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1. Introduction. In this paper we shall study the growth of
meromorphic solutions of some algebraic differential equations with the
aid of the Nevanlinna theory of meromorphic functions (see [4], [6]). We
denote by M the set of meromorphic functions in the complex plane, by
E some subset of [0, oo) with meas£'< <χ> and by K some constant
which is not always the same. The term "meromorphic" will mean
meromorphic in the complex plane.

Let H be a differential polynomial of w, w', -",w{μ) (μ ^ 1) with
coefficients in M:

H = H(w, w\ , w{μ)) = Σ cλ(z)wgo(w')Ql (w{μ))gp ,
λ l

where cλ e M with cλ Φ 0 and where / is a finite set of multi-indices
λ = (q0, Qlf , qμ) of nonnegative integers q0, qlf , qμ. Let Qt(w) be a
polynomial in w with coefficients in M:

Qi = Qi(w) = Σ α<yw
y fan e M, i = 0,1, ••-,%).

Consider the differential equation (D.E., for short):

( 1 ) F(w, H) = Qn(w)Hn + + Qx{w)H + Q0(w) = 0 ,

where Qn(w) Φ 0 and F(w, H) is irreducible over M as a polynomial in
w and H. A meromorphic solution w = w(z) is said to be admissible if

T(r, f) = o(2TCr, w)) (r -• oo, r g # )

for all coefficients / = α<y, cλ in (1).
Eremenko [1] gave the following:
"Suppose that the D.E. (1) has an admissible solution. Then,
(i) mn = 0;
(ii) When H = wι"\

(2) md^(μ + l)(n - i) (i = 0, 1, , n) ."
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As a special case, Gackstatter and Laine [2] and Steinmetz [8] proved
the following:

"When n = 1, if the D.E. (1) has an admissible solution, then

mx = 0 and ra0 ^ Δ ,

where

J = max(g0 + 2gx + + (μ + ΐ)qμ) ."

(See also [10]).
Further, Gackstatter and Laine [2] studied the D.E.

(3 ) (w')n = Σ a/w' (a; e M and m ^ 2n)
i=o

and conjectured that the D.E. (3) has no admissible solutions when
1 ^ m ^> n — 1. To this conjecture, partial answers were given in [7]
and [9]:
"When 1 <: m <: n - 1, the D.E. (3) except

(w')n = a(w + ά)m (a; constant, (n — m)\n)

has no admissible solutions."
Here, we shall consider the D.E. (1) when H = w{μ) under the con-

dition (2) and prove that some of them have no admissible solutions.

2. Lemmas. We shall give some lemmas for later use in this
section. For nonconstant feM, we denote by S(r,f) any quantity
satisfying

S(r, /) = o(T(r, /)) (r -> oo, r $ E)

as usual (see [4, p. 55]). It is well-known that

(4) m(r,f)/f) = S(r,f)

(see [4], [6]).

LEMMA 1. Let f, g be nonzero meromorphic functions linearly in-
dependent over C. Put

(5) f+g = h.

Then we have

T(r, f) ^ T(r, h) + N(r, h) + N\r, g) + N(r, D) + S(r, f) + S(r, g) ,

where N'(r, g) is the N-function of the poles of g other than the poles of
h and D = g'/g - f'/f.
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PROOF. The relations (5) and / ' + g' = h' give

f={hg'lg-h')l{g'lg-flf),

from which we obtain

(6) m(r, f) ^ m(r, hg'/g - h') + m(r, 1/D) + 0(1)

^ m(r, Λ) + m(r, g'/g) + m(r, Λ'/&) + ra(r, JD)

+ iV(r, D) - ΛΓ(r, 1/D) + 0(1)

and

( 7 ) N(r, f) ^ N(r, h) + N(r, h) + N'(r, g) + N(r, 1/D) .

Using (4), (6), (7) and the inequality

m(r, D) ̂  m(r, f'/f) + m(r, g'/g) + 0(1) ,

we have the desired inequality immediately.

