Tôhoku Math. Journ. 39 (1987), 543-555.

NORMS OF HANKEL OPERATORS AND UNIFORM ALGEBRAS, II

TAKAHIKO NAKAZI*

(Received September 12, 1986)

Abstract. Let H^{∞} be an abstract Hardy space associated with a uniform algebra. Denoting by (f) the coset in $(L^{\infty})^{-1}/(H^{\infty})^{-1}$ of an f in $(L^{\infty})^{-1}$, define $\|(f)\| = \inf\{\|g\|_{\infty} \|g^{-1}\|_{\infty}; g \in (f)\}$ and $\tilde{\tau}_0 = \sup\{\|(f)\|; (f) \in (L^{\infty})^{-1}/(H^{\infty})^{-1}\}$. If $\tilde{\tau}_0$ is finite, we show that the norms of Hankel operators are equivalent to the dual norms of H^1 or the distances of the symbols of Hankel operators from H^{∞} . If H^{∞} is the algebra of bounded analytic functions on a multiply connected domain, then we show that $\tilde{\tau}_0$ is finite and we determine the essential norms of Hankel operators.

0. Introduction. Let X be a compact Hausdorff space, let C(X) be the algebra of complex-valued continuous functions on X, and let A be a uniform algebra on X. For $\tau \in M_A$, the maximal ideal space of A, set $A_0 = \{f \in A; \tau(f) = 0\}$. Let m be a representing measure for τ on X.

The abstract Hardy space $H^p = H^p(m)$, $1 \leq p \leq \infty$, determined by A is defined to be the closure of A in $L^p = L^p(m)$ when p is finite and to be the weak*-closure of A in $L^\infty = L^\infty(m)$ when p is infinite. Put $H^p_0 = \{f \in H^p; \int_x fdm = 0\}$, $K^p = \{f \in L^p; \int_x fgdm = 0 \text{ for all } g \in A_0\}$ and $K^p_0 = \{f \in K^p; \int_x fdm = 0\}$. Then $H^p_0 \subset K^p_0$ and $H^p \subset K^p$.

Let $Q^{(1)}$ be the orthogonal projection from L^2 to $(H^2)^{\perp} = \overline{K}_0^2$ and $Q^{(2)}$ the orthogonal projection from L^2 to \overline{H}_0^2 . For a function ϕ in L^{∞} we denote by M_{ϕ} the multiplication operator on L^2 determined by ϕ . As in the previous paper [14], two generalizations of the classical Hankel operators are defined as follows. For ϕ in L^{∞} and f in H^2

$$H^{(j)}_{\phi}f=Q^{(j)}M_{\phi}f \ \ (j=1,\,2) \; .$$

If A is a disc algebra and $\tau(f) = \tilde{f}(0)$, where \tilde{f} denotes the holomorphic extension of f in A, then τ is in M_A . The normalized Lebesgue measure m on the unit circle T is a representing measure for τ . Then H^2 is the classical Hardy space and $H_0^2 = K_0^2$. Hence $H_{\phi}^{(1)} = H_{\phi}^{(2)}$ and it is the classical Hankel operator H_{ϕ} . It is well known that

^{*} This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

(a) $||H_{\phi}|| = ||\phi + H^{\infty}||$

and

(b) $||H_{\phi}||_{s} = ||\phi + H^{\infty} + C(T)||,$

where the essential norm $||H_{\phi}||_{\epsilon}$ of H_{ϕ} is the distance to the compact operators. (a) is due to Nehari (cf. [16, Theorem 1.3], [15]), while (b) is due to Adamyan, Arov and Krein (cf. [16, p. 6], [2]). (b) yields Hartman's result (cf. [16, Theorem 1.4], [11]) to the effect that

(c) H_{ϕ} is compact if and only if ϕ is in $H^{\infty} + C(T)$.

In the previous paper [14] we considered the generalizations of (1). The main idea was to consider Hankel operators on vH^2 for every nonnegative invertible function v in L^{∞} , avoiding a factorization theorem of H_0^1 . Namely, if h is in H_0^1 and $\int_x |h| dm \leq 1$, then h = fg, $f \in H^2$ and $g \in H_0^2$ where $\int_x |f|^2 dm \leq 1 + \varepsilon$ and $\int_x |g|^2 dm \leq 1 + \varepsilon$ for some $\varepsilon > 0$. Let v be a nonnegative function in L^{∞} with v^{-1} in L^{∞} . Let $Q_v^{(1)}$ be the orthogonal projection from L^2 onto $(vH^2)^{\perp} = v^{-1}\overline{K}_0^2$ and $Q_v^{(2)}$ the orthogonal projection from L^2 onto $v^{-1}\overline{H}_0^2$. If v is a constant function, then $Q_v^{(j)} = Q^{(j)}$ (j =1, 2). For $\phi \in L^{\infty}$ and $f \in vH^2$, $H_{\phi}^{(j)v}$ is the operator defined by

$$H_{{}^{\phi}}^{{}^{(j)}{}^{v}}f=Q_{{}^{v}}^{{}^{(j)}}M_{\phi}f$$
 , $(j=1,\,2)$.

If v is a nonzero constant, then $H_{\phi}^{(j)v} = H_{\phi}^{(j)}$ (j = 1, 2). Put $(L^{\infty})_{+}^{-1} = \{v \in L^{\infty} : v^{-1} \in L^{\infty} \text{ and } v \ge 0\}$. The following theorem was shown in the previous paper [14] and gives (a).

GENERALIZED NEHARI'S THEOREM I. Let ϕ be a function in L^{∞} , then

 $\sup\{\|H_{\phi}^{(2)v}\|; v \in (L^{\infty})^{-1}_{+}\} = \|\phi + K^{\infty}\|.$

If K^{∞} is dense in K^{1} , then

$$\sup\{\|H_{\phi}^{(1)v}\|; v \in (L^{\infty})^{-1}_{+}\} = \|\phi + H^{\infty}\|$$
.

We now show two lemmas which will be used in later sections. Let P_v be the orthogonal projection from L^2 onto vH^2 . If v is a constant function, we shall write $P_v = P$.

LEMMA 1. Let ϕ be a function in L^{∞} . Then for any v and u in $(L^{\infty})^{-1}_+$ and for j = 1, 2

$$\|H_{\phi}^{(j)v} - H_{\phi}^{(j)u}\| \leq \|\phi\|_{\infty} (\|v^{-1}\|_{\infty} + \|u^{-1}\|_{\infty})\|v - u\|_{\infty}$$
.

