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In this note we study the solvability of the Dirichlet problem

(1) Lu= - Σ DfaaWDjU) = Xf(u) in Q ,

(2 ) u(x) = φ(x) on dQ ,

where λ > 0, Q is a bounded domain in Rn with the boundary dQ, φ is
a non-negative function in U{dQ) and the nonlinearity / is a bounded
and positive function on [0, °°). If L is an elliptic operator, then by the
maximum principle any solution of the problem (1), (2) must be positive.
In recent years there has been some interest in the class of semi-linear
elliptic boundary value problems with positive solutions. The question
of the existence of positive solutions (1), (2) arises from the theory of
nonlinear heat generation, that is, positone problem (see [1], [2] and [16]
for further historical comments). In these papers it is assumed that
φ ΞΞΞ 0 on dQ and the existence of solutions is established in the space
C2+a(Q). It is well known that under appropriate assumptions on/, there
exists λ*e(0, oo) such that the problem (1), (2), with φ = 0, has for
λ e (0, λ*) multiple solutions and has a unique solution for λ > λ*. The
purpose of this note is to study the question of the existence and multi-
plicity of positive solutions of (1), (2) with ^ ^ 0 and φeL2(dQ) in a
suitable Sobolev space Wli\Q) defined in Section 1. The main difficulty
in solving the problem (1), (2) with φeL2(dQ) arises from the fact that
not every function in L\dQ) is the trace of an element from Wlf2(Q).
The earlier results [4], [5], [6], [13] and [14] for linear and semi-linear
equations justify the choice of the space Wlt2(Q) and the interpretation
of the boundary condition adopted in this work.

1. Existence of a solution. Let QaRn be a domain with the bound-
ary dQ of class C2. In Q we consider the Dirichlet problem (1), (2).

We begin by introducing some definitions. It follows from the
regularity of boundary dQ that there is a number δ0 > 0 such that for
δ e (0, <50) the domain
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Qs = Qn{x;min |a5- y\ > δ}
yedQ

with the boundary 3Qδ possesses the following property: to each xoe3Q
there is a unique point xδ(xQ) e dQδ such that xδ(x0) = x0 — dv(x), where
v(x0) is the outward normal to dQ at x0. The above relation gives a
one-to-one mapping, of class C1, of dQ onto 3Qδ. According to the Lemma
1 in [8, p. 382], the distance r{x) belongs to C\Q - QδQ) if δ0 is sufficiently
small. Denote by p{x) the extension of the function r(x) into Q satisfying
the following properties ρ(x) = r(x) for xeQ - QδQ, ρeC\Q), ρ{x) ^ 3δo/4
in QδQ, τrV(α?) ^ p{x) ^ 7^(35) in Q for some positive constant y19 dQδ —
{x; ρ(x) = δ} for δ 6 (0, δ0) and finally dQ = {̂  /t)(a?) = 0}.

Throughout this article we make the following assumptions:
(A) There exists a positive constant 7 such that

7"1|ί|2 ^ Σ α*i(»)f<£i ^ ^lίl2

for all x e Q and ξ e Jίn, moreover a f i e C\Q) and α,,- = aH (i, j = 1, , w).
(B) / is a bounded and non-negative function on [0, 00).
A function u is said to be a weak solution of equation (1) if u e WfcKQ)

and u satisfies

(3 ) ί Σ a^DfuD^dx = λ ( f(u)vdx
jQi,j=l JQ

for every v e Wlt\Q) with compact support in Q.
Since φeL\dQ), Proposition 1 and Theorem 1 from [5] justify the

following definition of the Dirichlet problem.
Let φeL\dQ). A weak solution ueW&KQ) of (1) is a solution of

the Dirichlet problem with the boundary condition (2) if

lim S [u(xδ(x)) - φ(x)]*dSm = 0 .

The results for linear and semi-linear equations (see [4], [5], [6], [13] and
[14]) also show that we can expect a solution to belong to the Sobolev
space defined by

W>\Q) = \u;ueW}ά(Q), J u2dx + j \Du{x)\2r(x)dx < 00 J

equipped with the norm

IM|#i,2 = I u(xfdx + I \Du(x)\2r(x)dx .
JQ JQ

Let FeL\Q) and consider the Dirichlet problem with the boundary
condition (2) for the equation (1)
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(1') Lu = F(x) in Q.

