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1. Introduction. In this paper we shall study the diophantine nature
of the problem of the convergence of all formal solutions. Concerning
the convergence of all formal solutions, Kashiwara-Kawai-Sjostrand [1]
studied the equation Pu = D)1= 512m @.p(X)2*(0/02)*u = f and gave a sufficient
condition for the convergence of all formal solutions. Unfortunately this
condition is merely sufficient and not necessary.

As for the necessity few results are known. This is mainly because
we must treat rather delicate problems of diophantine nature. Concerning
this, the first work which clearly showed the diophantine nature of the
problem of the convergence of formal solutions was perhaps that of Siegel’s
in [4]. On the other hand in 1974, Leray [2] studied the diophantine nature
of the Goursat problem by using a new diophantine function p. Though
the problems they studied seem to be quite different, their basic ideas are
closely connected. More precisely, their methods to treat the diophantine-
type difficulty are the same.

In this paper we shall introduce two diophantine functions ¢, and p
which are generalizations of Siegel’s condition in [4] and Leray’s auxiliary
function in [2], respectively. By using these functions we shall give
necessary and sufficient conditions for the convergence of formal solutions.
We remark that this yields the solvability of the same equation by the
usual method. We also give examples showing that we cannot drop any
of the assumptions of the main theorem in general. Finally, we point
out that the method here is also applicable to the study of C* (or C®)-
hypoellipticity of operators on the torus by slight modification.

The author would like to give sincere thanks to the referee and the

editor who kindly gave the author many usefull suggestions in preparing
this paper.

2. Notation and results. Let x = (x,, #,) be the variable in C%.. For
7€ R* and a multi-index a = (a, @) e N}, N={0,1,2, ---}, we set 7* =
napze and (x-0)* = (%,0,)*(%,0,)*2, where 9 = (9, 9,) and 9; = 9/ox; (j = 1, 2).
Let m = 1 be an integer and let w e C®... Then we are concerned with the
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convergence of all formal solutions of the form w(z) = #* 3,cne 277! of
the equation

2.1) P(x; oyu = I oém a.(x)0“u(x) = flx)x” ,

where a,(%) is analytic at the origin and f(x) is a given analytic function.
We say that a formal solution u = x* > u,x"/n! converges if the sum
>, u,x"[n! converges and represents an analytic function in x. Let us
expand a,(x) into Taylor series, a,(®) = >} a,4"/Y!. Then we define the
set M, by

M, ={7 — a; a,; # 0 for some a and 7}.
We assume the following:

(A.1) The set M, is contained in the half-space {ne R* 7, + 7, = 0}
and the set M,N{n € R’ 7, + 7, = 0} is contained either in {ne R*; », + 7, =
0,7, =0} or in {peR% 79 + 7, =0,7 =0}

Roughly speaking, this condition means that the equation (2.1) is not
irregular singular. We denote by I'», the smallest closed convex cone
with apex at the origin which contains M.

Now let us define

(2.2) p(n) = . mz|‘fsm Q! () — a)! )

and denote the m-th homogeneous part of p(%) by ».(%). We introduce
two diophantine functions.

For ceR* |6/ =1 and ¢ >0, we set I'(&; ¢) = {(pe R |9/ln] — & < &}
Then we define the quantity o.. by
(2.3) ¢ = sup{c € R; | liminf {9[~|p(n)| > 0},

N|—o0, neI'(€,6) Nw+2Z

where if liminf [9|~°|p(®)] = 0 for every cc€ R, we put g,. = — . Note
that o,, < m, since p(7) is of degree m. Since o,, increases as ¢ tends
to zero, we set g, = lim,,,0,,. We remark that the function o, is closely
connected with Siegel’s condition (cf. [4, (13)]).

- Next we define the function p following Leray [2];

(2.4) o= liminf [p(m)'7.

17|00, e N2+

Note that 0 < o < 1, because p() is a polynomial. We shall give funda-
mental properties of ¢, and p in Section 3.
We define a differential operator Q(x; 9) = 3 i55m, bs(®)3* by

Q@; 0) = P@; 0) — 35 6u.29al,
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where m, < m. We assume the following “quasi-ellipticity condition”
on P:

(A.2) For every £el', such that |¢| = 1, either p,(¢) # 0 or g, > m,
holds.

Our main result is the following.

THEOREM 2.1. Suppose that the conditions (A.1) and (A.2) are satisfied.
Then for every f which is holomorphic in a meighborhood of the origin
all formal solutions of the equation (2.1) converge if and only if p > 0.

REMARK 2.1. In Theorem 2.1 we cannot drop any of the assumptions
(A.1) and (A.2) in general. We shall give such examples in Section 5.

