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Introduction. After Griffiths [7] formulated a problem which is
nowadays called the infinitesimal Torelli problem, several authors tried
to solve it and obtained an affirmative answer in many cases. One of
the important works is due to Kiϊ [10] which we state here only in the
form suitable for our purpose. (See [8, (4.6.1), p. 159] and [10, Theorem
1, p. 54] for more general statement.)

(0.1) Kif s THEOREM. Let X be an n-dimensional compact Kahler
manifold. Assume that the canonical bundle Kx of X is written as
Kx = L®m, where L is a line bundle on X and m is a positive integer.
If the base locus of \L\ has codimension ^ 2 and if dimH°(Ωx~

ι® L) ^
dim H°(L) — 2, then the derivative

P*: H\TX) -* Rom(H\Ωx)f H\ΩΓ1)) ,

of the period map is injective so that the infinitesimal Torelli theorem
holds.

An easy but important consequence of (0.1) is the infinitesimal Torelli
theorem for any non-singular complete intersection with ample canonical
bundle in a projective space, a result originally obtained by Usui [16]
and Peters [15] independently.

In this article we try to solve the problem for non-singular complete
intersections in a Kahler C-space (i.e., compact simply connected homo-
geneous Kahler manifold) whose second Betti number is one. Though our
result is far from being complete, it covers an important subclass of
Kahler C-spaces, namely, the class of irreducible Hermitian symmetric
spaces of compact type which contains, for instance, all Grassmannians.
Therefore, ours may be regarded as an extension of the case of projective
spaces.

Now we state our result. For more precise statements, see (3,8),
(3.10), (3.11) and (4.5).

(0.2) THEOREM. Let Y= G/U be a Kahler C-space with b2(Y) = 1,
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where G is a simply connected complex simple Lie group and U is a
parabolic subgroup of G. Let X be a non-singular complete intersection
in Y with the ample canonical bundle. If either dim X is sufficiently
big (cf. (3.8) for more precise statement) or one of the following conditions
is satisfied, then the infinitesimal Torelli theorem holds for X:

(0.2.1) Y is an irreducible Hermίtian symmetric space of compact
type.

(0.2.2) Lie G = Clf E6, E4 or G2.
(0.2.3) dim X = 2 and Y is not of type (E8, α4)

(cf. § 1 for the notation (EQ, αj).

The plan of this article is as follows: In § 1, we recall known results
on Kahler C-spaces with b2 = 1 and give Table 1. In §2, we reduce the
problem to the estimate of h°(Ω$(l)) by means of (0.1) (cf. Proposition
(2.4)), where έ?γ(l) is the ample generator of Pic(Y). Though we have
the generalized Borel-Weil Theorem ([6] and [14]) for the cohomology
groups of homogeneous vector bundles, it works only for ones induced
by an irreducible representation of U. Since Ωγ is not induced even by
a completely reducible t/-module in general, we cannot apply this theorem
directly. In §3, we define a filtration on Ωγ whose successive quotients
are induced by the completely reducible [/-modules Gf(Λpπ+). Then we
can compute h°(Ωγ(l)) by using the induced spectral sequence. The dif-
ficulty is in determining the irreducible decomposition of G^Λ n̂"1"). For
p = 1, we list in Table 3 the lowest weights which are determined by
(3.9). On the other hand, we give two criteria, Lemmas (3.5) and (3.6),
on the vanishing of h°(Ωγ(l)). These, together with Tables 1 and 3, imply
most of (0.2). In §4, we restrict ourselves to special cases and give a
rough estimate for h°(Ωγ(l)) by a rather concrete calculation.

Since the restriction on dim X in (0.2) is caused merely by our
technical weakness and should be removed, we hope that our result can
be extended to all Kahler C-spaces. Moreover, since (0.2) covers the case
of hypersurfaces, it would be interesting to investigate the generic Torelli
problem for them, which we discuss in a forthcoming paper [13].

1. Kahler C-spaces and the generalized Borel-Weil theorem. A
simply connected compact homogeneous Kahler manifold is called a Kahler
C-space. Let Y be a Kahler C-space with the second Betti number
b2(Y) — 1. We first recall how Y can be constructed.