PROOF. Since $||M_{v}f||_{2} \ge ||v^{-1}||_{\infty}^{-1} ||f||_{2}$ for all $f \in H^{2}$, by [7, Lemma 1.1.]

$$||P_{v} - P_{u}|| \leq (||v^{-1}||_{\infty} + ||u^{-1}||_{\infty})||v - u||_{\infty}$$

Similarly, $\|Q_v^{(j)} - Q_u^{(j)}\| \le (\|v^{-1}\|_\infty + \|u^{-1}\|_\infty) \|v - u\|_\infty$. Hence for j = 1, 2

$$\begin{split} \|H_{\phi}^{(j)v} - H_{\phi}^{(j)u}\| &= \|Q_{v}^{(j)}M_{\phi}P_{v} - Q_{u}^{(j)}M_{\phi}P_{v} + Q_{u}^{(j)}M_{\phi}P_{v} - Q_{u}^{(j)}M_{\phi}P_{u}\| \\ &\leq \|Q_{v}^{(j)} - Q_{u}^{(j)}\| \|M_{\phi}P_{v}\| + \|P_{v} - P_{u}\| \|Q_{u}^{(j)}M_{\phi}\| \\ &\leq \|\phi\|_{\infty} (\|v^{-1}\|_{\infty} + \|u^{-1}\|_{\infty})\|v - u\|_{\infty} \,. \end{split}$$

LEMMA 2. Let ϕ be a function in L^{∞} . If $H_{\phi}^{(j)}$ (j = 1, 2) is compact, then $H_{\phi}^{(j)v}$ (j = 1, 2) is compact for any v in $(L^{\infty})^{-1}_+$.

PROOF. For any $f \in vH^2$ and $g \in v^{-1}\overline{K}_0^2$, $(H_{\phi}^{(1)}{}^vf, g) = (vH_{\phi}^{(1)}(v^{-1}f), g)$. Hence $H_{\phi}^{v}f = Q^{(1)v}(M_{v}H_{\phi}^{(1)}M_{v^{-1}}f)$ for any $f \in vH^2$. The proof for $H_{\phi}^{(2)v}$ is similar. This implies the lemma.

Let N_{τ} denote the set of representing measures for τ on X. In this paper we sometimes will impose the following two conditions on τ :

(1) N_{τ} is finite dimensional and $n = \dim N_{\tau}$.

(2) m is a core measure of N_{τ} .

Let N^{∞} be the real annihilator of A in L^{∞}_{R} . Then dim $N^{\infty} = n$ and $A + \overline{A}_{0} + N^{\infty}_{c}$ is weak*-dense in L^{∞} , where $N^{\infty}_{c} = N^{\infty} + iN^{\infty}$ (cf. [10, p. 109]). $L^{2} = H^{2} \bigoplus \overline{H}^{2}_{0} \bigoplus N^{\infty}_{c}$. Set $\mathscr{C} = \exp N^{\infty}$; then \mathscr{C} is a subgroup of $(L^{\infty})^{-1}_{+}$. Moreover, together with (1) we often will make the following stronger conditions (3) on τ instead of (2).

(3) m is a unique logmodular measure of N_{τ} . Then the linear span of $N^{\infty} \cap \log |(H^{\infty})^{-1}|$ is N^{∞} (cf. [10, p. 114]). Choose $h_1, \dots, h_n \in (H^{\infty})^{-1}$ so that $\{\log |h_j|\}_{j=1}^n$ is a basis for N^{∞} . Put $u_j = \log |h_j|$ $(1 \leq j \leq n)$ and $\mathscr{C}_0 = \{\exp(\sum_{j=1}^n s_j u_j); 0 \leq s_j \leq 1\}$. Then $\mathscr{C}_0 \subset \mathscr{C}$. The following theorem was shown in the previous paper [14].

GENERALIZED NEHARI'S THEOREM II. Assume the assumptions (1) and (3) on τ . Let ϕ be a function in L^{∞} , then

$$\sup_{v \in \mathscr{C}_0} \|H^{\scriptscriptstyle (\!2)\,v}_{\phi}\| = \|\phi \,+\, H^{\scriptscriptstyle \infty} \,+\, N^{\scriptscriptstyle \infty}_{\mathfrak{o}}\|$$

and

$$\sup_{v \in \mathscr{C}_0} \|H_{\phi}^{\scriptscriptstyle (1)v}\| = \|\phi + H^{\scriptscriptstyle \infty}\| \ .$$

Moreover the supremums in both equalities are attained.

In Section 1, γ_0 , which is defined in Abstract, is studied. Under the assumptions (1) and (2) we determine when γ_0 is finite. In Section 2, we give examples of concrete uniform algebras to which results in this paper can apply. Moreover γ_0 is calculated in some examples. In Section 3, if γ_0 is finite, we show that $||H_{\phi}^{(1)}||$ (resp. $||H_{\phi}^{(2)}||$) is equivalent to $||\phi + H^{\infty}||$ (resp. $||\phi + K^{\infty}||$). In Section 4 we give applications of results in Section 3 to weighted norm inequalities for conjugation operators and invertible Toeplitz operators in uniform algebras. In Section 5 we determine the

T. NAKAZI

essential norms of Hankel operators in the case of (I) in Section 2. In Section 6 we consider the relationship between γ_0 and the factorization theorem of H_0^1 . In Section 7 we consider the relationship between generalized Nehari's Theorem and Arveson's distance formula for nest algebras.

1. Quotient group and a constant. Denoting by (f) the coset in $(L^{\infty})^{-1}/(H^{\infty})^{-1}$ of an f in $(L^{\infty})^{-1}$, define

$$\|(f)\| = \inf\{\|g\|_{\infty} \|g^{-1}\|_{\infty}; g \in (f)\}$$

and

$$\gamma_0 = \sup\{\|(f)\|; (f) \in (L^{\infty})^{-1}/(H^{\infty})^{-1}\}$$

Then $||(f)(h)|| \leq ||(f)|| ||(h)||$ and, in general, γ_0 can be finite or infinite. Let L_R^{∞} be the space of real-valued functions in L^{∞} . Let $\log |(H^{\infty})^{-1}|$ be the lattice in L_R^{∞} consisting of the elements of the form $\log |f|$, $f \in (H^{\infty})^{-1}$. There is a natural map of $(L^{\infty})^{-1}/(H^{\infty})^{-1}$ onto $L_R^{\infty}/\log |(H^{\infty})^{-1}|$ which sends (f) to $(\log |f|)$. Define $|||(\log |f|)||| = \inf\{||\log |f| + \log |g|||_{\infty}; g \in (H^{\infty})^{-1}\}$ and $\gamma_1 = \sup\{|||(\log |f|)|||; (\log |f|) \in L_R^{\infty}/\log |(H^{\infty})^{-1}|\}.$

PROPOSITION 1. $||(f)|| = \exp 2|||(\log |f|)|||$ and $\gamma_0 = \exp 2\gamma_1$.

