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In this paper, an "invariance principle" is introduced and developed
for autonomous functional differential equations with infinite delay. Then
some conditions are established to ensure that, along the solutions, the
Liapunov function V(x) tends to a constant.

1. Introduction. It is an interesting problem to study the asymp-
totic constancy of the solutions of the functional differential equations
such as

x\t) = -A(a>(ί)) + h{x{t - r))

which have the property that each constant function is a solution.
Haddock and Terjeki [3] have done some work in this direction. In this
paper, we will extend several results of [3] to the functional differential
equations with infinite delay. It is easy to see that our results hold for
the phase space in Hale and Kato [2]. We will restrict ourselves within
the phase space Cγ, the fading memory space, for the sake of simplicity.

Consider the equation

(1.1) x \ t ) = F ( x t ) , xt(s) = x ( t + s ) , s ^ 0 ,

where F: Cr-^Rn is a completely continuous mapping and Cr, 7 ^ 0 , is
the linear space of continuous functions φ: (— °o, 0]—>Rn with the property
that lim^.oo er'φ(s) exists. The norm in this space is defined as

DEFINITION 1. A function V:Rn^R+ is a Liapunov function associ-
ated with the functions p( ) and g( ), if

(a) V is continuously differentiate, and
(b) for each φeCr,

(1.2) suvp(s)V(φ(s)) < oo ,

(c) for all t, seR~ we have
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p(s + t) ^ p(s)q(t)

and p and q:R~-*R+ are continuously differentiable functions such that
= q(0) = 1, p'(t) ^ 0 for all t e R, g'(0) ^ 0 and p(t) and g(ί) tends to

zero as t—> — oo.

Sometimes we also impose the following assumption on the function
V('): There are continuous and increasing functions α( )» &(•)• R+-*R+,
α(0) = 6(0) = 0, such that for all φ e Cr

(1.3) a(\φ(0)\) ^ sup p(s)V(φ(s)) ^ b(\\φ\\) .

As can be verified, the space Cr satisfies the hypotheses in Kappel
[4]. Thus the following results hold (cf. [4]).

LEMMA 1.1. Let x(φ)(') be a solution of (1.1) on [0, oo) with bounded
trajectory {xt{φ)' t ^ 0} and {tn} be a sequence with tn-+°°. Then there exist
a subsequence {sn} of {tn} and a continuous bounded function ψeCr such
that limn_co x8n(φ)(τ) = ^(τ) uniformly on every compact interval in (— oo, 0],
and lim^oo xSn(φ) — ψ in the norm Cr.

LEMMA 1.2. Let x(φ)(t) be a solution of (1.1) on [0, oo) with bounded
trajectory {xt(Φ):t*z0}. A function ψeCr is in Ω(φ) (i.e., there is a
sequence {sn} with sn-*°° such that xan(φ)-+ψ) if and only if ψ is con-
tinuous and bounded on (— oo, 0] and there is a sequence {tn} such that

uniformly on every compact interval in (—°o, 0].

LEMMA 1.3. Let x(φ){t) be a solution of (1.1) on [0, oo) with bounded
trajectory. Then the set Ω(φ) of positive limit points is nonempty, bounded
compact and moreover it is an invariant subset of Cr, i.e., for each ψ£
Ω(φ), there is a function y: (— oo, oo)-+R such that

( i ) yteΩ(φ), ί e ( - o o , oo);
(ii) y0 — ψ;

(iii) y is continuously differentiable on (—°°, °°) and

y'(t) = F(yt) , ts (— oo, oo) .

Furthermore, xt(φ)->Ω(φ) as ί—>©o.

2. The invariance principle. We consider the set

EV(G) :={φeG: supp(s)V(xt(φ)(s)) = supp(s)V(φ(s)), t ^ 0}

fora GQCr, where F( ) is a Liapunov function associated with p and q



LIAPUNOV-RAZUMIKHIN FUNCTIONS 493

and xt{φ){ ) denotes the solution of (1.1) with the initial value (0, φ). As
can be seen, the maximal invariant subset MV(G) in EV(G) is

MV{G) = {φβG: supp(*)V(a?4(0)(*)) = sup p(s)F(^(s)), t e ( - o o , oo)} .

The following lemmas describe the useful properties of the function

V( ).

