ESTIMATES OF THE AREA INTEGRALS BY THE NON-TANGENTIAL MAXIMAL FUNCTIONS

Makoto Kaneko

(Received October 1, 1986)

Introduction. In this paper, we give a method to estimate the area integrals by the non-tangential maximal functions.

For a harmonic function u on the upper half-space $\boldsymbol{R}_{+}^{n+1}=\boldsymbol{R}^{n} \times(0, \infty)$, the area integrals $A_{\alpha} u$ and the non-tangential maximal functions $N_{\alpha} u$ are defined by

$$
\begin{aligned}
& \left(A_{\alpha} u\right)(x)=\left\{\int_{\Gamma_{\alpha}(x)}|(\nabla u)(y, s)|^{2} s^{1-n} d y d s\right\}^{1 / 2} \quad \text { and } \\
& \left(N_{\alpha} u\right)(x)=\sup \left\{|u(y, s)| ;(y, s) \in \Gamma_{\alpha}(x)\right\},
\end{aligned}
$$

respectively, for $\alpha>0$ and $x \in \boldsymbol{R}^{n}$. In the above formulas, $|\nabla u|^{2}=$ $\sum\left|\partial u / \partial x_{j}\right|^{2}+|\partial u / \partial t|^{2}$ with the summation taken over $j=1, \cdots, n$, and $\Gamma_{\alpha}(x)=\left\{(y, s) \in \boldsymbol{R}_{+}^{n+1} ;|x-y|<\alpha s\right\}$, where $|x|$ is the Euclidean norm of $x \in \boldsymbol{R}^{n}$. We denote the points of \boldsymbol{R}_{+}^{n+1} by the ordered pairs (x, t), where $x \in \boldsymbol{R}^{n}$ and t is a positive real.

The norm equivalence between $A_{\alpha} u$ and $N_{\alpha} u$ was obtained by Burkholder-Gundy [1] and Fefferman-Stein [4].

If u is harmonic in R_{+}^{n+1}, then $|\nabla u|^{2}=\Delta|u|^{2} / 2$, where Δ denotes the Laplacian on $\boldsymbol{R}_{+}^{n+1}, \sum \partial^{2} / \partial x_{j}^{2}+\partial^{2} / \partial t^{2}$ with the summation taken over $j=$ $1, \cdots, n$. Furthermore, $|u|^{2}$ is subharmonic in \boldsymbol{R}_{+}^{n+1}.

McConnell [7] introduced certain functions $S_{\alpha} v$ on \boldsymbol{R}^{n} for a subharmonic function v on \boldsymbol{R}_{+}^{n+1}. It can be written as

$$
\left(S_{\alpha} v\right)(x)=\int_{\Gamma_{\alpha}(x)}(\Delta v)(y, s) s^{1-n} d y d s
$$

if $v \in C^{2}\left(\boldsymbol{R}_{+}^{n+1}\right)$. He proved $\left\|S_{\alpha} v\right\|_{p} \leqq C\left\|N_{\alpha} v\right\|_{p}$ for a limited range of p, where $\|\cdot\|_{p}$ denotes the $L^{p}\left(\boldsymbol{R}^{n}\right)$-norm and C is a constant depending only on n, α, p. Recently, Uchiyama [9] obtained the same result for all $0<p<\infty$.

We shall give another proof for this latter result and show that our method is applicable to more general area integrals including the ones

[^0]induced from temperatures, which were studied in [2].
The author thanks Professor A. Uchiyama and the referee for their useful advice.

1. Definitions and the main theorem. Let $A=\left(a_{j_{k}}\right)$ be an $(n+1)$ dimensional complex square matrix and b_{1}, \cdots, b_{n+1} be complex numbers. We define the differential operator L by

$$
\begin{equation*}
L=\sum_{j, k=1}^{n+1} a_{j k} \frac{\partial^{2}}{\partial x_{j} \partial x_{k}}+\sum_{j=1}^{n+1} b_{j} t^{-1} \frac{\partial}{\partial x_{j}}, \tag{1.1}
\end{equation*}
$$

where, and hereafter, x_{n+1} denotes the $(n+1)$-st variable t.
As the following examples show, it may be natural to consider the following area integrals. To a locally integrable function v on \boldsymbol{R}_{+}^{n+1}, we apply the operator L in the sense of distributions. We consider the case where $L v$ is a positive Borel measure $\mu_{L v}$ on \boldsymbol{R}_{+}^{n+1}. For such v, we define the area integrals $S_{\alpha} v$ by

$$
\left(S_{\alpha} v\right)(x)=\int_{\Gamma_{\alpha}(x)} s^{1-n} d \mu_{L v}(y, s)
$$

