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Introduction. In this paper, we give a method of constructing certain
examples of compact complex manifolds U with πx{ U) ^ Z and study the
structure of U. Those manifolds are toroidal compactifications of the
quotient spaces of open sets of algebraic tori (Cx)r by the groups gz

generated by elements g in GL(r, Z) satisfying certain conditions (Defi-
nition 1.1). As examples of such g, we can take integral matrices whose
entries are all positive. Since the first Betti numbers of such manifolds
are equal to one, they are not Kahler manifolds. In the two-dimensional
case, those manifolds U are hyperbolic Inoue surfaces or half Inoue sur-
faces (see [3]). Hence we may regard our examples as higher-dimensional
analogues of hyperbolic Inoue surfaces. On the other hand, one of them
is bimeromorphic to that constructed by Kato [6]. Therefore, we call
them Inoue-Kato manifolds. (The name was suggested by Ishida.)
Sankaran [9] also constructs certain examples of compact complex mani-
folds M, which are in another sense higher-dimensional analogues of
hyperbolic Inoue surfaces, and whose fundamental groups are free abelian
groups of rank dim Λf — 1.

This paper is organized as follows. In Section 1 and Section 2, we
construct compact complex manifolds mentioned above and their degen-
erations, respectively. In Section 3, we show that a part of them contain
global spherical shells. In Section 4 and Section 5, we calculate some of
their analytic invariants. We show some examples in Section 6.

The author would like to thank Professor T. Oda who pointed out
the fact in Proposition 1.4.

1. The construction. Let JV ^ Zr be a free Z-module of rank r and
let T = N$ξ)Cx be an algebraic torus of rankr.

DEFINITION 1.1. Let K(N) be the set of Z-linear transformations g
of JV satisfying the following condition.

g has a simple real eigenvalue λ = X(g) such that | η | < λ for all the

Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The
Ministry of Education, Science and Culture, Japan.



520 H. TSUCHIHASHI

other eigenvalues η of g.

Clearly, we have:

PROPOSITION 1.2. // g is in K(N), then ιg is in K(N*), where the
transpose ιg is the linear transformation of iV* : = Hom(ΛΓ, Z) definined
by (m, gn) = ζfgm, n), for all meiV* and for all neN.

PROPOSITION 1.3. Let g be in K(N). Then there exists an open convex
cone C such that the closure of gC is contained in CU{0}, that H(g) : =
Uiez9ιC is a half-space of NR and that L(g) := Πuz9ιC is a half-line of
NR, where we denote by the same letter g, the image of g under the
natural map GL(N) —> GL(NR).

PROOF. Let v and v* be eigenvectors of g and ιg, respectively, as-
sociated with the real eigenvalue X(g). Then clearly, (v*, v) Φ 0. Hence
we may assume that (v*, v)>0. Then the half-space H:= {y e NR\(v*,y}>
0} contains the half-line L : = R>ov. Take an open polygonal cone Co =
iί>o^1 + R>0n2 + + R>Qn8 containing L and contained in H. Then
Γ\uz9ιC0 = L. Hence there exists a positive integer lQ such that the
closure of gι°C0 is contained in C0U {0}. Let C3 = R^n^ + R^n^Λ h
R>on8(j), where nb(j) = nk + (jε/l0)v. Then the closure of gι°C0 is contained
also in CZoU{O} for a positive real number ε small enough. Moreover,
the closure of Cj+1 is contained in C^UίO}. Let C = CIo_! (Ί ffC,0_2 Π Π
flf10"1^. Then the closure of gC = gι°C0 Π gCh_x Π Π flf'0"1^ is contained in
CU{0}. Since also C contains L and contained in H, we have Γϊιez9ιC=L
and \Jiez9ιC = H. q.e.d.

Let g be in K(N). Then we see by the above proposition that the
cyclic group gz generated by g acts on D(g): = (H(g)\L(g))/R>0 properly
discontinuously and without fixed points and that the quotient D(g)/gz

is compact. Moreover, D(g)/gz is homeomorphic to Sr~2xS1

f if g is in
SL(N).

PROPOSITION 1.4. Let g be in the group GL(N) of Z-automorphisms
of N and let C be the interior of a non-singular rational cone of dimension
r in NR. Assume that gC is contained in C and that the closure of gιC
is contained in CU{0}, for a positive integer I. Then g is in K(N).