REMARKS 2.2. (a) In the proof of Theorem 2.1 we can also show the
following fact: For an analytic function f, let MS; = {n € N*; 67f(0) # 0}.
Let CCN* be a finite set and suppose that the conditions (A.1) and (A.2)
are satisfied. Then, for every f(x) analytic at the origin such that MS,c
C + I'p, all formal solutions of (2.1) converge if and only if p( + @) # 0
for all 7€ N* except a finite number of 7’s. For example, we may take
flx) to be a polynomial in z.

(b) We can generalize Theorem 2.1 and the preceeding remark for
the Leray-Volevich systems of d (= 2) independent variables. We shall
briefly sketch necessary modification for a single equation. Further exten-
sion to systems is not difficult.

For the sake of simplicity, we assume that p,(») # 0. First we note
that we can easily extend the definition of the sets M,, I'» and the fune-
tions o, and p to the case of d independent variables. We also note that
the condition (A.1) is clearly extended to the case of d independent vari-
ables. Instead of the condition (A.2) we assume: For every #e ', and
g€ R? such that |g| =1, p.(&) =0 and o, £ m,, we have L,f) #+ 0. Here
L,(6) is the localization of p,(n) at 7 = & defined by, for ¢, 6 € R?,

(2.5) DPu(é + 80) = L(6)s* + O(s™) ,

where ¢ = q(¢) is a nonnegative integer and L.6) # 0. We note that in
case d = 2 the condition is exactly equivalent to (A.2). Furthermore in
case d = 3, we assume the regularity on the roots of p(n). We set
S(n, t) = t™p(t~'p) and take a vector § such that p,(d) 0 and write
n=2C0 +¢. We factor S + ', t) as a polynomial of {;:

]
(2.6) S@O + T ) = e IT (€ = 2@ )™ .

Then we assunie that the roots X,-(C', t)(4=1, -+, j,) are smooth with
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respect to {’ and . Under these assumptions Theorem 2.1 is valid.

In Theorem 2.1 we assumed the diophantine conditions ¢, > m, and
0 > 0. However it is difficult to verify them. The following theorem
gives a criterion which does not contain diophantine conditions for o,.

COROLLARY 2.2. Under the condition (A.1l) and suppose that p,(&) # 0
for all e I'p.  Then, for every f which is holomorphic in a meighborhood
of the origin all formal solutions of (2.1) converge if and only if o > 0.

We remark that we do not assume K-K-S type condition (i.e., p.(&) # 0
for all £ € R%, cf. [1]) nor Siegel’s type diophantine condition (cf. [4, (13)]).
Hence Corollary 2.2 is nontrivial and may be a new type of theorem.

Next we shall introduce the notion of the “diophantine-type ellipticity”
and show that the situation is rather simple in this case.

COROLLARY 2.8. Suppose that (A.1) and the following condition are
satisfied.

(A.2) FEither p,(&) # 0 or o, > m, holds for any &¢€ R:.
Then all formal solutions of (2.1) converge for any holomorphic f.

REMARK 2.3. By the proof of Theorem 2.1 we can also prove the
following holomorphic prolongation of solutions, if we assume (A.1l) and
(A.2): There exists R, >0 with the following property. For any R,
0 < R< R, a formal power series u satisfying that Pu is holomorphic
in D, = {x € C% |x,] + |x.] < R} is holomorphic in D;.

REMARK 2.4. We set ¢(x) = |x,| + |2.] and assume that m, < m — 1
and that p,(&) =0 for some & Then we easily see that the surface
é(x) = R (R > 0) is characteristic with respect to P at the point x such
that |o,| = &, |2, = &, that is, p.(x-(0¢/0%))|.;=¢; = 0. Hence, for this
type of operators, general theory says nothing about the validity of the
above holomorphic prolongation. Nevertheless, this is the case if m, is
sufficiently small so that (A.2) is satisfied.

3. Fundamental properties of o, and po. In this section we use the
same notations as in Section 2. For the sake of simplicity we do not
give the proof, unless it is used in the proof of Theorem 2.1.

PROPOSITION 3.1. The followings are equivalent: (i) —oo L0, <
m — 1, (ii) pa(® = 0. Especially 6. = m if and only if p.(&) # 0.

For the sake of simplicity we assume that p,((1, 0)) # 0. Then we
have the factorizatipn

S0, 0 = ) = o [ 0 = na 00 my 21
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Let £ = (¢, &) € R, &l =1, and let w = (»,, w,) be the number given in
(2.1). Then we assume the following:

(C.1) For every j such that », + 0, — \;(®, + @,, 0) = 0 there exist
a conical neighborhood I'(¢) of & C > 0 and z;, —e < 17; =<1, such that,
for all neI'(¢)NN?,

[771 + w, — 7\45'(772 + @, 1)| g C(]- + |77|)r’ .

(C.2) All the functions \;(7,, t) with & = a;(&, 0) are smooth in some
neighborhood of ¢ = 0 and ¢,.

PROPOSITION 3.2. Assume that the conditions (C.1) and (C.2) are
satisfied. Then we have g, = m — > m;, where the summation is taken
over all j such that & — \;(&, 0) = 0.

