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Introduction. In this paper, we give a method to estimate the area
integrals by the non-tangential maximal functions.

For a harmonic function u on the upper half-space R++1 — Λnx(0, ©o),
the area integrals Aau and the non-tangential maximal functions Nau are
defined by

(Aau)(x) = {( \(Vu)(y, s)\2sι~ndyds\1/2 and
UΓa(χ) )

(Nau)(x) = sup{|tt(i/, s)\; (y, s)eΓa(x)} ,

respectively, for α > 0 and xeR71. In the above formulas, \Vu\2 =
Σ \du/dXj\2 + \du/dt\2 with the summation taken over j — 1, •••,%, and
Γa(x) = {(y, s) 6 JB++1; |cc — y\ < as), where \x\ is the Euclidean norm of
xeR71. We denote the points of jβ++1 by the ordered pairs (x, t)9 where
x 6 Rn and t is a positive real.

The norm equivalence between Aau and Nau was obtained by
Burkholder-Gundy [1] and Fefferman-Stein [4].

If u is harmonic in i?++1, then |Vu|2 = Δ|t6|2/2, where Δ denotes the
Laplacian on R++1, Σ d2/dx] + 32/3ί2 with the summation taken over j =
1, •••, n. Furthermore, \u\2 is subharmonic in R\+1.

McConnell [7] introduced certain functions Sav on Rn for a subhar-
monic function v on J2++1. It can be written as

(Sav)(x) = \ (Av)(y, s)s1~ndyds ,
JΓa(χ)

if v e C\Rn

+

+1). He proved \\Sav\\p £ C\\Nav\\p for a limited range of p,
where || | |p denotes the Lp(iίn)-norm and C is a constant depending only
on n, a, p. Recently, Uchiyama [9] obtained the same result for all
0 < p < oo.

We shall give another proof for this latter result and show that our
method is applicable to more general area integrals including the ones
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induced from temperatures, which were studied in [2].
The author thanks Professor A. Uchiyama and the referee for their

useful advice.

1. Definitions and the main theorem. Let A = (ajk) be an (n + 1)-
dimensional complex square matrix and blf « ,6re+1 be complex numbers.
We define the differential operator L by

(l.i) L = Σ α Λ T 4 — + Σ M"1/- ,
όkι dXdx ii dX

where, and hereafter, xn+1 denotes the (n + l)-st variable t.
As the following examples show, it may be natural to consider the

following area integrals. To a locally integrable function v on i?++1, we
apply the operator L in the sense of distributions. We consider the case
where Lv is a positive Borel measure μLv on Rl+1. For such v, we define
the area integrals Sav by

(Sav)(x) = \ s^ndμLv(y, s) .
JΓa{χ)

If A is non-negative and blt •••, bn+1 a re real, and if ueC\Rl+1) is a

solution of Lu = 0, then

L\u\2 = ([A + A]du/dx, du/dx) ̂  0 ,

where A = (ajk) and ajk is the complex conjugate of ajk, du/dx denotes
the column vector *(du/dx19 , du/dxn+1) and ( , ) is the usual inner product
in Cn+1.

EXAMPLE 1. If u is harmonic in JB++1 and L = Δ, then Lu = 0,
and SJ^|2 = 2(Aau)\

EXAMPLE 2. When u0 is a temperature on i?++1, that is to say,
u0 is infinitely differentiate and satisfies duo(x, t)/dt = Δ9u0(x, t) =
Σi=i3X(#, ί)/3a?5 in Λ;+1, by setting %(α, t) = wo(a?, tf/Aπ) an dtaking L =
Δ* - 2πt~ιdldt, we have Lu = 0 and L|^|2 = 2|V^|2 = 2 Σy=i {du/dxtf. Mak-
ing use of notation in [2], we have Sa\u\2 = 2ωnα

n Σ?=i Sα(α?, ίΓy), where
iΓXa?, ί) = tdt6(α?f i)/3a?y (i = 1, , w) and ωn is the measure of the unit
sphere in Rn.

EXAMPLE 3. If v is subharmonic and not identically — °o in JB++1»
if L = Δ, then Sαΐ; is identical with that in McConnell [7].

