n!)(r+\varepsilon)^{n}(\|z\| / \sqrt{2})^{n} \leqq C_{\varepsilon} \exp ((r+\varepsilon)\|z\| / \sqrt{2})
\end{align*}
$$

for all $z \in M$, where $C_{\varepsilon}$ is a constant. From (2.27) we see that $\psi \in$ $\operatorname{Exp}(M, r / \sqrt{2})$. Therefore, $F$ is a one-to-one linear mapping of $\mathcal{O}^{\prime}(\widetilde{S}[r])$ into $\operatorname{Exp}(M, r / \sqrt{2})$. Conversely, if $\psi=\sum_{n=0}^{\infty} \psi_{n}$ belongs to $\operatorname{Exp}(M, r / \sqrt{2})$, then there exists $\tilde{\psi}=\sum_{n=0}^{\infty} \tilde{\psi}_{n} \in \mathcal{O}\left(C^{d+1}\right)$ such that $\left.\tilde{\psi}\right|_{M}=\psi,\left.\tilde{\psi}_{n}\right|_{M}=\psi_{n}$ and that

$$
\begin{equation*}
\sup _{z \in N}\left|\widetilde{\psi}(z) \exp \left(-r^{\prime}\|z\| / \sqrt{2}\right)\right|<\infty \quad \text { for any } \quad r^{\prime}>r \tag{2.28}
\end{equation*}
$$

(2.18), (2.20) and (2.28) imply

$$
\begin{equation*}
K_{n} \leqq C_{r^{\prime}}\left(r^{\prime} e / n\right)^{n} \tag{2.29}
\end{equation*}
$$

for any $r^{\prime}>r$ and a constant $C_{r^{\prime}}$. If $F f_{n}=\psi_{n}$ for $f_{n} \in H_{n, d}(n=0,1,2, \cdots)$, from (2.16) and (2.29) we have

$$
\limsup _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{1 / n} \leqq r^{\prime}
$$

for any $r^{\prime}>r$. Hence we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{1 / n} \leqq r \tag{2.30}
\end{equation*}
$$

and (1.8) and (2.30) imply $f^{\prime}=\sum_{n=0}^{\infty} f_{n} \in \mathcal{O}^{\prime}(\widetilde{S}[r])$. Thus we have (2.6).
Similarly, we get from (1.9)

$$
F\left(\mathcal{O}^{\prime}(\widetilde{S}(r))\right) \subset \operatorname{Exp}[M, r / \sqrt{2}]
$$

On the other hand, if $\psi=\sum_{n=0}^{\infty} \psi_{n}$ belongs to $\operatorname{Exp}[M, r / \sqrt{2}]$, there exists $\tilde{\psi}=\sum_{n=0}^{\infty} \tilde{\psi}_{n} \in \mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$ such that $\left.\tilde{\psi}\right|_{M}=\psi,\left.\psi_{n}\right|_{M}=\psi_{n}$ and that

$$
\begin{equation*}
\sup _{z \in \mathbb{M}}\left|\widetilde{\psi}(z) \exp \left(-r^{\prime}\|z\| / \sqrt{2}\right)\right|<\infty \tag{2.31}
\end{equation*}
$$

for some $r^{\prime}<r$. (2.31) implies

$$
\begin{equation*}
K_{n} \leqq C\left(r^{\prime} e / n\right)^{n} \tag{2.32}
\end{equation*}
$$

where $C$ is a constant. For $f_{n} \in H_{n, d}(n=0,1, \cdots)$ such that $F f_{n}=\psi_{n}$, (2.16) and (2.32) give

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{1 / n} \leqq r^{\prime}<r \tag{2.33}
\end{equation*}
$$

(1.9) and (2.33) show $f^{\prime}=\sum_{n=0}^{\infty} f_{n} \in \mathcal{O}^{\prime}(\widetilde{S}(r))$ and we obtain (2.7).

Using (1.11), (1.12) and (1.13) we can prove (2.8)-(2.10) similarly. q.e.d.