Next we show the diophantine property of o, in case p(») has the
form p(n) = p.(n) + R,.()), where n < m and where p,,() is a homogeneous
polynomial of degree m and R,(%) is a polynomial of degree < n. For
6 > 0 we define the multi-valued function F, as follows: For teC,

8.1) Fy(t) is the set of all cluster values of the sequence {¢/(v/pt — t)},,,
when v, #e N and v, pt— .

The fundamental properties of Fy(t) are studied in [7]. (ef. Remark 3.1).

PROPOSITION 3.3. Under the assumptions as above we have:

(a) The case £ = (1,0) or (0,1). FEither o. = m or o. = n holds.

(b) The case £ = (1,0) and (0,1). Let n <o <m. Then o, =0 if
and only if p.(&) = 0 and the set F i, o (&1/8) contains 0 for all 7, 7> 0
and does mot contain 0 for all 7, n <t < o. Here £ = (&, &) and the
integer m, 18 the multiplicity of the root t=¢,/¢, of the equation p,((t, 1))=0.

REMARK 3.1. Using the results of [7] we can say when the set Fy(t)
contains 0: If ¢ > 0 is a rational number or 0 < § < 2, then Fy(t) contains
0. If § =2 and ¢ is irrational, we expand ¢ in a continued fraction ¢ =
[ae, @, @y +++], Wwhere

B2 a=I[], a=t—a, a=1a, a=I[al - a=I[al,
1
(4 Py

Here [s] denotes the largest integer which does not exceed s. Let us
define the integers p, (1 = 1,2, «++) by flyrs = @by, + tty =1, £, =0.
Then in case 6 > 2, the set F(t) contains 0 if and only if lim inf,_. ¢{"/a,_, =
0. We also remark that there exists a set EC[0, «) with the Lebesgue
measure zero such that 0¢ Fy(t) for all t¢ E and 6 > 2.

:an—-an;o.-
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LEMMA 3.4. Let 0 € R. Then the set {¢<€ R’ o < o} s closed.
PROOF. Suppose that ¢—¢ and that o, <o (¢=1,2, --+). Then,

for every 7 > ¢ and 7 there exists a sequence 77:,, eN* (k=12 -:) such
that 7.4/l —& (k— o) for each 4 and that lim, |7, .|~ [p(7.: + ®)| = 0.
Hence, for every ¢, t=1,2, --+, we can choose k£ = k(¢) in such a way

that

(3.3) /AT &.\ <y Ml TP + @) <97

D4 kcol
We set &, = Y1y Then it follows from (3.3) that {/|{|—¢& and that
1L~ 1p(¢, + ®)|—0. This implies that ¢, < 0. q.e.d.

LEMMA 3.5. Suppose p(9) =7, — t9,. Then 6 > —, £=(7,1) if
and only if t is positive, irrational and mot a Liouville number.

Next we consider the function p. We easily seethat 0 < p < 1. If
® = 0 and p(») is homogeneous, then the function p coincides with that
studied by Leray and Pisot [3]. In case p(y) is not homogeneous, we
assume that p,(&) # 0 for ¢ = (1, 0) and (0, 1) for the sake of simplicity.
Let p() = ¢ II; ), — N;(1:))™ be the factorization of p(y). Then, by using
the Puiseaux expansion of )\;, we see that if o = 0 then \;(%,) is real for
real 7,. Moreover, the study of p is reduced to that of liminf |y, —
(@)Y This is, in fact, a diophantine problem. Finally, we give the
relation between ¢, and p.

PROPOSITION 3.6. If g, > —oo for all £€ R?, then p = 1.

4. Proof of the main theorem.

4.1. Preliminary lemmas. Let I'p be as in Section 2. Then we have
the following:

LEMMA 4.1. Let 3 be a closed set on the wunit sphere |& =1 such
that XN +I'p» = @. Then there exists ¢, > 0 depending only on X and I'p

such that we have |0|/|C| < 16¢;'e for every &€ 3, every small ¢ >0 and
every € (#£0) and L+ 6 (9 £1I'p) in the e-conical neighborhood of ¢.

PROOF. Let 7 (#0) be in the e-conical neighborhood of ¢ and let
¢ < 1/2. Then we have |(7/|7], &) — 1| = [(7/17], & — (& & = |(/In] — &, &I <
¢. This implies that (9/|n], & > 1 — e¢. Hence
@) Ay — O 88l &) = nllnl — Oofinl, &&l/(nl1nl, &)

=@ =™ {n/Inl — &l + |(/inl, & — 11}
< 2(€e+e¢)=4e.
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By assumption there exists ¢, > 0 depending only on 3 and I'p such
that for all £e ¥ and +6erl;

(4.2) 1o — (0, &)¢l = 6116161 — (6/161, £)&| = cold|
Hence, by (4.1) with » = and (4.2), we obtain
4.3) I€+6 — €+ 06,0 = cil] — 4elC] .