PROOF. It suffices to show that $||(f)|| = \exp 2|||(\log |f|)|||$ for all $f \in (L^{\infty})^{-1}$. Pick such an f.

$$egin{aligned} \|(f)\| &= \inf\{\|fg\|_{\infty}\|f^{-1}g^{-1}\|_{\infty}; \, g \in (H^{\infty})^{-1}\} \ &= \exp\inf\{\mathrm{ess.}\, \sup(\log|f| + \log|g|) - \mathrm{ess.}\, \inf(\log|f| + \log|g|)\} \ . \end{aligned}$$

Since the constants are in $(H^{\infty})^{-1}$, this last quantity can be rewritten as

 $= \exp 2 \inf \{ \text{ess. sup} |\log |f| + \log |g|| \} = \exp 2 |||(\log |f|)|||$.

The proof of Proposition 1 is parallel to that of Proposition 2.2 in [17]. Rochberg [17] considered $(H^{\infty})^{-1}/(\exp H^{\infty})$ instead of $(L^{\infty})^{-1}/(H^{\infty})^{-1}$. If A is a disc algebra, then ||(f)|| = 1 for any $(f) \in (L^{\infty})^{-1}/(H^{\infty})^{-1}$ and so $\gamma_0 = 1$ because of Proposition 1 and $L_R^{\infty} = \log |(H^{\infty})^{-1}|$. Let $\operatorname{crls} \log |(H^{\infty})^{-1}|$ denote the closed real linear span of $\log |(H^{\infty})^{-1}|$.

LEMMA 3. (1) If $v = \sum_{j=1}^{n} t_j \log |h_j|$ with $0 \leq t_j \leq 1$ and $h_j \in (H^{\infty})^{-1}$ $(1 \leq j \leq n)$, then $\sup\{|||(tv)|||; -\infty < t < \infty\} < \infty$. (2) If $v \in L_R^{\infty}$ is not in crislog $|(H^{\infty})^{-1}|$, then $\sup\{|||tv|||; -\infty < t < \infty\} = \infty$.

PROOF. (1) $|||(tv)||| = |||(\sum_{j=1}^{n} tt_j \log |h_j|)||| = |||(\sum_{j=1}^{n} (tt_j - [tt_j]) \log |h_j|)|||$, where $[\cdot]$ is the greatest integer function. Hence $\sup |||(tv)||| < \infty$.

(2) There exists a positive constant ε such that $||tv + \operatorname{crls} \log|(H^{\infty})^{-1}|||_{\infty} \ge \varepsilon ||tv||_{\infty}$ for any t. Hence $\sup |||(tv)||| = \infty$.

THEOREM 2. Suppose τ satisfies the conditions (1) and (2). Then

m is a unique logmodular measure if and only if γ_0 is finite.

PROOF. By Proposition 1 it is sufficient to show that m is a unique logmodular measure if and only if γ_1 is finite. m is a unique logmodular measure if and only if $\operatorname{crls} \log |(H^{\infty})^{-1}| = L_R^{\infty}$ (see [10, p. 114]). By this and (2) in Lemma 3, if m is not a unique logmodular measure, then $\gamma_1 = \infty$. Suppose m is a unique logmodular measure. If $v \in L_R^{\infty}$, then $v = u_0 + \log |g|$ with $u_0 \in N^{\infty}$ and $g \in (H^{\infty})^{-1}$ (cf. [10, p. 109]). Moreover, we can choose $u_0 \in \log \mathcal{C}_0$ (see Introduction). By (1) in Lemma 3 γ_1 is finite and in fact $\gamma_1 \leq \sup\{\|\sum_{j=1}^n s_j u_j\|_{\infty}; 0 \leq s_j \leq 1\}$.

2. Concrete uniform algebras. (I) Let Y be a compact subset of the plane, and let R(Y) be the uniform closure of the set of rational functions in C(Y). We regard R(Y) as a uniform algebra on its Shilov boundary, the topological boundary X of Y. Suppose the complement Y° of Y has a finite number n of components and the interior Y° of Y is a nonempty connected set. Let A = R(Y)|X; then $M_A = Y$. If $\tau \in M_A$ is in Y° and m is a harmonic measure, then m is a unique logmodular measure of N_{τ} and dim $N_{\tau} = n < \infty$ [10, p. 116]. Then $N^{\infty} \subset C(X)$ By Theorem 2, γ_0 is finite. Let $X = X_0 \cup X_1 \cup \cdots \cup X_n$, where X_0 is the "outside" component of X and X_1, \cdots, X_n are the "inside" components of X. Define $v_j \in L_R^{\infty}$ to be 1 on X_j and 0 on $X \setminus X_j$ $1 \le j \le n$. Then $\gamma_1 =$ $\sup\{|||(\sum_{j=1}^n t_j v_j)|||; -\infty < t_j < \infty$ and $1 \le j \le n\}$.

(II) In (I) let Y be the annulus $\{r \leq |z| \leq 1\}$. Then $\gamma_0 = r^{-1/2}$. Since (L_R^{∞}) the uniform closure of Re H^{∞}) has dimension one, we get

 $\gamma_1 = \sup_{0 \le t \le 1} \inf\{ ||t \log |z| - (\operatorname{Re} f + n \log |z|)||_{\infty}; f \in H^{\infty} \text{ and } n \text{ ranges over all integers} \}.$

For any integer n

$$egin{aligned} &\inf\{\|(t-n)\log|z|-\operatorname{Re}f\|_{\infty};f\in H^{\infty}\}\ &=|t-n|\log r^{-1}\inf\{\|\mathcal{X}_{\scriptscriptstyle E}-\operatorname{Re}f\|_{\infty};f\in H^{\infty}\}=rac{1}{2}|t-n|\log r^{-1}|, \end{aligned}$$

where $\chi_{_E} = 0$ on |z| = 1 and $\chi_{_E} = 1$ on |z| = r. Thus

$$\gamma_1 = \sup_{0 \le t \le 1} \inf_n \frac{1}{2} |t - n| \log r^{-1} = \frac{1}{4} \log r^{-1}.$$

We shall show that

$$\inf\{\|oldsymbol{\chi}_{\scriptscriptstyle E}-\operatorname{Re} f\|_{\scriptscriptstyle\infty}; f\in H^{\scriptscriptstyle\infty}\}=1/2\;.$$

Choosing f = 1/2, the infimum is not greater than 1/2. If the infimum is less than 1/2 then by a theorem of Runge we can show that $\chi_{\varepsilon} \in H^{\infty}$ as in the proof of Theorem in [13, p. 182]. This contradiction implies

that the infimum is just 1/2.