It follows from the proofs of Lemmas 1 and (2) in [6] that the Dirichlet
problem (1'), (2) has a unique solution in Wlf\Q) satisfying the estimate

(4) S \Du(x)Mx)dx + \ u(xfdx^c\\ φ(x)2dSx + \ F{x)2dx\
JQ JQ LJdQ JQ J

for some positive constant C. Using the local boundedness of a weak
solution, the estimate (4) and the Riesz representation theorem of a linear
and continuous functional on L\dQ) we deduce the existence of a kernel
function K(x, -)eU(dQ), xeQ, such that a solution of (Γ), (2) is given by

(5) u(x) = \ K(x, y)Φ(y)dSy + \ G(x, y)F{y)dy
JdQ JQ

for x e Q, where G denotes the Green function for the operator L (see

[17]).

THEOREM 1. Suppose that φeL\3Q) and φ ̂  0 on dQ. Then for
each λ ^ 0 the Dirichlet problem (1), (2) admits at least one solution in

PROOF. The proof is based on the method of the successive approxi-
mations. Let u0 = 0 on Q and define

(lm) Lum = Xf{um_x) in Q ,

(2m) um — φ on dQ

m = 1, 2, . By the remarks preceding Theorem 1 for every m there
exists the unique solution um e Wlf2(Q). In view of (4) we have

\DuJrdx + j uldx ^ c β g φ*dSβ + λ2|Q| J

where K = supt^0 f(t) and |Q| denotes the measure of Q. Consequently
there exists a subsequence denoted again by {um}, converging weakly in
W'\Q) to a function u. By virtue of Theorem 4.11 in [12], W^\Q) is
compactly embedded in L\Q) and consequently we may assume that um

converges to u in L\Q) and a.e. on Q. It is obvious that u is a weak

solution of (1). Since 1 \Du(x)\2r(x)dx < ©o, Proposition 1 and Theorem 1
JQ

in [5] imply the existence of a function ζeL2(3Q) such that

lim ( [u(xδ(x)) - ζ(x)]2dSx - 0 .
3->0 JdQ

It therefore remains to prove that ζ = φ a.e. on dQ and this we accomplish
by taking
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(Ψ(x)(p(x) - 8) for xeQs,

(0 for xeQ-Q,,

as a test function in (3), where ¥ is an arbitrary function in C\Q).
Applying Green's theorem and letting δ-+0 we obtain

ί ΦJF Σ aijDiPDάPdSx
JdQ i,j=l

= \ Γ- Σ D^ΨDSUn, + Σ atJDfiimDtΨp - xRu^Ψ pλdx .

Similarly

\ ζΨ Σ aίjDiPDjpdSx
JdQ ί,j=l

= i Γ- Σ DfatJFDtpϊudx + Σ a^DjuD.ψp - xf(u)Ψρ]dx .
JQL ί,3=ι i,i=i J

Letting m—>°owe deduce from the last two equations that

Σ aijDiPDjpdSx = ( φΨ Σ aijD{pDjpdSx

for every ΨeC\Q) and this completes the proof.

2. Uniqueness of solutions. We commence with the following result.

THEOREM 2. Suppose that f is a C^function on [0, ©o) such that
|/'(ί)l ^ -^(t) f°r t^®> where F is a decreasing function on [0, oo) with
lim^oo F(t) = 0. For each λ > 0 there exists a number M > 0 swcfe that,
if φeL\dQ) and φ^M on dQ a.e., then the Dirichlet problem (1), (2)
has a unique solution Wlt2(Q).

PROOF. It obviously suffices to prove the uniqueness. Let us assume
that there exist two distinct solutions ut and u2 of (1), (2). Let w =
uy — u2. Since φ ̂  M on SQ, it follows from (5) that um(x) ^ M a.e. on
Q, i = 1, 2 and that

( 6 )

Writing

we then

w(t

w(x) =

have

») =

Λ
JQ

ML

X I G(x, %

G(x, y) \ j
Jo

^ λ sup I

ι)[f(u

G(x,

ι(y) - f(uM)]dy .

+ (1 — s)u2)dsw(y)dy

y)dxF(M)\\w\L .
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If w =£ 0 then λ sup I G(x, y)dxF(M) ^ 1 for all λ and M in (0, oo). Given
yeQ JQ r

λ > 0 we can find M sufficiently large so that λ sup I G(x, y)dxF(M) < 1
yeQ JQ

and we get a contradiction.
The following theorem is a modification of the result due to

Schuchman [15] (see also [18]):

THEOREM 3. Let φeUidQ) and φ^O a.e. on dQ. Suppose that f is
a C'-function on [0, oo) such that /(0) > 0 and 0 ^ f'(t) ^ K(l + ί ) " 1 - α ,
where K and a are positive constants. Then there exists a λ0 > 0 such
that the problem (1), (2) for λ ^ λ0 has a unique solution in W1>2(Q).