If A is non-negative and b_{1}, \cdots, b_{n+1} are real, and if $u \in C^{2}\left(\boldsymbol{R}_{+}^{n+1}\right)$ is a solution of $L u=0$, then

$$
L|u|^{2}=([A+\bar{A}] \partial u / \partial x, \partial u / \partial x) \geqq 0,
$$

where $\bar{A}=\left(\bar{a}_{j_{k}}\right)$ and $\bar{a}_{j_{k}}$ is the complex conjugate of $a_{j_{k}}, \partial u / \partial x$ denotes the column vector ${ }^{t}\left(\partial u / \partial x_{1}, \cdots, \partial u / \partial x_{n+1}\right)$ and (\cdot, \cdot) is the usual inner product in \boldsymbol{C}^{n+1}.

Example 1. If u is harmonic in \boldsymbol{R}_{+}^{n+1} and $L=\Delta$, then $L u=0$, $L|u|^{2}=2|\nabla u|^{2}$ and $S_{\alpha}|u|^{2}=2\left(A_{\alpha} u\right)^{2}$.

Example 2. When u_{0} is a temperature on \boldsymbol{R}_{+}^{n+1}, that is to say, u_{0} is infinitely differentiable and satisfies $\partial u_{0}(x, t) / \partial t=\Delta_{x} u_{0}(x, t)=$ $\sum_{j=1}^{n} \partial^{2} u_{0}(x, t) / \partial x_{j}^{2}$ in \boldsymbol{R}_{+}^{n+1}, by setting $u(x, t)=u_{0}\left(x, t^{2} / 4 \pi\right)$ an dtaking $L=$ $\Delta_{x}-2 \pi t^{-1} \partial / \partial t$, we have $L u=0$ and $L|u|^{2}=2\left|\nabla_{x} u\right|^{2}=2 \sum_{j=1}^{n}\left|\partial u / \partial x_{j}\right|^{2}$. Making use of notation in [2], we have $S_{\alpha}|u|^{2}=2 \omega_{n} \alpha^{n} \sum_{j=1}^{n} S_{\alpha}^{2}\left(x, K_{j}\right)$, where $K_{j}(x, t)=t \partial u(x, t) / \partial x_{j}(j=1, \cdots, n)$ and ω_{n} is the measure of the unit sphere in R^{n}.

Example 3. If v is subharmonic and not identically $-\infty$ in \boldsymbol{R}_{+}^{n+1}, and if $L=\Delta$, then $S_{\alpha} v$ is identical with that in McConnell [7].

We define the non-tangential maximal functions $N_{\alpha} v$ by

$$
\left(N_{\alpha} v\right)(x)=\operatorname{ess} \sup \left|v \chi_{\Gamma_{\alpha}(x)}\right|=\left\|v \chi_{\Gamma_{\alpha}(x)}\right\|_{\infty},
$$

where $\chi_{\Gamma_{\alpha}(x)}$ is the characteristic function of $\Gamma_{\alpha}(x)$ and ess sup is the essential supremum with respect to the Lebesgue measure in \boldsymbol{R}_{+}^{n+1}.

For technical reasons, we introduce

$$
\left[S_{\alpha}(W) v\right](x)=\int_{W \cap \Gamma_{\alpha}(x)} s^{1-n} d \mu_{L v}(y, s)
$$

for Borel sets $W \subset \boldsymbol{R}_{+}^{n+1}$. For $E \subset \boldsymbol{R}^{n},|E|$ denotes the Lebesgue measure of E. We denote by $B_{n}(x, R)$ the open ball in \boldsymbol{R}^{n} of radius R centered at x. For $R>0$, we set $T_{R}=B_{n}(0, R) \times(1 / R, R) \subset \boldsymbol{R}_{+}^{n+1}$, where o denotes the origin in \boldsymbol{R}^{n}.

Our main purpose is to obtain the following good λ inequalities, which lead to the norm inequalities stated in Introduction.

