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1. Introduction. Throughout this paper, D c C is a domain bounded
by finitely many non-intersecting simple closed C4 regular curves. We
denote by m0 the area Hausdorff measure on the boundary 3D of the
domain D, and by m1 and m2 two different harmonic measures relative
to D. The holomorphic Hardy spaces Hp(mβ) on 3D are defined as the
Lp(ray)-norm closure of A(dD) 1 <; p < oo, where A(dD) is the class of
continuous functions / on 3D whose Poisson integral PI[/] is analytic in
D. This paper is concerned with projection operators of Lp{mά) onto

As is well known, there are two bounded projection operators of
L\m3) onto H\m3). One of them is the Cauchy projection if and the other
is the orthogonal projection P3. These operators are useful to study real
or holomorphic Hardy spaces. In particular, H and Po also play important
roles in the theory of partial differential equations and of conformal
mappings. In addition, Pγ and P2 are deeply related with uniform algebras.

In this paper, we show correlations between H, Po, Px and P2, and
give some applications to holomorphic Hardy spaces. Our investigation
is motivated by the following interesting theorem by Kerzman and
Stein [10]:

THEOREM KS ([10]; see also [3]). Let D be a bounded, simply con-
nected C°° domain in the plane, and H* be the adjoint of H on the Hilbert
space L\m0). Then:

(1) H* — H is an integral operator with a smooth kernel. Hence
it is compact on If(m0).

(2) Further, I — (H* — H) is an injective bounded operator of
L2(mQ) onto L2(m0), and

Po - H(I - H* + if)"1 .

This result tells us a relation between if and Po. On the other hand,
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our main theorem stated later implies that Pt also can be written in
terms of if, and P2 can be represented in terms of if and Px. Moreover,
it gurantees that each P3 is bounded on the Hardy space if Lax in the sense
of Fefferman and Stein.

Let the complement Dc of D have n + 1 connected components. De-
note by Go the unbounded component of Dc and by Gμ for μ = 1, , n
the bounded components of De. For every Gk (k = 0, , n) let lk be the
length of 3Gk and denote

( k k+i

3Gk = We): Σ h-! ^ s < Σ h
\ d=0 d=0

where Li = 0 and ak is a unit speed simple closed C4 curve which sur-
rounds Gk. We suppose that a0 is positively oriented and a19 ••-,«„ are
negatively oriented. For simplicity we use the notation

[ k k+1 \

Σih-if Σiid-i) f

if there is no confusion.

Let K{-, •) be the Cauchy kernel, that is,

K{β, t) = D
+
a(t)I[a(t) ~ a(s)] ,

for (s, t) e [0, L) x [0, L) - {diagonal}, where L = Σ2=o Z*, and D+F(t) =
limA_+o [F(t + h) - F(t)]/h for every right differentiate function F.

Then the operator if is given by the following singular integral
operator:

Hf(x) = i-Λ(aO + -s^rP. V. ( V ^ - 1 ^ ) , t)f{a{t))dt (x e 3D) .
2 2ττt Jo

We now recall the definition of Hardy spaces introduced by Fefferman
and Stein:

For a function feL\m5)y let N(f) be the non-tangential maximal
function of /, that is,

N(f)(x) = sup{|PI[/](s)|: z e Γ(x)} , x e dD ,

where Γ(x) = {zeD:\z - x\ < 2 diat(z, 3D)}.

Fefferman and Stein's spaces are defined in terms of N( ) by:

IRJίmi) = {feLKm,): \\f\\Pj,^ = \\N(f)\\Pfj < -} ,

where \\ \\pj is the L^m^-norm, j = 0, 1, 2.
It is well known that H^iπij) is a proper subspace of L\mά) and

Hp

m&x(mj) = i>p(^i), 1 < P < °° (see [5] and [8]).
In this paper we denote by P(z, x) (zeD, xe 3D) the Poisson kernel
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of D, and we put W3{t) — P(z3, a(t)), where z3 is the point such that

m3{F) = \ P(z3, x)dmo(x) for every Borel set F of dD, j = 1, 2.
JF

Our main theorem is the following:
THEOREM 1. Let D be a domain bounded by finitely many non-in-

tersecting simple closed C4 regular curves. Let

α/s, ί) = -K(t, β)-. W3(t)W3(sΓ - K(s, t) ,

for (s, t) e [0, L) x [0, L) — {diagonal}, j = 0, 1, 2, where W0(t) = 1, and the
bar denotes the complex conjugation here and elsewhere. Then we have
the following:

( 1 ) Each ao can be extended to a function A3- on [0, L) x [0, L) in
such a way that Aj(orl{-), oΓ\ )) is continuous on dDxdD.