LEMMA 2. Let ajf bά be in M (j = 0, , m) with bm Φ 0 and put

R(u) = (amum + + ao)/(bmum + + 60) .

If

\u(z)\ 2= 2{g 1 (l&yGOl + |α,(aOI)}/|δ.GOI + 1 for ueM,

then

\R(u(z))\^2\am(z)\/\bm(z)\ + l

([1, Lemma 1]).

LEMMA 3. Let aά (j = 0, , ί) and f be in M such that at Φ 0. Then

t{T(r, f) - Σ Γ(r, αy)} + 0(1) ^ r( r , Σ αy/

^ tT{r, f) + Σ 2Xr, o,) + 0(1)

(see [5]).

LEMMA 4. Let X = u and Y = v be a nonzero meromorphic solution
of the functional equation

(8) P = α 7 w + Σ Σ aijX
ιYί (n, m, k; integers; α, α<y e M, a Φ 0)

o i+i

ίfcαί ^ n ^ avm. Ifn^m>k + 2 + m/n, then there exists a con-
stant K such that

T(r, u) ^ K{Z T(r, ai3) + T(r, a)} + S(r, u) + S(r, a) + Σ S(r, atJ)
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T(r, v) ^ ίΓ{Σ T{r, e%) + T(r, a)} + S(r, v) + S(r, a) + Σ S(r, αiy) .

PROOF. AS (U, V) is a solution of (8), we have

We rewrite (9) as

un = aum(v/u)m + Σ { Σ aφ/uyty .

Dividing this by (v/u)m, we have

un(u/v)m - aum - Σ

which reduces to

(10) Σ
Oy^vAiu/v)*-1 - . . . - aQku

k(u/v)m-k - aum = 0 .
l /

Case 1. un — ΣΪ«oΛVOw
1' = 0. In this case, from the relation

(11) un = Σ α ^ ,
i/=0

by Lemma 3 we have

nT(r, u) ^ kT(r, u) + Σ Γ(r, α j + 0(1) ,
i/=0

which reduces to

(12) Γ(r, u) <z -±— Σ 2\r, α j + 0(1) .

Next, we estimate T(r, t;) in this case. From (9) and (11)

avm — —aokv
k — — ( Σ (^iί^ )v

and by Lemma 3

(m - k)T(r, v) ^ Γ(r, αofc) + + τ(r, g α ^ ) + Γ(r, α) + 0(1)

> j + T{Tf a )

2 »^=

Further, by (12) we have for a constant K
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ΊXr, v) ^ #{Σ T{r, aί5) + Γ(r, α)} + 0(1) .

Case 2. un — ΣίUα*)^1' Φ 0. In this case, (10) reduces to

(13) (u/vr - RMiulvT'1 Rk(u)(u/v)m~k - Rk+1(u) = 0 ,

where each Rj(u) satisfies the condition of Lemma 2 as n ^ m > k.
Applying Lemma 2 to the estimate of the roots of (13):

\u/v\ ^ 1 + max \Rj(u)\

as in [1], we obtain

(14) \u\ ̂  2J(2|α| + 2)\v\ + Σ Σ |α<y| + \a\ + l i .

Now, in (9) put
k

f== —avm , g = un and A = Σ Σ α ^ V ,

then

fe^O and

Here, we apply Lemma 1.
(I) When / a n d g are linearly dependent, from (9) we obtain

k

aavm = Σ Σ di^v3' (a Φ 0, constant) ,
0 i+j

so that by (14) and Lemma 3

Γ(r, v) ^ ίΓ{Σ Γ(r, aid) + T(χ, a)} + 0(1) .

Further, as un = (a + l)avm,

nT(r, u) ^ mΓ(r, v) + Γ(r, α) + 0(1) .