Let g be a complex simple Lie algebra. If $ is a Car tan subalgebra
of g and

Δ = (a19 •••,«!), I = rank g ,
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is a base of the root system Φ of g with respect to % we denote by Φ+

(resp. Φ~) the subset of all positive (resp. negative) roots. Then we have
a Cartan decomposition

9 = 5 + Σ 9« + Σ 9«.
aeΦ~ aeΦ+

Choose a simple root ar, 1 ^ r ^ ί, and put

Φ(αr) = jα 6 Φ: a = Σ ^α*, nr = θ\ ,

φ(tt+) = | α e Φ+: a = Σ ΪMK,, n r > oj ,

Using these, we define Lie subalgebras of g as follows:

01 = ^ + Σ 8. , Π+ = Σ,. 9* , » = & + Σ ftr

If we take a simply connected complex simple Lie group G and a
connected Lie subgroup U of G in such a way that Lie G = Q and Lie U = u,
then the factor space Y = G/U is a Kahler C-space with 62(3O — l Con-
versely, every Kahler C-space with δ2 = 1 can be constructed in this way.
For this reason, we denote the manifold thus constructed by Y = (g, αr)
in what follows.

Many properties are known about a Kahler C-space Y with δ2 = 1.
We collect here some of them.

(1.1) FACT. (1.1.1) 7 is a rational manifold admitting an "algebraic
cell-decomposition". Thus Hq{Ω$) = 0 if p Φ q. (See [2, Theorems 2 and
3] and [4, Satz I].)

(1.1.2) The Picard group Pic(F) is isomorphic to Z and one of its
generators is very ample. (See [5, n°3 and n°4].)

We denote the very ample generator of Pic(F) by ^V(l) and ^Γ(l)®β

by ^V(α). Let k = k(Y) be the positive integer defined by Kγ = έ?γ{—k).
Then k is given by the following formula. (See [3, p. 521].)

(1.2) k(Y) = 2Σ«β#(.+, (α, ar)/(ar, ar),

where ( , ) denotes the Euclidean scalar product induced by the Killing
form on the real vector space spanned by Φ in Jj*.

Now let λi, •••, Xι be the fundamental weights of g, i.e., (Xίf aά) : —
2(λ<, ad)/(ai9 as) = δid. We set

S = Σλ, = 1/2 Σ a.
i=l aeΦ+

(1.3) DEFINITION, A weight λ is called



612 K. KONNO

(1.3.1) singular if (λ, a) = 0 for at least one aeΦ.
(1.3.2) regular with index p if it is not singular and there exist

exactly p roots a e Φ+ with (λ, a) < 0.

TABLE 1.

8

Aι

c,

Λ

Eβ

E7

Ee

F,

r

ISrSl

lίrSl-1

«rSI-2

J- l

1

2

3

4

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

1

2

3

4

2

dimΓ

r(i+l-r)

2r(i-r)+r(r+l)/2

2r(Z-r)+r(r+l)/2

2r(i-r)+r(r-l)/2

W-D/2

16

21

25

29

33

42

47

53

50

42

27

78

92

98

106

104

97

83

57

15

20

20

15

5

k

l+l

2l-r

2l+l-r

a-i-r

2Z-2

12

11

9

7

17

14

11

8

10

13

18

23

17

13

9

11

14

19

29

8

5

7

11

3

\ r )

fr+1)

(?)
2ι-i

27

78

351

2925

133

912

8645

365750

27664

1539

56

3875

147250

6696000

6899079264

146325270

2450240

30380

248

52

1274

273

26

14

Qr

r( l—r/(i+D)

r

r (r<l)
112 (r=0

r

i/4

4/3

2

10/3

6

2

7/2

6

12

15/2

4

3/2

4

8

14

30

20

12

6

2

2

6

6

2

2
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TABLE 2.

-O O -
3 /-I

-O
/

613

-o o—
2 1-2 / - I

C,: O-
1

-o o -
2 /-2

-rr
/~i

^

/ - I

E7:

O
1

o
8

F4: O-
1

-rr TV-

G2:

(1.4) GENERALIZED BOREL-WEIL THEOREM. ([6, p. 228] and [14, p. 371])

Let E_χ be a homogeneous vector bundle on Y = G/U induced by an ir-
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reducible representation of U with the lowest weight — λ.
(1.4.1) If X + δ is singular, then

H%Y,E_λ) = 0 for all i .