By (4.1) with » = { + 6, the left-hand side of (4.3) is bounded by 4¢(|C| +
|6)). Hence we have (¢, — 4¢)|0] < 8¢|¢|. Therefore if we take ¢ so small
that ¢, — 4e = ¢,/2, we obtain |6|/|{] < 16¢;e. q.e.d.

Now in (2.1) we assume

(4.4) Oue 70 for some a,lal=m.
We set S(n, t) = t™p(t™'n). If p,({1,0)) # 0, then we have a factorization
(4.5) p(n) = co!I=I1 (7 — N (p))™

for some ¢, # 0 and m;€ N, j,€ N. By using (4.5) we have
Jo
(4.6) S, t) = cojI=I1 (M — DET )™

If p,(1,0) =0, we take a vector ¢, such that |¢] =1 and that
Pm(€) # 0. Then we make the rotation which maps ¢, to (1,0). This
reduces the general case to the above case. Therefore we have a factori-
zation

@) Sy, t) = i1=11 9,1, &)™

where g¢;(, t) is a continuous function in 7 and ¢. Moreover, we have
the following:

LEMMA 4.2. Assume (4.4) and let &€ R?, |&| =1, satisfy p.(&) =0
and o, = m,, where m, is as given in (A.2). Then there exists a complex
neighborhood V¢, of & and t, > 0 such that for 1 <5 <5, €V, 6l
|6l =1 and t with [t| <&, the limit

4.8) Ci(& 0,t) = l.i_r.? s7{g;(& + 86, t) — g;(& )}

exists uniformly with respect to (¢, 0, t) in Ve xI'pN{|60] = 1} x{t; [¢] < to}.

ProOF. We shall prove only the case p,((1, 0)) # 0 since the other
case can be proved in a similar manner. It follows that & # (1, 0) and
that & # 0 for & = (&, &) € V,, if V,, is sufficiently small. Hence we have
& + 80, # 0 for 6 = (0, 6,), 6] =1, if s is small. It follows that t™'(&, +
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s0,)— > as t—0. Now we expand &\;(t7'¢, + st™'6,) into Puiseaux series
(4.9)  \ET6 + t7'80) = (& + 80Ny + T kf; ('8, + t7s6,) e,

=1

where ¢ = 1 is an integer and \,, and ¢, are constants. Here we have
used the fact that tn;(t7'¢, + t7's6,) — (& + sO,)\;, as t—0. By Taylor’s
formula we have

0,6 + 80, 8) — 9,6, V)
= 80, + M) + ¢ 6t + s0)TH — (76
= 8(60, + ;) + tﬁkl el — k[@Q)X7'¢, + t70,86,)7*"

= 5{0, + Ny s + 0, 3y (L — Kfa)(te) )

+ 50, 3 (1 — R/QH(E8 + t0y80) 0 — (8™,

where 0 < 0, < 1. Applying Taylor’s formula to the last term of the
right-hand side again, we see that the second term is O(s?). Hence we
get (4.8). The remaining part is clear. q.e.d.

Using the same notation as in Lemma 4.2 we have:

LEMMA 4.3. Assume (A.l), (A.2) and (4.4). Suppose g;(&, 0) = 0.
Then there exist K, > 0 and 0 < t; < t, such that

(4.10) ICi(&, 0, t)| = K,
SJor all (& 6,t)e Ve, xI'sN{6; 160 = 1} x{¢; [t| < to}.

REMARK. Though it is not necessary in this paper, we can also prove
that under (A.1) and (4.4) the condition (A.2) is equivalent to (4.10).

Proor oF LEMMA 4.3. By Lemma 4.2, C,(¢, 6, t) is continuous. Hence,
in order to prove (4.10) it is sufficient to show that C;(&, 6, 0) = 0. In
view of the expression for C; in the proof of Lemma 4.2, this is equivalent
to 6, + N . # 0.

By (A.2) and the definition of & in Lemma 4.2, we have & & I'». On
the other hand, since g,(&, 0) = 0, it follows that & + n;.& = 0, where
& = (&, &). This implies that 6, + \; 0. # 0 by (A.1). q.e.d.

4.2. Proof of the necessity of Theorem 2.1. Suppose that all formal
solutions of the equation (2.1) converge and that p = 0. First we shall
show that p(n + w) does not vanish except for a finite number of %’s in
N2, Suppose that this is not the case. Then we shall show that (2.1)
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with f = 0 has infinitely many linearly independent formal solutions. By
substituting the expansions

@1) @ = Su, 2 fw) = SAE 0@ =Sl

7! 7! 7!

into (2.1) and by comparing the coefficients of x7**, we get

- (0 + o)! 7!
(4‘12) f’? p(v + w)uﬂ + q=1—§d,a,d aa»’ (3 + w — a)! ,Y! 5! ua *
In case a,, =0 for all ¢ in (2.1), we must have g, = — o by the
definition of ¢.. Hence it follows from (A.2) that m, = — oo, that is,

@ = 0. The assertion is trivial in this case. Therefore we may assume
that p(n) # 0.