Next we consider the image of $L^{2}(S)$ by $F$.
Lemma 2.2 (c.f. Ii [3, Lemma 2.1]). We denote the modified Bessel function $K_{\nu}$ by

$$
\begin{aligned}
& K_{\nu}(r)=\int_{0}^{\infty} \exp (-r \cosh t) \cosh \nu t d t \quad(\operatorname{Re} \nu>-(1 / 2), 0<r<\infty), \\
& K_{-\nu}(r)=K_{\nu}(r)
\end{aligned}
$$

and define the function $\rho_{d}(r)$ as follows:

$$
\rho_{d}(r):= \begin{cases}\sum_{l=0}^{k} a_{l} r^{l+1} K_{l}(2 r) & (\text { if } d \text { is odd })  \tag{2.34}\\ \sum_{l=0}^{k} a_{l} r^{l+(1 / 2)} K_{l-(1 / 2)}(2 r) & (\text { if } d \text { is even }) .\end{cases}
$$

Then we can uniquely determine $k$ and $a_{l}(l=0,1, \cdots, k)$ which satisfy

$$
\begin{equation*}
\int_{0}^{\infty} r^{2 n+d-1} \rho_{d}(r) d r=C_{n} \quad \text { for all } \quad n=0,1,2, \cdots \tag{2.35}
\end{equation*}
$$

Proof. It is known that

$$
\begin{equation*}
\int_{0}^{\infty} r^{\mu-1} K_{\nu}(a r) d r=2^{\mu-2} a^{-\mu} \Gamma\left(\frac{\mu-\nu}{2}\right) \Gamma\left(\frac{\mu+\nu}{2}\right), \tag{2.36}
\end{equation*}
$$

where $a>0$ and $\operatorname{Re} \mu>|\operatorname{Re} \nu|$.
First we assume that $d$ is odd. From (2.34) and (2.36) we get

$$
\begin{equation*}
\int_{0}^{\infty} r^{2 n+d-1} \rho_{d}(r) d r=(1 / 4) \sum_{l=0}^{k} a_{l} \Gamma\left(n+\frac{d+1}{2}\right) \Gamma\left(n+l+\frac{d+1}{2}\right), \tag{2.37}
\end{equation*}
$$

If (2.35) is valid, from (1.3), (1.22) and (2.37) we have

$$
\begin{align*}
& \sum_{l=0}^{k} \frac{1}{4} a_{l} \Gamma\left(n+\frac{d+1}{2}\right) \Gamma\left(n+l+\frac{d+1}{2}\right)  \tag{2.38}\\
& \quad=C \Gamma\left(n+\frac{d+1}{2}\right) \Gamma(n+d-1)(2 n+d-1)
\end{align*}
$$

for any $n=0,1,2, \cdots$, where $C$ is a positive constant. Thus we have

$$
\begin{align*}
& \sum_{l=0}^{k} a_{l} \Gamma\left(n+l+\frac{d+1}{2}\right) / \Gamma\left(n+\frac{d+1}{2}\right)  \tag{2.39}\\
& \quad=4 C(2 n+d-1) \Gamma(n+d-1) / \Gamma\left(n+\frac{d+1}{2}\right) .
\end{align*}
$$

Since $d \geqq 3$, we have $d-1 \geqq(d+1) / 2$. Hence the right hand side of (2.39) is a polynomial of $n$ of degree $(d-1) / 2$. Thus we obtain

$$
\begin{equation*}
k=(d-1) / 2, \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{k}=8 C>0, \tag{2.41}
\end{equation*}
$$

and we can determine $a_{0}, a_{1}, \cdots, a_{k-1}$ uniquely.
Next we assume that $d$ is even. (2.34) and (2.36) imply

$$
\begin{equation*}
\int_{0}^{\infty} r^{2 n+d-1} \rho_{d}(r) d r=\frac{1}{4} \sum_{l=0}^{k} a_{l} \Gamma\left(n+\frac{d+1}{2}\right) \Gamma\left(n+l+\frac{d}{2}\right) \tag{2.42}
\end{equation*}
$$

and we get similarly

$$
\begin{align*}
& \sum_{l=0}^{k} a_{l} \Gamma\left(n+l+\frac{d}{2}\right) / \Gamma\left(n+\frac{d}{2}\right)  \tag{2.43}\\
& \quad=4 C(2 n+d-1) \Gamma(n+d-1) / \Gamma\left(n+\frac{d}{2}\right)
\end{align*}
$$

for $n=0,1,2, \cdots$. Therefore we get

$$
\begin{equation*}
k=d / 2 \tag{2.44}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{k}=8 C>0 \tag{2.45}
\end{equation*}
$$

and $a_{0}, a_{1}, \cdots, a_{k-1}$ are determined uniquely.
q.e.d.