(1.4.2) If X + d is regular with index pf then

H%Y,E_X) = O for all iΦp

and HP(Y, E_λ) is an irreducible G-module with the lowest weight — μ.
Here μ is the uniquely determined element of the closure of the funda-
mental Weyl chamber of Lie G such that μ + δ is congruent to X + δ
under the Weyl group.

Since ^V(l) is induced by the irreducible representation of U with
the lowest weight —xr (cf. [5], n°3 and n°4), we can compute h\έ?γ(l))
by using WeyΓs formula (cf. [9], p. 139) by virtue of (1.4):

(1.5) h\&γ{l)) = deg(λr) = ILe*+ (λr + δ, α)/IL« + (δ, a).

We close this section by giving in Table 1 the list of Kahler C-spaces
with δ2 = 1. In Table 1, qr is the coefficient of ar in xr = Σ Ϊ = I Qi^u which
we shall need later. We follow [9, p. 58] in numbering the simple roots
in the Dynkin diagrm for g as in Table 2.

(1.6) REMARK. It is easy to see the following: (Blf ad = (A+i> at),
(G, αθ = (A.I-X, α j , (A, at) = (A, αi-i), (Ee, α5) s (Eβ, α3), (E6, aQ) = (EQ, ax),
(G2, α j = (BΛ, a,). Note also that (Alf α r), (Blf αx), (G, α,)» (A, «i), (A, «i-i),
(Ĵ β, aλ) and (-£̂ 7, α7) are the irreducible Hermitian symmetric spaces of
compact type. They fall into the following six classes, see, e.g., [3,
p. 521]:

I. (Al9 ar) (Grassmannians): Y= SU(l + ΐ)/S(U(r)x U(l + 1 - r)).
II. (B,, a,) and (A, αx) (Quadrics Q*): Γ - SO(iV + 2)/SO(2) x SO(JSΓ),

iV = 21 - 1, 2i - 2.
III. (G,«i): Y=Sp(l)/U(l).
IV. ( A , , ^ ) : Y=S0(2l)/U(l).
V. (^β/αj: Γ^E'β/Spinί^xT1.

VI. (J5/7,α7): Y=E7/EβxT\

2. Reduction of the problem. Let 7 be a Kahler C-space with
62(F) = 1 and dimY = N ^ 3. For positive integers dlf —-dN_n, define

E = tfyid,) 0 0 έ?ΛdN_ n ) , l £ n £ N - l .

A global section x of E transversal to the zero-section determines an
w-dimensional submanifold X of Y called a non-singular complete intersec-
tion of type (dlf •••, ciy_n). We always assume that Kx is ample, i.e.,
ΈI=ιn di > k( Y) in the following.
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If dim X = 1, then the infinitesimal Torelli theorem is clearly true
for X, since \KX\ gives a protective embedding. So we may assume
dim X > 1. Put s = #{d,; d, = 1}.

(2.1) LEMMA. (2.1.1) If s = 0 or w ^ 4,

(2.1.2) If n = 3, then there is an exact sequence

0 — H°(ί&(l) ® ^ ) — ffo«?z(l)) -» ίP(i2χ)e .

(2.1.3) If n = 2, ί/ieti ί/ierβ is an eίcacί segî ence

PROOF. First we note that H\Ω\) = Hq(Ωp

γ) holds for p + q < n.
The standard exact sequence

0 -> iSΓί/r -> β^ ® ^ -* ^ -> 0

induces a filtration F for i^J"1 ® έ?z,

ΩTγ ®έ?x = F°-DF1Z) ziFn-ιZ)Fn = 0 ,

whose successive quotients are

Tensoring έ?x(l) with these, we get a spectral sequence

Er-p = Hq((A*Nx/γ) ® flr1

Note that

is a direct sum of negative line bundles for p ^ 1 if s = 0 and for p 2£ 2
if s > 0. Now the assertion follows from the vanishing theorem of
Kodaira-Nakano, the remark at the beginning of the proof, (l.l l) and
the above spectral sequence. q.e.d.

(2.2) LEMMA. If n^3, then

H\ΩΓ\1) ® &χ) = H\ΩΓι<X))

If n = 2, then there is an exact sequence

0 -+ HWΛl)) -> ff°(flKl) ® ^ r ) -> H W ) 9 1 ^ 0 .