Let us take {eN*® such that p({ + w) =0. We shall show that
pm + w) # 0 for all el + I'»NN* if |p| is sufficiently large. Suppose
that there exist distinet 7, e ', NN*(n=1, 2, ---) such that p({+79,+®) =
0(n=1,2, :-+). Replacing {7,} by its subsequence, we may assume that
the sequence {7,/|7.[} and {(€ + %,)/|{ + 7,[} converge to the same point
EeR:, |&| =1, as n—oo. Since 7,/|7,| € I'» and since the set I'; is closed,
it follows that £e I',. On the other hand, by the definition of ¢, and
¢ + 1, we have g, = —. This contradicts (A.2).

In what follows we assume that M N{peR* 7y, + . =0}C{n =
Dy M) €R* 1, = 0} in (A1) for the sake of simplicity. The proof is
similar in the other case. Let », = (%}, ,)' be the point in { + I'>NN*
such that the length |7,| and the first coordinate 7} are the largest among
nel + I'rNN* satisfying p(y + w) = 0. Then we have p(n + w) # 0 for
all pe, + I's) NN*\{n}. Indeed, let us assume that p(® + w) = 0 for
some 7' € (), + ) NN*\{7,}. Since 5, — eIy and since I'; is a convex
cone, it follows that », + I'r =+, —C+ I'p,Ccl+ I'p. In view of
(A.1) and the definition of %, this implies that |%'| = |[7,]. On the other
hand, it follows from (A.l) that the first coordinate of 7' is larger than
Ni, a contradiction to the choice of 7,. Repeating this arguement we can
choose 7, e N* (k=1,2, ---) in such a way that for k=1,2, ---,

7] < sl » PO + @) =0, 2O+ ) #0
for all ne@ + I's) NN*\{n:} .

We note that, in view of the definition of I', and M, we may take
the summation in (4.12) over €9 — I',. Let 7, be one of 7,’s and let
Uy, be a non-zero number. Since p(7 + w) does not vanish for all nen, +
's\{n,} we can determine u, for pen, + I'>\{7,} inductively by (4.12).
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We set u, =0 for ¢, + I'>. Then we easily see that the formal sum
u(x) = >, w2 /7! is the formal solution of (2.1) for f=0. Since 7, is
arbitrary, we get infinitely many formal solutions. A linear combination
of these formal solutions gives rise to a formal solution of (2.1) which
does not converge in any neighborhood of the origin. This contradicts
the assumption.

Next let us assume that o = 0. By definition there exist 7,€ N*
(n=1,2, ---) such that |p(, + w)| < »n7 "' (n =1, 2, ---). Replacing {7,}
by a subsequence, if necessary, we may assume that p(n + w) # 0 for
ne®, + I'p)NN* (n=1,2, ---) and that the sequence {7,/|%,|} converges
to some £e R%, |[£| = 1. In view of the definition of ¢, and {7,}, we have
0 = —oco, Hence £¢¢I', by (A.2). We also note that £¢¢ —I', in view
of (A.1). Since I'; is closed, there exists ¢ >0 such that I'(¢;e)N £ =@
where I'(¢; &) denotes the s-conical neighborhood of & Now let n(1) be
an integer such that n, € I'(¢; ¢/2) for n = n(1). If we choose n(2) (=n(1))
sufficiently large, then we have, for n = n(2),

221; _ Zin(l) — Sl é 771: |7]n| — E + I?Qn(l)l <eg.
|77n - 77n(1)| I77n| [77n - 7]n(1)| |77n - 77n(1)|

This implies that », — 9,, € I'(¢ ¢). Hence we have %, — 9,4, € =I5 for
all » = n(2). By repeating this argument, we can choose n(k) (k=1,2,--+)
in such a way that

(4.13) Do — D€ =L forall n=nkEk+1).

If we set k=1 and n=n(v) for I <v in (4.13), we have 7, € Yooy — 'p
for I < v. On the other hand, by setting k=vand n=n(l) (=v +1)
in (4.13), we have 9,4 €%, — I'» for [ > v. Hence

(4.14) Doty €Ny — 'p if 1#Ek.