PROOF. By assumption, there exists a Z-basis [nly n2, « ,wr} of N
with C — R>ont + R>0n2 + + R>onr. Then g (resp. gι) is represented
with respect to the basis {nlf n2, , nr} by a matrix whose entries are
all non-negative (resp. positive) integers. Hence by the Perron-Frobenius
theorem (see [10, Ex. 37]), g (resp. g1) has a real eigenvalue λ (resp. a
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simple real eigenvalue λ') such that λ ^ \η\ (resp. \'>\rf\) for the other
eigenvalues η of g (resp. rf of gι). Here clearly, λ' = X1. Therefore, λ
is a simple real eigenvalue of g and λ > | ̂  | for the other eigenvalues η
of g. q.e.d.

PROPOSITION 1.5. Let g be in K(N). Then gz acts on H(g) properly
discontinuously and without fixed points.

PROOF. Let v and v* be the same as in the proof of Proposition 1.3.
By Proposition 1.3, we have a cone C such that the closure of gC is
contained in CU {0}. Let F = {y e C\ (v*, y) > 1}. Then U i6Z 9ιF = H(g),
diez9ιF = 0 and the closure of gF is contained in F, because (v*,gy) =
Cβv*9 v) — Mθ)(v*t y) > Mo) > 1 f° r a n y 2/ ίn ^ Hence the action of
gz on H(g) is properly discontinuous and fixed point free. q.e.d.

In the following, we use the notation in [8]. Let g be in K(N) and
let W = oτd"\H(g)) be the inverse image of H{g) under the GL(N)-
equivariant map ord = — log | |: T-*NR. Then the quotient W:=W/gz

of W with respect to the action of gz is a complex manifold by the above
proposition. In the following, we construct a toroidal compactification of
W. First, we show that there exists a ^-invariant r.p.p. decomposition
Σ in N with \Σ\ (: = UσeΣσ) = (H(g)\L(g))U {0}. We can take a strongly
convex rational polyhedral cone C such that gC is contained in Int(C) U {0},
that Ulezg

ιC = £Γ(#)U{0} and that Γ\ι&zg
ιC = L(g){J{0}, by Proposition 1.3.

Let Λ = {faces of C}\{C}. Then since ΛUgΛ is an r.p.p. decomposition
in N, we have a complete r.p.p. decomposition Λ' containing ΛV)gA, by
[11, Theorem 3] and [8, Theorem 4.1]. Let Σo = {σ eΛ'\σaC\Int(gC)}.
Then \Σ0\ = C\Int(gC)t because C\Int(^C) is the closure of a connected
component of JVΛ\\ΛUgΛ\. Hence Σ = {gισ\σ eΣo, I eZ] is a ^-invariant
r.p.p. decomposition in N and \Σ\= \Juz(glC\Int(gMC)) = (Uiβzί/ΌX
(fliβ^Int(flfI+1C))j= (fΓ(flr)\L(flf))U{0}. Let X - Γemb(J)\Γ and let ϋ =
WijX. Then i7 is an open set of Temb(Σ) and is invariant under the
action of gz.

PROPOSITION 1.6. U is simply connected.

PROOF. Note that the inclusion map W^ T induces an isomorphism
7Γi( W) a πλ( T) of the fundamental groups. Hence we get the assertion
of the proposition in the same way as in the proof of [8, Proposition
10.2]. q.e.d.

We obtain from Σ, a ^-invariant polygonal decomposition Δ : =
ί(^\ίO})/Λ>oke2^\{{0}}}onD(ί/), which coincides with the dual graph of
X. Since gz has no fixed points on D(g), neither does it on X. Let
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U = U/gz and let X = X/gz. Then X is a divisor on U and the dual
graph of X is the graph on D(g)/gz which is the image of Δ under the
projection D(g) -> D(g)/gz.

PROPOSITION 1.7. U is an r-dimensίonal compact complex variety
with the fundamental group πr{ U) ^ Z.

PROOF. Since gz has no fixed points on X and on W, neither does
it on U = WUX. Let F be the same as in the proof of Proposition 1.5.
Then the closure G of F\gF in O/CT is compact, where CT is the
compact real torus N(g) 17(1) in T. Hence the inverse image of G under
the map ord: U—>U/CTis also compact and is a fundamental domain with
respect to the action of gz. Therefore, U is an r-dimensional compact
complex variety. Moreover, π^U) ~ gz ~ Z by Proposition 1.6. q.e.d.