PROOF. The section x e H\ Y, E) determines the Koszul resolution of
which in turn defines a spectral sequence
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We get the assertion for n ^ 3 by the same reasoning as in the proof
of (2.1). If n = 2, then we get the following exact sequence

0 -> H\Ωι

γ(l)) -> H\ΩY(1) (g) &x) -> Ker{iΓ(^) e 8 ^ H\ΩY(1))} -> 0 .

But the vanishing of H\ΩY(1)) = HN~\Tγ{-k - 1))* is shown in [1, (5),
p. 66]. q.e.d.

By the same argument as in the proof of (2.2), we get:

(2.3) LEMMA. Λ O ( ^ ( 1 ) ) = AW(1)) - s.

Summing up, we have by (0.1):

(2.4) PROPOSITION. Let X be α non-singulαr complete intersection
of type (dl9 , dN_n) in α Kdhler C-spαce Y with b2(Y) = 1. If Kx is
ample and dim X = n ^ 2, then the infinitesimal Torelli theorem holds
for X in the following cases:

(2.4.1) h\Ωn

γ

(2.4.2) h\Ωγ(l)) ^ h\έ?γ{l)) - 2s - 2 if n = 3.

iϊere s stands for the cardinality of {d^ dt = 1}.

(2.5) REMARK. It can be shown that the Kuranishi space of de-
formations of X is smooth since the natural family of displacements of
X in Y gives a complete family (see [1, p. 65]).

3. Proof of the theorem (general case). We keep the notation in
§1. It is known that π+ is invariant with respect to the adjoint repre-
sentation of U on g. The homogeneous vector bundle on Y induced by
this {/-module tt+ is Ω\. Thus in applying the generalized Borel-Weil
theorem (1.4) to compute h°(Ωγ(l)), it would be convenient if Λptt+ is a
completely reducible ΪJ-module. If Y is an irreducible Hermitian symmetric
space, then this is the case and its irreducible decomposition is given by
Kostant [14, p. 379]. But it is not so in general.

Let i^(Λpn+) be the linear subspace of Λpn+ spanned by vectors whose
weights are of the form:

λ = Σ nj<Xj f n r ^ i .

It is obvious that jF7ί(Λprt+) is also invariant with respect to Ad(t/) and
we have a descending filtration of Λpn+:

0 c c Fi+1(Apn+) c F\Apn+) a--a Fp(Apn+) = Λptι+ .

We set G^An^):^ Fi(Λpπ+)/i^<+1(Λpn+). Then we have:
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(3.1) LEMMA. Gί(Λpπ+) is a completely reducible U-module and
Apn+ ^ φ< G'(Aptt+) as Qrmodules.

PROOF. Since u = gx + it+, we only have to check that the adjoint
representation is trivial on π+, which is easy. q.e.d.

We denote the homogeneous vector bundle corresponding to Gί(Λpπ+)
by GιΩp

γ.

(3.2) PROPOSITION. There is a spectral sequence:

Ei,q-i = H^Yi GιΩp

γ{m)) ==> H%Y, Ωp

γ{m)) .

(3.3) COROLLARY. h\Ωp

γ(l)) ^ Σ i W f l ? ( l ) ) .

(3.4) REMARK. The lowest weight — λ of any irreducible component
of G\Apn+) satisfies the following properties.

(3.4.1) — λ is a sum of p distinct roots of n+.
(3.4.2) nr = i in the expression

- λ = Σ nάaό, n5 e N{J{0} .

(3.4.3) (-λ, aά) ^ 0 for j Φ r.

We give here two lemmas on the vanishing of H°(ΩY(1)).

(3.5) LEMMA. If H\ΩP

Y(1)) = 0, then H°(Ωp

γ

+1(l)) = 0.

PROOF. For any point yeY, we can choose exactly N elements
v19 ' , vNeH°(Tγ), depending on y, which span the tangent space to Y
at y. Consider the pairing

< , > : H\TY) x i ϊ W ^ l ) ) -> H\Ωp

γ{l)) .

If there exists an ω e H°(ΩY

+1(1)) which does not vanish at y, then we
can find complex numbers c19 •• ,ciNΓ so that we have (v, ώ) Φ 0 in
H\ΩY(1)) for v = Σf=i Civ*, a contradiction. q.e.d.