( 2 ) Let

^ ά { a - \ x \ t)f{a{t))dt , f^

i, I = 0, 1, 2. 2%βtι eαcft mapping I — Ay is a bijective bounded operator
of HLax(mz) to fliutxίm,), i, i = 0, 1, 2.

Hence (I — A^ )"1 is αZso bounded on H^Jyrii), j , 1 — 0,1, 2. Moreover,
for every feL2(mi), I = 0, 1, 2, we have

( 3 ) Pjf = H(I - AjΓf , j = 0 , 1 , 2 ,

and

(4 ) Pdf = P i + 1 (/ - A,+1)(I - A,)"1/ , i = 0, 1 .

As a consequence of Theorem 1 we have the following:

COROLLARY 1. Let D be as in Theorem 1. For every j e {0, 1, 2}, the
following are equivalent:

(1) \\Hf\\ίti ^ C J I / L ^ for every fe L\mά).
(2) IIPo/IL, ̂  GII/IL,,^ for every fe L\m3).
(3 ) \\PJ\\ui ^ C5\\f\\ίM for every fe L\m3).
(4) HPJΊL <S CJI/IL,,,^ for every fe L\m3).

Here C19 C2, Cs and C4 are constants independent of f.

From the atomic decomposition of H^Jjrij) (cf. [8]) and a result in
Coif man and Weiss [4, p. 559] it follows that the map H can be extended
to a bounded operator of H^Jjrij ) to L\m3). Hence by Corollary 1 we
have the following:

COROLLARY 2. Let D be as in Theorem 1. Then the operator H and
the orthogonal projections P3 can be extended to bounded projections of
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ίftiaxtm,) onto IPQmt), j , I = 0, 1, 2.

When D is the open unit disc and m0 = m^. = m2, then this corollary
was obtained by Burkholder, Gundy and Silverstein [2].

The following result is an immediate consequence of Corollary 2 and
the Hinzx-BMO duality theorem. For the definition of BMO, see Section 2.

COROLLARY 3. Let D be as in Theorem 1. The dual of H\mό) is
isomorphic to BM0A(m5), where BM0A{mά) = BM0(mj) Π H\mό), j = 0, 1, 2.

In connection with M. Riesz's inequality, Gamelin and Lumer [6] proved
the following formula in an abstract setting:

L^m,) = H*(mλ) 0 Hlim,)' 0 N , 1 < p < °o ,

where £?o>(m1) = j / e i ί ^ m ! ) : l/cίmi = oi and JVis a finite dimensional sub-

space of L°°(mi).
As an application of Corollary 2 we can extend the result to the

case p = 1 as follows:

COROLLARY 4. Lei Z) 6β as in Theorem 1. TT̂ew

0 N .

In Section 2, we obtain propositions which will be used for the proofs
of these results, and in Section 3 we prove Theorem 1. Corollaries stated
above are proved in Section 4.

2. Some preliminary results. Let D be as in Theorem 1. We will
use Cδ, C6, to denote positive constants depending only on D, mx and m2.

PROPOSITION 1 (cf. [12]). For every j = 1, 2 and every measurable
set E, the following inequalities are valid:

C.m^E) ^ m3-(E) ^ Qm^E) .

Denote by BM0(m/) the class of all integrable functions / such that

Il/Hδ»ofi=
 supj(l/my(J))\ |/ — fi\dmf. I is the intersection of 3D and

a disc centered at a point in dD\ < °o. Here fi — mj(I)~A fdmj .

PROPOSITION 2 (H^-BMO duality; see [8]). The dual of H^md
is isomorphic to BM0(ms). Especially, for every x* e {H\BaLX{mi))*9 there
exists a unique element b(x*) of BM0{mά) such that

, , for all feL\m5) .
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To prove Theorem 1, we need the following:

PROPOSITION 3. (1) (cf. [9] and Proposition 1). H is a bounded oper-
ator of L\m3) to L\m3), j = 0, 1, 2.

(2) Furthermore, H is a bounded projection of L\m3) onto H\m3),
j = 0, 1, 2.