(III) Let \mathscr{A} be the disc algebra and let A be a subalgebra of \mathscr{A} which contains the constants and which has finite codimension in \mathscr{A} . If $\tau(f) = \tilde{f}(0)$ for $f \in A$ and m is the normalized Lebesgue measure on the circle T, then it is easy to check that m is a core point of N_{τ} and $N^{\infty} \subset C(T)$. If $A \neq \mathscr{A}$, then H^{∞} is contained properly in the classical Hardy space. Hence H^{∞} is not τ -maximal. On the other hand if τ has a unique logmodular measure m, then H^{∞} is τ -maximal ([9, Theorem 5.5]). This implies that m is not a unique logmodular measure and hence Theorem 2 implies that γ_0 is infinite.

(IV) The unit polydisc U^n and the torus T^n are cartesian products of *n* copies of the unit disc *U* and of the unit circle *T*, respectively. $A(U^n)$ is the class of all continuous complex functions on the closure \overline{U}^n of U^n with holomorphic restrictions to U^n . Let $A = A(U^n)|X$ and $X = T^n$. This is the so-called polydisc algebra. For simplicity we assume n = 2. Let *m* be the normalized Lebesgue measure; then *m* is a representing measure for τ on *X* where $\tau(f) = f(0)$ and $0 \in U^2$. Suppose $1 \leq p \leq \infty$ and $Z^2_+ =$ $\{(n, m) \in \mathbb{Z}^2; n \geq 0 \text{ and } m \geq 0\}$. Then $H^p = \{f \in L^p; \hat{f}(n, m) = 0 \text{ if } (n, m) \notin \mathbb{Z}^2_+\}$ and $K^p = \{f \in L^p; \hat{f}(n, m) = 0 \text{ if } (-n, -m) \in \mathbb{Z}^2_+\}$. K^{∞} is dense in K^p . Unfortunately we do not know whether γ_0 is finite or not.

3. Norms of Hankel operators. Assuming γ_0 is finite, we show that $\|H_{\phi}^{(1)}\|$ (resp. $\|H_{\phi}^{(2)}\|$) is equivalent to $\|\phi + H^{\infty}\|$ (resp. $\|\phi + K^{\infty}\|$).

THEOREM 3. Let ϕ be a function in L^{∞} . Then

 $\|H_{\phi}^{\scriptscriptstyle(2)}\| \leq \|\phi + K^{\infty}\| \leq \gamma_{\scriptscriptstyle 0}\|H_{\phi}^{\scriptscriptstyle(2)}\|$.

If K^{∞} is dense in K^1 , then

 $\|H_{\phi}^{\scriptscriptstyle(1)}\| \leq \|\phi + H^{\scriptscriptstyle\infty}\| \leq \gamma_{\scriptscriptstyle 0}\|H_{\phi}^{\scriptscriptstyle(1)}\|$.

PROOF. Let $v \in (L^{\infty})^{-1}_+$. If $\int_x |f|^2 v^2 dm \leq 1$ and $\int_x |g|^2 v^{-2} dm \leq 1$, then $\int_x |f|^2 dm \leq ||v^{-2}||_{\infty}$ and $\int_x |g|^2 dm \leq ||v^2||_{\infty}$. Hence

$$egin{aligned} \|H_{\phi}^{(1)\,v}\| &= \sup \Big\{ \Big| \int_{x} fg \phi dm \Big|; f \in H^{2}, \, g \in K_{0}^{2}, \, \int_{x} |f|^{2} v^{2} dm \leq 1 \, ext{ and } \, \int_{x} |g|^{2} v^{-2} dm \leq 1 \Big\} \ &\leq (\|v^{-2}\|_{\infty} \|v^{2}\|_{\infty})^{1/2} \|H_{\phi}^{(1)}\| \, \, . \end{aligned}$$

If $h \in (H^{\infty})^{-1}$, then $v|h|H^2 = b(vH^2)$ and $v^{-1}|h|^{-1}\bar{K}_0^2 = b(v^{-1}\bar{K}_0^2)$ with b = |h|/h. Then $Q_{v|h|}^{(1)} = M_b Q_v^{(1)} M_{\bar{b}}$ and so $H_{\phi}^{(1)v|h|} = M_b Q_v^{(1)} M_{\bar{b}} M_{\phi} |v|h|H^2$. Hence $||H_{\phi}^{(1)v}|| = ||H_{\phi}^{(1)v|h}||$. Thus for any $h \in (H^{\infty})^{-1}$

$$\|H_{\phi}^{\scriptscriptstyle(1)\,v}\| \leq \|v|h|\,\|_{\infty}\|v^{-1}|h|^{-1}\|_{\infty}\|H_{\phi}^{\scriptscriptstyle(1)}\|$$
 .

It is easy to see that

$$\sup_{v \in (L^\infty)_{+}^{-1}} \{ \inf\{ \|v|h| \, \|_{\infty} \|v^{-1}|h|^{-1}\|_{\infty}; h \in (H^\infty)^{-1} \} \} = \gamma_{_0} \; .$$

Now generalized Nehari's Theorem I shows that $||H_{\phi}^{(1)}|| \leq ||\phi + H^{\infty}|| \leq \gamma_0 ||H_{\phi}^{(1)}||$. Similarly the inequality for $H_{\phi}^{(2)}$ follows.

4. Applications. In the previous paper [14] we gave applications of generalized Nehari's Theorems I and II to weighted norm inequalities and invertible Toeplitz operators. In this section we shall give applications of Theorem 3.