LEMMA 2.1. Suppose that x(t) is a continuous function on (— °°, + °°)
satisfying x0 e Cr. Then g(t): = sup8^0 p(s)V(xt(s)) is lower semi-continuous.
Moreover, if for a sequence {tk} with tk-+ oo as k—>°° the sequence {xtk(s)}
converges to a φ(s) uniformly on every compact set of (—°°, 0] and g{tk)
converges to a c, and if V(x(t)) <J M for a constant M and all t ^ 0, then
we have

sup p(s)V(φ(s)) = c .

P R O O F . For t0 ^ 0 and ε > 0, one can find an s o e ( — oo, 0) such t h a t

p(so)V(x(to + s0)) > flf(ίo) - ε .

Then for any sequence {tn} wi th tn—*tQ as n—>°o we have

p(so)V(x(tn + s0)) ^ g(t0) - ε ,

when n is sufficiently large. This means that g(tn) ^ g(t0) — ε, when n
is sufficiently large. So lim inft^tQ g(t) ^ g(t0).

Now we prove the last part of Lemma 2.1. If c = 0, we have

0 <; lim sup p(so)V(xtAso)) <; lim sup p(s)V(xt.(s)) = 0 ,
Jfe->oo

for any fixed s0 ^ 0. This means lim^oo V(xtJc(sQ)) — V(φ(s0)) = 0. And then
V(φ(s)) = 0 for all s ^ 0. If c > 0, we can find a positive constant r such
that g(ί) sup^o3>(β)^(»(β)) ^ c/2 for all t ^ -r and M-p(-r) ^ c/2. Then
for ίfc ^ r, we have

sup p(s)V(xtk(s)) =

and

sup p(s)F(xίJfe(s)) ^ p{ — r)M ^ c/2 .

These inequalities and the fact that g(tk) —>c > 0 as fc—>oo mean that

sup p(s)V(xtk(8))

= max{sup p(s)F(α?ίfc(s)), sup p(s)F(α ίAί(s)), sup j>(8)F(a?ίJb(s))}

= sup p(s)V(xtk(s)) ,
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for sufficiently large k and then

c = lim sup p(s)V(xt(s)) = lim sup p(s)V(xtk(s)) = sup p(s)V(φ(s))
k-*oo 8^0 k-*oo - r^s^O —r^s^O

^ sup p(s)V(φ(s)) .
8^0

On the other hand, for any L > 0 and ε > 0, there is an iV such that

sup p(s)V(φ(s)) <; ε + sup p(s)F(xίfc(s)) ^ ε + sup p(s)F(#ίfc(s)) ,

when tk^N. Let fc—>oo we get sup_L 8̂̂ 0P(s)V(φ(s)) ^ ε + c, and this
means supβ^0 P(s)F(^(s)) ^ c.

REMARK. In Lemma 2.1 #(£) is continuous on the right: Indeed, for
any t ^ t0 we have J£ : = ί0 — ί ^ 0 and then

= sup p(s)V(x(t + s)) = sup p(s)V(x(t0 + s -

= sup p{u + Jt)V(x(t0 + u)) ̂  g(Jί) sup p{u)V(x(t0 +

From this we get lim supί_^0+ git) ̂  g(t0). This inequality and the lower
semicontinuity of g(t) imply the continuity on the right. If the condi-
tion (c) in Definition 1 is true for t e R+, we can give the proof of the
continuity on the left of g(t) in the same way. But that condition may
be too strong for applications.

LEMMA 2.2. Suppose that $(•) is a solution of the equation (1.1) on
[0, oo), Then for t ^ 0 we have

\-q\0)snvp(s)V(xt(s)) or
D+{g(t)} ^

1('(O) - q'ΦW(x(t)) + n.i)fe) ,
where g(t) - sup8^op(s)V(xt(s))f D+{g(t)} = limsupA_>0+ {g(t + h) —

Vά.Dfe) = liπi supA_0+ {V(fl5(ί + h)) — F(a;(ί))}/Λ ϊ 7 ^ latter case holds when

V(x(t)) = suv^op(s)V(xt(s)).