Remark 2.3. (1) Since it is known that

$$
K_{n+1 / 2}(r)=(\pi / 2 r)^{1 / 2} e^{-r} \sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!(2 r)^{j}}
$$

for $n=0,1,2, \cdots$, there exists a polynomial $P_{d / 2}(r)$ of degree $d / 2$ such that $\rho_{d}(r)=e^{-2 r} P_{d / 2}(r)$, if $d$ is even. This fact coincides with a result of Ii ([3, Lemma 2.1]). Though $K_{\nu}(r)$ is not defined at $r=0, \rho_{a}(0)$ is well defined for even $d$ by this fact.
(2) If $d$ is odd, we have for $r>0$

$$
\begin{align*}
\left|\rho_{d}(r)\right| & \leqq \sum_{l=0}^{(d-1) / 2}\left|a_{l}\right| r^{l+1} K_{l}(2 r)  \tag{2.46}\\
& \leqq \sum_{l=0}^{(d-1) / 2}\left|a_{l}\right| r^{l+1} K_{l+1 / 2}(2 r)=e^{-2 r} r^{1 / 2} P_{(d-1) / 2}(r)
\end{align*}
$$

where $P_{(d-1) / 2}$ is a polynomial of degree $(d-1) / 2$, since $0 \leqq K_{l}(r) \leqq K_{l+1 / 2}(r)$. Hence $\rho_{d}(r)$ is well defined at $r=0$.
(3) If $d$ is odd, by (2.41) $a_{(d-1) / 2}>0$. Hence we have for $r>0$

$$
\begin{aligned}
\rho_{d}(r) & \geqq a_{k} r^{k+1} K_{k}(2 r)-\sum_{l=0}^{k-1}\left|a_{l}\right| r^{l+1} K_{l}(2 r) \\
& \geqq K_{k}(2 r)\left(a_{k} r^{k+1}-\sum_{l=0}^{k-1}\left|a_{l}\right| r^{l+1}\right),
\end{aligned}
$$

where we put $k:=(d-1) / 2$. Therefore $\rho_{d}(r)>0$ for $r$ sufficiently large.
For even $d$ it is trivial by (1) that $\rho_{d}(r)>0$ for $r$ sufficiently large.
Now we define a measure $\mu_{d}$ on $M$ by

$$
\begin{equation*}
\int_{M} f(z) d \mu_{d}(z)=\int_{0}^{\infty} r^{d-1}\left(\int_{N} f\left(r z^{\prime}\right) d N\left(z^{\prime}\right)\right) \rho_{d}(r) d r \tag{2.47}
\end{equation*}
$$

We define a subspace $P(M)$ of $\operatorname{Holo}(M)$ by

$$
\begin{equation*}
P(M):=\left\{\psi \in \operatorname{Holo}(M) ;\langle\psi, \psi\rangle_{M}<\infty\right\} \tag{2.48}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle\psi, \varphi\rangle_{M}=\int_{M} \psi(z) \overline{(z)} d \mu_{d}(z) \tag{2.49}
\end{equation*}
$$

By Remark 2.3, (3) we can prove the following in the same way as
in the proof of Ii [3, Theorem 2.5].
Theorem 2.4 (cf. Ii [3, Theorem 2.5]). $F$ is a unitary isomorphism of $L^{2}(S)$ onto $P(M)$ with respect to $\langle,\rangle_{S}$ and $\langle,\rangle_{M}$.

