ON A MOMENT PROBLEM

Gwo Dong Lin

(Received December 16, 1985)

Abstract

Let n_{0} be any fixed non-negative integer, $-\infty \leqq a<b \leqq \infty$ and $f(x) \geqq 0$ an absolutely continuous function with $f^{\prime}(x) \neq 0$, a.e. on (a, b). Then the sequence of functions $\left\{(f(x))^{n} e^{-f(x)}\right\}_{n=n_{0}}^{\infty}$ is complete in $L(a, b)$ if and only if the function $f(x)$ is strictly monotone on (a, b).

1. Introduction. Let $-\infty \leqq a<b \leqq \infty$, and let $L(a, b)$ be the space of all summable functions defined on the interval (a, b). Then a sequence of functions $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ is said to be complete in $L(a, b)$ if for every $g \in L(a, b)$, the equalities

$$
\int_{a}^{b} g(x) f_{n}(x) d x=0, \quad \text { for all } \quad n=1,2, \cdots
$$

imply $g(x)=0$, a.e. (almost everywhere) on (a, b). The well-known MüntzSzász theorem (Boas [1, p. 235]) is concerned with a complete sequence of functions in $L(a, b)$, where (a, b) is a bounded interval, and is stated as follows:

Theorem A. Let $0 \leqq a<b<\infty$ and $0<n_{1}<n_{2}<\cdots$. Then $\left\{x^{\left.n_{i}\right\}_{i=1}^{\infty}}\right.$ is complete in $L(a, b)$ if and only if $\sum_{i=1}^{\infty} 1 / n_{i}=\infty$.

In this paper, we shall first consider the completeness of a sequence of functions $\left\{x^{n} e^{-x}\right\}$ in $L(a, \infty)$, where $a \geqq 0$ (Theorem 1), then use a theorem of Zarecki to extend the result just obtained to the sequence of functions $\left\{(f(x))^{n} e^{-f(x)}\right\}$ (Theorem 2). Finally, we give some remarks on Laguerre and Hermite functions.

Theorem 1. For any fixed integer $n_{0} \geqq 0$ and for any fixed real number $a \geqq 0$, the sequence of functions $\left\{x^{n} e^{-x}\right\}_{n=n_{0}}^{\infty}$ is complete in $L(a, \infty)$.

THEOREM 2. Let n_{0} be any fixed non-negative integer, $-\infty \leqq a<b \leqq \infty$ and $f(x) \geqq 0$ an absolutely continuous function with $f^{\prime}(x) \neq 0$, a.e. on (a,b). Then the sequence of functions $\left\{(f(x))^{n} e^{-f(x)}\right\}_{n=n_{0}}^{\infty}$ is complete in

[^0]$L(a, b)$ if and only if the function $f(x)$ is strictly monotone on (a, b).
When we compare Theorem 1 with Theorem A, it is natural to ask whether the subsequence $\left\{x^{n_{i}} e^{-x}\right\}_{i=1}^{\infty}$ is still complete in $L(0, \infty)$ if $\sum_{i=1}^{\infty} 1 / n_{i}=$ ∞ and $0<n_{1}<n_{2}<\cdots$. The answer is negative due to the following example.

Example. The sequence of functions $\left\{x^{4 m-1} e^{-x}\right\}_{m=1}^{\infty}$ is incomplete in $L(0, \infty)$, since the function $g(x)=e^{-x} \sin 2 x$ is summable on $(0, \infty)$ and $g(x) \neq 0$, a.e. on ($0, \infty$), but (see Gradshteyn and Ryzhik [3, p. 490])

$$
\begin{gathered}
\int_{0}^{\infty} x^{4 m-1} e^{-x} g(x) d x=\int_{0}^{\infty} x^{4 m-1} e^{-2 x} \sin 2 x d x=\frac{\Gamma(4 m)}{8^{2 m}} \sin m \pi=0, \\
\text { for } m=1,2, \cdots .
\end{gathered}
$$

2. Proofs.

Proof of Theorem 1. Assume that $g \in L(a, \infty)$ satisfies

$$
\begin{equation*}
\int_{a}^{\infty} g(x) x^{n} e^{-x} d x=0, \quad \text { for all } n=n_{0}, n_{0}+1, \cdots \tag{1}
\end{equation*}
$$