Recall P is the orthogonal projection from L^2 to H^2 . Let $\mathscr{P}^{(1)}$ denote P restricted to $H^{\infty} + \bar{K}_0^{\infty}$ and $\mathscr{P}^{(2)}$ denote P restricted to $H^{\infty} + \bar{H}_0^{\infty}$. We are interested in knowing when $\mathscr{P}^{(j)}$ (j = 1, 2) is bounded in $L^2(w) = L^2(wdm)$, where w is a nonnegative weight function in L^1 . Put

$$\begin{array}{ll} \text{(d)} & \sup\Bigl\{ \left| \int_x fgwdm \right|; f \in H^\infty, \, g \in K^\infty_0 \, \text{ and } \, \int_x |f|^2 wdm = \int_x |g|^2 wdm = 1 \Bigr\} \\ & = \rho_1 \end{array}$$

and

(e)
$$\sup\left\{\left|\int_{x} fgwdm\right|; f \in H^{\infty}, g \in H_{0}^{\infty} \text{ and } \int_{x} |f|^{2}wdm = \int_{x} |g|^{2}wdm = 1\right\}$$

= ρ_{2} .

Then it is easy to see that $\|\mathscr{P}^{(j)}\|^2 \leq (1 - \rho_j^2)^{-1}$. The following lemma is known [19]. We shall give the proof for completeness.

LEMMA 3. $\|\mathscr{G}^{(j)}\|^2 = (1 - \rho_j^2)^{-1}$ (j = 1, 2).

PROOF. If $\gamma = \|\mathscr{G}^{(1)}\| < \infty$, then for any real t and for any $f \in H^{\infty}$ and $g \in K_0^{\infty}$ we have

Hence

and so $\gamma^2 \ge (1 - \rho_i^2)^{-1}$. We can prove it for j = 2 in the same method.

If A is a disc algebra, then $\mathscr{P} = \mathscr{P}^{(1)} = \mathscr{P}^{(2)}$ is bounded in $L^2(w)$ if and only if $w = |h|^2$ for some outer function h in H^2 and $||\phi + H^{\infty}|| < 1$ with $\phi = |h|^2/h^2$. This result is called Helson-Szegö's theorem [12]. This was generalized to general uniform algebras by the author [14]. The following generalization seems to be better than the previous one.

COROLLARY 1. Suppose K^{∞} is dense in K^1 . Let $w = |h|^2$ for some function h in H^2 such that hH^{∞} is dense in H^2 and hK^{∞} is dense in K^2 .

Let $\phi = |h|^2/h^2$. (1) If $||\phi + H^{\infty}|| = \rho < 1$ then $\mathscr{P}^{(1)}$ is bounded in $L^2(w)$ and $||\mathscr{P}^{(1)}|| \le (1 - \rho^2)^{-1/2}$. (2) If $\mathscr{P}^{(1)}$ is bounded in $L^2(w)$ and $||\mathscr{P}^{(1)}|| = \gamma$ then $||\phi + H^{\infty}|| < \gamma_0 \gamma^{-1} (\gamma^2 - 1)^{1/2}$

Hence if $\gamma < \gamma_{\scriptscriptstyle 0}(\gamma_{\scriptscriptstyle 0}^{\scriptscriptstyle 2}-1)^{\scriptscriptstyle 1/2}$ then $\|\phi+H^{\scriptscriptstyle\infty}\|<1.$

PROOF. (1) $\rho_1 \leq \rho$, since

$$egin{aligned} &
ho = \| \phi + H^\infty \| = \sup \Big\{ \Big| \int_x F \phi dm \Big|; F \in K_0^1 ext{ and } \|F\|_1 \leq 1 \Big\} \ & \geq \sup \Big\{ \Big| \int_x \phi f g dm \Big|; f \in H^2, \ g \in K_0^2 ext{ and } \int_x |f|^2 dm = \int_x |g|^2 dm = 1 \Big\} =
ho_1 \ . \end{aligned}$$

In the last equality we used the facts that $w = |h|^2$ and that hH^{∞} (resp. hK_0^{∞}) is dense in H^2 (resp. K_0^2).

(2) Since $\rho_1 = \gamma^{-1}(\gamma^2 - 1)^{1/2}$ by Lemma 3 and $\rho_1 = ||H_{\phi}^{(1)}||$ by the proof of (1), Theorem 3 implies (2).

 K^{∞} is dense in K^2 if we impose the assumptions (1) and (2) or if A is a polydisc algebra. We have a similar result for $\mathscr{P}^{(2)}$ (or $||\phi + K^{\infty}||$) as in Corollary 1.

For ϕ in L^{∞} let T_{ϕ} be the operator on H^2 defined by $T_{\phi}f = P(M_{\phi}f)$. The operator T_{ϕ} will be called a Toeplitz operator. We are interested in knowing when T_{ϕ} is left invertible. In case A is a disc algebra, Widom [18] showed that T_{ϕ} is left invertible if and only if $||\phi + H^{\infty}|| < 1$. Abrahamse [1] generalized Widom's theorem to the case of (I) in concrete uniform algebras such that ∂Y consists of n + 1 non-intersecting analytic Jordan curves. The author [14] generalized it to general uniform algebras. However these generalizations are not sufficient because except in the case of a disc algebra we cannot determine ϕ when T_{ϕ} is left invertible.

COROLLARY 2. Suppose K^{∞} is dense in K^1 . Let ϕ be a unimodular function in L^{∞} .

(1) If $\|\phi + H^{\infty}\| = \rho < 1$, then $\|T_{\phi}f\|_{2} \ge (1 - \rho^{2})^{1/2} \|f\|_{2}$ for any f in H^{2} .

(2) If $||T_{\phi}f||_2 \geq \varepsilon ||f||_2$ for any f in H^2 , then

$$\|\phi+H^{\infty}\|\leq \gamma_{\scriptscriptstyle 0}(1-arepsilon^2)^{\scriptscriptstyle 1/2}$$
 .

Hence if $\varepsilon > \gamma_0^{-1}(\gamma_0^2-1)^{1/2}$, then $\|\phi + H^{\infty}\| < 1$.

PROOF. Since ϕ is a unimodular function, $||H_{\phi}^{(1)}f||_2^2 + ||T_{\phi}f||_2^2 = ||f||_2^2$ for any $f \in H^2$. Theorem 3 and this imply the corollary.

In the case of (I) for concrete uniform algebras, $\|\phi + H^{\infty}\| < 1$ may

not hold even if T_{ϕ} is left invertible (cf. [1]).

5. Essential norms of Hankel operators. In this section we shall concentrate on concrete uniform algebras, that is, (I) in Section 2 such that ∂Y consists of n + 1 non-intersecting analytic Jordan curves. Hence τ satisfies the conditions (1) and (3). Using generalized Nehari's Theorem II we shall generalize (b) in Introduction to this context.