Remark 2.5. Similarly, we can prove for odd $d$ the results in Ii [3, Corollary 2.6-Theorem 2.11] given for even $d$.
3. The Fourier-Borel transformations of $\mathcal{O}^{\prime}(\tilde{S}(r))$ and $\mathcal{O}^{\prime}(\tilde{S}[r])$. In this section we consider the images of $\mathcal{O}^{\prime}(\widetilde{S}(r))$ and $\mathcal{O}^{\prime}(\widetilde{S}[r])$ by the Fourier-Borel transformation $P_{\lambda}$. Our second main theorem in this paper is the following:

TheOrem 3.1. The transformation $P_{\lambda}$ establishes linear topological isomorphisms

$$
\begin{array}{ll}
P_{\lambda}: \mathcal{O}^{\prime}(\tilde{S}(r)) \xrightarrow{\sim} \operatorname{Exp}_{\lambda}\left(\boldsymbol{C}^{d+1}:\left[|\lambda| r: L^{*}\right]\right) & (1<r \leqq \infty), \\
P_{\lambda}: \mathcal{O}^{\prime}(\widetilde{S}[r]) \xrightarrow{\sim} \operatorname{Exp}_{\lambda}\left(C^{d+1}:\left(|\lambda| r: L^{*}\right)\right) & (1 \leqq r<\infty), \tag{3.2}
\end{array}
$$

where

$$
\operatorname{Exp}_{\lambda}\left(\boldsymbol{C}^{d+1}:\left[|\lambda| r: L^{*}\right]\right):=\mathcal{O}_{\lambda}\left(\boldsymbol{C}^{d+1}\right) \cap \operatorname{Exp}\left(\boldsymbol{C}^{d+1}:\left[|\lambda| r: L^{*}\right]\right)
$$

and

$$
\operatorname{Exp}_{\lambda}\left(\boldsymbol{C}^{d+1}:\left(|\lambda| r: L^{*}\right)\right):=\mathscr{O}_{\lambda}\left(C^{d+1}\right) \cap \operatorname{Exp}\left(C^{d+1}:\left(|\lambda| r: L^{*}\right)\right) .
$$

We need the following theorem in order to prove the theorem.
Theorem 3.2 (Martineau [4]). Suppose $\lambda \in C, \lambda \neq 0$. The FourierBorel transformation $P_{\lambda}$ establishes the linear topological isomorphisms

$$
\begin{align*}
& P_{\lambda}: \mathcal{O}^{\prime}(\widetilde{B}[r]) \xrightarrow{\sim} \operatorname{Exp}\left(C^{d+1}:\left(|\lambda| r: L^{*}\right)\right),  \tag{3.3}\\
& P_{\lambda}: \mathcal{O}^{\prime}(\widetilde{B}(r)) \xrightarrow{\sim} \operatorname{Exp}\left(C^{d+1}:\left[|\lambda| r: L^{*}\right]\right) . \tag{3.4}
\end{align*}
$$

Proof of Theorem 3.1. Since $\mathscr{O}^{\prime}(\widetilde{S}(r)) \subset \operatorname{Exp}^{\prime}(\widetilde{S}) \cap \mathcal{O}^{\prime}(\widetilde{B}(r))$ we have

$$
P_{\lambda}\left(\mathcal{O}^{\prime}(\tilde{S}(r))\right) \subset \operatorname{Exp}_{\lambda}\left(C^{d+1}:\left[|\lambda| r: L^{*}\right]\right)
$$

by (1.14) and (3.4). Hence $P_{\lambda}$ is a one-to-one linear mapping of $\mathcal{O}^{\prime}(\widetilde{\mathbb{S}}(r))$ into $\operatorname{Exp}_{k}\left(C^{d+1}:\left[|\lambda| r: L^{*}\right]\right)$.

Conversely, let $\tilde{\psi}$ be in $\operatorname{Exp}_{k}\left(C^{d+1}:\left[|\lambda| r: L^{*}\right]\right)$. If we put $\left.\tilde{\psi}\right|_{M}=\psi$, there exist $r^{\prime}<r$ and $C>0$ such that

$$
|\psi(z)| \leqq C \exp \left(|\lambda| r^{\prime} L^{*}(z)\right)=C \exp \left(|\lambda| r^{\prime}\|z\| / \sqrt{2}\right)
$$

for any $z \in M$. So we get

$$
\begin{equation*}
|\psi(-i z / \lambda)| \leqq C \exp \left(r^{\prime}\|z\| / \sqrt{2}\right) \quad \text { for } \quad \forall z \in M \tag{3.5}
\end{equation*}
$$