We define the non-tangential maximal functions Nav by

(Nav)(x) =
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where %Γα(aJ) is the characteristic function of Γa(x) and ess sup is the es-
sential supremum with respect to the Lebesgue measure in Rn

+

+1.
For technical reasons, we introduce

[Sa(W)v](x)= \ s^dμ^y, s)

for Borel sets WaR%+1. For EczR71, \E\ denotes the Lebesgue measure
of E. We denote by Bn{x, R) the open ball in Rn of radius R centered
at x. For R > 0, we set TB = Bn(o, R)x(l/R, R)aRn

+

+1, where o denotes
the origin in Rn.

Our main purpose is to obtain the following good λ inequalities, which
lead to the norm inequalities stated in Introduction.

THEOREM. Let L be the operator defined by (1.1) with an (n + 1)-
dimensional complex square matrix A and complex numbers b19 •••, bn+1,
and let v be a locally integrable function on R++1 such that Lv is a posi-
tive Borel measure on iί++1- If 0 < a < β < °°, then

\{xeRn;[Sa(TR)v](x)>ΎΛNβv)(x)^l}\^c1exv(-c2Ύ)\{xeRn;^

for all Ί > 1, where cι and c2 are positive constants depending only on
ny a, β and L.

COROLLARY 1. Let v be the same as in Theorem. For any 0 < α,
β < oo and 0 < p < ©o, there exists a constant C depending only on n,
α, β, L and p such that \\Sav\\p ^ C\\Nβv\\p.

COROLLARY 2. Let v be the same as in Theorem and suppose 0 <
a < β < oo. Then, for any 0 < p < oo, there exist positive constants c
and C depending only on n, a, β, L and p such that

\ exv{c(SavXx)KNβv)(x)}{(SavXx)}*dx ̂  C\\Sav\

When L — Δ, v = |w|2 and % is harmonic, the above Corollary 2 was
obtained by Murai-Uchiyama [8], as an improvement of Fefferman-Gundy-
Silverstein-Stein [5].

We shall prove Theorem following Uchiyama [9]. In the process, the
following lemma plays an important role. It is an extension of Lemma
1 in [9] but is simpler: We do not have to control Vv by Nβv as in [9].

To state the lemma, we let Wa{E) = U{Γa(x); xeE} for EczR71.

LEMMA. Let v, a and β be the same as in Theorem, and let E =
{xeR71; (Nβv)(x) ^ 1}. // v is defined by

v(W)=\ tdμLv{x,t)
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for Borel sets WaR++1, then v is a Carleson measure and the Carleson
norm \\v\\G = sup{v[Jx(0, \I\1/n)]/\I\; I is a cube in Rn) is bounded by a con-
stant depending only on n, a, β, and L.

2. Proof of Lemma. Let I be a cube in Rn and let 1(1) be its side
length. It is clear that

(2.1) v[Ix (0, 1(1))] ^ lim ί tdμLυ(x, t) .
Λ ^ + O J Wa{E) Γ\Wa(I) ΓΊ {RnX (hl(D)}

For small h > 0, we define W by

w = w{a+β)/2(E) n w{a+β)/2(i) n {Rn x ([i - φ, [i +

where we take sufficiently small τ > 0 so that the following relations hold:

(2.2) Bn+1((x,t),τt)aΓ(a+β)/2(o) for (x,t)eΓa(o), and

(2.3) Bn+ι((x, t), τt) ΓΊ Γia+β)/2(o) = 0 for (x, t) $ Γβ(o) .

Let p be a non-negative infinitely differentiate function on Rn+1 such
that supp paBn+1(o, l)czRn+1 and its integral over Rn+1 is equal to 1. Let
pe(x, r) = e-n~1p(e'1xf ε~V) for (x, r) e Rn+1 and ε > 0, and let 1 be

X(x, t) = (Xw*Pτt)(x, t) = ( (τtr^pttx - y)/τt, (t - s)/τt)dyds

for (x, t)eR++1, where Xw is the characteristic function of W. By the
property (2.3) and the definition of W, we have

(2.4) suppZc[I*x({1 - τ}h/{l + τ}, {1 + τ}l(I)/{l - r})] f)[Wβ(E)n ^ ( i ) ] ,

where /* is the cube which we obtain by expanding I {1 + 2/3(1 + τ)/(l — τ)}-
times and has the same center as /. We also see that X is a non-negative
infinitely differentiable function. Furthermore, by (2.2), we have

(2.5) X(x, t) = 1 for (x, t) e Wa(E) n TΓβ(7) Π {Rn x (h, 1(1))} .