Assume that Σ consists of non-singular cones. Then ZJ and U are
complex manifolds. Moreover, the dual graph Δ of X is a triangulation.

REMARK. When r = 2, U is a hyperbolic Inoue surface or is a half
Inoue surface, according as g belongs to SL(N) or not.

2. Degenerations. Since λ in Definition 1.1 is greater than one, we
have:

PROPOSITION 2.1. If g is in K(N), then g± is in K{N@Z) where
g± is the linear transformation of N@Z sending (n, I) to (gn, ±1).

Let g be in K(N) and assume that there exists an r.p.p. decomposition
Σ with \Σ\ = (J?(ff)\L(flO)U{0}. Let A = {Λ*olf {0}, R*0(-ϊ)}. Then A is
an r.p.p. decomposition in Z and B: = Tz emb(A) is a non-singular rational
curve. Assume that there exists an r.p.p. decomposition Σ in i V φ Z
satisfying the following condition.

(D) Σ is^+)z-invariant, |Σ \ = ((H(g) xR)\(L(g))x {0})) U {0}, the sub-
complex {σ eΣ\σczNR} of Σ is equal to Σ and the natural projection
iNΓφZ—>Z induces a morphism (ΛΓφZ, 2?)->(Z, Λ) of r.p.p. decompositions.

Then we have an (r + l)-dimensional compact complex variety *%/ : =
(ord-Xflίflr)xΛ)U(ΪWemb(I?)\TNφz))/(g+)z, a divisor J T : = (Tm zemb(Σ)\
TNφz)Kg+)z on ^ and a holomorphic map φ:<%S-*B with φ~\Tz) a

uxτz (φ-χτx)n^-iχrz)
THEOREM 2.2. Assume that there exist a convex rational cone C and

a set Σ°r of r-dimensional cones in Σ such that sfCdnt(C)U{0} and that
\Σ°r\ = C\lnt(gC). Then there exists an r.p.p. decomposition Σ in

satisfying the above condition (D). Moreover, φ
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— 1))) is a toric variety intersecting itself along two disjoint
divisors.

PROOF. First, we note that Σl consists of representatives of r-
dimensional cones of Σ modulo gz, i.e., {gισ\leZ, σeΣ°r} = {r-dimensional
cones in Σ) and I = 0 if gισ — τ for σ, τ eΣ°r. Take an element i; in N
so that gv — v is contained in Int(flrC) and let C = (R>0(v, 1) + C) U
CB̂ oO, -1) + C). Then £+C is contained in Int(C)U{0}. Let Σ° = {faces
of σ\σeΣ°r} and let JF° = {σ±, ?±|<τ, τeΣ°, τcgC}, where σ± = R^0(v, ±ΐ)+σ
and f± = Λ 0̂(v, ±1) + R*o(gv, ±1) + τ. Then we can verify Jthat gιrjΠX
are faces of gιη and λ, for η,xeϊ° and for I e Z and that \Σ°\ = C\IτΛ(g+C).
Hence Σ := {faces of (g+)ιX |λ e Σ°, I eZ} is an r.p.p. decomposition in iV0Z
and satisfies the condition (D). The last assertion follows from the con-
struction of Σ. q.e.d.

COROLLARY 2.3. Let g be in K(N) and assume that there exist an
r.p.p. decomposition Σ with \Σ\ — (H(g)\L(g))U{0}, a positive integer I,
a convex rational cone C and a set Σ°r of r-dimensional cones in Σ such
that \Σ°r\ = C\Int(gιC) and that glCaInt(C)U{0}. Then there exists an
r.p.p. decomposition Σ satisfying the condition (D).

PROOF. By Theorem 2.2, we have a (£+)*z-invariant r.p.p. decomposi-
tion Ξ such that \Ξ\ = ((H(g) x R)\(L(g) x {0})) U {0} and that {σ e Ξ {aciN*} =
Σ. Let Σ = {h1σιΠhiσ2Γ\"'Πhισι\σieΞ}f where hi = (g+y. Then Σ is
(^+)z-invariant, consists of rational cones, \Σ\ = \Ξ\ and {σ eΣ\σaNR} = Σ,
because Σ is ^-invariant. Hence it is sufficient to show that Σ is an
r.p.p. decomposition. Let τ be a face of an element σ = h1σ1(λhίσ^ Π
hid in Σ. Then τ — σΠx1, for an element x = xx + x2 + + xt in
^ v - ( W v + ( W v + + ( W v (^e(/M7i)v), where σv is the dual
cone of a and x1 = {yeNR\(x, y) = 0}. Let r< = h&^xl. Then r< is a
face of /̂ σ* and