Now we can construct a divergent formal solution. We set f, =1
if =" k=1,2 -+, and f, = 0 otherwise and define a holomorphic
function f(z) by flx) = >, f,|7!! 27/p!. By solving (4.1) recurrently we
construct a formal solution u(x) = 3, u,x7*/n! of (2.1) for this f under
the condition that u,=0 for all 7 ¢ Ui, (9. +'») NN?). This is possible,
since p(n) + w) does not vanish by the definition of 7, and since u, in
(4.12) is determined by f; (16| =< |9]) and u, (€9 — I's). Then it follows
from (4.14) that u, = p(y + @)7*|p|! for » = Y4y bk =1,2, ---. Recalling
the definition of 7,, we have |u,| = |9|! nk)'" for ¥ = Ppouy, k=1,2, -
Since n(k) — = as k — oo, this implies that the formal solution does not
converge in any neighborhood of the origin, a contradiction.
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4.3. Sufficiency. We now assume p > 0 and show that all formal
solutions converge. We first show that we may assume (4.4) without
loss of generality. Indeed, if I', = {0}, then P = >, a,.(a!)"z"9*. In
this case, the theorem can be verified by simple computation. On the
other hand, if I', = {0} and p,(&) = 0 for some £el,, we have o, > m,
by (A.2). Let n be the maximum of |a| for a satisfying a,,+ 0. Then
0: = 1, hence we have m, < n. In view of the definition of m, this
means that the order of P is n. Hence we may assume (4.4) from now
on.

By substituting the expansions of u, f and a, into (2.1) we get (4.12).
If p(€ + w)# 0 we set

-1 0+ w)! ¢!
4.15) Ay, = — B ( .
( ) X PE + @)W ypst Cto—al C—o+a)l ol
By (A.1) we see that every 6 in the summation (4.12) satisfies || > |4|
or 9, —d, =0 (resp. <0), where » = (%, 7.), 6 = (§,, §;). We also note
that if a,, # 0 and a # 7 in (4.11), we have |a| < m, by the definition
of m,.

On the other hand, we see from the condition p > 0 that p({ + w)
does not vanish except for a finite number of { in N® Hence, by using
(4.12) repeatedly, we have

(4'16) U, = —p(ﬂ + m)-lfﬂ + Zl E(ﬂ, 819 Tty 5v; al, M) ay)p(a + w)_lfa
+ 22 E(’?i 611 tt au; aly ) ay)ua ’

where
(4’17) g = 5(77! 0 ++e, 0% 0l oo, a,,) = Aa”‘,ﬂ,d’ e Aal.a2,61 .
The summation 3}' in (4.16) is taken over all the pairs (6%, ---, 6*; a',+ -, @)

of multi-indices satisfying

(4.18) [p|=|o*| = +--=08"], O —d*eM\{0}, &'=d, O =19;
lallgmox p(62+w):’é0 ()“=11""”+1)
The summation > is taken over all the pairs of multi-indices satisfying
the conditions obtained from (4.18) with the condition »(6' + w) # 0 re-
placed by p(* + w) = 0.
We write the sum 3} in (4.16) in the form

9 9-n

(4.19) =33 > >,

n=1 y=1 n=n{1)<n(2)<+++<n(y)<qg

where ¢ and » are integers such that ¢ = |9|+ 1, n =|d| + 1. Here
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the summation 3,—.u)<n@<-<nm<q 18 taken over all the combinations and
> denotes the summation over all the pairs of multi-indices (o ---, §";
o'y « -+, ) satisfying (4.18) and the condition n(\) =|é*+1 (AW=1,---, v).

Let a, be given by (4.11) and assume that ¥ #+ «. Then it follows
from (A.1) and Cauchy’s formula that for any small B > 0 there exists
K, > 0 such that

(4.20) |@arl = KR IQA + 7)™ for all a, 7.

In order to estimate A,., in (4.15) we first note that |{ — ¢ + a| =
I+ al — 10| =|C| + |a] — |6], since L + @ = 6 = 0 by definition. On the
other hand, since we have |[{| = |6]| by (4.18), we get

G + o)l 4! <K (1¢] + a))!
C+ow—-a) C—=0+a) ol l= 70 = (8] + |aD! |d]!

for some K, > 0 independent of { and 6. Hence, by (4.20) and |a| £ m,
in (4.18), we get

(4.22) | Agga| SK KR CIHD™ [N A+(C[=16D7*( 0! |pE+ @)D+
Let 5 be given by (4.17). Then we shall show the estimate

(4.21)

(4.23) |&| £ Ky(rRyriR* (¢ — 1)! (m — 1) g (n(n +1) —n()+1)72,

where the constants K; > 0, », > 0 and 7, > 0 are independent of », q, R
satisfying ¢ = || + 1, » = [6|'+ 1. In order to prove this let us first
assume that all 6¥s 1 S A=<v + 1) in (4.18) are in some small conical
neighborhood of &, satisfying |&,| = 1, p.(&) = 0 and ¢, < m,. Let g,(n, t)
be given by (4.7). - Without loss of generality we may assume that
9/(6n0)=0if 1 =5 <7, and #0 if j > j, for some 1 < j, < j.

If 7 > j, we get, by the definition of g;, that

N+ o 1 I
g ’ ! g K
ASE] lm) ‘

for some K, > 0 independent of j when 7 moves in a sufficiently small
conical neighborhood of ¢, and |%| is large.