Theorem. Let L be the operator defined by (1.1) with an $(n+1)$ dimensional complex square matrix A and complex numbers b_{1}, \cdots, b_{n+1}, and let v be a locally integrable function on \boldsymbol{R}_{+}^{n+1} such that $L v$ is a positive Borel measure on \boldsymbol{R}_{+}^{n+1}. If $0<\alpha<\beta<\infty$, then
$\left|\left\{x \in \boldsymbol{R}^{n} ;\left[S_{\alpha}\left(T_{R}\right) v\right](x)>\gamma,\left(N_{\beta} v\right)(x) \leqq 1\right\}\right| \leqq c_{1} \exp \left(-c_{2} \gamma\right)\left|\left\{x \in \boldsymbol{R}^{n} ;\left[S_{2 \alpha}\left(T_{R}\right) v\right](x)>1\right\}\right|$ for all $\gamma>1$, where c_{1} and c_{2} are positive constants depending only on n, α, β and L.

Corollary 1. Let v be the same as in Theorem. For any $0<\alpha$, $\beta<\infty$ and $0<p<\infty$, there exists a constant C depending only on n, α, β, L and p such that $\left\|S_{\alpha} v\right\|_{p} \leqq C\left\|N_{\beta} v\right\|_{p}$.

Corollary 2. Let v be the same as in Theorem and suppose $0<$ $\alpha<\beta<\infty$. Then, for any $0<p<\infty$, there exist positive constants c and C depending only on n, α, β, L and p such that

$$
\int_{R^{n}} \exp \left\{c\left(S_{\alpha} v\right)(x) /\left(N_{\beta} v\right)(x)\right\}\left\{\left(S_{\alpha} v\right)(x)\right\}^{p} d x \leqq C\left\|S_{\alpha} v\right\|_{p}^{p}
$$

When $L=\Delta, v=|u|^{2}$ and u is harmonic, the above Corollary 2 was obtained by Murai-Uchiyama [8], as an improvement of Fefferman-Gundy-Silverstein-Stein [5].

We shall prove Theorem following Uchiyama [9]. In the process, the following lemma plays an important role. It is an extension of Lemma 1 in [9] but is simpler: We do not have to control ∇v by $N_{\beta} v$ as in [9].

To state the lemma, we let $W_{\alpha}(E)=\cup\left\{\Gamma_{\alpha}(x) ; x \in E\right\}$ for $E \subset \boldsymbol{R}^{n}$.
Lemma. Let v, α and β be the same as in Theorem, and let $E=$ $\left\{x \in \boldsymbol{R}^{n} ;\left(N_{\beta} v\right)(x) \leqq 1\right\}$. If ν is defined by

$$
\nu(W)=\int_{W_{\alpha}(E) \cap W} t d \mu_{L v}(x, t)
$$

for Borel sets $W \subset \boldsymbol{R}_{+}^{n+1}$, then ν is a Carleson measure and the Carleson norm $\|\nu\|_{C}=\sup \left\{\nu\left[I \times\left(0,|I|^{1 / n}\right)\right] /|I| ; I\right.$ is a cube in $\left.\boldsymbol{R}^{n}\right\}$ is bounded by a constant depending only on n, α, β, and L.
2. Proof of Lemma. Let I be a cube in \boldsymbol{R}^{n} and let $l(I)$ be its side length. It is clear that

$$
\begin{equation*}
\nu[I \times(0, l(I))] \leqq \lim _{h \rightarrow+0} \int_{W_{\alpha}(E) \cap W_{\alpha}(I) \cap\left\{\mathbb{R}^{n} \times(h, l(I))\right\}} t d \mu_{L v}(x, t) \tag{2.1}
\end{equation*}
$$

For small $h>0$, we define W by

$$
W=W_{(\alpha+\beta) / 2}(E) \cap W_{(\alpha+\beta) / 2}(I) \cap\left\{\boldsymbol{R}^{n} \times([1-\tau] h,[1+\tau] l(I))\right\}
$$

where we take sufficiently small $\tau>0$ so that the following relations hold:

$$
\begin{array}{ll}
B_{n+1}((x, t), \tau t) \subset \Gamma_{(\alpha+\beta) / 2}(o) \quad \text { for } & (x, t) \in \Gamma_{\alpha}(o), \quad \text { and } \\
B_{n+1}((x, t), \tau t) \cap \Gamma_{(\alpha+\beta) / 2}(o)=\varnothing & \text { for } \quad(x, t) \notin \Gamma_{\beta}(o) . \tag{2.3}
\end{array}
$$

