Tôhoku Math. Journ. 38 (1986), 563-573.

SPECTRAL RIGIDITY OF COMPACT KAEHLER AND CONTACT MANIFOLDS

H. GAUCHMAN AND S. I. GOLDBERG¹

(Received November 30, 1985)

Abstract. Complex projective space CP_n with the Fubini-Study metric, and the odd-dimensional constant curvature sphere S^{2n+1} have recently been characterized by the spectrum of the Laplacian on 2-forms. In this paper, CP_n and S^{2n+1} are characterized among the classes of compact Kaehler and Sasakian manifolds, respectively, by the spectrum of the Laplacian on pforms for any fixed p.

1. Introduction. Let (M, g) be a compact connected Riemannian manifold with complex structure J and Riemannian metric g, and denote by $\Delta = -(dd^* + d^*d)$ the real Laplacian acting on *p*-forms, where d is the operator of exterior differentiation and d^* is its adjoint with respect to g. Then, for each $p = 0, 1, 2, \dots, n$, we have the spectrum of Δ :

$$\operatorname{Spec}^p(M,\,g)=\{0\geqq\lambda_{1,p}\geqq\lambda_{2,p}\geqq\cdots\geqq\lambda_{k,p}\geqq\cdots\downarrow-\infty\}$$
 ,

each eigenvalue being repeated as often as its multiplicity. Hodge theory implies that $0 \in \operatorname{Spec}^p(M, g)$ if and only if the *p*-th Betti number $b_p(M)$ is not zero, and its multiplicity is then $b_p(M)$. The following theorems were obtained in [4] and [5]. (It is assumed here and in the sequel that M is connected.)

THEOREM A. Let (M, g) be a compact Kaehler manifold with $\operatorname{Spec}^2(M, g) = \operatorname{Spec}^2(CP_n, g_0)$ where (CP_n, g_0) is complex projective n-space with the Fubini-Study metric g_0 . Then, (M, g) is holomorphically isometric with (CP_n, g_0) for all n.

THEOREM B. Let (M, g) be a compact Sasakian manifold with $\operatorname{Spec}^{2}(M, g) = \operatorname{Spec}^{2}(S^{2n+1}, g_{0})$, where (S^{2n+1}, g_{0}) is the (2n + 1)-dimensional sphere with constant curvature k_{0} . Then, g is a metric of constant curvature $k = k_{0}$.

Theorem A is the only case known where the geometry of (M, g) is

AMS (MOS) Subject classifications (1976): Primary 53C55, Secondary 58G25. Key words and phrases: Spectrum of the Laplacian, Kaehler manifold, contact Riemannian manifold. ¹ Supported by the Natural Sciences and Engineering Research Council of Canada.

completely determined by $\operatorname{Spec}^{p}(M, g)$ for some fixed p and in all dimensions. However, (M, g) is assumed to be a Kaehler manifold. Similarly, if we restrict ourselves to the class of Sasakian manifolds, that is the class of normal contact Riemannian manifolds, Theorem B may be considered as another example where the geometry of (M, g) is completely determined by $\operatorname{Spec}^{p}(M, g)$ for some fixed p and in all dimensions.

The crucial point in proving Theorem A is that $b_2(M)$ is one, and in establishing Theorem B that $b_2(M)$ vanishes. This is the reason for taking p = 2. This fact concerning $b_2(M)$ is used only to show that Mis cohomologically Einstein. For other values of p this may not be the case, but if this is assumed the following results are obtained (see sections 3 and 2 for the definitions of cohomologically Einstein Kaehler and Sasakian manifolds).

THEOREM 1. Let (M, g) be a compact cohomologically Einstein Kaehler manifold with $\operatorname{Spec}^{p}(M, g) = \operatorname{Spec}^{p}(CP_{n}, g_{0})$ for p fixed, $0 \leq p \leq 2n$. Then, (M, g) is holomorphically isometric with (CP_{n}, g_{0}) for all n and p with the following possible exceptions: (i) n and p satisfy the relation $p^{2} - 2np + n(2n-1)/3 = 0$, and (ii) p = 1 or 2n - 1, $n = 1, \dots, 7$.