Therefore, we obtain

Γ(r, it) ^ ίΓ{Σ Γ(r, α o ) + Γ(r, α)} + 0(1) .

(II) When/and g are linearly independent, by Lemma 1 we obtain

(15) Γ(r, /) ^ T(r, h) + iV(r, λ) + N\r, g) + N(r, D) + S(r, f) + S(r, g) .

Here, we estimate each term of (15)»

(16) rnT(r, v) - Γ(r, a) + 0(1) ^ Γ(r, /) ,

(17) T(r, h) ^ kT(r9 v) + lf{Σ ΊXr, aia) + Γ(r, α)} + 0(1)

(by (14) and Lemma 3),

(18) N(r, h) + N'(r, g) ^ N(r, v) + Σ N(r, au) + N(r, a) (by (14)) ,
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(19) N(r, D) £ N(r, l/u) + N(r, 1/v)

+ Σ {N(r, l/aiό) + N(r, atJ)} + N(r, I/a) + N(r, a) .

This is because, if u (resp. v) has a pole at z = c which is neither a pole
nor a zero of <% and α, then v (resp. u) has a pole at z = c, and / and
g have a pole of the same order at z = c, which shows that 2) has no
pole at z = c.

(20) S(r, /) + S(r, </) ̂  S(r, v) + S(r, a) + Σ S(r, α€i) (by (14)) ,

(21) #(r, v) ^ Ί\r, v) + 0(1) ,

(22) N(r, l/u) ^ T(r, u) + 0(1) ,

(23) Γ(r, it) ^ —Γ(r , ^) + ίΓ{Σ Γ(r, α i y)+ Γ(r, α)}+O(l) (by (9) and (14)) ,
nn

(24) N(r, 1/v) ̂  Γ(r, v) + 0(1) .

From (15)-(24), we obtain the inequality

(25) (m - k - 2 - m/n)T(rf v) ^ #{Σ IXr, α<y) + Γ(r, α)}

+ S(r, v) + S(r, a)

and, as m — fc — 2 — m/w > 0 by assumption,

(26) Γ(r, v) ^ ίΓ{Σ Γ(r, α4i) + Γ(r, α)} + S(r, v) + S(r, α) + Σ S(r, ati) .

Next we estimate Γ(r, u). From (9) and (14), we have

mT(r, v) ^ nT(r, u) + kT(r, v) + K{Σ T(rf ai3) + T(r, a)} + 0(1) ,

that is,

(27) Γ(r, t;) ^ — ^ — Γ(r, M) + i^{Σ Γ(r, α4i) + T(r, a)} + 0(1) .
m — k

From (23), (26) and (27), we obtain

T(r, u) ^ iΓ{Σ Γ(r, α4i) + Γ(r, α)} + S(r, w) + S(r, a) + Σ S(r,

Combining Case 1 and Case 2, we complete the proof.

COROLLARY. If

T(r, aiS) = S(r, w) α^d Γ(r, α) = iS(r, w)

or

Γ(r, α<y) = S(r, v) and T(r, a) = S(r, v) ,

m ^ k + 2 + m/n .
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REMARK. Especially when n = m,

m — 3 ^ k .

This is an improvement of Theorem II in [3].

3. Theorem. As an application of Lemma 4, we consider the growth
of meromorphic solutions of the differential equation

(28) (wlμ))n + Qn^{w){w{μ))n-1 + + Q1(w)w{μ) + Q0(w) = 0 ,

where n ^ 1, μ ^ 1 and

Qi = Qt{w) = Σ UijWj (i = 0,1, , ii; α^ e M; mt — deg Q*) ,
i=o

We put

(max {(i + m*); 1 ̂  i ^ rt — 1 and Qί Φ 0}

~ (0 , when all Q, = 0 (1 ̂  i ^ n - 1)

and m0 = m.

THEOREM. Lei w = w(«) be a meromorphic solution of the D.E. (28)
for which w{μ) Φ 0.