Let ρ be a non-negative infinitely differentiable function on \boldsymbol{R}^{n+1} such that supp $\rho \subset B_{n+1}(0,1) \subset \boldsymbol{R}^{n+1}$ and its integral over \boldsymbol{R}^{n+1} is equal to 1 . Let $\rho_{\varepsilon}(x, r)=\varepsilon^{-n-1} \rho\left(\varepsilon^{-1} x, \varepsilon^{-1} r\right)$ for $(x, r) \in \boldsymbol{R}^{n+1}$ and $\varepsilon>0$, and let χ be

$$
\chi(x, t)=\left(\chi_{W} * \rho_{\tau t}\right)(x, t)=\int_{W}(\tau t)^{-n-1} \rho((x-y) / \tau t,(t-s) / \tau t) d y d s
$$

for $(x, t) \in \boldsymbol{R}_{+}^{n+1}$, where χ_{W} is the characteristic function of W. By the property (2.3) and the definition of W, we have
(2.4) $\operatorname{supp} \chi \subset\left[I^{*} \times(\{1-\tau\} h /\{1+\tau\},\{1+\tau\} l(I) /\{1-\tau\})\right] \cap\left[W_{\beta}(E) \cap W_{\beta}(I)\right]$, where I^{*} is the cube which we obtain by expanding $I\{1+2 \beta(1+\tau) /(1-\tau)\}-$ times and has the same center as I. We also see that χ is a non-negative infinitely differentiable function. Furthermore, by (2.2), we have

$$
\begin{equation*}
\chi(x, t)=1 \quad \text { for } \quad(x, t) \in W_{\alpha}(E) \cap W_{\alpha}(I) \cap\left\{\boldsymbol{R}^{n} \times(h, l(I))\right\} . \tag{2.5}
\end{equation*}
$$

Therefore, the integral in (2.1) is not greater than

$$
J=\int_{R_{+}^{n+1}} t \chi(x, t) d \mu_{L v}(x, t)
$$

Since $t \chi(x, t)$ is an infinitely differentiable function with compact support on \boldsymbol{R}_{+}^{n+1}, in other words, a test function, we get

$$
J=\int_{W_{0}} L^{*}[t \chi(x, t)] v(x, t) d x d t
$$

where $W_{0}=\left\{(x, t) ; L^{*}[t \chi(x, t)] \neq 0\right\}$ and

$$
L^{*}=\sum_{j, k=1}^{n+1} a_{j_{k}} \frac{\partial^{2}}{\partial x_{j} \partial x_{k}}-\sum_{j=1}^{n+1} b_{j} \frac{\partial}{\partial x_{j}} \frac{1}{t} .
$$

Elementary calculus shows that

$$
L^{*}[t \chi(x, t)]=t \sum_{j, k=1}^{n+1} a_{j k} \frac{\partial^{2} \chi}{\partial x_{j} \partial x_{k}}(x, t)+\sum_{j=1}^{n+1} c_{j} \frac{\partial \chi}{\partial x_{j}}(x, t),
$$

where $c_{j}=a_{j, n+1}+a_{n+1, j}-b_{j} \quad(j=1, \cdots, n+1)$. Hence, by (2.4) and (2.5), the domain W_{0} of integration is narrow. We can easily check that $\left|\partial^{2} \chi(x, t) / \partial x_{j} \partial x_{k}\right| \leqq C / t^{2}$ and $\left|\partial \chi(x, t) / \partial x_{j}\right| \leqq C / t$ for every $(x, t) \in \boldsymbol{R}_{+}^{n+1}$ and all $j, k=1, \cdots, n+1$ with some constant C depending only on n, τ and ρ. For $(x, t) \in W_{0} \subset \operatorname{supp} \chi$, there exists a point $z \in E$ such that $(x, t) \in \Gamma_{\beta}(z)$ by (2.4). This implies ess sup $\left|v \chi_{W_{0}}\right|=\left\|v \chi_{W_{0}}\right\|_{\infty} \leqq 1$, where $\chi_{W_{0}}$ is the characteristic function of W_{0}. Therefore,

$$
J \leqq C \int_{w_{0}} t^{-1} d x d t
$$

with C depending only on n, τ, ρ and L, but independent of h. If we write $W_{0}(x)=\left\{t ;(x, t) \in W_{0}\right\}$ for $x \in I^{*}$, the last integral is equal to

$$
\int_{I^{*}} d x \int_{W_{0}(x)} t^{-1} d t
$$

by Fubini's theorem. We divide I^{*} into three parts I_{1}^{*}, I_{2}^{*} and I_{3}^{*};

$$
\begin{aligned}
& I_{1}^{*}=\left\{x ;(x, h) \in W_{\alpha}(E) \cap W_{\alpha}(I)\right\}, \\
& I_{2}^{*}=\left\{x ;(x, l(I)) \in W_{\alpha}(E) \cap W_{\alpha}(I)\right\}-I_{1}^{*} \text { and } \\
& I_{3}^{*}=I^{*}-\left(I_{1}^{*} \cup I_{2}^{*}\right) .
\end{aligned}
$$