THEOREM 2. Let (M, g) be a compact cohomologically Einstein Sasakian manifold with $\operatorname{Spec}^p(M, g) = \operatorname{Spec}^p(S^{2n+1}, g_0)$ for p fixed, $0 \leq p \leq 2n+1$. Then, g is a metric of the same constant curvature as g_0 for all n and p with the following possible exceptions: (i) n and psatisfy the relation $p^2 - (2n+1)p + n(2n+1)/3 = 0$, and (ii) p = 1 or $2n, n = 2, \dots, 6$.

REMARK 1. The equations $p^2 - 2pn + n(2n-1)/3 = 0$ and $p^2 - p(2n+1) + n(2n+1)/3 = 0$ may be written in the form

(1.1)
$$p^2 - mp + \frac{m(m-1)}{6} = 0,$$

where m = 2n and 2n + 1, respectively. The Diophantine equation (1.1) has infinitely many solutions with m and p positive integers. In fact, we have $p = (1/2)(m \pm [m(m+2)/3]^{1/2})$. If follows that $m(m+2) = 3r^2$, where r is a positive integer. Setting q = m + 1, we obtain $q^2 - 3r^2 = 1$. This is the well-known Pell's equation. The positive integer solutions $(q, r) = (q_k, r_k), \ k = 1, 2, \cdots$, are given by $q_k + \sqrt{3}r_k = (2 + \sqrt{3})^k, \ k =$ $1, 2, \cdots$. It now follows easily that all positive integer solutions of (1.1) have the form $(m, p) = (m_k, p_k)$ or $(m, p) = (m_k, m_k - p_k), \ k = 1, 2, \cdots$, where

$$m_1 = 6$$
 , $p_1 = 1$, $m_{k+1} = 5m_k - 6p_k + 1$, $p_{k+1} = m_k - p_k$, $k = 1, 2, \cdots$

REMARK 2. All complete intersection manifolds in CP_{n+r} of dimension $n \ge 3$ are cohomologically Einstein.

We should like to thank the referee for pointing out several gaps and errors, and for making other useful comments.

2. The spectrum. The Minakshisundaram-Pleijel-Gaffney asymptotic formula is given by

$$\sum_{k=0}^{\infty} \exp(\lambda_{k,p} t) = \frac{1}{(4\pi t)^{m/2}} \sum_{i=0}^{N} a_{i,p} t^{i} + O(t^{N-m/2+1}) , \quad t \downarrow 0 ,$$

where $m = \dim M$. The coefficients $a_{i,p}$, i = 0, 1, 2, have been computed by Patodi [8] (see also [1]):

(2.1)
$$a_{0,p} = \binom{m}{p} V, \quad V = \operatorname{vol}(M),$$

(2.2)
$$a_{1,p} = \left[\frac{1}{6}\binom{m}{p} - \binom{m-2}{p-1}\right] \int_{\mathcal{M}} \rho dV,$$

(2.3)
$$a_{2,p} = \int_{M} (C_1 |R|^2 + C_2 |S|^2 + C_3 \rho^2) dV,$$

where $|R|^2 = \sum R^{ijkl}R_{ijkl}$, $|S|^2 = \sum R^{ij}R_{ij}$, R_{ijkl} and R_{ij} being the components of the curvature and Ricci tensors R and S, respectively, and ρ is the scalar curvature. The coefficients C_i , i = 1, 2, 3, are given by

$$egin{aligned} C_{ ext{\tiny 1}} &= rac{1}{180} inom{m}{p} - rac{1}{12} inom{m-2}{p-1} + rac{1}{2} inom{m-4}{p-2} \,, \ C_{ ext{\tiny 2}} &= -rac{1}{180} inom{m}{p} + rac{1}{2} inom{m-2}{p-1} - 2inom{m-4}{p-2} \,, \ C_{ ext{\scriptsize 3}} &= rac{1}{72} inom{m}{p} - rac{1}{6} inom{m-2}{p-1} + rac{1}{2} inom{m-4}{p-2} \,. \end{aligned}$$