Let $s = (s_1, s_2, \dots, s_n) \in I^n = [0, 1] \times \dots \times [0, 1]$. Then the mapping $s \mapsto \exp(\sum_{j=1}^n s_j u_j)$ is continuous, one-to-one and onto from I^n to \mathscr{C}_0 . Put

$$H_{\phi}^{(j)s}=H_{\phi}^{(j)v}$$
 $(j=1,\,2)$,

where $v = \exp(\sum_{j=1}^{n} s_j u_j)$.

LEMMA 4. Let ϕ be a function in L^{∞} . Then for j = 1, 2 and for any v and u in \mathscr{C}_0

$$\|H_{\phi}^{_{(j)v}}-H_{\phi}^{_{(j)u}}\|\leq \|\phi\|_{\infty}(2\sup_{v\in \mathscr{G}_0}\|v^{-1}\|_{\infty})\|v-u\|_{\infty}\;.$$

The proof is clear by Lemma 1.

LEMMA 5. If ϕ in $H^{\infty} + C(X)$, then $H_{\phi}^{(j)v}$ (j = 1, 2) is compact for any v in \mathcal{C}_{0} .

PROOF. By Lemma 2 it is sufficient to show that $H_{\phi}^{(j)}$ is compact for any $\phi \in C(X)$. Let $\phi = (z - a)^{-1}$ for some $a \in Y^0$. Then

$$H_{\phi}^{(j)}f = Q^{(j)}\left[\frac{f(a)}{z-a} + \frac{f-f(a)}{z-a}\right] = Q^{(j)}\left[\frac{f(a)}{z-a}\right]$$

for any $f \in H^2$ because $\{f \in H^2: f(a) = 0\} = (z - a)H^2$. Hence $H_{\phi}^{(j)}$ has rank one. Similarly if $\phi = (z - a)^{-n}$ for a positive integer n, we can show that $H_{\phi}^{(j)}$ has rank n. For any $\phi \in C(X)$ we can approximate ϕ by the following functions: $\sum_{j=0}^{n} b_j (z - a_j)^{-j}$ where $a_j \in Y^0$ and b_j is constant $(0 \leq j \leq n)$. Since $||H_{\phi}^{(1)}|| \leq ||\phi + H^{\infty}||$ and $||H_{\phi}^{(2)}|| \leq ||\phi + H^{\infty} + N_{e}^{\infty}||$, we can show that $H_{\phi}^{(j)}$ is compact if $\phi \in C(X)$.

THEOREM 4. Let ϕ be a function in L^{∞} . Then

$$\sup_{v \in \mathscr{E}_0} \|H_{\phi}^{\scriptscriptstyle (1)v}\|_{\mathfrak{s}} = \sup_{v \in \mathscr{E}_0} \|H_{\phi}^{\scriptscriptstyle (2)v}\|_{\mathfrak{s}} = \|\phi + H^{\infty} + C(X)\| \ .$$

Moreover, the suprema in both equalities are attained.

PROOF. By Lemma 5 it is clear that $\sup\{||H_{\varphi}^{(j)v}||_{s}; v \in \mathscr{C}_{0}\} \leq ||\phi + H^{\infty} + C(X)||$ for j = 1, 2. We shall show the opposite inequality. Let F be the Ahlfors function for Y^{0} and $\tau \in Y^{0}$. Then $F \in C(X)$ (see [8, p. 114]). For any $v \in \mathscr{C}_{0}$ with $v = \exp(\sum_{j=1}^{n} t_{j}u_{j})$ and $t = (t_{1}, t_{2}, \dots, t_{n}) \in I^{n}$, put

$$\|f^{(j)}(t, l) = \|H^{(j)t}_{F^{l_{\phi}}}\| \quad (l = 0, 1, 2, \cdots; j = 1, 2)$$

T. NAKAZI

Then $f^{(j)}(t, l) \ge f^{(j)}(t, l+1)$ and by Lemma 4

$$|f^{(j)}(t, l) - f^{(j)}(s, l)| \leq \|\phi\|_{\infty} (2 \sup_{v \in \mathscr{C}_0} \|v^{-1}\|_{\infty}) \|\exp(\sum_{j=1}^n t_j n_j) - \exp(\sum_{j=1}^n s_j u_j)\|_{\infty} .$$

Hence $\{f^{(j)}(t, l)\}_{l=1}^{\infty}$ is an equicontinuous collection on I^n and uniformly bounded on I^n . By Ascoli's theorem, there exists a subsequence $\{f^{(j)}(t, l_i)\}_{i=1}^{\infty}$ of $\{f^{(j)}(t, l)\}_{l=1}^{\infty}$ and a continuous function $f^{(j)}(t)$ on I^n such that

$$\sup_{t\in I^n} |f^{\scriptscriptstyle (j)}(t) - f^{\scriptscriptstyle (j)}(t, \, l_i)| \to 0 \quad (\text{as } i\to\infty) \; .$$

Since $\{f^{(j)}(t, l)\}_{l=1}^{\infty}$ is a decreasing sequence, this actually converges to $f^{(j)}(t)$ uniformly on I^n . Thus

$$\lim_{l} \sup_{t \in I^n} f^{(j)}(t, l) = \sup_{t \in I^n} f^{(j)}(t)$$

By generalized Nehari's Theorem II, $\sup\{f^{(1)}(t, l); t \in I^n\} = ||F^l \phi + H^{\infty}||$ and $\sup\{f^{(2)}(t, l); t \in I^n\} = ||F^l \phi + H^{\infty} + N_{\varepsilon}^{\infty}||$ and so for j = 1, 2

$$\sup_{t \in I^n} f^{(j)}(t) \geq \| \phi + H^\infty + C(X) \|$$
 ,

because the closure of $\bigcup_{n=1}^{\infty} \overline{F}^n H^{\infty}$ coincides with the closure of $\bigcup_{n=1}^{\infty} \overline{F}^n (H^{\infty} + N_c^{\infty})$, which is $H^{\infty} + C(X)$ (cf. [1, Theorem 1.22]). For any $t \in I^n$, let S_t denote the multiplication by F on vH^2 where $v = \exp(\sum_{j=1}^n t_j u_j)$. Let $S_t^{(1)*}$ be the adjoint of S_t from vH^2 to $v^{-1}\overline{K}_0^2$ and $S_t^{(2)*}$ the adjoint of S_t from vH^2 to $v^{-1}\overline{K}_0^2$ and $S_t^{(2)*}$ the adjoint of S_t from vH^2 to $v^{-1}\overline{K}_0^2$ and $K_t^{(2)}$ is any compact operator from vH^2 to $v^{-1}\overline{K}_0^2$ and $K_t^{(2)}$ is any compact operator from vH^2 to $v^{-1}\overline{K}_0^2$ and l is positive integer, then for j = 1, 2

$$\|H_{\phi}^{(j)t} - K_{t}^{(j)}\| \ge \|(H_{\phi}^{(j)t} - K_{t}^{(j)})S_{t}^{l}\| \ge \|H_{\phi}^{(j)t}S_{t}^{l}\| - \|K_{t}^{(j)}S_{t}^{l}\|.$$

Since $(S_t^{(j)l})^* \to 0$ strongly, we have $||K_t^{(j)}S_t^l|| \to 0$. Also

$$H^{(j)\,t}_{\phi}S^{l}_{\,t}=H^{(j)\,t}_{F^{l}\phi}$$
 .