PROOF. For any fixed t ^ 0,

{sup p(s)V(xt+h(s)) - sup p(s)V(xt(s))}/h
8^0 8^0

= {sup p(s)V(x(t + β))ί>(s - h)lp{s) - sup
sg h

s)) ~ sup
8^0

If for an h = fe0 > 0 we have supβ^Λ p(β)F(fl5(ί + s)) = sup8^op(s)V(x(t + s)),
it must be true for each h e (0, h0). And then

{mVP(s)V(xt+h(s))-suvp(s)V(xt(s))}/h ^ (q(-h) - l)supp(s)V(xt(s))/h .
^ 0 ^ 0
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Let h—»0+ in this inequality, and we get

D+{sup p(s)V(xt(s))} ^ —q'(O)suipp(s)V(xt(s)) .

If such an h0 does not exist, we have

sup p(s)V(x(t + s))

< sup p(s)V(x(t + s)) = max{sup p(s)V(x(t + s)), sup p(s)V(x(t + s))}

= sup p(s)V(x(t + s)) - p(ξ)V(x(t + f)) ,

for a ξ = £(fc) 6 (0, Λ]. Let fe->0 + , and we get F(x(0) = sup8^0 P(s)V(xt(s)).
And then

{sup p(s)V(xt+h(s)) - sup p(8)V(xt(8))}/h

+ e)) - v(χ{t)))ih

^ {p(ξ)V(x(t + ξ)) - V(x(t))}lξ Q(-h) + (g(-Λ) - ΐ)/h-V(p(t)) .

Let Λ—>0 + , and we get

D+{g(t)} £ (p'(0) - q*(0W(x(t)) + V[lΛ)(xt) .

The following lemma is obvious.

LEMMA 2.3. Suppose that α?( ) is α solution of the equation (1.1)
[0, oo), that V( ) is α Liapunov function and that

lim sup j>(«)V(α?(ί + s)) = c , c < oo .
t-*oo 8^0

Then there is a sequence {tn} with tn —> oo as n —> °

The following theorem plays a fundamental role in this paper. It
can be seen as an extension of KappeΓs result in [4].

THEOREM 2.1. Suppose that there are a Liapunov function V(-) and
a positive invariant closed subset G £ Cr such that for each φeG with
V(φ(0)) = sup^o P(s)V(φ(s)), we have V[1Λ)(Φ) £ ~(P'(0) - Q\0))V(Φ(0)). Then
we have Ω(φ) £ Mr(G) £ EV(G) for such φeG that the solution x{φ){-) is
defined and bounded on [0, oo). That is, xt(φ)—>Mv(G) as £—»°°.

REMARK. It is quite obvious that the inequality (1.2) for V may
hold for a φeG.

PROOF. Because of the boundedness of the set {xt(φ)ι t ^ 0}, the
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positive limit set Ω{φ) is nonempty, compact and invariant. Moreover
xt(φ)-^Ω(φ) as t-+oo by Lemma 1.3. Clearly, Ω{φ)dG.

From Lemma 2.2, we have D+{g(t)} <; 0 for all t ^ 0, where git) =
supβ^o P(s)V(xt(s)). That is, the function g(t) is nonincreasing in t and
bounded below, and hence limf-eo0(ί) exists. We denote the limit by c.
Thus for all ψeΩ(φ), we have supβ^0 p(s)V(ψ(s)) — c by Lemma 2.1. From
the invariance of Ω(φ) we have xt(ψ) e Ω(φ) and sup8^0 P(s)V(xt(ψ)(s)) = c
for all t. That is, ψeEv(G), Ω(φ) £ EV(G) and Λ(0) £ MV(G)

DEFINITION 2. The zero solution of (1.1) is stable with respect to G,
if for a given ε > 0 there is a 8 > 0 such that φ e G and ||^|| < 8 imply

< ε for all t ^ 0.

Similarly, one can give the definition of the asymptotic stability of
the zero solution of (1.1).

COROLLARY. Suppose that F(0) = 0 and there are a Lίapunov func-
tion F( ) with the property (1.3) and a positive invariant subset G £ Cr

such that for some positive constant a:
( i) V(θ) = 0, V{x) > 0 if xΦO and \x\ < a;
(ii) V(ίΛ)(φ) < -(p'(0) - q'(0))V(φ(0)) for each φβG such that \\φ\\ Φ 0

and \\φ\\ < a and V(ψ(fi)) = suι>8^op(s)V(φ(s)).
Then the zero solution is asymptotically stable with respect to G.