( I ) When k + 2<^m?£n — 1, w satisfies either

(29) (w^) 7 1 + α O m ( ^ + αOm_1/mαOm) ίΛ = 0

or

T{r, w)^KΣ Γ(r, α*) + S(r, w) + Σ S(r,

(II) When k + 3 ^ m = n and aQm_1 = αom_2 = 0, w satisfies either

(w{μ))n + aQnw
n = 0

or

T(r, w)^KΣ T(r, aid) + S(r, w) + Σ S(r, ai3) .

(III) Wfeen k + St^n^m — 1 and aOOT_! = = a0A;+1 = 0, ̂  satisfies
either

(w{μ))n + aOmwm = 0

or

Γ(r, w) £ ΛΓΣ ^(r, a4i) + S(r, w) + Σ S(r, atJ) .

PROOF. ( I ) We rewrite Qo as follows:

m—2

QQ(w) = αO m(w + aOm-.JmaQm)m + Σ
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where 60i is rational in α0TO, αOm__i and aQj. Put

% = w(μ) and t; = w + aOm^/maQm .

Then, as fc + 2 <̂  m, (28) becomes

(30) un = - < W Λ + Σ 2 Σ o ^ v ,

where c^ is rational in avr Suppose that u* Φ —aOmvm. We may suppose
vΦO. Then, we may apply the method of the proof of Lemma 4 to (30).
We change only (21) of Case 2, (II) in the proof of Lemma 4 as follows:
Instead of (21), we use the inequality

(21') N(r, v) ^ N(r, w) + N(r, I / O

To obtain the last inequality, we apply the method used for (14) to

{w{μ))n = -aomwm - Σ ' Σ dijiw^yw3' .

Then, we have the inequality

\w(μ)\ ^ 2{(2|αJ + 2)\w\ + j j Σ |α*yl + 1^1 +

which shows that

N(r, w) ^ Σ ^(r , α<y) .

In this case, instead of (25), we obtain

(m - (m - 2) - 1 - m/n)T(r, v) = (1 - m/n)T(r, v)

T(r, au) + S(r, v)

which reduces to

T(r, w) ^ ί Γ Σ Γ(r, α€i) + S(r, w) + Σ S(r, aiS) ,

as ciS is rational in αpg.
(II) Put wlμ) = u and w = v. Then (28) becomes

(31) un = -aOnv
n - Σ Σ α ^ V .

0 i+j

Suppose that un Φ —aOnv
n. Then as in the case (I) of this proof, we

obtain

(m - fc - 2)Γ(r, v) ^ i Γ Σ Γ(r, α<y) + S(

which reduces to

Γ(r, w) ^ JBΓΣ Άr, ati) + S(r, w)
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as k + 3 ^ m.
(Ill) Put w = u and wlμ) = v. Then (28) becomes

um = bvn + Σ Σ M ' ^ ,

where 6 = — l/aQm and 6O = — aJaQin.
Suppose that um Φ bvn. Then, as k + 3 <^> n ^ m — 1, we may apply

Lemma 4 to this case and obtain

T(r, w) ^ KΣ*T(r, aiά) + S(r, w)

immediately.

COROLLARY. When μ = 1 α^d Λ + 2 ^ m ^ n — 1, i/ all coefficients
ai5 are rational, any meromorphic solution w = w(z) of the D.E. (28) is
rational.

PROOF. Suppose w' Φ 0. When w does not satisfy (29) for μ = 1,
we have

Γ(r, w) ^ ί Γ Σ Γ(r, αiy) + S(r, w) + Σ S(r, ai3) ,

from which we obtain

liminf Γ ( r ' w ) < o o .
r-*oo log r

This shows that w is rational ([6, p. 40]).
When w satisfies (29) for μ = 1, then it is well-known that w is

rational ([9, Corollary to Theorem 1] or [11, Theorem 3]).
If wf — 0, then w is a polynomial.
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