τ = {ί/eσ|<^,2/> = 0}

= {y e σ I <&!, i/> = <a?2,2/> = = <â , »> = 0} = τ, Π τ2 Π Π τt e ϊ ,
because (xt, y) ^ 0 for y e σ. Next, let σ = ^ ^ Π A2<J2 Π Π ̂ Z^Z and r =
hιτι Π Λ2τ2 Π Π hιτι be in Σ. Then c Π r = / ^ n rx) n ft2(tf2 Π τ2) ΓΊ D
hι(σιf]Tι). Since ^ ( ^ 0 ^ ) is a face of /z^, there exists an element xt

in (fc£σί)
v with ^ ( ^ n r j = A^Πa?*-. Hence

<rίΊr = fe/eαl^, 2/> = (x2, y) = = <α,, y> = 0}

= {» € σ I (x, + x2 + + xlf y) = 0}

is a face of σ, because â  + sc2 H h xt e (fe1σ1)
v + (h2σ2)

v H h (hiGiY =
<7V. q.e.d.
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3. Global spherical shells. We keep the notation in Section 1.

DEFINITION 3.1. An open set S of a complex manifold U is a global
spherical shell, if U\S is connected and if S is biholomorphic to
{(z19 z2, , zr) eCr\a < Σί=i I zk I2 < β) for positive real numbers a and β
with 0 < a < β.

See [5], for the properties of compact complex manifolds containing
global spherical shells.

THEOREM 3.2. If there exists an r-dimensional non-singular rational
cone σ in NR such that gσ\{0} is contained in the interior of σ and
that [σ] : = {faces of σ}\{σ} is contained in Σ9 then U contains a global
spherical shell.

PROOF. Let {n19 n2, , nr) be a Z-basis of N with σ = R^nγ +
•R*oW2 + + R^nr and let {m19 m29 , mr} be the Z-basis of ΛΓ* dual
to {n19 n29 ---,nr}. Let zt be the holomorphic function on Temb([σ])
(~Cr\{0)) which is the natural extension of the character m;(g)lcx: T—>
C x of mt. Then fo, 22, •••, zr) is a global coordinate on Temb([<7]). Let
S = {(z19 z29 , «r) e Temb([σ])\Ύ - ε < Σ U l«*l2 < 7 + ε} for positive real
numbers 7 and ε with 7 — ε > 0 and 7 + ε < 1. Then we easily see that
the image orά(S\X) = {uxnx + u2n2 + + urnr\Ύ — ε < exp(—2ut) +
exp(-2u2) H h exp( — 2ur) < 7 + ε} of S \ X under the map ord: T-» NR

is contained in σ\{0}aH(g). Hence S is contained in U. Let P+ =
{u^ + u2n2 -\ h urnr |exp( — 2ux) + exp(~2u2) -| h exp( —2^r) < 7 ± ε}.
Then the closure of gP+ is contained in P_ for small enough ε, because
gnό = a^nx + a2jn2 + + arjnr with atί ^ 1, for j = 1 through r. Since
S\X= ord-\P+\P_) and since SΠXcΓemb([ί7])\Γ, the restriction to
S of the quotient map q:U-*U is injective. Moreover, the image q(S)
of S is global, i.e., U\q(S) is connected, because U\(q(S)l)X) is the
image under q of the connected set ord~1(P_\gP+). q.e.d.

4. Invariants. We keep the notation in Section 1. Throughout this
section, we assume that there exists an r.p.p. decomposition Σ satisfying
the conditions of Corollary 2.3 and consisting of non-singular cones. Let
Θu( — log X) and Qn{~\ogX) be the logarithmic tangent sheaves of (ϋ9 X)
and (U, X)y respectively, and let Ω^(log X) and Ωι

σ(\og X) be the dual
sheaves of Θu(—log X) and 0^(—logX), respectively. The first purpose
of this section is to prove the following proposition.

PROPOSITION 4.1.