(3.6) LEMMA. H°(ΩY(1)) = 0 for p > qr, where qr is the coefficient of

ar in Xr = Σ U QiOίi-

PROOF. By (3.3), it suffices to show HXGΏ$Q)) = 0 for all i. Let
—λ be the lowest weight of any irreducible component of G^Λ^n"1").
Writing — λ as (3.4.2), we have nr > qr. We shall prove mr ^ 2 in the
expression

—λ = Σ %λ<, m- e Z , 1 ^ j ^ ϊ .

Note that we must have m, ^ 0 for j Φ r and m r ^ 1 by (3.4.1) and
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TABLE 3.

8

Aι

B,

Ct

A

Eβ

E,

E*

Ft

G2

r

1

2Sr^l-l

I

1

2^r^Z-2

Z-l

1

2

3

4

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

1

2

3

4

2

lowest weights of Gl{x\+)

ar

α r , λr—λr-2

ar, 2λr—2λr-1

oti

ar, λr—λr-2

Oίl-l

OCl

«2, λ2

«3, ^3-^β

Oί^j Λ4 λl ΛQ, Λ4 Λ2

a2, λ2—λ7

« 3 , ^3 — ̂ β, ^3 — ^1

# 4 , Λ4 — ΛI — ΛQj Λ4 — Λ2 — Λ7, Λ4 — Λ3

OCδ, /β — /i Λ7, /β /2

α 7

« 1 , ΛI — ^ 8

^2» "2 — Λ7, Λ2 — ΛI

«3, ^3—h, h—h—h, h~h

f«4, ^4"~*^l~"^β> Λ4 —Λ2"—Λ7

\λi"—λz — λs, ^4~"Λ~^2» ^4~"̂ 5

jQfβ, Λβ—Λi — Λ7, /β — Λ2 — Λ8
U β — ̂ 3, λ6 — Λβ

α6> ^6 — ̂ 1 — ̂ 8> ^6 — ̂ 2» ^6 — ̂ 7

CΪ7, ^7 — ̂ 1 , λj — ̂ 8

« 8 , ^8

«2, ^2-2^4, ^2-Λ

α 3 , 2Λ3—ΛI—2^4, ^3—^4, 2Λ3—Λ2

aif 2λi-λ1

#2, h

K\QiY{l))

0

0

/2Ϊ+1\
U-2J

0

0

0

(2l )

\r-2l

0

0

1

27

728

1

56

1672

201552

7392

133

0

248

34255

3376737

8644540371

88058973

956877

4123

1

1

124

26

0

1

(3.4.3). If mr = 1, then we would have
(3.6.1) - λ —λr = Σ ^
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Comparing the coefficient of ar on both sides of (3.6.1), we find that it
is nr — qr > 0 on the left hand side and non-positive on the right hand
side, a contradiction. Now the inequality

<λ + λr + δ, αr> = - m r + 2 ^ 0

shows that λ + λr + δ is either singular, or regular with index ^>1. Thus
we have H°(GΏl(l)) = 0 by (1.4). q.e.d.

(3.7) REMARK. The proof of (3.6) tells us that the obstruction for
the vanishing of H°(Ω$(l)) is a component of G*(Apn+) with the lowest
weight of the form

(3.7.1) - λ = λ r - Σy*r Wyλy, % ^ 0.

By (2.4), (3.6) and Table 1, we get the following:

(3.8) THEOREM. Let Y= (g, ar) be a Kahler C-space with 62(Γ) = 1
and X a non-singular complete intersection in Y with the ample canonical
bundle. If dim X ^ [qr] + 2, then the infinitesimal Torelli theorem holds
for X, where [qr] is the greatest integer not exceeding qr.

It is relatively easy to determine the lowest weights of G*(n+). We
list them in Table 3. (See [11, p. 113] and [14, p. 379] for the case of
Hermitian symmetric spaces.)

(3.9) REMARK. In practice, we determine the lowest weights of
G*(A*n+) as follows:

(3.9.1) Determine all the weights - λ satisfying (3.4.1), (3.4.2) and
(3.4.3).

(3.9.2) Compute the dimension of the irreducible representation of
U with the lowest weight — λ.