By introducing the Weyl conformal curvature tensor C with components

$$\begin{split} C_{ijkl} &= R_{ijkl} - \frac{2}{m-2} (R_{jk}g_{il} - R_{jl}g_{ik} + g_{jk}R_{il} - g_{jl}R_{ik}) \\ &+ \frac{\rho}{(m-1)(m-2)} (g_{jk}g_{il} - g_{jl}g_{ik}) , \end{split}$$

 $a_{2,p}$ may be expressed in the form

(2.4)
$$a_{2,p} = \int_{M} \left[Q_1 |C|^2 + Q_2 \left(|S|^2 - \frac{\rho^2}{m} \right) + Q_3 \rho^2 \right] dV,$$

where

$$Q_1 = C_1$$
, $Q_2 = \frac{4}{m-2}C_1 + C_2$, $Q_3 = \frac{2}{m(m-1)}C_1 + \frac{1}{m}C_2 + C_3$.

For Kaehler manifolds, by introducing the Weyl projective curvature tensor W (see [4]) whose components are

$$W^i_{j_k l^\star} = R^i_{j_k l^\star} + rac{1}{n+1} (R_{j l^\star} \delta^i_k + R_{k l^\star} \delta^i_j) \; ,$$

 $a_{2,p}$ may be written in the form

(2.5)
$$a_{2,p} = \int_{M} \left[P_1 |W|^2 + P_2 \left(|S|^2 - \frac{\rho^2}{m} \right) + P_3 \rho^2 \right] dV,$$

where

$$P_{_1}=C_{_1}$$
, $P_{_2}=rac{8}{m+2}C_{_1}+C_{_2}$, $P_{_3}=rac{8}{m(m+1)}C_{_1}+rac{1}{m}C_{_2}+C_{_3}$.

If $\operatorname{Spec}^p(M, g) = \operatorname{Spec}^p(M', g')$, then dim $M = \dim M'$, V = V', $b_p(M) = b_p(M')$, and $a_{2,p} = a'_{2,p}$, where the prime indicates corresponding quantities in M'. Moreover, it follows from (2.2) that

$$\int_{\mathcal{M}} \rho dV = \int_{\mathcal{M}'} \rho' dV'$$

if $p^2 - mp + m(m-1)/6 \neq 0$.

The following statement was proved in [4].

LEMMA 1. Let (CP_n, g_0) be complex projective space with the Fubini-Study metric g_0 , and (M, g) be a Kaehler-Einstein manifold. Then, if $\rho = \rho_0$, where ρ and ρ_0 are the scalar curvatures of g and g_0 , respectively, $vol(M, g) \leq vol(CP_n, g_0)$ with equality if and only if (M, g) is isometric with (CP_n, g_0) .

Lemma 1 will be useful in the proof of the following:

LEMMA 2. Let (M, g) be a compact Kaehler manifold with $\operatorname{Spec}^{p}(M, g) = \operatorname{Spec}^{p}(CP_{n}, g_{0})$ for a fixed $p, 0 \leq p \leq 2n$. Assume that $p^{2} - 2np + n(2n-1)/3 \neq 0$ and for some $\lambda \in \mathbf{R}$

(2.6)
$$\int_{\mathcal{M}} (|S|^2 - \lambda \rho^2) dV = \int_{CP_n} (|S'|^2 - \lambda \rho'^2) dV'_{A}$$

where the prime indicates corresponding quantities in (CP_n, g_0) . Then,

(i) if $\lambda < 1/2n$, (M, g) is holomorphically isometric with (CP_n, g_0) for every n and p satisfying $P_1 \geq 0$, $P_3 > 0$, and

(ii) if $\lambda \geq 1/2n$, (M, g) is holomorphically isometric with (CP_n, g_0)

for every n and p satisfying $P_1 \ge 0$, $(\lambda - 1/2n)P_2 + P_3 > 0$.