JC for ΐ = 0, 1
9 u ~~ (0 for i ^ 2 ,
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and

where (g — 1): NC—>NC and (*g
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For the proof, we need some lemmas. Let ^ = q9*J?~, for a locally
free sheaf _#~ on C7 with an action of gz', where sf: U ->U - V\gz is the
quotient map and qQ£^ denotes the subsheaf of q*^ consisting of germs
of ^-invariant sections. Then by [2, Corollary 3 to Theorem 5.3.1], we
have the spectral sequence:

Ei«(g*, J O = H*(g*, H%U, άΓ)) => H'+q(U, ^~) .

Here we note that ^ = έ?Uf ώ^(log X) or ©^(-log X), according as β~ =
έ?ΐϊ> Ω^(\og X) or Θu(—log X). Since ^ z is a free group, we have
Ef'q(gz, Jr) = o for p > 1. Hence the above spectral sequence degener-
ates and Hq{Uy jr) ~ £ίj^(gz, Jr) Q E\*q-\gz, Jr). First, we calculate
Eί>°, {g\ β*) for p = 0, 1 and for β~ - ^ , θ^(-log X), fl^(log X).

LEMMA 4.2. iίo(C/, ^ ) ^ C.

PROOF. Since U is an open set of Temb(Σ), any holomorphic function
/ on U is expressed as a series

/ = Σ cme(m) ,
meiV*

where e(m) is the natural extension to Temb(Σ) of the character
m(x) lcχ: T—>CX of m. Here cm must vanish, if <m, w> < 0 for a non-
zero element neN with R>QneΣ, because e(m) has poles along

ri) c C7. However,

{m eΛΓ*I<ra, ^> ^ 0 for all neN with J?^o^6 J}

= {m e ΛΓ* I <m, »> ^ 0 for all y in

because \Σ\ = (H(g)\L(g))U{0). Hence f = c0 is a constant function.
Therefore, iίo(f7, a?^) a C. q.e.d.

By [4, Proposition 1.12], there are #z-equivariant isomorphisms
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and Ω-ilog X) ~ &>% ( JV*. Hence by the above

526

Θz(-log X) ~ έ?z®
lemma, we have:

LEMMA 4.3. There exist gz-equivariant isomorphisms H°(U, Θu{ —
log X)) ~ Nc and H°(U, Ω+(log X)) ~ Nc*.

LEMMA 4.4. Hp(gz, C) ^ C for p = 0, 1,

(coker(gr — 1) for p — 1

and

1, f ?
— 1) /o/ p = 1 .

PROOF. Clearly, £ W , iVc) = (Ncy
z = ker(g - 1) and i ϊ W , iVc*) =

(NcY"2 = kerCflr — 1). Since gz (resp. 'flf2) is generated by g (resp. 'gr),
we have Z\gz, Nc) =: iVc (resp. ZX'ff2, iVc*) ~ iVc*) and β 1 ^ 2 , JVC) - 1m.(g -1)
(resp. β^'flr2, Nί) = ImCflr - 1)). Hence ί W , iVc) =s coker(ff - 1) (resp.
H'i'g2, JVC ) = cokerCfir - 1)). Since gz acts on iϊo(C/, ^ ) =: C trivially,
we get H\gz, C) a C and H\gz, C) = Hom(gz, C) = C. q.e.d.

Next, we show that Eξ "{gz, Jr) = 0 for q ^ 1. Let Z be an integer
such that gι and 2" satisfy the condition of Theorem 2.2 and let U' =
U/gιz (resp. X' = X/gιz). Then U' (resp. X') is an i-sheeted unramified
covering of U (resp. X). By Theorem 2.2, we have a degeneration
φ .^-^P1 of IP and a divisor £f on ^ such that ^ ( ί ) =s Ϊ7' ( ^ ( t ) Π
gf ~ X') for t Φ 0, oo and that ί70: = ^"'(O) is an irreducible variety we
obtain by identifying two disjoint divisors of a toric variety. Let
®Λ—log<=€H be the subsheaf of the tangent sheaf Θ^ of ^ consisting
of germs of holomorphic derivatives δ with δld and let β^(log<^) be
the dual sheaf of Θ^{—\og<%?), where I<z.έ?w is the ideal of definition
for

1 for p = 0,l

LEMMA 4.5.

j
(0

and

f o r p ^ 2

^ 2 .
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PROOF. Let D be the double locus of Uo and let Uo be the normali-
zation of Uo. Then we have an exact sequence