Now we put $\psi_{-i / \lambda}(z):=\psi(-i z / \lambda)$. Then $\psi_{-i / \lambda}$ belongs to $\operatorname{Exp}[M, r / \sqrt{2}]$ from (3.5). By (2.7) there exists $f^{\prime} \in \mathcal{O}^{\prime}(\widetilde{S}(r))$ such that

$$
\begin{equation*}
F f^{\prime}=\psi_{-i / \lambda} . \tag{3.6}
\end{equation*}
$$

Since $\tilde{\psi} \in \mathcal{O}_{\lambda}\left(C^{d+1}\right)$, we can find $h^{\prime} \in \operatorname{Exp}^{\prime}(\widetilde{\mathbb{S}})$ such that $\tilde{\psi}=P_{\lambda} h^{\prime}$ by (1.14). Since $\tilde{\psi}(-i z / \lambda)=P_{\lambda} h^{\prime}(-i z / \lambda)=F h^{\prime}(z)$ for all $z \in M$, we have from (3.6)

$$
\begin{equation*}
F h^{\prime}=F f^{\prime} \tag{3.7}
\end{equation*}
$$

By Theorem 2.1 and (3.7) we get $h^{\prime}=f^{\prime}$ and $\tilde{\psi} \in P_{\lambda}\left(\mathcal{O}^{\prime}(\widetilde{S}(r))\right) . \quad P_{\lambda}$ and $P_{\lambda}^{-1}$ are continuous by (3.4) and the closed graph theorem. Therefore, we obtain (3.1). Using (3.3) and (2.6), we can prove (3.2) similarly. q.e.d.

Now we define the topology of $\operatorname{Holo}(M)$ to be the quotient topology $\mathcal{O}\left(\boldsymbol{C}^{d+1}\right) / \mathscr{J}(M)$ since $\operatorname{Holo}(M)=\left.\mathcal{O}\left(C^{d+1}\right)\right|_{M}$, where we put $\mathscr{J}(M):=$ $\left\{f \in \mathcal{O}\left(C^{d+1}\right) ; f=0\right.$ on $\left.M\right\}$. We also define the topologies of $\operatorname{Exp}(M)$, $\operatorname{Exp}(M, r / \sqrt{2})(1 \leqq r<\infty)$ and $\operatorname{Exp}[M, r / \sqrt{2}](1<r \leqq \infty)$ similarly since we have $\operatorname{Exp}(M)=\left.\operatorname{Exp}\left(\boldsymbol{C}^{d+1}\right)\right|_{M}, \operatorname{Exp}(M, r / \sqrt{2})=\left.\operatorname{Exp}\left(\boldsymbol{C}^{d+1}:\left(r: L^{*}\right)\right)\right|_{M}(1 \leqq$ $r<\infty)$ and $\operatorname{Exp}[M, r / \sqrt{2}]=\left.\operatorname{Exp}\left(C^{d+1}:\left[r: L^{*}\right]\right)\right|_{M}(1<r \leqq \infty)$ by Theorem 2.1.

Then by Theorems 1.2, 2.1 and 3.1 and the closed graph theorem, we have:

Corollary 3.3. The transformation $F$ establishes the following linear topological isomorphisms

$$
\begin{gather*}
F: \operatorname{Exp}^{\prime}(\widetilde{S}) \xrightarrow{\sim} \operatorname{Holo}(M) .  \tag{3.8}\\
F: \mathcal{O}^{\prime}(\widetilde{S}) \xrightarrow{\sim} \operatorname{Exp}(M) .  \tag{3.9}\\
F: \mathcal{O}^{\prime}(\widetilde{S}[r]) \xrightarrow{\sim} \operatorname{Exp}(M, r / \sqrt{2}) \quad \text { for } 1 \leqq r<\infty .  \tag{3.10}\\
F: \mathcal{O}^{\prime}(\widetilde{S}(r)) \xrightarrow{\sim} \operatorname{Exp}[M, r / \sqrt{2}] \quad \text { for } 1<r \leqq \infty . \tag{3.11}
\end{gather*}
$$