PROOF. Since W' = 0 and $|S'|^2 = \rho'^2/2n$, formula (2.5) yields

(2.7)
$$\int_{M} \left[P_1 |W|^2 + P_2 \left(|S|^2 - \frac{\rho^2}{2n} \right) + P_3 (\rho^2 - \rho'^2) \right] dV = 0 ,$$

which for some constant μ may be written in the form

(2.8)
$$\int_{M} \left[P_{1} |W|^{2} + \mu P_{2} \left(|S|^{2} - \frac{\rho^{2}}{2n} \right) + (1 - \mu) P_{2} \left((|S|^{2} - \lambda \rho^{2}) + \left(\lambda - \frac{1}{2n} \right) \rho^{2} \right) + P_{3} (\rho^{2} - \rho'^{2}) \right] dV = 0.$$

By (2.6), this becomes

(2.9)
$$\int_{M} \left[P_{1} |W|^{2} + \mu P_{2} \left(|S|^{2} - \frac{\rho^{2}}{2n} \right) + \left(\left(\lambda - \frac{1}{2n} \right) P_{2} + P_{3} - \left(\lambda - \frac{1}{2n} \right) \mu P_{2} \right) (\rho^{2} - \rho'^{2}) \right] dV = 0$$

since $|S'|^2 = \rho'^2/2n$. If $\lambda \ge 1/2n$, we take $\mu = 0$. Formula (2.9) then becomes

$$\int_{M} igg[P_{1} |W|^{2} + igg(igg(\lambda - rac{1}{2n} igg) P_{2} + P_{3} igg) (
ho^{2} -
ho'^{2}) igg] d\, V = 0 \; .$$

Since $\int_{\mathcal{M}} \rho dV = \int_{\mathcal{M}'} \rho' dV'$, Schwarz's inequality yields

$$\int_{M} (\rho^2 - \rho'^2) dV \ge 0$$

with equality if and only if $\rho = \rho'$. The conditions on the P_i in (ii) give rise to $\int_{V} (\rho^2 - \rho'^2) dV = 0$, so $\rho = \rho'$. Hence, by (2.6)

$$\begin{split} \int_{\mathcal{M}} \Big(|S|^2 - \frac{\rho^2}{2n} \Big) dV &= \int_{\mathcal{M}} \Big[(|S|^2 - \lambda \rho^2) + \Big(\lambda - \frac{1}{2n} \Big) \rho^2 \Big] dV \\ &= \int_{\mathcal{C}P_n} \Big[(|S'|^2 - \lambda \rho'^2) + \Big(\lambda - \frac{1}{2n} \Big) \rho'^2 \Big] dV' \\ &= \int_{\mathcal{C}P_n} \Big(|S'|^2 - \frac{\rho'^2}{2n} \Big) dV' = 0 \;. \end{split}$$

But, $|S|^2 \ge \rho^2/2n$, so $|S|^2 = \rho^2/2n$, that is g is an Einstein metric. Applying Lemma 1, it follows that (M, g) is isometric with (CP_n, g_0) .

If $\lambda < 1/2n$ and $P_2 \neq 0$, take μ to be of the same sign as P_2 , and $|\mu|$ to be so large that $(\lambda - 1/2n)P_2 + P_3 - (\lambda - 1/2n)\mu P_2 > 0$. Then, by

(2.9), $\rho = \rho'$ and $|S|^2 - \rho^2/2n = 0$. Again, by Lemma 1, (M, g) is isometric with (CP_n, g_0) . Finally, let $\lambda < 1/2n$ and $P_2 = 0$. Then, from (2.7) and (2.6), g is an Einstein metric, so again by Lemma 1 we obtain the desired conclusion.

LEMMA 3. Let (M, g) be a compact Riemannian manifold with $\operatorname{Spec}^{p}(M, g) = \operatorname{Spec}^{p}(S^{m}, g_{0})$ for a fixed $p, 0 \leq p \leq m$, where S^{m} is the mdimensional sphere with metric of constant curvature k_{0} . Assume that $p^{2} - mp + m(m-1)/6 \neq 0$ and for some $\lambda \in \mathbf{R}$

$$\int_{M} (|S|^2 - \lambda \rho^2) dV = \int_{S^m} (|S'|^2 - \lambda \rho'^2) dV',$$

where the prime indicates corresponding quantities in (S^m, g_0) . Then,

(i) if $\lambda < 1/m$, g is a metric of constant curvature k_0 for every m and p satisfying $Q_1 \ge 0$, $Q_3 > 0$, and

(ii) if $\lambda \ge 1/m$, g is a metric of constant curvature k_0 for every m and p satisfying $Q_1 \ge 0$, $(\lambda - 1/m)Q_2 + Q_3 > 0$.

