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1. Introduction. In this paper we shall study the growth of
meromorphic solutions of some algebraic differential equations with the
aid of the Nevanlinna theory of meromorphic functions (see [4], [6]). We
denote by M the set of meromorphic functions in the complex plane, by
E some subset of [0, ) with meas F < «» and by K some constant
which is not always the same. The term “meromorphic” will mean
meromorphic in the complex plane.

Let H be a differential polynomial of w, w’, ---, w* (¢« =1) with
coefficients in M:

H=Hw,w, -+, w*) = > cwow’)s - - - (W),

where ¢; e M with ¢; # 0 and where I is a finite set of multi-indices
»=(qy q, *+*, q.) of nonnegative integers ¢, q,, -+-, ¢». Let Q,(w) be a
polynomial in w with coefficients in M:

my
Q: = Q(w) = Zatjwi (a;eM, 1=0,1,--+,m) .
F=

Consider the differential equation (D.E., for short):
(1) Flw, H) = Q(w)H" + +++ + Q(w)H + Q(w) =0,

where Q. (w) # 0 and F(w, H) is irreducible over M as a polynomial in
w and H. A meromorphic solution w = w(z) is said to be admissible if

T(r, f) = o(T(r, w)) (r— oo, r¢k)

for all coefficients f = a,;, ¢; in (1).
Eremenko [1] gave the following:
“Suppose that the D.E. (1) has an admissible solution. Then,
(i) m,=0;
(ii) When H = w",

(2) m=@e+Hn—-3 G=01,---,m).7
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As a special case, Gackstatter and Laine [2] and Steinmetz [8] proved

the following:
“When n =1, if the D.E. (1) has an admissible solution, then

m =0 and m,< 4,
where
4= max(@,+ 20, + +++ + ( + D)

(See also [10]).
Further, Gackstatter and Laine [2] studied the D.E.

(8) (w')* = i aw (a;€ M and m < 2n)

and conjectured that the D.E. (8) has no admissible solutions when
1=<m<mn-—1. To this conjecture, partial answers were given in [7]
and [9]:

“When 1 <m =<n — 1, the D.E. (8) except

(w)" = a(w + @)™ (a; constant, (n — m)|n)

has no admissible solutions.”
Here, we shall consider the D.E. (1) when H = w"* under the con-
dition (2) and prove that some of them have no admissible solutions.

2. Lemmas. We shall give some lemmas for later use in this
section. For nonconstant fe M, we denote by S(r, f) any quantity
satisfying

S(r, f) = o(T(r, f)) (r— oo, re¢E)
as usual (see [4, p. 55]). It is well-known that
(4) m(r, f¥[f) = S(r, f)
(see [4], [6]).

LEMMA 1. Let f, g be nonzero meromorphic functions linearly in-
dependent over C. Put

(5) f+g9=nh.
Then we have
T(r, f) £ T(r, k) + N(r, k) + N'(», g) + N(r, D) + S(r, f) + S(r, 9) ,

where N'(r, g) is the N-function of the poles of g other than the poles of
h and D = g'[/g — f'[f.
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PrROOF. The relations (5) and f' + ¢’ = b’ give
f=(g'lg —n)d'lg — fIf),
from which we obtain
(6) m(r, f) = m(r, hg'lg — k') + m(r, 1/D) + O(1)
= m(r, h) + m(r, g'/9) + m(r, b'[h) + m(r, D)

and
(7) N(r, f) < N(r, h) + N(», b) + N'(r, 9) + N(r, 1/D) .

Using (4), (6), (7) and the inequality

m(r, D) < m(r, f'[f) + m(r, ¢'[9) + OQ1) ,

we have the desired inequality immediately.

LEMMA 2. Let a;, b; be in M (=0, +--, m) with b, # 0 and put

R(w) = (@uu™ + «++ + ap)/(bpu™ + -+ + by) .
If
4@ 2 2T, (b, + los@D} but@| + 1 for weM,

then
|R(u(2))| < 2|an(2)|/[bn(2)| + 1
([1, Lemma 1]).
LEMMA 3. Let a; (=0, -+, t) and f be in M such that a,# 0. Then

HT(, £) = 3, T, 0} + O) < T(r, 3 a.r%)
< tTCr, ) + 3, Tr, a5) + O(1)

(see [5)]).

LEMMA 4. Let X=wuand Y = v be a nonzero meromorphic solution
of the functional equation

. ,

(8) Xr=aqY" + Z‘ > a,; XY? (n, m, k; integers; a, a;;€ M, a # 0)
y=0 t+j=p

such that u™ = av™. If n=m >k + 2 + m/n, then there exists a con-

stant K such that

T(r, w) = K{3. T(r, a;;) + T(r, a)} + S(r, w) + S(r, a) + 3. S(r, a,;) ;
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T(r, v) £ K{3 T(r, a;;) + T(r, a)} + S(r, v) + S(r, a) + >, S(r, a;;) .