We want to show that $g(x)=0$, a.e. on $(a, \infty) \equiv I$. For any $\lambda>0$, the function $h(x)=\chi_{I}(x) g(x) x^{n_{0}} e^{-\lambda x}$ is summable on ($0, \infty$), since $g \in L(a, \infty)$ and $\chi_{I}(x) x^{n} e^{-\lambda x}$ is a bounded measurable function on ($0, \infty$), where χ_{I} denotes the characteristic function of I. Hence the function

$$
\Phi(s)=\int_{0}^{\infty} \chi_{I}(x) g(x) x^{n} 0 e^{-s x} d x
$$

is analytic on the half-plane $K=\{s: s=\alpha+i \beta, \alpha>0\}$.
The condition (1) implies that the m-th derivative $\Phi^{(m)}(1)=0$ for every $m=0,1,2, \cdots$. This means that Φ is a zero function in some neighborhood of $s=1$ and hence $\Phi(s)=0$ for every $s \in K$, by the uniqueness theorem for analytic function. Finally, the uniqueness of the Laplace transform implies that $\chi_{I}(x) g(x) x^{n_{0}}=0$, a.e. on ($0, \infty$), and hence $g(x)=0$, a.e. on (a, ∞), which is the desired result.

To prove Theorem 2, we need the following theorem of Zarecki (see Natanson [5, Vol. I, p. 271] or Saks [6, p. 128]) which was used to extend Müntz-Szász theorem by Hwang and Lin [4].

THEOREM B. Let $f(x)$ be a continuous and strictly increasing function on a closed and bounded interval $[c, d]$. Then $f^{\prime}(x) \neq 0$, a.e. on $[c, d]$ if and only if the inverse function $f^{-1}(t)$ is absolutely continuous on the interval $[f(c), f(d)]$.

Proof of Theorem 2. (Necessity) Assume that the sequence of functions $\left\{(f(x))^{n} e^{-f(x)}\right\}_{n=n_{0}}^{\infty}$ is complete in $L(a, b)$. Then we want to show that the function $f(x)$ is strictly monotone on (a, b). Suppose that $f(x)$ is not strictly monotone on (a, b). Then there exist two points $x_{1}<x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=y_{0}$, say. Let us define a function $g:(a, b) \rightarrow$ $(-\infty, \infty)$ by

$$
g(x)= \begin{cases}f^{\prime}(x), & \text { if } x \in\left[x_{1}, x_{2}\right] \text { and } f^{\prime}(x) \text { exists }, \\ 0, & \text { otherwise } .\end{cases}
$$

Then $g \in L(a, b)$ and $g(x) \neq 0$, a.e. on $\left[x_{1}, x_{2}\right] \subset(a, b)$, but (Natanson [5, I, p. 265 and II, p. 236])

$$
\begin{aligned}
\int_{a}^{b} g(x)(f(x))^{n} e^{-f(x)} d x= & \int_{x_{1}}^{x_{2}}(f(x))^{n} e^{-f(x)} d f(x)=\int_{y_{0}}^{y_{0}} y^{n} e^{-y} d y=0, \\
& \text { for every } n=n_{0}, n_{0}+1, \cdots,
\end{aligned}
$$

a contradiction to the assumption.
(Sufficiency) Assume that the function $f(x)$ is strictly monotone on (a, b). Then we want to show that the sequence of functions $\left\{(f(x))^{n} e^{-f(x)}\right\}_{n=n_{0}}^{\infty}$ is complete in $L(a, b)$. Without loss of generality, we may assume that $f(x)$ is strictly increasing on (a, b). Suppose $h \in L(a, b)$ satisfy

$$
\begin{equation*}
\int_{a}^{b} h(x)(f(x))^{n} e^{-f(x)} d x=0, \quad \text { for all } \quad n=n_{0}, n_{0}+1, \cdots \tag{2}
\end{equation*}
$$