The following inclusion relations are easily checked:

$$
\begin{aligned}
& W_{0}(x) \subset[\{(1-\tau) /(1+\tau)\} h, h] \cup[l(I),\{(1+\tau) /(1-\tau)\} l(I)] \text { for } x \in I_{1}^{*}, \\
& W_{0}(x) \subset[d(x) / \beta, d(x) / \alpha] \cup[l(I),\{(1+\tau) /(1-\tau)\} l(I)] \text { for } x \in I_{2}^{*}, \text { and } \\
& W_{0}(x) \subset[\{\alpha / \beta\} l(I),\{(1+\tau) /(1-\tau)\} l(I)] \text { for } x \in I_{3}^{*} .
\end{aligned}
$$

The function d appearing in the second relation is defined by $d(x)=$ $\max \{$ the distance of x from E, the distance of x from $I\}$. By these relations, we have $\int_{W_{0}(x)} t^{-1} d t \leqq C^{\prime}$ for a constant C^{\prime}. Therefore,

$$
J \leqq C C^{\prime}\left|I^{*}\right| \leqq C^{\prime \prime}|I|
$$

with a constant $C^{\prime \prime}$ depending only on $n, \alpha, \beta, \tau, \rho$ and L, but independent of h. This and (2.1) imply $\nu[I \times(0, l(I))] \leqq C^{\prime \prime}|I|$.
3. Proof of Theorem. We use the following known theorems.

Theorem A (Murai-Uchiyama [8]). If $f \in B M O\left(\boldsymbol{R}^{n}\right)$ and if $\|f\|_{B M O} \leqq 1$, then there exist positive constants c_{1}^{\prime} and c_{2}^{\prime} depending only on n such that

$$
|\{x ;|f(x)|>\gamma\}| \leqq c_{1}^{\prime} \exp \left(-c_{2}^{\prime} \gamma\right)|\{x ;|f(x)|>1\}| \quad(\gamma>1)
$$

Theorem B. Let ν be a finite Carleson measure on \boldsymbol{R}_{+}^{n+1} with the Carleson norm $\|\nu\|_{c}$ and K be an integrable continuous function on \boldsymbol{R}^{n} satisfying

$$
|K(x+y)-K(x)| \leqq B|y|(1+|x|)^{-n-1} \quad(|x| \geqq 2|y|)
$$

for a constant B. Then

$$
\left(S_{K} \nu\right)(x)=\int_{R_{+}^{n+1}} K_{t}(x-y) d \nu(y, t)
$$

exists for almost all $x \in \boldsymbol{R}^{n}$ and $\left\|S_{K} \nu\right\|_{B м о} \leqq C_{n}\left(\|K\|_{1}+B\right)\|\nu\|_{C}$, where C_{n} is a constant depending only on n, and $K_{t}(x)=t^{-n} K\left(t^{-1} x\right)$ for $(x, t) \in \boldsymbol{R}_{+}^{n+1}$.

When $K_{t}(x)$ is the Poisson kernel on $\boldsymbol{R}_{+}^{n+1}, S_{K} \nu$ is the balayage of ν. In this case, Theorem B is proved in [6, pp. 229-230]. The proof can be applied to our case.