Since Uo and D are compact toric varieties and since & ® £?#0 and ®
are free sheaves on Uo and D, respectively, we have HP(UQ, ̂ ® ^ 0 ) =
HP(D, 5?®έ?D) = 0 for p > 0, where ST = <£?*, Θ * ( - l o g ^ ) or J2i(log JT).
Hence H 0 (ϋΌ,^®^ 0 )=ker(d) , JEP(t7o, S?®^ 0 )=coker(d) and Hp(U0,5?(g)
έ?UQ) = 0 for p ^ 2, where d: iϊo(ί7o, Sf 0 ^ 0 ) -* ff°(A ST <g> ̂ ) Here

^ - i?°(A ^ Θ <?D) = C, iVc φ C or ΛΓC* 0 C* and d = 0,
1,0)) or Cg+)ι-l ( = (V - 1,0)), according as Sf =
or Ωi(ίog^T). q.e.d.

Since ^ ( C ^ ) ^ U' x C x ( φ " 1 ^ ) n . ^ ~ X' x C x), we see that
0 ^ ( - l o g ^ ) t ^ 6 W - l o g X ' ) Θ ^ V < and that Q\{\og^)t^Ql(\ogXf)@^ϋf

for each teCx. Hence by the upper semi-continuity [1, Theorem 4.12],
we have

dim H1

dim if'

and

\U',ΩU
) <; dim

(log X')) dim H*{U\ <?π,) ^ dim H*(U0, Ω

( , ^ g ) ) + dimH*(U', <?π.) ^ dimH*{UQ,

On the other hand, by Lemma 4.3, dim # % ' * , F) = dim Eξ>°(gιz, Jr) ^
dim HP(U', Jf'), where JP7 = C, iVc or iVc*, and jr'= <z?uff euf(-\og X')
or i2^(logZ'), according a s ^ ^ £?£, ©^(-logX) or β^(logX). Hence
by Lemmas 4.3, 4.4 and 4.5, we obtain the equalities dim Eξ'°(gιz, ^) —
dim H*(U', Jt"), because dim(ΛΓc)^

z = dim ker(gfz - 1) = dim coker^3 - 1)
and dim(JV?)**zz = dim ker(^z — 1) = dim coke^V1— 1). Therefore, we have
Eξ'q(gιz, Jr) = 0 for q ^ 1. Then by the Hochschild-Serre exact sequence,
we have Et\g\ Jr) = Hp(gz, H\U, Jr)) = Hp(gz/gιz, H%0, β-γz) = 0 for
q ^ 1. Hence fίp(E7, ^r) = Ei'\gz^). Thus we complete the proof of
Proposition 4.1, by Lemmas 4.3 and 4.4.

PROPOSITION 4.6.

fθ /or %Φ\
dim H%U,Ωh) = ι ~ . ,

[s for % = 1 ,

where s is the number of the irreducible components of X.

PROOF. Let i?^0^i + -RsΛ + ••• + R^ύnr be an r-dimensional non-
singular cone in Σ and let {mly m2, , mr} be the Z-basis of N* dual to
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{n» n2, , nr}. Let e(m) be the same as in the proof of Lemma 4.2 and
let ωά = de(mj)/e(mj) for j = 1 through r. Then {ω19 ω2, , α>r} is a C-
basis of iϊo(ϊ7, β^(logX)) ~ N*. Here we note that a),- has poles along
orb(Λ^o^ ) and does not have poles along orb(Λ^0 f̂c) with k Φ j , be-
cause <m, , wfc> = 5yjb. Hence any non-zero element of H\U, Ωιu(\ogX)) a
H\U, Ω\(\og X))gZ has poles along X. Thus we conclude that H\U, Ωh) =
0. Next, consider the long exact sequence of the cohomology groups
arising from the short exact sequence

0 -> Ωh -> ̂ (log X) — φ j β l ^ -> 0 ,

where Xfc are the normalizations of the irreducible components Xk of
X = X1 + X2 + + Xβ. Since each Xk is a compact toric variety, we
have H\Xk, έ?£k) = 0 for i > 0 and ff^-X^, ̂ i t ) ^ C . Hence by Proposition
4.1, we get H\U, Ω\j) = 0 for i > 1 and dim ίP([/, β1,,) = dim H\U, Ωh) -
dim ker(*# — 1) + s + dim coker(*# — 1) = s. q.e.d.