PrOOF. As (u, v) is a solution of (8), we have

(9) U = av™ + ,Zf:‘ug;:, au? .
We rewrite (9) as

u" = au™(vj/u)™ + VE::.) {15;, a(vju)yu .
Dividing this by (v/4)™, we have

k

ur(ufv)™ — au™ — >, {Ev‘% a,_,-,-(u/v)"“-”'}u” =0,

v=0 \g=

which reduces to
k
(10) (u - > a0 )(u/v)"‘
v=0
k
— (Z_Ll a,_uu”>(u/v)"‘“ —_ e — guut(ufv)"* —au™=0.
Case 1. u" — 3F_,a,u* =0. In this case, from the relation
k
(11) u = E_lo a,u” ,
by Lemma 3 we have
k
nT(r, ) £ kT(r, w) + > T(r, a,,) + 0Q) ,
v=0

which reduces to

(12) T(r, u) < —2— 3 T(r, a,) + O(L) .
n— k =0

Next, we estimate T(r, v) in this case. From (9) and (11)
k—1
V™ = — @V — oo — (5_‘, aﬂu")v
1=0
and by Lemma 3
k-1
(m — E)T(r,v) < T(r, ap) + -+ + T(7, 1‘Z‘,)a,ﬂu‘) + T(r, @) + OQ1)

< ML, )+ 3y 3 T 0) + T, @) + OQ)

=0 i+7=v
Jjz1

Further, by (12) we have for a constant K
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T(r, v) < K{3, T(r, a,;) + T(r, a)} + OQ) .
Case 2. u"— >}  a,u* # 0. In this case, (10) reduces to
(18)  (w/o)" — B(w)(u/v)"™" — -+ — Ry(u)u/v)"™* — Ryy,(w) =0,

where each R;(u) satisfies the condition of Lemma 2 as n =m > k.
Applying Lemma 2 to the estimate of the roots of (13):

lufv| =1+ max |R;(u)
1Sisk+1
as in [1], we obtain
k
(14) ul < 2{(@lal + 2ol + 3 3 lagl + lal + 1} .
Now, in (9) put

k
= —qv™, g=wu" and h =, a U,
v=0 1+j=v
then
h+#+0 and f+g=="h.
Here, we apply Lemma 1.
(I) When f and g are linearly dependent, from (9) we obtain

k
agv™ = 2“;;‘, auv?  (a # 0, constant) ,
y= =y

so that by (14) and Lemma 3
T(r, v) = K{3, T(r, a;;) + T(r, @)} + 0Q1) .
Further, as 4" = (a + 1)av™,
nT(r, u) £ mT(r, v) + T(r, a) + OQ1) .
Therefore, we obtain
T(r, w) = K{3, T(r, a,;) + T(r, a)} + 0Q1) .

(II) When fand g are linearly independent, by Lemma 1 we obtain
@15) T(r, f) < T(r, k) + N(r, h) + N'(r, 9) + N(r, D) + S(r, f) + S(r, g) .
Here, we estimate each term of (15).

(16) mT(r, v) — T(r,a) + OQ) < T(r, 1),

a1mn T(r, b) < kET(r, v) + K{3, T(r, a;;) + T(r, @)} + O(1)

(by (14) and Lemma 3),

(18)  N(r, k) + N'(r, 9) < N(r, v) + 3, N(r, a;;) + N(», a) (by (14)),
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N(r, D) < N(r, 1/u) + N(r, 1/v)
+ 3 {N(r, 1/a,;) + N(r, a,;)} + N(r, 1/a) + N(r, a) .

This is because, if % (resp. v) has a pole at z = ¢ which is neither a pole
nor a zero of a,; and a, then v (resp. %) has a pole at z = ¢, and f and
g have a pole of the same order at z = ¢, which shows that D has no

pole at z = ¢.

20)  S(r, f) + S(r, 9) = S(ry v) + S(r, @) + X 8(r, a,y) (by (14)),
(21) N(r, v) £ T(r, v) + 0Q) ,

(22) N(r, 1/u) = T(r, w) + O(1) ,

@23) T(ryw) = —%"—T('r, v)+ K{X T(r, a.;)+ T(r, a)}+0(1) (by (9) and (14)) ,

(24) N(r, 1/v) £ T(r, ») + 01) .
From (15)-(24), we obtain the inequality

25) (m—k—2— m/n)T(r,v) = K{3 T(r, a;;) + T(r, a)}
+ S(r, v) + S(r, @) + X 8(r, a,;) ,

and, as m — k — 2 — m/n > 0 by assumption,

(26)  T(r,v) = K{3, T(r, a;;) + T(r, @)} + S(r, v) + S(r, @) + 3 S(r, a,;) .

Next we estimate T(», ). From (9) and (14), we have
mT(r, v) £ nT(r, u) + kT(r, v) + K, T(r, a,;) + T(r, a)} + OQ1) ,
that is,

@) T(rv) S — . 2T, W) + K(3 T(r, ag) + Tlr, )} + 0(1) .