PROOF OF (2). We note that the Cauchy integral

1 f(ζ)dζ (zeD)
2πi j3Dζ — z

of a smooth function / is Holder continuous near the boundary of D (see

[11]).
To prove HH = H, we recall Mergelyan's theorem which asserts that

every feA(dD) is approximated uniformly by rational functions whose
poles are off D (see [13]). For such rational functions g we have Hg = g
by the Cauchy integral formula. Hence by Propositions 3, (1) and the
boundary property of the Cauchy integral stated above, we have

( i ) Hg = g, for every g e H\m3), and
(ii) HgeA(dD), for every geC\dD).
From (i) and (ii) it follows that H is a bounded projection of L\m3).
By Proposition 3, (1), a density argument and the relation (i), we see

immediately that the range of H coincides with H\m3).
In order to prove the corollaries we need the following:

PROPOSITION 4. If feH\m3) then

II/IL ί
PROOF. Since the first inequality is clear, we prove the second. Here

we use the following lemma which extends a result of Burkholder, Gundy
and Silverstein [2] to certain general domains:

LEMMA 1 (cf. [1]). Let {Bit): 0 ^ t < oo} be a complex Brownian motion
starting at zlm Then

for every fsH\nax(m1)9 and

™* ̂  E[ sup
Q£t<T

for every feL^m^ with E[suipQ<;t<τ\PI[f](B(t))\] < oo, where E is the ex-
pectation with respect to the Wiener measure which defines the Brownian
motion B, and T is the first time at which B escapes from D.
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This lemma holds good if D is higher dimensional non-tangentially
accessible domains (see [1]).

Now we proceed with the proof of Proposition 4. Let Mf(t) —
PI[/](J5(ί)) for 0 ^ t < T, and Mf(jt) = f(B(T)) for T^t. By Ito's for-
mula, Mf(t) is a continuous holomorphic martingale in the sense of
Varopoulos [15]. Consequently, by [15], \Mf(t)\1/2 is a submartingale.
Hence Doob's inequality implies that

>] £ AE[\Mf (oo)\] =

Here the last equality is guranteed by Kakutani's theorem. Thus
by Proposition 1 we obtain Proposition 4.

3. Proof of Theorem 1. Proof of (1). Let

9(β, ί) = -K(t, s)~ - K(s, t) and

rj(sf t) = Wfc)-\Wfc) - W/ί))(ίΓ(ί, sT) .

Then aό = q + rό.
By the proof of Theorem 1 in Kerzman and Stein [10], q is the re-

striction of a function which is continuous on each Ikxlm(k, m = 0, , n).
Hence it is sufficient to prove that rs can be extended to a function which
is continuous on each Ikxlm {k, m = 0, , n). To prove this we show
the following:

LEMMA 2. Wό is twice continuously differentiate in each Ik (k =
0, •• , Λ ) , i = 0 , l , 2 .

PROOF. Let

nit) = -iD+a(t) ,

For sufficiently small ε > 0, let α(ε, i) = ait) — εn(t). It is easy to check
that Γkε Ξ= {α(ε, t): t eIk) is a simple closed curve and jΓOft + + Γn>ε is
the boundary of a C3 subdomain Dt of D such that Dε ΐ D as ε—>0 + .

Let n(ε, t) be the outward normal field of dDεf that is,

t) - (l/|Z?+α(e, ί)|)(lmD+α(e,

where D+a(ε, t) = limA^0+ [a(e, t + h) — a(ε, t)]/h.
By regularity properties of elliptic boundary value problems ([7]), the

Green function g(zi9 •) of D possesses all derivatives of order ^ 3 con-
tinuous in DXfo } and they have continuous extensions to
Hence if we put

WάM = -n(e, t)g(zi9 α(ε, t)) ,
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then Wj>ε 6 C2(Ik), and Wj)£ converges to the Poisson kernel Ws in the C\Ik)~
topology as e -> 0+ (k = 0, , n). Consequently, Wj e C\Ik) k = 0, , n.

Now, we return to the proof of Theorem 1. By Lemma 2 it suffices
to show that (Wά(s) — Wό{t))K{t, s) is the restriction of a function which
is continuous on each Ikxlm (k, m = 0, , n). Let

- *) i f s φ t

\ + m if β = ί
and

t) if β ^ ί

if β = t .

Then (Wy(8) - TΓ/t))^*, β) = Z?+α(β) Ffa t)/G(s, t) for every (s, t) e
[0, L)x[0, L) - {diagonal}. By the Taylor expansion of Wj(s) -Wό{t) we
see that

u,t + υ) = D+Wά(t)

if u Φ v and if ί, t + u and £ + v belong to a same interval Ik. More-
over, Fy is continuous on each (Ik x Im) Π {diagonal} by definition. Hence
-Py is continuous on each Ik x /w. A similar proof yields that G e C(Ik x Im)
and G Φθ, k, m — 0, , w. This complete the proof of (1).