Now, we begin the proof of our Theorem. Let ψ be an infinitely differentiable function on R^{n} satisfying $0 \leqq \psi \leqq 1$, $\psi(x)=1(|x| \leqq 1)$ and $\psi(x)=0 \quad(|x| \geqq 2)$. Using this ψ, we set $K(x)=\psi(x / \alpha)$ and $K_{t}(x)=$ $t^{-n} K\left(t^{-1} x\right)$ for $x \in \boldsymbol{R}^{n}$ and $t>0$. Then

$$
t^{n} K_{t}(x)=1 \quad \text { for } \quad(x, t) \in \Gamma_{\alpha}(o), \quad \text { and } \quad t^{n} K_{t}(x)=0 \quad \text { for } \quad(x, t) \notin \Gamma_{2 \alpha}(o) .
$$

We set $E=\left\{x ;\left(N_{\beta} v\right)(x) \leqq 1\right\}$ and define the measure ν exactly as in Lemma. If we write $\nu_{R}(W)=\nu\left(W \cap T_{R}\right)$ for $W \subset \boldsymbol{R}_{+}^{n+1}$, then, by the above relations, we get

$$
\begin{equation*}
\left[S_{\alpha}\left(W_{\alpha}(E) \cap T_{R}\right) v\right](x) \leqq\left(S_{K} \nu_{R}\right)(x) \leqq\left[S_{2 \alpha}\left(T_{R}\right) v\right](x) \tag{3.1}
\end{equation*}
$$

for all $x \in \boldsymbol{R}^{n}$. Lemma shows that ν_{R} is a finite Carleson measure and there exists a constant C_{1} depending only on n, α, β, and L such that $\left\|\nu_{R}\right\|_{C} \leqq\|\nu\|_{C} \leqq C_{1}$. Applying Theorem B to $S_{K} \nu_{R}$, we have $\left\|S_{K} \nu_{R}\right\|_{B M O} \leqq$ $C_{2}\left\|\nu_{R}\right\|_{C}$ with some constant C_{2} depending only on n and K. Therefore, Theorem A implies

$$
\begin{equation*}
\left|\left\{x ;\left(S_{K} \nu_{R}\right)(x)>\gamma\right\}\right| \leqq c_{1} \exp \left(-c_{2} \gamma\right)\left|\left\{x ;\left(S_{K} \nu_{R}\right)(x)>1\right\}\right| \tag{3.2}
\end{equation*}
$$

for all $\gamma>1$, where c_{1} and c_{2} are positive constants depending only on n, C_{1} and C_{2}. Since $\left[S_{\alpha}\left(T_{R}\right) v\right](x)=\left[S_{\alpha}\left(W_{\alpha}(E) \cap T_{R}\right) v\right](x)$ for $x \in E$, Theorem follows from (3.1) and (3.2).
3. Proofs of Corollaries 1 and 2. To prove Corollary 1, we may assume $0<\alpha<\beta<\infty$ without loss of generality (cf. Fefferman-Stein [4, Lemma 1]). It is easy to derive

$$
\left\|S_{\alpha}\left(T_{R}\right) v\right\|_{p}^{p} \leqq \gamma^{p}\left\{\left\|N_{\beta} v\right\|_{p}^{p}+c_{1} \exp \left(-c_{2} \gamma\right)\left\|S_{2 \alpha}\left(T_{R}\right) v\right\|_{p}^{p}\right\}
$$

for any $\gamma>1$ from Theorem with the same constants c_{1} and c_{2} as those in it (cf. Uchiyama [9]). For the second term in the braces, we have $\left\|S_{2 \alpha}\left(T_{R}\right) v\right\|_{p}^{p} \leqq C_{0}\left\|S_{\alpha}\left(T_{R}\right) v\right\|_{p}^{p}$ for a constant C_{0} depending only on n, α and p as in the proof of Proposition 4 in [3]. Our assumption on v and the fact that the support of $\left[S_{\alpha}\left(T_{R}\right) v\right]$ is compact give $\left\|S_{\alpha}\left(T_{R}\right) v_{p}\right\|<\infty$. Therefore, we have

$$
\left\{1-C_{0} c_{1} \gamma^{p} \exp \left(-c_{2} \gamma\right)\right\}\left\|S_{\alpha}\left(T_{R}\right) v\right\|_{p}^{p} \leqq \gamma^{p}\left\|N_{\beta} v\right\|_{p}^{p}
$$

Taking a suitable γ and letting R tend to infinity, we have the conclusion of Corollary 1.

Corollary 2 is an analogue of a result of Murai-Uchiyama [8]. We give here a proof slightly different from theirs.