The proof is similar to that of Lemma 2.

Let (M, g) be a Kaehler manifold, J its almost complex structure, and Ω its fundamental 2-form. Consider the 2-form \tilde{S} given by $\tilde{S}(X, Y) = S(X, JY)$. M is said to be cohomologically Einstein if $[\tilde{S}] = a[\Omega]$ for some $a \in \mathbf{R}$, where $[\tilde{S}]$ and $[\Omega]$ are the cohomology classes of $H^2(M, \mathbf{R})$ represented by \tilde{S} and Ω , respectively.

LEMMA 4 (Ogiue [6]). Let (M, g) be a cohomologically Einstein Kaehler manifold. Then,

$$\int_{\scriptscriptstyle M} \Bigl(|S|^{\scriptscriptstyle 2} - rac{
ho^{\scriptscriptstyle 2}}{2} \Bigr) d\, V + rac{n-1}{2n\,V} \Bigl(\int_{\scriptscriptstyle M}
ho d\, V \Bigr)^{\scriptscriptstyle 2} = 0 \; .$$

3. Contact manifolds. An $m \ (=2n+1)$ -dimensional C^{∞} manifold is called a contact manifold if it carries a global 1-form η , called the contact form, with the property $\eta \land (d\eta)^n \neq 0$ everywhere. The classical example is the bundle of unit tangent vectors to an oriented (n + 1)-dimensional manifold. An odd-dimensional sphere possesses a contact structure which is not of this type. J. Martinet showed that every compact 3-manifold carries a contact structure. A compact Hodge manifold B has a contact manifold canonically associated with it as a circle bundle with B as base space. Thus, the class of contact manifolds is quite extensive.

An almost contact structure (ϕ, X_0, η) on a (2n + 1)-dimensional C^{∞} manifold M is given by an affine collineation ϕ , a vector field X_0 , and a 1-form η satisfying

 $\eta(X_{\scriptscriptstyle 0})=1$, $\phi X_{\scriptscriptstyle 0}=0$ and $\phi^{\scriptscriptstyle 2}=-I+\eta\otimes X_{\scriptscriptstyle 0}$.

In this case, a Riemannian metric g can be found with

$$\eta = g(X_0, \cdot)$$
 and $g(\phi X, Y) = -g(X, \phi Y)$

for any vector fields X and Y.

A contact manifold with contact form η has an underlying almost contact Riemannian structure (ϕ, X_0, η, g) such that $g(X, \phi Y) = d\eta(X, Y)$. If the almost complex structure J on $M \times \mathbf{R}$ defined by $J(X, fd/dt) = (\phi X - fX_0, \eta(X)d/dt)$ is integrable, the almost contact structure is said to be *normal*. In this case, the unit vector field X_0 is a Killing field. Moreover, $g(R(X, X_0)Y, X_0) = g(\phi X, \phi Y)$ and

(3.1)
$$S(X, X_0) = 2n\eta(X)$$
.

The standard contact Riemannian structure on an odd-dimensional sphere is normal.

Set $\tilde{S}(X, Y) = S(X, \phi Y)$. Then, \tilde{S} is a skew symmetric bilinear form on M. An almost contact manifold is said to be *cohomologically Einstein* if $[\tilde{S}] = a[\Phi]$, where $\Phi(X, Y) = g(X, \phi Y)$ and $a \in \mathbb{R}$. If the almost contact structure underlies a contact structure then $\Phi = d\eta$, and so $[\tilde{S}] = 0$.

A normal contact Riemannian manifold is sometimes called a Sasakian manifold.