(3.9.3) Compare dimG*(Λpn+) and the dimensions obtained in the
step (3.9.2).

Concerning Table 3, we note the following. It can be shown, ac-
cording to (3.9), that each G*(rt+) is irreducible and the lowest weight of
G\n+) is ar. Since we have

( - α r + λr + δ, ar) = 2(λr, Or) - (ar, ar) = 0

by the definition of λr, the weight — ar + λr + δ is singular and we get
HXG'Ωϊil)) = 0 by (1.4). Let - λ stand for one of the weights in Table
3 which is not α r. Then it is easy to see that the weight λ + λr + δ is
regular with index 0 (resp. singular) if the coefficient of λr in — λ equals
1 (resp. 2). As a consequence, we get from (1.4) and (3.2)
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= Σdeg(λ + λ r),
XΣ

-X

where — λ runs through the weights in Table 3 which have the form
(3.7.1). The right hand side can be calculated by WeyΓs formula.

For example, consider the Kahler C-space Y — (Eβ, α4). The concrete
description of the root system of type EQ (cf. [9, p. 65]) shows that the
weights of G*(n+) are as follows:

G\n+): (0, 0, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0),
(1, 0,1,1, 0, 0), (0,1, 0,1,1, 0), (0, 0,1,1,1, 0), (0,1,1,1, 0, 0), (0, 0, 0, 1, 1, 1),
(1, 0,1,1,1, 0), (0,1, 0,1,1,1), (0, 0,1,1,1,1), (0,1,1,1,1, 0), (1, 1, 1, 1, 0, 0),
(1, 0,1,1,1,1), (0,1,1,1,1,1), (1,1,1,1,1, 0), (1,1,1,1,1, 1).

G\n+): (0, 1, 1, 2, 1, 0), (0, 1, 1, 2, 1, 1), (1, 1, 1, 2, 1, 0), (1, 1, 1, 2, 1, 1),
(1,1, 2, 2,1, 0), (0,1,1, 2, 2,1), (1,1,1, 2, 2,1), (1,1, 2, 2, 1, 1), (1, 1, 2, 2, 2, 1).

G8(n+): (1, 1, 2, 3, 2, 1), (1, 2, 2, 3, 2, 1).

Here, we abbreviate Σ Ϊ = I ^ Λ as (nlf •• ,n 6 ) . By a direct calculation,
one can show that the weights satisfying (3.4.3) are

G\n+): (0, 0, 0, 1, 0, 0) = α4 (18),
G2(π+): (0, 1, 1, 2, 1, 0) = λ* - Λ* - λβ (9),
G8(π+): (1, 1, 2, 3, 2, 1) - λ4 - λ2 (2).

The number in a parenthesis following each weight is the dimension of
the corresponding irreducible representation as in (3.9.2). Since we have
deg(λx + λβ) = 650 and deg(λ2) = 78, we conclude h\Ω\(XJ) = 728.

By (2.4), Table 1 and Table 3, we get:

(3.10) THEOREM. Let X be a non-singular complete intersection
surface with the ample canonical bundle in a Kahler C-space Y with
b2(Y) = 1. Then the infinitesimal Torelli theorem holds for X except
possibly when Y = (EB, α4).

(3.11) THEOREM. Suppose Y is (Cz, α r), (F4, α4) or an irreducible
Hermitian symmetric space of compact type. Then the infinitesimal
Torelli theorem holds for any non-singular complete intersection X in Y
if Kx is ample.

PROOF. Note that Table 3 and (3.5) show H\ΩP

Y{1)) = 0 for p ^ 1.
We also remark that if Y = PN

9 QN or (Eβ, α j , we may assume s = 0 in
(2.4), since the hypersurface of degree 1 is P*"1, Q"'1 and (F4, α4), re-
spectively ([12, p. 437]). Therefore we get the desired consequence by
(2.4) and Table 1. q.e.d.

4. Proof of the theorem (special case). Since it seems to be difficult
to write down the irreducible decomposition of G^Λ π̂"1") for p ^ 2, let us
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restrict ourselves to the case where g is one of EQJ F± and G2.
Let — λ stand for the weight satisfying the conditions in (3.4) as

well as (3.7.1). We know from (3.7) that the existence of such — λ is
the obstruction for H°(Ω$(X)) to be zero. Therefore our task is reduced
to determining whether the component corresponding to — λ can really
occur in the decomposition of Gί(Apn+) and in calculating the number of
components in question.