’ In case j <7, let A; 1 <5 =£v+1) be such that

(4.24) I71™9:0 + w, 1)| =

(4.25) 19i(0% + , 1)] = min [g,(* + w, 1)] .
1S25v+1

For the sake of simplicity we write 8% = §° and determine the vector A*
by A*=0*—0° for n# n;. Note that A*e +I', and A*+0 by (4.18). We
set
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O+ w | A% A?

(4.26) = , s=12L 0 =L t=_—

SN B 47 E
if A*¢l',. In case —A*el',, we replace A* and s in (4.26) by — A% and
—s, respectively. By Lemmas 4.2 and 4.3 we have

O’ + w A? 1 O+ w 1 K, | A%
4.27 | . , _g, , ‘ > K
azn oS+ ] |a°|> Z 5T 2
if |A?*|/|6°| is sufficiently small and |6°| is large. We note that this con-
dition is really satisfied by Lemma 4.1 if we take a small enough conical
neighborhood of &. Now in case A* satisfies

(4.28) K, |A*/4 =2 [9,0° + w, 1)]
we get from (4.27) and the homogeneity g;(c%, ct) = cg;(n, t) of g;, that
(4.29) [9;06° + w + A% 1)| = K, | A*|/4 .

This inequality is still true in case A* does not satisfy (4.28), since we
have the following inequality by (4.25):

|9;00° + w + A% 1)| = |g;(0° + w, 1)] .

On the other hand, it follows from (A.1) that the set I', is a proper
cone. Hence we can take a vector ¢ with positive integral components
and ¢, > 0 such that

citlal = é-a=c|al for all ael,.

Hence if » > \; we have
-
| 4] 2 03+ AT = 03 — %) = 0, 3, 5-(0" — 8.
=1

Since 6**' — 6* € Mp\{0} by (4.18), we see that é-(6*" — §*) is a positive
integer. This implies that |A*| = ¢,|n — A;|. We have the same estimate
in case A < \;. Substituting this estimate into (4.29) and noting that
o = A* + §° we have
(4.30) 195" + @, 1)| = Kie, [N — N1/4 .

Now it follows from (4.17), (4.22) and the condition n(\) = |§*| + 1
that '

@3) 18]S KKRYR@ - DI (JL@0 + 1) = 200 + 1)

v+1 -1
x((n = DUIL (8] + 17lp@ + @)]) -
By (4.7), (4.24) and > m; = m = m, we have
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z”ﬁ‘("ff[u g ;)

2 K1 1% = K (152 11 1%5)

=31 J

(4.32) H [6*|~™p(6* + )

for some K, >0, where I,; = |6*|™|9,;(6* + w, 1)|.

On the other hand, in terms of (4.80) and |6*| < 7| < ¢ we have, for
some K; > 0,
(4.33) H II Iz 11 H (Kei/D10* 7N — N )™

i A#2;

2 K(IL I, 00 = 0,0) ™ 2 KT I aln = nal) ™

J 1#13
v+1

= K,,(H I Q/ﬂ>—2Mj =K, I e ™ = Kje ™,
i e=1 )
It follows from the assumtion o > 0 and (4.7) with ¢ =1 that
lim inf |, ;% >0 for all j <7, .

1831 v00

This implies that the term I, I}, is bounded from below by K7 for some
K, > 0 independent of ¢ and &*. Therefore we get (4.23) from (4.31),
(4.32) and (4.33). We remark that the estimate (4.83) is valid for any
sequence {0%}, if it is in a small conical neighborhood of &. Since the
set of & satisfying o. < m,, p.(&) =0 and |&| = 1 is compact (cf. Lemma
3.4) we can cover the set by a finite number of open sets in each of
which the estimate (4.33) is valid. Hence (4.33) is valid for any {6%}
which is in a small neighborhood of the set {&; g, < m, P.(&) =0}. On
the other hand, if {6} is contained in the set {& . > m,, or p.(&) # 0},
we can easily see that (|9| + 1) ™|p®n + )| = ¢, >0 for some ¢, >0
independent of 7. Hence in view of (4.31) we get (4.23).

We shall show that the number of pairs (6%, a*; » = 1, - .., v) satisfying
(4.18) and n(\) = |6*| + 1 is bounded by ec,di ITi-. (n(x +1) — n(X) + 1)
for some ¢; > 0 and d, > 0 independent of n()\), 6%, @*. In order to prove
this let us first count the possible number of 6*’s when 7 = " is fixed.
We set v* =7 — ¢*. Then we may count the number of ¥”’s instead of
that of 6”’s. Noting that |v*| = n(v + 1) — n(v) and that v* is contained
in a proper cone I'p, such number is bounded by c¢,(n(y + 1) — n() + 1).
Then we fix ¢* and count the possible number of ¢! in a similar way.
Repeating this arguement v times, we see that the possible number of
pairs (6%, « - -, 6*) is at most IT5-, (w(\n + 1) — n(\) + 1). On the other hand,
the number of pairs (a', --+, @) such that |a’| = m is at most d; for
some d,.