Hence we can prove that the suprema are attained as in the proof of generalized Nehari's Theorem II.

$$||H_{\phi}^{(j)t} - K_{t}^{(j)}|| \ge \overline{\lim} ||H_{F^{l_{\phi}}}^{(j)t}|| = \overline{\lim} f^{(j)}(t, l) = f^{(j)}(t)$$
.

Thus $||H_{\phi}^{(j)t}||_{\mathfrak{s}} \geq f^{(j)}(t)$ and

$$\sup_{t\in I^n} \|H^{(j)t}_{\phi}\|_{\bullet} \geq \sup_{t\in I^n} f^{(j)}(t) \geq \|\phi + H^{\infty} + C(X)\|.$$

The following theorem is another generalization of (b) in Introduction.

THEOREM 5. Let
$$\phi$$
 be a function in L^{∞} . Then for $j = 1, 2$
 $\|H_{\phi}^{(j)}\|_{\epsilon} \leq \|\phi + H^{\infty} + C(X)\| \leq \gamma_{0} \|H_{\phi}^{(j)}\|_{\epsilon}$.

The proof follows as in the case of a disc algebra (see [16, Theorem 1.4]) if we use Theorem 3 and the Ahlfors function.

6. Factorization theorems. We say H_0^1 has the weak approximate γ -factorization if H_0^1 satisfies the following property: For any F in H_0^1 and any $\varepsilon > 0$, there exist $\{f_j\}_{j=1}^n$ in H^2 and $\{g_j\}_{j=1}^n$ in H_0^2 such that

$$\sum\limits_{j=1}^n \|f_j\|_{\scriptscriptstyle 2} \|g_j\|_{\scriptscriptstyle 2} \leq \gamma \|F\|_{\scriptscriptstyle 2}$$

and

$$\left\|F-\sum\limits_{j=1}^n f_j g_j
ight\|_1 .$$

PROPOSITION 6. There exists a constant γ with $\gamma \geq 1$ such that $\|\phi + K^{\infty}\| \leq \gamma \|H_{\phi}^{(2)}\|$ for all ϕ in L^{∞} if and only if H_{ϕ}^{1} has the weak approximate γ -factorization.

PROOF. Let V_r be the closure in L^1 of the following set:

$$\left\{\sum_{j=1}^n f_j g_j; f_j \in H^2, \, g_j \in H^2_0 \, \text{ and } \, \sum_{j=1}^n \|f_j\|_2 \|g_j\|_2 \leq \gamma
ight\} \, .$$

Put $V^1 = \{F \in H_0^1; \|F\|_1 \leq 1\}$. Then V_r is the closed convex subset in γV^1 . If H_0^1 has the weak approximate γ -factorization, then $V^1 \subset V_r$ and so $\|\phi + K^{\infty}\| \leq \gamma \|H_{*}^{(2)}\|$, since

$$\left| \int_{\mathbb{X}} \left(\sum_{j=1}^n f_j g_j \right) \! \phi dm \right| \, \leq \, \| H_{\phi}^{\scriptscriptstyle (2)} \|_{j=1}^n \, \| f_j \|_2 \| g_j \|_2 \; .$$

Conversely, suppose $\|\phi + K^{\infty}\| \leq \gamma \|H_{\phi}^{(2)}\|$. If H_{ϕ}^{1} does not have the weak approximate γ -factorization, then there exists $F \in V^{1}$ with $F \notin V_{\gamma}$. Then by the Hahn-Banach theorem there exists $\phi \in L^{\infty}$ such that

$$\left| \int_x \phi F dm \right| > \sup \left\{ \left| \int_x \phi f dm \right|; f \in V_r
ight\}$$

and so $\|\phi + K^{\infty}\| > \gamma \|H_{\phi}^{(2)}\|$.

For K_0^1 we can define the weak approximate γ -factorization and prove Proposition 6 with $H_{\phi}^{(1)}$, H^{∞} and K_0^1 instead of $H_{\phi}^{(2)}$, K^{∞} and H_0^1 , respectively. In (I) for concrete uniform algebras we have factorization theorems of H_0^1 and K_0^1 . M. Hayashi pointed out a factorization theorem of H_0^1 . We now give a proof and clarify its relationship with γ_0 .

THEOREM 7. Suppose A is a concrete uniform algebra (I).

(1) If f is in H_0^1 , then there is a g in H^2 and an h in H_0^2 such that f = gh and $||g||_2 ||h||_2 \leq \gamma_2 ||f||_1$, where $\gamma_2 = \sup\{||v^{-1}||_{\infty} ||v||_{\infty}; v \in \mathscr{C}_0\}$. In this case $\gamma_2 \geq \gamma_0$.

(2) If f_1 is in K_0^1 , then there is a g_1 in H^2 and an h_1 in K_0^2 such

that $f_1 = g_1 h_1$ and $||g_1||_2 ||h_1||_2 \leq \gamma_3 ||f_1||_1$, where $\gamma_3 = \gamma_2 ||v_0||_{\infty}$ and $K_0^1 = v_0 H_0^1$.