(4.1) For such — λ, we donote by mp( —λ) the dimension of the weight
space for — λ in Λpn+. This roughly bounds the number of components
and may be computed as the number of the ways in which one can express
—λ as a sum of p distinct roots of rt+.

We shall estimate ho(Ω$(ϊ)) case by case. In doing so, the following
refinement of (3.6) will be quite helpful: Suppose that we have determined
all — λ's. The proof of (3.6) asserts that a component of G*ΰ£(l)) has
global sections if and only if it corresponds to one of these weights.
Thus, in particular, we would have h°(G^(l)) = 0 if i does not equal
the coefficient of ar in any —λ. A weight Σ ^ i ^ i will be abbreviated
as (n19 -- ,nt) in the following.

(4.2) The case Q = EQ.
(4.2.1) r = 4. As a typical example, we first consider Y = (jE?β> α4)

and explain how our computations go (cf. §3). By a direct calculation,
we find that the possible —λ's are

X - λ* - λ, = (0,1, 1, 2,1, 0)

— X = — λι2

 = (1> 1> 2, 3 , 2 , 1)

λ4 = (2, 3, 4, 6, 4, 2) .

Since we have h\Ωp

γ(l)) = 0 for p ^ 7 by (3.6) and Table 1, we only have
to estimate h\Ωγ(l)) for p ^ 6. If p = 1, then we can use Table 3.
Hence it suffices to consider G%Apn+) for 2 ̂  p ^ 6 and for i = 2, 3 and
6, since the coefficient of α4 in — λ is 2, 3 and 6, respectively. For p = 2,
we can determine the lowest weights of them completely by using (3.9).

Or ( Δ . Π ) I θ λ i 4 Λi! ^Λ*2 ΛJ5> O Λ J 4 ^Λ<3 ^λ>5, OΛ»4 ^Λ>2 ^^13 Λjg, X 4 ΛJI XQ

(jΓ \J\. XI )'• ΰA>4 Λ/i Λ12 ΛJ3 Xδf ^Λί 4 ΛJ2 X5 Λ*β> " λ 4 A>i Λ12 λ'δJ Λ14 Λi2

Since λ + λ4 + δ is dominant, we get from (1.4); and the remark mentioned
just before (4.2)

h°(G*ΩUl)) = deg(λx + λβ) = 650 , h\GsΩ\{l)) = deg(λ2) = 78 ,

= deg(0) = 1 . •
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For p ^ 3, we compute mp(—λ) instead of determining the lowest weights
of G*(Apn+), since we have certain ambiguities caused by the weakness
of (3.9). The result is as follows:

m3(λ4 — λ2) = 18 , m3(λ4) = 24 , m4(λ4) = 144 ,

ra5(λ4) = 306 , mβ(λ4) = 180 .

Since the component with the lowest weight — λ could appear at most
m , ( - λ) times, we obtain the rough estimates

h\GzΩγ(l)) ^ 18 deg(λ2) = 1404 , h\GQΩγ{\)) ^ 24 ,

h\GβΩγ(l)) ^ 144 , h°(GQΩγ(l)) ^ 306 , h\G6Ωγ(l)) ^ 180 .

Combining the above results and (3.3), we get

h\Ω2

γ{l)) ^ h\G2Ωγ{l)) + h\G5Ωγ(l)) + h\G*Ωγ(l)) = 729,

h\Ωγ(l)) ^ h\G*Ωγ{l)) + h\GQΩγ(l)) ^ 1428 ,

h°(Ωγ(l)) ^ h\GβΩγ(l)) ^ 144 , h\Ωγ(l)) ^ h°(GβΩγ(l)) ^ 306 ,

h\Ωγ{l)) ^ ^°(Gei2Kl)) ^ 180 .

(4.2.2) r = 2. - λ = λ2 = (1, 2, 2, 3, 2, 1).
The lowest weights of G2(Λ2tt+) are

θλ/2 ~~" Λ/3 ~"" λ/4 "~" λ/5, ΛJ 2

Thus we have h\Ω\{l)) ^ 1.