Now we can easily show that (ef. {6, p. 57])
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(4.34) O +1) —n0) + 1)< 2%q —n + 1)2.

n=n(1)<n(2)<---<n(¥)<g A=1

On the other hand, by the analyticity of f and p > 0 we have, for some
R >0,

(4.85) [p(0 + w) ' f;] S |6]) R for all deN?-
Hence it follows from (4.16), (4.19), (4.23), (4.84) and (4.85) that

4.36) |SIEPG + @)=Y S V|8

=1 y=1 n=n(1)<-+<q

x[3|1 R < 3,

S S -1 RKeds

X (rRYrE™(q — D1 (0 = DD I (0 + 1) = ny) + 1)~

q—n

< 35 RTK (B2, (@ — D! ric,

If we take R so small that 2:Rr,d, < 1, we see that the right-hand
side of (4.36) is O(q! r{R™% as q— . Since the term >} Zu, in (4.16)
has the same form as the first term, we can show that it has the same
estimate. Consequently, we have proved that the formal solution con-
verges. This proves the sufficiency. »

y=

5. Examples. In this section we shall give examples which shows
that we cannot omit the assumption (A.1) and (A.2) in Theorem 2.1 in
general.

EXAMPLE 1. Let a = 0 and consider the equation
(6.1) ((@,0, + 1) + a2,(®,0,)" — 0.)((@0.)" + Du = —2, .

We can easily see that M. N{ne R* n, + 7, <0}+ . Moreover, since p()
does not vanish by definition (ef. §2), the equation (5.1) satisfies (A.2)
and p > 0. We shall show that (5.1) has a divergent formal solution.

We set ((@,0,)* + 1)u = v. Then we see that the formal power series
v converges if and only if u converges. On the other hand, by sub-
stituting the expansion » = 32, v.(@,)x? of v into (5.1) and by comparing
the coefficients of 27 we have

(5.2) Von(®) = (1 + D,@) + aln — 1)2%% + Bu
for n = 1,2, ---, where §,, is Kronecker's delta.

Since a = 0, it follows from (5.2) that v,,, = (® + 1)v,. We set
v, = v, = 0. Then we have that v,,, = (» + 1)!/2. This implies that the
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formal solution v does not converge.

ExAMPLE 2. Next we shall give an example which shows that we
cannot drop the latter half of (A.1). The following example is due to
Leray [2], [5]. Let us consider

(6.3) (0} + €0,0, + &) (wau) = f(x),

where ¢ (#0) is a complex constant. We can easily see that M, =
{q, -1), (—1,1), (0,0)}, p,(p) = en),. Hence (5.3) satisfies the former
half of (A.l), (A.2) and the condition o > 0 but does not satisfy the
latter half of (A.1l).

If we set v(x) = xx,u(x), then (5.8) is equivalent to the Goursat
problem for v(x) with the boundary conditions v(0, x,) = v(x,, 0) = 0. Leray
showed that for an appropriate choice of ¢ and f, (5.8) has a formal
solution not convergent in any neighborhood of the origin.

ExAMPLE 3. We shall show that we cannot drop (A.2) in general.
For this purpose let us consider the equation

(5.4) Py = (2,0, + 2.0, + Du + 2,(2,0, + x,0, + 1)’u = f(x) .

We easily see that g, =1 for all £e R% and that p,(¢) =0, I'» = {t(1, 0);
t = 0}. Hence (5.4) does not satisfy (A.2). Note that (5.4) satisfies (A.1l)
and o > 0. On the other hand, by the method of indeterminate coefficients
we easily see that (5.4) has a divergent formal solution for an appropriate
choice of f.

EXAMPLE 4. In (5.4) the degree of the “top term” z,0, + 0, + 1 is
less than that of the “perturbation term” z,(x,0, + .0, + 1)2. We shall
show that we cannot drop (A.2), if we do not assume this.

Let s€ N and let m and » be positive integers such that m = 4n,
s < m. Take a positive irrational number z such that (ef. [3])

(5.5) liminf (min |[p — zq|¥?) =1

g—oo,geN peZ
-and consider the equation
(5.6) (2,0, + X0,)™ (20,0, — TX05)"uU = (%, + 2.)(2,0, + %0, + 1)*u + f(x) .

This satisfies (A.1) and we easily see that g., =< m — 4n, 0. = m if
& # (t, 1), because there exist infinitely many positive integers p and ¢ such
that |p/g—7|<q% This implies that (5.6) satisfies (A.1) and does not satisfy
(A.2) if s = m — 4n. By using the method of indeterminate coefficients,
we can easily prove that if s > m — 2n, (5.6) with f=0 has a formal
solution not convergent in any neighborhood of the origin. On the other
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hand, a rather complicated estimate shows that if s < m — 4n, all formal
solutions of (5.6) converge for any holomorphic f.
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