LEMMA 5. Let (M, g) be a compact cohomologically Einstein Sasakian manifold. Then, there exists a 1-form α on M such that $\tilde{S} = d\alpha$ and $\alpha(X_0) = \text{const.}$

PROOF. Since \tilde{S} is exact, we set $\tilde{S} = d\beta$. Let H denote the isometry group preserving \tilde{S} . Then, H is a compact Lie group. Let H_0 be the 1-parameter group of diffeomorphisms of M generated by X_0 . Then, since X_0 is a Killing field, H_0 is a group of isometries. Moreover, since $i(X_0)\tilde{S} = 0$, $L_{x_0}\tilde{S} = (i(X_0)d + di(X_0))\tilde{S} = 0$, where L_x and i(X) are the Lie derivative and interior product by X, respectively. The elements of H_0 therefore preserve \tilde{S} and so $H_0 \subset H$. Set $\alpha = \int_H h^*(\beta)dh$, where h is an arbitrary element of H, and dh is the invariant measure on H normalized by the condition $\int_H dh = 1$. Then,

$$dlpha = \int_{H} h^*(deta) dh = \int_{H} h^*(\widetilde{S}) dh = \int_{H} \widetilde{S} dh = \widetilde{S} \; .$$

Clearly, $h^*(\alpha) = \alpha$ for any $h \in H$, so $L_{x_0}\alpha = 0$. Since $di(X_0)\alpha = L_{x_0}\alpha - i(X_0)d\alpha = 0$, we conclude that $\alpha(X_0) = i(X_0)\alpha = \text{const.}$

LEMMA 6. Let (M, g) be a compact cohomologically Einstein Sasakian manifold of dimension 2n + 1. Then,

$$\int_{M} \left(|S|^{2} - \frac{\rho^{2}}{2} + 2\rho \right) dV + \frac{n-1}{2nV} \left(\int_{M} \rho dV \right)^{2} = 2n(2n+1)V.$$

PROOF. The following relations may be found in [2]:

(3.3)
$$(\nabla_X \eta)(Y) = \Phi(X, Y) ,$$

(3.4)
$$(\mathcal{V}_{X}\phi)Y = g(X, Y)X_{0} - \eta(Y)X,$$

(3.5)
$$(\mathcal{V}_{X}\Phi)(Y,Z) = \eta(Y)g(X,Z) - \eta(Z)g(X,Y),$$

for any vector fields X, Y and Z on M. By direct computation, (3.1)-(3.5) give rise to

$$(3.6) d^* \Phi = 2n\eta,$$

$$(3.7) d^* \varPhi^2 = 4(n-1)\eta \wedge \varPhi ,$$

(3.8)
$$i(\Phi)\widetilde{S} = \frac{1}{2}(\rho - 2n)$$
,

(3.9)
$$i(\varPhi^2)\widetilde{S}^2 = rac{1}{2}(
ho^2 - 2|S|^2 - 4n
ho + 12n^2)$$
 ,

$$(3.10)$$
 $i(\widetilde{S})(\eta \wedge \varPhi) = rac{1}{2}(
ho - 2n)\eta$,

where *i* is the adjoint of exterior multiplication that is, if \langle , \rangle denotes the local scalar product with respect to the Riemannian metric g, $\langle i(\alpha)\beta, \gamma \rangle = \langle \beta, \alpha \wedge \gamma \rangle$, where α , β and γ are forms of degrees p, q and q - p, respectively. Denote by $(\alpha, \beta) = \int_{\mathcal{M}} \langle \alpha, \beta \rangle dV$ the global scalar product. By (3.6), (3.8) and Lemma 5, $(1/2) \int_{\mathcal{M}} (\rho - 2n) dV = (i(\Phi)\tilde{S}, 1) = (\tilde{S}, \Phi) = (d\alpha, \Phi) = (\alpha, d^*\Phi) = 2n(\alpha, \eta) = 2n\alpha(X_0)V$. Thus,

(3.11)
$$\alpha(X_0) = \frac{1}{4nV} \int_{M} (\rho - 2n) dV$$

By (3.7), (3.9)-(3.11) and Lemma 5, $(1/2) \int_{M} (\rho^2 - 2|S|^2 - 4n\rho + 12n^2) dV = (i(\Phi^2)\tilde{S}^2, 1) = (\tilde{S}^2, \Phi^2) = (d(\alpha \wedge \tilde{S}), \Phi^2) = (\alpha \wedge \tilde{S}, d^*\Phi^2) = 4(n-1)(\alpha \wedge \tilde{S}, \eta \wedge \Phi) = 4(n-1)(\alpha, i(\tilde{S})(\eta \wedge \Phi)) = 2(n-1)\alpha(X_0) \int_{M} (\rho - 2n) dV = ((n-1)/2nV) \left[\int_{M} (\rho - 2n) dV \right]^2$, from which the lemma follows.