When r = 3, we can determine the dimensions of iϊg(ί7, β£) for all p
and g by the Serre duality. In particular, dim H\ U, Ωh) = dim H\ U, Ωl) = 0
and dim H^ U, 0) = dim H2( U, Ωh) = 1. Since 6X( ?7) = δβ( C/) = 1, the maps
El'1 -* E\Λ and E\A —> JKJ 2 must be zero-maps and hence the spectral
sequence ElΛ = iίg(C/, β&) => Hp+q(U, C) degenerates. Thus we have:

THEOREM 4.7. When r = 3, [/ feαs ίfce following Betti-numbers:
&o(t^) = &i(t^) = 6β(ί^) = bΛ(U) = l, 62(27) - 64(U) = s and 68(CO = 0. Hence

Euler-Poίncare characteristic of U is 1{ U) = 2s.

5. Deformations. We keep the notation and the assumption in the
previous section. Let Θπ be the tangent sheaf of U.

PROPOSITION 5.1. Assume that the dual graph of X= X1 + X%Λ h
X8 is a triangulation. Then H%U, θπ) cz φU.H^X^ έ?Zk(Xk)), for i^2,
H\ U, θu) ~ ker(gr — 1) and there exists an exact sequence

0->H\U, θπ{-\ogX))-*IP{U, θπ)^®UH^Xh, &Xk(Xk))-^0 .

PROOF. Consider the long exact sequence of cohomology groups
arising from the short exact sequence of sheaves

0 - θπ( - log X)->θu-> 0 U έ?*k(Xk) -> 0 .

Then by Proposition 4.1, it is sufficient to show that H°(Xk, έ?Xk(Xk)) = 0,
for each irreducible component Xk of X. Let Y be an irreducible com-
ponent of X such that the image q(Y) of Y under the quotient map
q: X—>X is Xk. Then Y is the closure of the orbit orb(R^0n) correspond-
ing to a one-dimensional cone R^on in Σ. Let n19 n2, and nt be the
link of n in Σ, i.e., R^on + R^nt (i = 1 through t) are two-dimensional
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cones in Σ. Then the closures Yt of the orbits orb(J?έ0^i) are the
irreducible components of X with Yt Π Y Φ 0 . We easily see that
dimiϊo(Γ, ^ F ( r ) ) = #{meiV*|<m, n) = - 1 , <m, n,> S 0 for 1 ^ i ^ t}.
Suppose that there exists an element m in JV* such that <m, n) — — 1
and that <m, w<> ̂  0. Then the convex hull of {n, n19 •••, wj contains
the origin, a contradiction to the fact that {n, n19 , nt}a\Σ\\{0}c:H(g).
Therefore, H\Xky &Xk{Xk)) ^ H\Y, <?T(Y)) = 0. q.e.d.

Since the dimension of each irreducible component Xk of X is equal
to r — 1, we get Hr(Xk, ^Xje(Xk)) — 0. Hence we have:

COROLLARY 5.2. Hr(U, θπ) = 0.

COROLLARY 5.3. When r = 2, i.e., U is a hyperbolic Inoue surface
or a half Inoue surface, we have dim H\U, θπ) — 2s, where s is the
number of the irreducible components of X.

PROOF. Note that when r = 2, any g in JBXW) and any #z-invariant
r.p.p. decomposition 2* with \Σ\ = (H(g)\L(g))\J{0} satisfy the conditions
of Corollary 2.3. Since g has two real eigenvalues both of which are not
equal to one, we have H\U, Θu( — log X)) ^ coker(gr — 1) = 0. On the
other hand, by the Riemann-Roch Theorem, we have

dim H\Y, έ?r(Y)) = dim H°(Y, <?T(Y)) - 1 - deg &Y(Y) = - 1 - Y2 ,

for each irreducible component Y of X, because Y is a rational curve with
F 2 < 0 . Hence

dim H\U, Θu) = Σ dim H\XkJ &Xk{Xk))Σ
= Σ (-1 - XI) = -s- X2 + 2s = 2s ,

because —X2 — s, by Nakamura's duality [7]. q.e.d.

Since H2(U,Θϋ(-logX)) = 0, there exists a universal family π: (<^,<£?)->
D of deformations for the pair (U,X)a(TΓ^O), π~\0)Π<^) over a polydisk
D, i.e., the Kodaira-Spencer map p: T0(D)-+H1(U, Θu(—\ogX)) is bijective.
In fact, we can construct such a family as follows. By Proposition 4.1
and Lemma 4.4, we have the canonical isomorphisms Hι(U, Θu( — log X)) a
H\gz, Nc) cz coker(gr - 1 ) . Here we note that Nc = ker(g - 1) φ Im(g - 1).
Let gz be the automorphism group of Temb(J?)xker(flr — 1) generated
by g: (x, t) H* (e(t) gx, t), where e: Nc —> T is the map induced by
exp(2τn/^=I?): C-+C*. Then ^ z preserve the open set ?7xker(0 — 1)
and has no fixed point on it. Hence <%S:— {UxD)jgz is a complex
manifold and the natural projection ^ —> D onto D is a proper smooth
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map, for a small enough polydisk D in ker(# — 1).