PROOF. We follow the argument from the paper [15]. Without loss
of generality we may assume that /(0) >̂ 1. Letting w — ux — u2 we
obtain as in the proof of Theorem 2 that

w(x) = \ G(x, y) \ f\suλ + (1 — s)u2)dsw(y)dy .
JQ JO

Moreover it is clear from the representation (6) that w e L°°(Q). Let e
be the solution of the Dirichlet problem

( 7 ) he = 1 in Q ,

( 8 ) e = 0 on dQ .

By the maximum principle e > 0 on Q. Since

ut(x) = \ K(x, y)φly)dy + λ ( G(xyy)f(uί)dy ^ λ ( G(x, y)f(0)dy
JdQ J JQ

^ λ I G(x, y)dy = Xe ,
JQ

we have

(9 ) IMU ^ λίΓsup ( G(x, y)[l +

Let

sup S G(x,
Q JQ

It follows from (9) that F(x) ^ 1 if w & 0. Now observe that Schuchman
[15] proved that lim^oo F(\) — 0 and this contradiction completes the proof
of the uniqueness assertion.

3. Existence of multiple solutions. In this section we impose the
following condition on / : there exists c > 0 such that / is increasing on
[0, c).
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We obtain the existence of multiple solutions by using sub- and
supersolution method.

Let 0 < lλ < l2 < c. In the sequel we construct a supersolution V
and a subsolution Vx such that

= h < i* £

First we construct a supersolution. We follow the method from [1, p.
483-484]. Let e be a solution of the problem (7), (8) and put

IMI- + 1
Then L(V) = lJQ\e\\n + 1) and choose λ so that

(10) λ 5Ξ -Jfr-Mι ,

where Mt = l/(||e||oo + 1). Since / is increasing it follows from (10) that

that is, F is a supersolution.
To construct a subsolution we choose an open subset ΩcQ with

dist (β, 3Q) > 0 and put

M2 = min \ G(x, y)dy
L a eβ JΩ J

Mz = max \ G(x, y)dy
L *eρ Jρ J

and

^(a?) = λ ί G(αf y)ΛhXa(y))dy ,

where Xβ is a characteristic function of Ω. It follows from [1, p. 484]
that if

(11) Jk c

then LVι ^ λ/(Fx) and l2 <; ||VΊ||OO ^ c, that is, Fx is a subsolution.
We are now in a position to establish the existence of multiple

solutions.

T H E O R E M 4. Suppose that φeL°°(dQ), φ^O a.e. on dQ and that

\\φ\\co < ί i/( | |e |U + 1) L e t Mlf M2 and MB be defined as above. Then for

each
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(12, M.J-S

the problem (1), (2) has at least two distinct solutions.

PROOF. Let φm be a sequence of C1(3Q)-functions such that

0 ^ φm(x) £ „ ..lι ^ on dQ and lim ( [φm(x) - φ(x)]2dSx = 0 .
||e||oo + 1 »->» ha

We now observe that W = 0 and V are a subsolution and super solution,
respectively, for the Dirichlet problem in Wlf\Q) for (1) with the boundary
condition

(2m) u(x) = φm on dQ .

It follows from [7] that for each m there exists a solution um in WU\Q)
of the problem (1), (2m) satisfying the estimate

0 ^ um(x) ^ V(x) on Q

for each m. It is clear that um e C(Q) for each m. By virtue of (4) we
have the estimate

ί \Dum(x)Mx)dx + \ um(x)2dx ^ cΓsup ( φm(x)*dSm + IQIlPλ2]

for each m. Repeating the argument of the proof of Theorem 1 we show
that there exists a subsequence of {um} converging weakly in Wlt2(Q) to
a solution u of (1), (2). To construct a second solution we consider a
solution V2 of the problem

in Q,

on 3Q.

Since /(ί) ^ iΓ on [0, «>), F2 is a super solution. On the other hand

L(V2 - Vλ) = λ(ίΓ - ΛVi)> ^ 0 on Q ,

V2 - V, = „ ,,?1 ^ on 3Q
llelloo + 1

and by the maximum principle V2^ Vλ on Q. Applying now the result
of [7] to the Dirichlet problem (1), (2m) with V1 and V2 as a subsolution
and a supersolution, respectively, we obtain a subsequence converging
weakly in WU\Q) to a solution v of (1), (2). Finally the inequalities

0 ^ u(x) ^ F(s) ^ Vx{x) ^ v(») ^ V8(a;) on Q ,

< k ^
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show that the solutions u and v are different.
Examples of functions / showing that the condition (12) is non-

vacuous can be found in [1].
Finally we point out that the boundary condition (2) can also be

expressed in terms of the non-tangential limit (see [2], [6] and [10]).
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