Therefore, the integral in (2.1) is not greater than

J = \ tX(xf t)dμLv(x, t) .

Since tX(x, t) is an infinitely differentiable function with compact support
on R%+1, in other words, a test function, we get

J = \ L*[tX(x, t)]v(x, t)dxdt ,
jTΓo

where Wo = {(x, t); L*[tX(x, t)] Φ 0} and
τι+1 32

r * —
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Elementary calculus shows that

L*[tX(x, t)] = t.Σ^y* d2χ fa *) + Σ <*,-—fa ί ) ,

where cά = aj>n+1 + an+1}j — b3- (j = 1, , n + 1). Hence, by (2.4) and
(2.5), the domain Wo of integration is narrow. We can easily check that
\d2X(x, t)/dxjdxk\ ^ C/f and \dX(x, t)/dxj\ ^ C/ί for every (x, t) e iJV1 and all
j , k = 1, , n + 1 with some constant C depending only on n, τ and p.
For (x, t) e T^ocsuppZ, there exists a point 2 e £7 such that (x,t)eΓβ(z)
by (2.4). This implies ess sup \vXWo\ = \\vXWo\\^ ^ 1, where XWo is the char-
acteristic function of WQ. Therefore,

J SC\ t~ιdxdt ,

with C depending only on n, τ, p and L, but independent of h. If we
write WQ(x) — {t; (x, t)e Wo} for xel*, the last integral is equal to

r'dt
W0(x)

by Fubini's theorem. We divide 7* into three parts If, If and If;

If = {x;(x,h)eWa(E)ΓίWa(I)},

If = {x; (x, l(D) e Wa(E) n Wa(D] ~ If and

If = Γ - (IfVlf) .

The following inclusion relations are easily checked:

Wo(a0c[{(l - τ)/(l + τ)}h, h] U [1(1), {(1 + τ)/(l - τ)}l(I)] for ^ e 7* ,

W0(x)d[d(x)/β, d(x)/a] U [Z(7), {(1 + r)/(l - τ)}l(I)] for x 6 If , and

W0(aj)c[{a//3}Z(7), {(1 + τ)/(l - τ)}l(I)] for x e If .

The function d appearing in the second relation is defined by d(x) =
max{the distance of x from £7, the distance of x from 7}. By these re-
lations, we have 1 t~xdt ^ C for a constant C Therefore,

JTF0(α;)

with a constant C" depending only on n, a, β, τ, p and L, but independent
of h. This and (2.1) imply v[7x(0, 1(1))] ^ C"|7|.

3. Proof of Theorem. We use the following known theorems.

THEOREM A (Murai-Uchiyama [8]). IffeBMO(Rn) and if \\f\\BMo ^ 1,
then there exist positive constants c[ and c'2 depending only on n such that
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\{x; 1/0*01 > 7}| £ c[exp(-c27)|{α; \f(x)\ > 1}| (7 > 1) .

THEOREM B. Let v be a finite Carleson measure on R%+1 with the
Carleson norm \\v\\c and K be an integrable continuous function on Rn

satisfying

\K(x Λ-y)- K{x)\ <̂  B\y\(l + |^I)— x (\x\ ^ 2\y\)

for a constant B. Then

(Sκv)(x) = \Rn+Kt(x - y)dv(y, t)

exists for almost all xeRn and \\Sκv\\BM0 ^ Cn(\\K\\λ + -B)||v||σ» where Cn is
a constant depending only on n, and Kt(x) = t~nK(t~ιx) for (x, t)eR++1.

When Kt(x) is the Poisson kernel on R\+1, Sκv is the balayage of v.
In this case, Theorem B is proved in [6, pp. 229-230]. The proof can
be applied to our case.

Now, we begin the proof of our Theorem. Let ψ be an infinitely
differentiate function on Rn satisfying 0 ^ ψ ^ 1, ψ{x) = 1 (\x\ ^ 1) and
fix) = 0 (\x\ ^ 2). Using this ψ, we set K{x) = ψ(x/a) and Kt(x) =
t-nK(t-λx) for x e Rn and t > 0. Then

tnKt(x) = 1 for (x, t) 6 Γa(o) , and tnKt(x) = 0 for (a?, ί) g Γ2α(o) .