4. Proofs of Theorems 1 and 2. By Lemma 4,

$$\int_{M} \left(|S|^{2} - \frac{\rho^{2}}{2} \right) dV = \int_{CP_{n}} \left(|S'|^{2} - \frac{\rho'^{2}}{2} \right) dV',$$

so by Lemma 2, (M, g) is holomorphically isometric with (CP_n, g_0) for all n and p satisfying $P_1 \ge 0$ and $(1/2 - 1/2n)P_2 + P_3 > 0$. We shall need the following:

LEMMA 7. $P_1(n, p) \ge 0$ for all n and p, $0 \le p \le 2n$, with the possible exception of p = 1, p = 2n - 1 for $n = 1, \dots, 7$.

PROOF. $P_1(n, 0) = P_1(n, 2n) = 1/180 > 0$, and

$$P_1(n, 1) = P_1(n, 2n - 1) = \frac{2n - 15}{180} > 0$$
, $n \ge 8$.

For $n \ge 4$ and $5 \le p \le 2n - 2$,

$$P_{1}(n, p) = \frac{(2n-4)(2n-5)\cdots(2n-p+1)}{180p!}A(n, p),$$

where

$$\begin{array}{l} A(n,\,p)=2n(2n\,-\,1)(2n\,-\,2)(2n\,-\,3)\\ &\quad -\,30(2np\,-\,p^2)[2n^2+\,n\,-\,3(2np\,-\,p^2)] \,\,. \end{array}$$

Fix n and consider A(n, p) as a function of the continuous variable p. Then,

$$\frac{dA}{dp} = -60(n-p)[2n^2 + n - 6(2np - p^2)].$$

FIGURE

The critical points of A(n, p) are $p_1 = n$, $p_2 = n - [(2/3)n^2 - (1/6)n]^{1/2}$, and $p_3 = n + [(2/3)n^2 - (1/6)n]^{1/2}$. Since $A(n, p_1) = 2n(2n-1)(23n^2 - 16n + 6) > 0$ for $n \ge 4$, and $A(n, p_2) = A(n, p_3) = (n/6)(36n^3 - 348n^2 + 249n - 72) > 0$ for $n \ge 9$, we obtain A(n, p) > 0 for $5 \le p \le 2n - 2$, $n \ge 9$. However, for n = 4, 5, 6, 7 and 8, $A(n, p_2) = A(n, p_3) < 0$, Consider, for example, the case n = 4. Then, $p_2 = 4 - \sqrt{10} = 0.837 \cdots$, $p_3 = 4 + \sqrt{10} = 7.162 \cdots$, A(4, 0) > 0, A(4, 1) < 0, A(4, 2) > 0, so the graph of A(4, p) is as in the Figure. It follows that A(4, p) > 0 for $p \ne 1$, 7. Similarly, $A(n, p) \ge 0$ for n = 5, 6, 7, 8 and $p \ne 1$, 2n - 1. In the same way, $P_1(n, 2) \ge 0$, $P_1(n, 3) > 0$ and $P_1(n, 4) > 0$.

LEMMA 8. For all n and p, $0 \leq p \leq 2n$, except n = 2, p = 2,

$$\Bigl(rac{1}{2}-rac{1}{2n}\Bigr)P_{2}+P_{3}>0\;.$$

The proof is similar to that of Lemma 7.

We now complete the proof of Theorem 1. For n = 2, p = 2, the theorem was proved in [4]. For all other n and p, with the possible exception of p = 1 and p = 2n - 1, $n = 1, \dots, 7$, the theorem is a consequence of Lemmas 7 and 8.

The proof of Theorem 2 employs Lemmas 3 and 6, and is similar to that of Theorem 1.

REMARKS. (a) For p = 0 and 1, Theorem 1 was proved by Chen and Vanhecke [3].