PROOF. (1) A function $f \in H_0^1$ is of the form $f = FG^2$ where $F \in H_0^\infty$ with $|F| \in \mathscr{C}$ and $G \in H^2$ [3, p. 138]. If $|F| = \exp(\sum_{j=1}^n t_j u_j)$, let $k = \prod_{j=1}^n (h_j)^{l_j}$ and $l_j = [t_j/2]$. Then $k \in (H^\infty)^{-1}$. Put $s_j = 2(t_j/2 - [t_j/2])$. Then $q = Fk^{-1} \in$ H_0^∞ and $|q| = \exp(\sum_{j=1}^n s_j u_j) \in \mathscr{C}_0^2 = \{v^2; v \in \mathscr{C}_0\}$. Let g = kG and h = qG. Then f = gh and

$$egin{aligned} &\int_{x} |g|^{2} dm \!\int_{x} |h|^{2} dm &= \int_{x} |q^{-1}| \, |f| dm \!\int_{x} \! |q| \, |f| dm &\leq \|q^{-1}\|_{\infty} \|q\|_{\infty} \!\! \left[\int_{x} \! |f| dm
ight]^{2} \ &\leq \sup \{ \|q^{-1}\|_{\infty} \|q\|_{\infty}; \, |q| \in \mathscr{C}_{0}^{2} \} \!\! \left[\int_{x} \! |f| dm
ight]^{2}. \end{aligned}$$

If $u \in (L^{\infty})^{-1}_+$ then u = v|g| with $v \in \mathscr{C}_0$ and $g \in (H^{\infty})^{-1}$. Hence

$$\gamma_2 = \sup\{\|v\|_{\infty}\|v^{-1}\|_{\infty}; v \in {\mathscr C}_0\} \ge \sup\{\|(u)\|; u \in (L^{\infty})^{-1}_+\} = \gamma_0$$
 .

(2) A function $f_1 \in K_0^1$ is of the form $f_1 = v_0 f$ for some $f \in H_0^1$. Apply (1) to this f, and let $g_1 = g$ and $h_1 = v_0 h$, then $g_1 \in H^2$ and $h_1 \in K_0^2$. Now (2) follows.

(1) of Theorem 7 gives $||H_{\phi}^{(2)}|| \leq ||\phi + K^{\infty}|| \leq \gamma_2 ||H_{\phi}^{(2)}||$ in the case of (I) for concrete uniform algebras.

(2) of Theorem 7 gives that $||H_{\phi}^{(1)}|| \leq ||\phi + H^{\infty}|| \leq \gamma_{\mathfrak{s}}||H_{\phi}^{(1)}||$. For any uniform algebra with finite γ_0 , Theorem 3 and Proposition 6 show that both H_0^1 and K_0^1 have the weak approximate γ_0 -factorizations.

7. Arveson's distance formula. Let \mathscr{A} be a (possibly non-selfadjoint) algebra of operators on a Hilbert space \mathscr{H} , and let T be an arbitrary bounded operator. Then $d(T, \mathscr{A}) \geq \sup_{P} ||(1-P)TP||$, where $d(T, \mathscr{A})$ is the distance from T to \mathscr{A} and where the supremum is taken over the lattice lat \mathscr{A} of all \mathscr{A} -invariant projections. Arveson [5, Theorem 1.1.] showed that if \mathscr{A} is a nest algebra (i.e., lat \mathscr{A} is totally ordered) then the equality holds above. Let $\mathscr{H} = L^2$ and $P_v^{(1)} = 1 - Q_v^{(1)}$. Generalized Nehari's Theorem I implies that if K^{∞} is dense in K^1 and lat $\mathscr{A} \ni P_v^{(1)}$ for any v in $(L^{\infty})_{\tau}^{-1}$, then for any ϕ in L^{∞}

$$d(M_{\phi}, \mathscr{M}) = \sup_{P} ||(I-P)M_{\phi}P||.$$

Let $\mathscr{C}(\mathscr{H})$ be the space of all compact operators on \mathscr{H} and \mathscr{B} the the norm closure of $\mathscr{A} + \mathscr{C}(\mathscr{H})$. Then $d(T, \mathscr{B}) \geq \sup_{P} ||(I-P)TP||_{\epsilon}$. Theorem 4 implies that if lat $\mathscr{A} \ni P_{*}^{(1)}$ for any v in \mathscr{C}_{0} then

$$d(M_{\phi}, \mathscr{B}) = \sup \| (I-P)M_{\phi}P \|_{\bullet}$$
 for any ϕ in L^{∞} .

References

- M. B. ABRAHAMSE, Toeplitz operators in multiply connected regions, Amer. J. Math. 96 (1974), 261-297.
- [2] V. M. ADAMJAN, D. Z. AROV AND M. G. KREIN, Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem, Matem. Sbornik 86 (128) (1971), 34-35; English translation: Math. USSR Sbornik 15 (1971), 31-73.
- [3] P. AHERN AND D. SARASON, The H^P spaces of a class of function algebras, Acta Math. 117 (1967), 123-163.
- [4] J. M. ANDERSON AND R. H. ROCHBERG, Toeplitz operators associated with subalgebras of the disc algebra, Indiana Univ. Math. J. 30 (1981), 813-820.
- [5] W.B. ARVESON, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), 208-233.
- [6] R. E. CURTO, P. S. MUHLY, T. NAKAZI AND J. XIA, Hankel operators and uniform algebras, Archiv der Math. 43 (1984), 440-447.
- [7] R.G. DOUGLAS AND C. PEARCY, On a topology for invariant subspaces, J. Functional Analysis 2 (1968), 323-341.
- [8] S. D. FISHER, Function Theory on Planar Domains, A Wiley-Interscience Publication.
- [9] T. GAMELIN, Embedding Riemann surfaces in maximal ideal spaces, J. Functional Analysis 2 (1968), 123-146.
- [10] T. GAMELIN, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
- [11] P. HARTMAN, On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 862-866.
- [12] H. HELSON AND G. SZEGÖ, A problem in prediction theory, Ann. Math. Pura Appl. 51 (1960), 107-138.
- [13] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- [14] T. NAKAZI, Norms of Hankel operators and uniform algebras, Trans. Amer. Math. Soc. 299 (1987), 573-580.
- [15] Z. NEHARI, On bounded bilinear forms, Ann. of Math. 65 (1957), 153-162.
- [16] Y. OHNO, Remarks on Helson-Szegö problems, Tôhoku Math. J. 18 (1965), 54-59.
- [17] S. C. POWER, Hankel Operators on Hilbert Space, Research Notes in Math. 64, Pitman Advanced Publishing Program, 1982.
- [18] R. ROCHBERG, Function algebra invariants and the conformal structure of planar domains. J. Functional Analysis 13 (1973), 154-172.
- [19] T. YAMAMOTO, Weighted norm inequalities in Hilbert space L^2 , master's thesis, Hokkaido University 1983.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE (GENERAL EDUCATION) HOKKAIDO UNIVERSITY SAPPORO 060 JAPAN