6. Examples. We give five 3-dimensional examples and show a list
of analytic invariants for them. Let {n19 n2, n5) be a Z-basis of Z3.

EXAMPLE 1. gn1=2nι + n2 + ni1 gn2=n1-hn2-\-n3 and 0w3=w1

Σ = {faces of glat\leZ, i = l through 6}, where

σx = R^nx + R±*n2 + Λ*o(2Wi + n2 + nz) ,

σ2 = R^n2 + R^{nx + ^2 + w3) + Λao(2wi. + w2 + n3) ,

^3 = i?^o^2 + Λfcofal + ^2 + ^3) + Λ^θ(^l + ^2 + 2^) ,

and

nz) 2n3)

(See Figure 1.)

FJGURE 1

n2

EXAMPLE 2. gnί=2n1 + ni + ni, gn2 — nx + n2 + 2nB and flrw8=w1

I' = {faces of gισi\leZ, ί — 1 through 6}, where σt are the same as in
Example 1.

EXAMPLE 3. gn1 = n2, gn2 = nλ + nΆ and gnz = n^ Σ = {faces of gιτx

and flf'rjl I e Z}, where rx = R>Qnz + U^0(^i + nz) + i?^0(^i + ^2 + ^3) and
τ2 = Λ^o^ + R^o^s + -K^o(̂ i + ^2 + ^8) (See Figure 2.)

EXAMPLE 4. gnx — nλ + ns, gn2 = ^ and srn3 = n2. Σ — {faces of gιτx

and gιτ2\l£Z}, where rx and τ2 are the same as in Example 3.

EXAMPLE 5. gn^ = ^ + n2 + ^3, gr̂ 2 = w3 and ^ 3 = wlβ 7̂ = {faces of
gιμx and gιμ2\leZ}, where ft = R^i + Λ^0^2 + i?^o(^i + n2 + n3) and ft =
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n2 nz

FIGURE 2

FIGURE 3

+ + x + n2 + ns). (See Figure 3.)

We easily see that all the above examples satisfy the condition of
Definition 1.1. The complex manifolds we obtain from g and Σ in Example
1 and Example 2 contain global spherical shells by Theorem 3.2. The
complex manifold we obtain from g and Σ in Example 4 is bimeromorphic
to that in [6]. Although our examples do not satisfy the assumptions
of Theorem 5.1, we can calculate the dimensions h\U9 Θu) of H^U, Θπ)
as follows. There are positive integers I such that the dual graphs of
Xf := X/gιz are triangulations. Then ί/and Xare quotients of U' : = U/gιz

and X\ respectively, by the finite cyclic groups G = gz/gιz

f which have
no fixed points on £7'. Hence Θu/Θui—logX) are the subsheaves of
qxiθu'/Θu'i — logX')) a ?*(φϊLi*5Prί(-Xt)) consisting of germs of G-invariant
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sections, where Xr — X[ + X[ + + X'Λ and q: Xr -*X is the quotient
map. Therefore, dim H\ U, θπlθπ{ - log X)) = d i m ^ U H\X'ky έ?x'k{X'k)))G =
(1/0 Σίι=i dim H\X'h, έ?x'h(Xl)). Then by Proposition 4.1, Theorem 5.1 and
its proof, we have h°(U, Θv) = dimker(cy —1), Λ/(i7, θΌ) = dimcoker(c/ —1) +
( l / O Σ ^ i d i m ί ί 1 ^ , ^ί(Xί)) and Λ,(tf, β )̂ = (1/Z) ΣίU dim H'(XΪ, ^
for i > 2.

Example 1

Example 2

Example 3

Example 4

Example 5

h\U,θ)

1

0

0

0

0

h\U,θ)

8

7

0

1

3

h\U,θ)

1

1

0

0

0

C3 = X(U)

6

6

2

2

2

- 1 8

- 1 8

- 2

- 4

- 8
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