(4.2.3) r = 3. - λ = λ, - λ, = (1, 1, 2, 2, 1, 0).
In this case, we get h°(Ω$(ϊ)) — 0 for p ^ 3, since the coefficient of α3 in
- λ is 2. The lowest weights of G2(Λ2n+) are

λi3 — λiβ > ^A*3 ^λ/4 , θλ/3 ώλ/i — λ δ

Thus we have h\Ω\(V>) ̂  deg(λβ) = 27.

(4.3) The case g = F 4 .
(4.3.1) r = 1. - λ = λ, = (2, 3, 4, 2).

The lowest weights of G2(Λ2rt+) are 2λ* - 3λ3 and X,. Thus we have
Λβ(0J(l)) ^ 1 in this case.

(4.3.2) r = 2.

λ2 - λα - λ4 = (0, 1, 1, 0)

λ2 - 2λ4 = (1, 2, 2, 0)

λ2 - λ8 = (1, 2, 2, 1)

' λ, - λ* = (1, 3, 4, 2)

λ2 - λ4 = (2, 4, 5, 2)

λ2 = (3, 6, 8, 4) .
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We exhibit the lowest weights of Gί(Λ2n+) for i = 2, 3, 4 and 6.

G2(Λ2it+): 3λ2 - 4λ3, 3λ2 - 2λ* - 2λ3 - λ4, λ2 - 2λ4.
G3(Λ2n+): 3λ2 - λ, - 2λ3 - 2λ4, 2λ2 - \ - λ, - λ4, λ2 - λx.
G4(Λ n+): 2λ2 - λ3 - 2λ4, 3λ2 - 2xι - 2λ3, 2λ2 - 2λ3.
Gβ(Λ2n+): λ2.

We calculate mp(—λ) for 3 ^ p ^ 6 and find

m3(λ2 — λi) = 9 , m3(λ2 — λ4) = 19 , m3(λ2) = 14 ,

m4(λ2 - λ4) = 18 , m4(λ2) = 63 , mβ(λ2) = 96 , mβ(λ2) = 34 .

From these datum, we get the estimates

h\Ω\{l)) ^ deg(2λ4) + degOO + 1 = 72 + 52 + 1 = 125 ,

h°(Ω3

r(l)) ^ 9degOO + 19deg(λ4) + 14 = 938 ,

hXΩΎil)) ^ 18 deg(λ4) + 63 = 531 , h\Ωγ{l)) ^ 96 ,

h\Ωγ{l)) ^ 34 .

(4.3.3) r = 3.
'λ3 - λα = (0, 1, 2, 1)

- λ = • λ3 - λ4 = (1, 2, 3,1)

Λ3 = (2, 4, 6, 3) .

We exhibit the lowest weights of G^A2^) for i = 2, 3 and 6.

G2(Λ2n+): 2λ3 - λx - 2λ4, 3λ3 - 2λ2.
\JΓ \J\ *l j l 4 λ » 3 ΛII " ~ ΛJ2 ^Aί 4 > OΛ<3 Λii "~~ Λ»2 ""•" X 4 , ^ Λ J 3 "~" O Λ J 4 , ΛI 3 ~~" ΛJ4

Gβ(Λ2π+): 4λ3 - λx — λ* - 2λ4, 2λ3 - 2λ4, λ3.

Since we have

m3(λ3 - λ4) = 3 , m3(λ3) = 25 , m4(λ3) = 39 , mδ(λ3) = 12 , mβ(λ3) = 1 ,

we obtain the following estimates.

h\Ω\(l)) ^ deg(λ4) + 1 = 27 , h\Ω*γ(l)) ^ 3 deg(λ4) + 25 = 103 ,

/ W ( l ) ) ^ 39 , h\Ω\(X)) ^ 12 , h°(Ωr(l)) ^ 1 .

(4.4) The case Q = G2. In this case, we have — λ = λ2 = (3, 2) and
the lowest weights of G2(Λ2tt+) are 3λ2 — 4λx and λ2. Hence we have
h\Ωr(D) ^ 1.

Combining the above results with Table 1, (3.8) and Table 3, we get
the following theorem by (2.4).

(4.5) THEOREM. The infinitesimal Torelli theorem holds for a non-
singular complete intersection with the ample canonical bundle in a
Kcίhler C-space (g, ar) if g = Eβ, F4 or G2.
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