Then we want to prove that $h(x)=0$, a.e. on (a, b). Taking the transformation $t=f(x)$ and using Theorem B , we have, from (2),

$$
\begin{equation*}
\int_{f\left(a^{+}\right)}^{f\left(b^{-}\right)} h\left(f^{-1}(t)\right) t^{n} e^{-t}\left(f^{-1}\right)^{\prime}(t) d t=0, \quad \text { for all } \quad n=n_{0}, n_{0}+1, \cdots, \tag{3}
\end{equation*}
$$

where $f\left(a^{+}\right) \equiv \lim _{x \rightarrow a^{+}} f(x)$, and analogously for $f\left(b^{-}\right)$. Note that (3) is equivalent to

$$
\begin{equation*}
\int_{0}^{\infty} \chi_{I}(t) h\left(f^{-1}(t)\right) t^{n} e^{-t}\left(f^{-1}\right)^{\prime}(t) d t=0, \quad \text { for all } \quad n=n_{0}, n_{0}+1, \cdots, \tag{4}
\end{equation*}
$$

where $I=\left(f\left(a^{+}\right), f\left(b^{-}\right)\right)$. Since $h \in L(a, b)$, we know that $k(t) \equiv \chi_{I}(t)$. $h\left(f^{-1}(t)\right)\left(f^{-1}\right)^{\prime}(t)$ is summable on ($0, \infty$) and hence both (4) and Theorem 1 imply that $k(t)=0$, a.e. on ($0, \infty$). Therefore

$$
h\left(f^{-1}(t)\right)=0, \quad \text { a.e. on } \quad\left(f\left(a^{+}\right), f\left(b^{-}\right)\right),
$$

and hence $h(x)=0$, a.e. on (a, b). The proof of this theorem is complete.
3. Remarks. Define $L_{n}(x)$ be the coefficient of e^{-x} in the n-th derivative of $x^{n} e^{-m}$, that is,

$$
L_{n}(x)=e^{x} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} n(n-1) \cdots(k+1) x^{k} .
$$

Then $L_{n}(x), n=0,1,2, \cdots$, are called the Laguerre polynomials. It is well-known (see Goffman [2, p. 193] or Shilov [7, p. 403]) that the Laguerre functions,

$$
\psi_{n}(x)=\frac{1}{n!} e^{-x / 2} L_{n}(x), \quad n=0,1,2, \cdots,
$$

form a complete sequence in $L_{2}(0, \infty)$, the square summable functions on $(0, \infty)$. As a consequence of Theorem 2, it is also a complete sequence in $L(0, \infty)$.

The functions obtained in orthogonalizing the expressions $e^{-x^{2}}, x e^{-x^{2}}$, $\cdots, x^{n} e^{-x^{2}}, \cdots$ in the space $L_{2}(-\infty, \infty)$ are called Hermite functions. The completeness of the sequence of Hermite functions is based on the fact that $\left\{x^{n} e^{-z^{2}}\right\}_{n=0}^{\infty}$ is complete in $L_{2}(-\infty, \infty)$ (Shilov [7, p. 403]). Applying Theorem 2 again we know that the sequence of functions $\left\{x^{2 n} e^{\left.\left.-x^{2}\right\}_{n=0}\right)_{0}}\right.$ is complete in $L(0, \infty)$, but incomplete in $L(-\infty, \infty)$.

References

[1] R. P. Boas, Entire Functions, Academic Press, New York, 1954.
[2] C. Goffman, First Course in Functional Analysis, Prentice-Hall, N.J., 1965.
[3] I.S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1980.
[4] J.S. Hwang and G. D. Lin, "On a Generalized Moment Problem II," Proc. of Amer. Math. Soc. 91 (1984), 577-580.
[5] I. P. Natanson, Theory of Functions of a Real Variable, Frederick Ungar, New York, Vol. I (1955) \& Vol. II (1960).
[6] S. SAKS, Theory of the Integral, (L.C. Young, Translator), Stechert-Hafner, New York, 1937.
[7] G. Ye. Shilov, Mathematical Analysis, Pergamon Press, New York, 1965.
Institute of Statistics
Academia Sinica
Taipei 11529
Taiwan

[^0]: AMS subject classification (1980): Primary 42A65, Secondary 26A46, 26A48. Key words and phrases: Complete, summable function, Müntz-Szász theorem, absolutely continuous function, and Laguerre functions.