We set E = {x; (Nβv)(x) ^ 1} and define the measure v exactly as in Lemma.
If we write vR(W) = v(Wf] TR) for WczR\+\ then, by the above relations,
we get

(3.1) [Sa{Wa{E) n TR)v](x) £ (SκvR)(x) ^ [S2a(TR)v](x)

for all x e Rn. Lemma shows that vR is a finite Carleson measure and
there exists a constant CΊ depending only on n, a, β, and L such that
\\vR\\c ^ \\v\\c ^ Cx. Applying Theorem B to SκvB, we have \\SκvR\\BM0 ^
C2||y*||(7 w ^ ^ s o i n e constant C2 depending only on n and K. Therefore,
Theorem A implies

(3.2) \{x; (SκvR)(x) > 7}I ^ cλ exp(-c27)|{^; (S^)(x) > 1}|

for all 7 > 1, where cL and c2 are positive constants depending only on
n, Cλ and C2. Since [Sβ(ΓΛ)v](a?) = [Sa(Wa(E) f) TR)v](x) tovxeE, Theorem
follows from (3.1) and (3.2).

3. Proofs of Corollaries 1 and 2. To prove Corollary 1, we may
assume 0 < a < β < °° without loss of generality (cf. Fefferman-Stein [4,
Lemma 1]). It is easy to derive

\\Sa(TR)v\\l ^ yp{\\Nβv\\l +
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for any 7 > 1 from Theorem with the same constants ct and c2 as those
in it (cf. Uchiyama [9]). For the second term in the braces, we have
\\S2a(TR)v\\p

p ^ C0\\Sa(TB)v\\l for a constant Co depending only on n, a and p
as in the proof of Proposition 4 in [3]. Our assumption on v and the fact
that the support of [Sa(TB)v] is compact give \\Sa(TR)vp\\ < ©o. Therefore,
we have

{1 - Coc^exp(-c/y)}||Sα(Γ>||* rg Ύ>\\Nβv\\* .

Taking a suitable 7 and letting R tend to infinity, we have the conclusion
of Corollary 1.

Corollary 2 is an analogue of a result of Murai-Uchiyama [8]. We
give here a proof slightly different from theirs.

Let c2 be the same constant as that in Theorem. As the constant
c in Corollary 2, we may take any number c such that 0 < c < c2. Take
an infinitely differentiate function X on (0, oo) such that X{t) — 0 for
0 < t < 1, and Z(ί) = 1 for ί > 2, and set φo(t) = X{t) exp(cί) and &(ί) =
{1 - Z(ί)} exp(cί) for 0 < ί < oo. Then

^ ( Φ[(Sav)(x), (Nβv)(x)]dx + ( φάiS^XxyiNevXxMS^ix)}* dx ,
JRΠ jRn

where Φ(t, u) — φQ(t/u)tp. The second term is bounded by exp(2c)||Sev||;.
As for the first term, by Fatou's theorem, it is sufficient to estimate

IR = \Φ([Sa(TB)v](x), (Nβv)(x))dx .

If (Nβv)(x) = 0, then [Sa(TB)v](x) = 0. Therefore, we may regard the in-
tegral of IR to be taken over {x; (Nβv)(x) Φ 0}. By the definition of Φ,
we have

IR = \\ -Φtu(t, u)\{x; [Sa(TR)v](x) > t, (Nβv)(x) ^ u}\dtdu ,
JJθ<M<ί

where Φtu = d2Φ/dtdu. By Theorem, the right hand side is bounded by

cλ \{x; [S2a(TR)v](x) > u}\du\ \Φtu(t, u)\ exι>(—c2t/u)dt .
JO Ju

Since Φtu(t, u) = -up-ι{(l + v)(t/u)pφΌ(t/u) + (t/u)p+1φ"(tlu)}/u, the inner in-
tegral is equal to

α + p)t'φ'Q(t) + tp+1φΌ\t)\ exp(-c2t)dt .

Because of 0 < c < ci9 the last integral is finite, and so
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This completes the proof of Corollary 2.
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