From (23), (26) and (27), we obtain
T(r, w) = K{3 T(r, a;;) + T(r, @)} + S(r, w) + S(r, @) + 3 S(r, a;) -
Combining Case 1 and Case 2, we complete the proof.

COROLLARY. If
T(r, a;;) = S(r,u) and T(r,a) = S(r, u)
or .
T(rya,;) = S(r,v) and T(r,a)= S(r, v),
then
m=k+ 2+ m/n.
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REMARK. Especially when n = m,
m—3=k.

This is an improvement of Theorem II in [3].

3. Theorem. As an application of Lemma 4, we consider the growth
of meromorphic solutions of the differential equation

(28) (W) + Qo (w)w®)" ™ + -+ + Qw)w'™ + Q(w) =0,
where n =21, £ =1 and

Q¢=Qi(w)=gaﬁw" t=0,1, -+, m;a;€M;m, = deg Q,) .
We put
k:{max{(i-i-mi);lgién—land Q, # 0}
0, whenall ;=0 A1=i=<n-—-1)
and m, = m.

THEOREM. Let w = w(z) be a meromorphic solution of the D.E. (28)
for which w'*® # 0.
(I) When kE+2=<m<n—1, w satisfies either

(29) (W) + QoW + Aoms/MAey)™ = 0
or
T(r, w) = K3, T(r, a;;) + S(r, w) + > S(r, a,;) .
(I1) When k+3 < m=mn and Quu_, = Gm_. = 0, w satisfies either
(W™ + a,,w* =0
or
T(r, w) £ KX, T(r, a;;) + S(r, w) + X, S(r, a,;) .

(AII) Whenk+3<n=m—1and @Gy, = *** = Auy = 0, w satisfies
either

(W) + apw™ =0
or
T(r, w) < K3, T(r, a,;) + S(r, w) + 3, S(r, a,;) .
Proor. (I) We rewrite @, as follows:

QW) = Aou(W + Aoms/MAW)™ + ’g‘a b,;w? ,
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where b,; is rational in a,,, @,,_, and a,;. Put
u=w" and v =W + Gom_,/ MUy -
Then, as k + 2 < m, (28) becomes
m—2
(30) U= =™ + X D cutt’
v=0 i+j=v

where ¢,; is rational in a,,. Suppose that u” # —a,,v™. We may suppose
v#0. Then, we may apply the method of the proof of Lemma 4 to (30).
We change only (21) of Case 2, (II) in the proof of Lemma 4 as follows:
Instead of (21), we use the inequality
(21 N(r, v) £ N(r, w) + N(r, 1/aon) + N, @on_y)

< 23 N(», a;;) + N(r, 1/a,,) .

To obtain the last inequality, we apply the method used for (14) to

m—1
W) = —amw™ — 3, 3 ay(w™)w’ .
v

v=01+4=

Then, we have the inequality
m—1
0] < 2{@loun) + Dlwl + 2, % ] + ol + 1},

which shows that
N(r, w) £ 3, N(r, a;;) .
In this case, instead of (25), we obtain
(m—(m—2)—1—m/n)T(r,v) =1 — m/n)T(r, v)
< K> T(r, a;) + S(r,v) + > 8(r, a,;) ,
which reduces to
T(r, w) = K3, T(r, a;;) + S(r, w) + >, S(r, a;;) ,

as ¢;; is rational in a,,.
(II) Put w*® =u and w = v. Then (28) becomes

(31) U = — @ V" — Zk', > agutv? .
v=0 i+j=v
Suppose that u" # —a,v". Then as in the case (I) of this proof, we
obtain
(m —k — 2)T(r, v) = K3, T(r, a;;) + S(r, v) + 3 8(r, a,;) ,
which reduces to
T(r, w) £ K3, T(r, a;;) + S(r, w) + 3, S(r, ay;)
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as k + 3 = m.
(III) Put w = and w* = v». Then (28) becomes

k
U™ = bv" + Z Z b{j/viuj )
y=0 i+j=v
where b = —1/a,, and b;; = —a,j/a,.
Suppose that u™ # bv". Then, as k + 3 <n < m — 1, we may apply
Lemma 4 to this case and obtain

T(r, w) < K > T(r, a;;) + S(r, w) + >, S(r, a;;)
immediately.

COROLLARY. When pt=1and k+2=<m =<n — 1, if all coefficients
a;; are rational, any meromorphic solution w = w(z) of the D.E. (28) is
rational.

PROOF. Suppose w’ = 0. When w does not satisfy (29) for p =1,
we have

T(r, w) = K3, T(r, a;;) + S(r, w) + 3. S(r, a,;) ,

from which we obtain

lim inf L W) o o |
-0 ogr

This shows that w is rational ([6, p. 40]).

When w satisfies (29) for ¢ =1, then it is well-known that w is
rational ([9, Corollary to Theorem 1] or [11, Theorem 3]).

If w' =0, then w is a polynomial.
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