Proof of Theorem 1, (2). By Proposition 1 it is sufficient to show
(2) when j = L

For a compact operator Ton a Banach space the mapping I — T is
a Fredholm operator of index zero ([14, p. 301]). Hence (2) is valid if
the following assertions hold true:

Assertion 1. A5 is compact on Hι

m^(m3).
Assertion 2. The range of I — Aό is equal to H^imj).
We begin by proving Assertion 1. By Theorem 1, (1) and the gener-

alized Stone-Weierstrass theorem ([13, Corollary 12.5]) there exist pjtUe
{Σm=i bm(x)cjy): bm e C(dD), cm e C(dD), N = 1, 2, .} such that

Since the integral operators

Pj.J(x) = \viM a(t))f(a(t))dt

are of finite rank, we obtain Assertion 1 by Holder's inequality.
Before verifying Assertion 2, we introduce some notation:
For a Banach space X, the algebra of all bounded linear operators

from X to itself will be denoted by BL(JSΓ). If TeΈL(Hι

m^{mά)), then
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(Γ)m denotes the conjugate operator of T as an operator on H\
If TeBL(L8(my)), then (T)L represents the adjoint as an element of
BUL\m/)). For every Te BL(iϊLaX(m,.)), we put R{T) = {Tf:fe iϊLxίm,)}.

By the closed range theorem and [14, V. Theorem 7.8] we have

R(I — Aj) = {g e Hl^xim/): g*(g) = 0 for every element g* of the kernel
of (I-AX).

Hence, to prove Assertion 2 we need only to show that the kernel
K of (I — A3)m consists of zero.

LEMMA 3. For every g* e (H^ίmj))* and every gBL\rrij),

l{A3)m{g*)}{g) = jj/.#(6(fir*))-dmy - \g (H)L(b(9*))-dms,

where b{g*) is defined as in Proposition 2.

PROOF OP LEMMA 3. It is easy to check that

(H)L(h)(x) = hφt) - -l-p.v.\κ(t, α-1(*
2 2πι J2πι

and Aj{h) - (H)L(h) — H{h), for every heL%mi). Hence by Proposition 2
we have

which prove Lemma 3.

Now we are ready to prove that K = {0}. Fix any g* e K. Then
for every g e L\m3) we obtain

o = [(I - A,.Ug*)](g)

= g*(g) - \g H(b{g*))-dms

Hence b{g*) = [H - (H)L](b(g*)). The last relation implies that

\\b(g*)\\h = 5#(δfa )) &Gr )-Λ»y - \{H)L(b{g*)) b(g*Tdm3-

Consequently, \\b(g*)\U}3 = 0. Thus K = {0}.
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Proof of Theorem 1, (3) and (4). We have PάH = Hand Pά{H)L = P,,
because (Pά)L = Pd. Hence P^I + H - (H)L) = H. By Theorem 1, (2),
7 — Aj is an injective bounded operator of L\m^ to L2(mj). Furthermore
I — Aj is a Fredholm operator on L\mό) of index zero. Therefore by the
proof of Lemma 3 we obtain (3). From (3) follows

Pά = H(I - AdΓ = Pi+1(I - Ai+1)( J - AJΓ ,

which completes our proof.

4. Proofs of corollaries. Corollary 1 is proved directly by Theorem 1.
Corollary 2 is an immediate consequence of Corollary 1, Proposition

3, (2) and Proposition 4, because the operator H is a bounded map of
H^iπij) to U{mό) as mentioned in Section 1. Corollary 3 is proved easily
by Corollary 2 and a usual argument.

PROOF OF COROLLARY 4. Corollary 2 implies that

Let if = Hί

0(m1)~ 0 i\Γ, where iVis a finite dimensional subspace of L 0 0 ^ )
defined by Gamelin and Lumer [6]. We show that [I — P^\{Hι

m^{m^)) = Z.
The space Z is closed in H^Jja^), because N is finite dimensional.

Hence applying the open mapping theorem to the operator T(g, h) — g + h
((fjr, h) e H\(m?r xN), we have

( ί ) C(\\g\\ltUmx + IWLi.max) ^ \\g + Λ||lfliin« ^ HflfILl,»« + IWL.mas ,

where {g, h) e H\(m^)~ x N and C is a constant independent of g and ft.
From Corollary 2 follows

where <£Γ> denotes the ίf^CmJ-norm closure of i7. Furthermore from
Proposition 4 follow

^ ( m j " ) - Hlirn,)- and (N) = N .
Since

(cf. [6]), we have by (i)

[/ - PJCJBRnaxίmJ) = (flϊίm!)- φ N) - ( i ί f c ) " ) 0 <iV> - H f c ) " 0 ΛΓ,

from which Corollary 4 follows.
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