(b) For p = 1 or 3 and n = 2, Theorem 1 may be proved if one replaces the cohomologically Einstein condition by the stronger condition $b_2(M) = 1$. Indeed, in this case, $b_i(M) = b_i(CP_2)$, $i = 0, \dots, 4$, so the Euler-Poincaré characteristic $\chi(M) = \chi(CP_2)$. By the Gauss-Bonnet formula

(4.1)
$$\int_{M} (|R|^2 - 4 |S|^2 + \rho^2) dV = \int_{CP_2} (|R'|^2 - 4 |S'|^2 + \rho'^2) dV' .$$

From Lemma 2.

(4.2)
$$\int_{\mathcal{M}} \left(|S|^2 - \frac{\rho^2}{2} \right) dV = \int_{CP_2} \left(|S'|^2 - \frac{\rho'^2}{2} \right) dV' \, dV'$$

Moreover, (2.3) implies

(4.3)
$$\int_{\mathcal{M}} \left(-\frac{11}{20} |R|^2 + \frac{43}{10} |S|^2 - \rho^2 \right) dV = \int_{\mathcal{C}P_2} \left(-\frac{11}{20} |R'|^2 + \frac{43}{10} |S'|^2 - \rho'^2 \right) dV' .$$

The relations (4.1)-(4.3) give rise to

$$\int_{M} |R|^{2} dV = \int_{CP_{2}} |R'|^{2} dV', \quad \int_{M} |S|^{2} dV = \int_{CP_{2}} |S'|^{2} dV', \quad \int_{M} \rho^{2} dV = \int_{CP_{2}} \rho'^{2} dV',$$

from which

$$\int_{M} \Bigl(|S|^2 - rac{
ho^2}{2} \Bigr) d\, V = \int_{{oldsymbol CP}_2} \Bigl(|S'|^2 - rac{
ho'^2}{2} \Bigr) d\, V' = 0$$
 ,

and this implies that g in an Einstein metric with $\rho = \rho'$. It follows from Lemma 1 that (M, g) is isometric with (CP_2, g_0) . Thus, if (M, g) is a compact Kaehler manifold with $b_2(M) = 1$, and if Spec¹(M, g) =Spec¹ (CP_2, g_0) (or Spec⁸(M, g) = Spec³ (CP_2, g_0)), then (M, g) is holomorphically isometric with (CP_2, g_0) .

(c) The case p = 1 and n = 1 in Theorem 2 was proved by Tanno [9].

References

- M. BERGER, P. GAUDUCHON AND E. MAZET, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, Berlin, Heidelberg and New York, 1971.
- [2] D. E. BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, Berlin, Heidelberg and New York, 1976.
- [3] B.-Y. CHEN AND L. VANHECKE, The spectrum of the Laplacian of Kähler manifolds, Proc. Amer. Math. Soc. 79 (1980), 82-86.
- [4] S. I. GOLDBERG, A characterization of complex projective space, Math. Rep. Acad. Sci. Canada 6 (1984), 193-198.
- [5] S.I. GOLDBERG AND H. GAUCHMAN, Characterizing S^m by the spectrum of the Laplacian, Math. Rep. Acad. Sci. Canada, vol. 8, no. 1 (1986).
- [6] K. OGIUE, Generalized scalar curvatures of cohomologically Einstein Kaehler manifolds, J. Differential Geometry 10 (1975), 201-205.
- [7] M. OKUMURA, Some remarks on space with certain contact structure, Tôhoku Math. J. 14 (1962), 135-145.
- [8] V.K. PATODI, Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34 (1970), 269-285.
- [9] S. TANNO, The spectrum of the Laplacian for 1-forms, Proc. Amer. Math. Soc. 45 (1974), 125-129.

DEPARTMENT OF MATHEMATICS	AND	DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ILLINOIS		UNIVERSITY OF ILLINOIS
1409 West Green Street		1409 West Green Street
Urbana, IL 61801		Urbana, IL 61801
U.S.A.		U.S.A.
DEPARTMENT OF MATHEMATICS		DEPARTMENT OF MATHEMATICS & STATISTICS
Department of Mathematics Ben Gurion University of the Negev		DEPARTMENT OF MATHEMATICS & STATISTICS QUEEN'S UNIVERSITY
BEN GURION UNIVERSITY OF THE NEGEV		QUEEN'S UNIVERSITY