Corollary 3.4. (i) For any $f \in \mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$ there exists a unique $g \in$ $\mathcal{O}_{\lambda}\left(\boldsymbol{C}^{d+1}\right)$ such that $f=g$ on $M$.
(ii) For any $f \in \mathcal{O}\left(C^{d+1}\right)$ such that $\sup _{z_{\in \mathcal{A}}}|f(z)| \exp (-A\|z\|)<\infty$ for an $A>0$, there exists a unique $g \in \operatorname{Exp}_{\lambda}\left(C^{d+1}\right)$ such that $f=g$ on $M$.
(iii) Assume that $1 \leqq r<\infty$. For any $f \in \mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$ such that $\sup _{z \in M}|f(z)| \exp \left(-|\lambda| r^{\prime}\|z\| / \sqrt{2}\right)<\infty$ for $\forall r^{\prime}>r$, there exists a unique $g \in \operatorname{Exp}_{\lambda}\left(C^{d+1}:\left(|\lambda| r: L^{*}\right)\right)$ such that $f=g$ on $M$.
(iv) Assume that $1<r \leqq \infty$. For any $f \in \mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$ such that $\sup _{z \in M}|f(z)| \exp \left(-|\lambda| r^{\prime}\|z\| / \sqrt{2}\right)<\infty$ for some $r^{\prime}<r$, there exists a unique $g \in \operatorname{Exp}_{\lambda}\left(C^{d+1}:\left[|\lambda| r: L^{*}\right]\right)$ such that $f=g$ on $M$.

Proof. (i) If $f$ belongs to $\mathcal{O}\left(\boldsymbol{C}^{d+1}\right) f_{-i / 2}$ also belongs to $\mathcal{O}\left(\boldsymbol{C}^{d+1}\right)$. Then by Corollary 3.3 there exists $f^{\prime} \in \operatorname{Exp}^{\prime}(\widetilde{S})$ such that $F f^{\prime}=f_{-t / 2}$ on $M$. If we put $g=P_{\lambda} f^{\prime}, g$ belongs to $\mathcal{O}_{\lambda}\left(C^{d+1}\right)$ and $f=g$ on $M$ by (1.14). The uniqueness follows from the injectivity of $F$.

By Theorem 1.2, Theorem 3.1 and Corollary 3.3 we can prove (ii), (iii), (iv) similarly.
q.e.d.

Remark. When $d=1$ (the case of the unit circle), Corollary 3.4 is known (see Morimoto [5]).

## References

[1] L. DRużkowski, Effective formula for the crossnorm in the complexified unitary spaces, Zeszyty Nauk. Uniw. Jagielloń., Prace Mat. 16 (1974), 47-53.
[2] M. Hashizume, A. Kowata, K. Minemura and K. Оkamoto, An integral representation of an eigenfunction of the Laplacian on the Euclidean space, Hiroshima Math. J. 2 (1972), 535-545.
[3] K. II, On a Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku Math. J. 38 (1986), 57-69.
[4] A. Martineau, Equations differéntielles d’ordre infini, Bull. Soc. Math. France 95 (1967), 109-154.
[5] M. Morimoto, A generalization of the Fourier-Borel transformation for the analytic functionals with non convex carrier, Tokyo J. Math. 2 (1979), 301-322.
[6] M. Morimoto, Hyperfunctions on the Sphere, Sophia Kokyuroku in Mathematics, 12, Sophia University, Department of Math. Tokyo, 1982 (in Japanese).
[7] M. MоRimoто, Analytic functionals on the sphere and their Fourier-Borel transformations, Complex Analysis, Banach Center Publications, 11, PWN-Polish Scientific Publishers, Warsaw, 1983, 223-250.
[8] C. Müller, Spherical Harmonics, Lecture Notes in Math. 17, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
[9] J. H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 403-415.
[10] J. H. Rawnsley, A nonunitary pairing of polarizations for the Kepler problem, Trans. Amer. Math. Soc. 250 (1979), 167-180.
[11] R. WADA, The Fourier-Borel transformations af analytic functionals on the complex sphere, Proc. Japan Acad., 61A, (1985), 298-301.

## Department of Mathematics

Sophia University
Tokyo, 102
Japan