PROOF. From Lemma 2.2, the function g(t) = supβ^0 p(s)V(xt(φ)(s)) is
decreasing in t whenever \\φ\\ > 0 is small enough. By the condition (1.3)
we know that, for a given ε > 0 there is a 8 > 0 such that t ^ 0, φ e G
and \\φ\\ < 8 imply that ||#ί(0)|| < ε. Then the stability of the zero solu-
tion respect to G follows.

From Theorem 2.1, for φeG with small norm, Ω(φ) is nonempty and
invariant, and xt(φ)—>Ω(φ) £ Er(G) as ί-»oo. Thus for each ψeΩ(φ), the
function suτp8£Op(s)V(xt(ψ)(s)) is a constant when te(— °°, +©o).

We have to show that Ω(φ) = {0}. If ψeΩ(φ) and ψ Φ 0, then c : =
o P(s)V(xt(ψ)(s)) > 0 for all ί. Then for all s ^ 0 and all £ we have

V(xt(ψ)(s)) = 7 ( ^ . ( ^ ( 0 ) ) ^ supp(u)7(* ί +.(+)(u)) = c

and we can find a r > 0 such that p(s) ^ 1/2 for all s ^ — r. And then

c = sup p^VfoOfX*)) = max{sup p(s)V(xt(ψ)(s))f sup p(s)Ffe(^)(s))}

^ maxjsup j>(«)c, sup p(s)V(xt(ψ)(s))} .

Thus the function V(xt(ψ)(0)) is not always less than c for all t ^ 0 and
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can not be greater than c for any t ^ 0. Thus we can find a tQ > 0
such that

V(xt0W(0)) = c = suvp(s)V(xt0(ψ)(s)) .

Then VάΛ)(xtQ(ψ)) < 0 by (ii). This equality also implies that the function
V(x(ψ)(t)) has a maximal value at t0, and V(ul)(xtQ(ψ)) = 0, which is a con-
tradiction.

EXAMPLE. Consider the system

(2.1) x\t) = F(ax(t) + \° g(s)x(t + s)ds) ,
J — oo

where F:Rn-*Rn is continuous, g is integrable and for a 7 > 0,

S° \g(t)\e~rads < α ,
J-oo

and X'F(u) < 0 for any x,ueRn such that x-u > 0 (here "•" stands for
the inner product in the Euclidean space). Let V(x) — X'x/2 and p(s) =
q(s) = e2r* for seR. Then Condition (1.3) is satisfied. Since

V(2Λ)(φ) = Φ(0)-F(αφ(0) + Γ g(s)φ(s)ds)
J_oo

and for φ Φ 0 and F(0(O)) = supβ^0 e
2r8F(^(s))

ί»(0)S° g(s)φ(s)ds ^ |#(0)| Γ \g(s)\\φ(s)\ds ^ \φ(0)\2\° \g(s)\e-"ds ,
J _oo J —oo J —oo

we have

φ(0)-(αφ(0) + Γ g(s)φ(s)ds) = αμ(0)|2 + φ(0)'\° 9(s)φ(s)ds > 0 ,
J —00 J —OO

and this means V[2Λ)(φ) < 0. Then the asymptotic stability of the zero
solution follows.

3. Asymptotic constancy of V along solutions. In this section we
shall find some sufficient conditions for the asymptotic constancy of F(«)
along solutions as ί->oo, In some cases, this implies that the solution
x(t) tends to a constant as t —> oo.

Let F( ) be a Liapunov function. Denote Kv : = {φ e Cr: V(φ(s)) =
V(φ(Q)), for all s ^ 0}.

LEMMA 3.1. Suppose that V(*) is a Liapunov function and G is an
invariant and closed subset of Cr such that limt_>oosupŝ 02)(s)F(fl!;ί(^)(s))
exists for such φeG that the solution x(φ)( ) has the bounded trajectory.
If φeG, if the solution x(φ)( ) has bounded trajectory and if Ω(φ) £ Kv,
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then we have linw,V(x(φ)(t)) = lim^suv^o P(s)V(xt(φ)(s)).

PROOF. By Lemma 2.3, there is a sequence {t'n} with tf

n —> oo as n
such that

l i F ( ^ ) ( O ) l i ( ) F ( ^ ) ( ) ) = : c .