Let c_{2} be the same constant as that in Theorem. As the constant c in Corollary 2, we may take any number c such that $0<c<c_{2}$. Take an infinitely differentiable function χ on ($0, \infty$) such that $\chi(t)=0$ for $0<t<1$, and $\chi(t)=1$ for $t>2$, and set $\phi_{0}(t)=\chi(t) \exp (c t)$ and $\phi_{1}(t)=$ $\{1-\chi(t)\} \exp (c t)$ for $0<t<\infty$. Then

$$
\begin{aligned}
& \int_{R^{n}} \exp \left\{c\left(S_{\alpha} v\right)(x) /\left(N_{\beta} v\right)(x)\right\}\left\{\left(S_{\alpha} v\right)(x)\right\}^{p} d x \\
& \quad \leqq \int_{R^{n}} \Phi\left[\left(S_{\alpha} v\right)(x),\left(N_{\beta} v\right)(x)\right] d x+\int_{R^{n}} \phi_{1}\left[\left(S_{\alpha} v\right)(x) /\left(N_{\beta} v\right)(x)\right]\left\{\left(S_{\alpha} v\right)(x)\right\}^{p} d x,
\end{aligned}
$$

where $\Phi(t, u)=\phi_{0}(t / u) t^{p}$. The second term is bounded by $\exp (2 c)\left\|S_{\alpha} v\right\|_{p}^{p}$. As for the first term, by Fatou's theorem, it is sufficient to estimate

$$
I_{R}=\int \Phi\left(\left[S_{\alpha}\left(T_{R}\right) v\right](x),\left(N_{\beta} v\right)(x)\right) d x
$$

If $\left(N_{\beta} v\right)(x)=0$, then $\left[S_{\alpha}\left(T_{R}\right) v\right](x)=0$. Therefore, we may regard the integral of I_{R} to be taken over $\left\{x ;\left(N_{\beta} v\right)(x) \neq 0\right\}$. By the definition of Φ, we have

$$
I_{R}=\iint_{0<u<t}-\Phi_{t u}(t, u)\left|\left\{x ;\left[S_{\alpha}\left(T_{R}\right) v\right](x)>t,\left(N_{\beta} v\right)(x) \leqq u\right\}\right| d t d u
$$

where $\Phi_{t u}=\partial^{2} \Phi / \partial t \partial u$. By Theorem, the right hand side is bounded by

$$
c_{1} \int_{0}^{\infty}\left|\left\{x ;\left[S_{2 \alpha}\left(T_{R}\right) v\right](x)>u\right\}\right| d u \int_{u}^{\infty}\left|\Phi_{t u}(t, u)\right| \exp \left(-c_{2} t / u\right) d t
$$

Since $\Phi_{t u}(t, u)=-u^{p-1}\left\{(1+p)(t / u)^{p} \phi_{0}^{\prime}(t / u)+(t / u)^{p+1} \phi_{0}^{\prime \prime}(t / u)\right\} / u$, the inner integral is equal to

$$
C_{1}=u^{p-1} \int_{1}^{\infty}\left|(1+p) t^{p} \phi_{0}^{\prime}(t)+t^{p+1} \phi_{0}^{\prime \prime}(t)\right| \exp \left(-c_{2} t\right) d t
$$

Because of $0<c<c_{2}$, the last integral is finite, and so

$$
I_{R} \leqq C_{1} c_{1} p^{-1}\left\|S_{2 \alpha}\left(T_{R}\right) v\right\|_{p}^{p} \leqq C_{0} C_{1} c_{1} p^{-1}\left\|S_{\alpha} v\right\|_{p}^{p} .
$$

This completes the proof of Corollary 2.

References

[1] D. L. Burkholder and R.F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44 (1972), 527-544.
[2] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Adv. in Math. 16 (1975), 1-64.
[3] R.R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335.
[4] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[5] R. Fefferman, R. Gundy, M. Silverstein and E. M. Stein, Inequalities for ratios of functionals of harmonic functions, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), 7958-7960.
[6] J. B. Garnett, Bounded Analytic Functions, Pure and Applied Math. 96, Academic Press, New York-London-Toronto-Sydney-San Francisco, 1981.
[7] T.R. McConnell, Area integrals and subharmonic functions, Indiana Univ. Math. J. 33 (1984), 289-303.
[8] T. Murai and A. Uchiyama, Good λ inequalities for the area integral and the nontangential maximal function, Studia Math. 83 (1986), 251-262.
[9] A. Uchiyama, On McConnell's inequality for functionals of subharmonic functions, Pacific J. Math 128 (1987), 367-377.

Department of Mathematics
College of General Education
Tôhoku University
Kawauchi, Sendai, 980
Japan

[^0]: This work was partly supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