If the lemma is false, we can find a sequence {tn} with tn-+oo such that
V(x(φ)(tn))-*a < c, as w—> oo. Because of the compactness of the sequence
{#ίΛ(0)J (cf Lemma 1.1), we can assume that xtn(φ)-^ψeΩ(φ) £ Kv. Then
for s 6 ( - oo, 0) we have V(ψ (s)) = F(ψ(0)) = α, and then sup8^0 p(s)V(ψ(s)) =
a. On the other hand, the fact that xtn(Φ)—>φ implies lim^ooxtn(φ)(s) =
ψ(s) uniformly on every compact subset of (— °°, 0] and this result means

sup p(s)V(ilr(s)) = lim sup p(s)V(xt(φ)(s)) = c ,

by Lemma 2.1, which is a contradiction.

THEOREM 3.1. Suppose that F( ) is a Liapunov function and G is
an invariant and closed subset of Cr such that

(i) for each φeG such that V(φ(0)) = sup8^0P(β)V(φ(β)) we have

V[IΛ){Φ) ̂  -(P'(O) - q'(0W(φ(0))

(ii) for each φeG such that V(φ(0)) = supβ^op(s)V(φ(s)) and V[1Λ)(φ) = 0
we have φeKv.
Then Ω(φ) £ Kv for each φeG such that the solution x(φ)( ) has the bounded
trajectory, and then V(xt(φ)(0)) tends to a constant as t—>oo.

PROOF. By Lemma 3.1, we only have to prove Ω(φ) £ Kv whenever
φeG and x(φ)( ) is bounded. Following the same reasoning as in the
proof of Corollary to Theorem 2.1, we know that for given ψeΩ(φ) there
is a sufficiently large ί0 such that V(xtQ(ψ)(0)) = supβ^o p(s)V(xtQ(ψ)(s)) and
V{'1Λ)(xt0(ψ)) = 0. Then we have xtQ(ψ)eKv, that is, V(x(ψ)(t0 + s)) =
V(x(φ)(t0)) for all s ^ 0, by (ii). And then the fact that x(ψ)(s) = ψ(s) for
all s ^ 0 implies ψeKv.

EXAMPLE. Consider the scalar equation

(3.1) x\t) = {-eτ2x{t) + x(t - r) - x(t)x(t - r)} (° e2*°\xt{s) - xt(0)\ds .
J_oo

One can verify that the set G : = {φ e Cr: φ(s) ^ 0, s ^ 0} is a closed set
and is positive invariant with respect to (3.1). Let V(x) = x2/2, p(s) =e~2*2

for s ^ 0, p(s) = e2*2 for s ^ 0, and q(s) = e~'2 for s ^ 0. Then F( ) is a
Liapunov function.

V;5Λ)(Φ) - ί-e r V(0) + Φ(O)φ(-r) - ^2(0V(-r)} Γ e^|^(s) - φ(O)\ds .
J_oo
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Since - e r V ( 0 ) + φ(O)φ(-r) ^ 0 for such φeG t h a t V(φ(0)) = s u p ^ 0 e " 2 β 2 x

V(φ(s)), we have V'3Λ)(φ) ^ 0 for such a φ. Moreover, if V'ZΛ)(φ) = 0, we

can get

~r) - Φ2(θ)φ(-r)} Γ
J_o

= 0

This implies that φ(s) = Φ(0) for all s ^ 0, or ^6iΓF. Since F( ) has the
property that V(x)-^°° as |#|—>°°, the boundedness of the solutions of
(3.1) follows from (i) in Theorem 3.1. And then each solution of (3.1)
tends to a constant by Theorem 3.1.

REMARK. We cannot directly apply Theorem 3.1 to the equation (3.1)
with the function e2γ8 in the integrant replaced by \f(s)\e2r*, if / is con-
tinuous and bounded on (—°°, 0] but may be zero on a subset of (—°o, 0].
In particular, for this equation, one can not readily verify that φ e KVJ

for each φeG such t h a t V(φ(0)) = ^up8U0p(s)V(φ(s)) and V'*Λ)(φ) = 0 (using

V(x) = x2/2). Following the idea of Haddock and Terjeki [3, § 3], one can
eliminate this difficulty.

The author would like to thank Professor Wang Zhicheng for his
direction. Thanks are also due to the referee.
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