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Abstract. In this paper we consider differential inclusions in a separable
Banach space and we show that when the orientor field satisfies the Cara-
theodory conditions and is Lipschitzean with respect to a Kamke function
w(t, x) in the state variable, then the set of solutions of the nonconvex
problem is dense in the Cx{ T)-topology in the set of solutions of the con-
vexified problem.

Introduction. For a differential inclusion x(t) e F(t, x(t)) with a non-
convex right hand side the set of solutions through an initial point is,
in general, not closed (even if its sections might be). So we would like
to know what is the relation of the closure of this set to the set of the
solutions of the convexified problem. This problem was first considered by
Wazewski [20] who introduced the notion of a quasitrajectory and proved
that whenever F(t, x) is continuous, every solution x{t) e clconv F(t, x{t))
is the limit of a sequence of quasitrajectories of x(t) e F(t, x(t)). However
such a result does not provide an estimate of the distance between a
quasitrajectory and a true solution. In fact such an estimate cannot be
obtained if we only assume that F( , •) is continuous. The additional
condition needed is a Lipschitzness condition in the x-variable of F( , •)•
With that condition present, Filippov [5] was able to obtain the missing
estimate and then prove the desired density result. A very nice pres-
entation of those results can be found in the book of Clarke [3, pp. 115-
118]. Later Pliss [12] provided a counterexample which illustrated that the
Lipschitzness condition cannot be omitted. A generalization of Filippov's
theorem was given by Pianigiani [11]. However all these results were
for Rn. The only infinite dimensional relaxation result that we know of,
is that of Tolstonogov [17, Theorem 4.3], which was stated though without
a proof. Here we present another such theorem, with a different set of
hypotheses. The motivation for such an infinite dimensional result comes
from the optimal control theory of systems governed by an evolution
equation (distributed parameter systems, see for example Ahmed-Teo [1]).

* Research supported by N.S,F. Grants D.M.S.—8403135 and D.M.S. 8602313.
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2. Preliminaries. Let (Ω, Σ, μ) be a complete σ-finite measure space
and X a separable Banach space, with X* being its topological dual. We
will use the following notations:

Pf{c){X) = {AQX: nonempty, closed, (convex)}

Pk(c)(X) = {i £ I : nonempty, compact, (convex)} .

For Ae2x\{0}> we set \A\ = supββ4||a?||, by dA( ) we denote the dis-
tance function from A, i.e., for all xeX, dA(x) = inΐaeA\\x — a\\ and by
σA( ) the support function of A i.e., σA(x*) = supα6^(#*, a) for all x* e l * .
Also by δA( ) we will denote the indicator function of A, i.e., δA(y) = 0
if y e A and + oo if y $ A.

A multifunction F: Ω -»Pf{X) is said to be measurable if it satisfies
any of the following equivalent conditions:

(1) a) -+dF{ω)(x) is measurable for all xeX.
(2) there exists a sequence {/n( )}n*i of measurable functions such

that F{ω) = cl{/n(a))}n^! for all ωeΩ (Castaing's representation).
(3) GτF={(ω,x)eΩxX:xeF(ω)}eΣxB(X), where B(X) is the

Borel α-field of X.
Any multifunction, not necessarily closed valued, satisfying (3) is said

to be graph measurable.
We denote by Sp the set of all selectors of F( ) that belong to the

Lebesgue-Bochner space UX(Ω), i.e., SF = {f^)eL1

x(Ω):f(ω)eF(ω) μ-a.e.}
Clearly this is nonempty if F( ) is integrably bounded, i.e., |F( )I eL+(ί?).
Using Sp we can define a set valued integral for F( ) by setting

If {An}n^! is a sequence of nonempty subsets of X, we define:

s-liminf An = {xeX x = s-lim xn, xn 6 An, n ^ 1}

and

w-limsup An = {xeX:x = w-lim ίcnfc, ίcnfc e Ank, k ̂  1} .
n—»oo

We will say that the An's converge to A in the Kuratowski-Mosco sense

(denoted by An • A) if and only if w-limsup^oo An = A — s-liminf„_«, An.

Using this mode of set convergence, we can define a convergence for

functions which is in general different from the pointwise convergence.

So if {/n, f}n^ £ Rx are proper functions, we say that fn Λ / if and only
TT TIΛ

if epifw >epif. For more details about the K—M and τ-convergences,
we refer to Mosco [10] and Salinetti-Wets [16].

Finally if A, BePf(X), we set h(A, B) = suipxez\dA(x) - dB(x)\ (the
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Hausdorff metric). Also recall that by a Kamke function, we mean a
function w: [0, b]xR+ ->iϊ+ satisfying the Caratheodory conditions (i.e., it
is measurable in t and continuous in x) integrably bounded on bounded
subsets of TxR+, w(t, 0 ) Ξ 0 a.e. and such that u(t) Ξ 0 is the only solu-
tion of the problem u(t) ^ 1 (w(s, u(s))ds, w(0) = 0.

Jo

In the proof of the relaxation theorem, we will need the following
results, which are also interesting on their own as general results about
multifunctions and so we state them in the most general from we were
able to prove. Here (Ω, Σ, μ) is a cr-finite measure space, with Σ being
a Souslin family (in particular Σ may be /^-complete) and X is a separable
Banach space.

PROPOSITION 2.1 // F:Ω-*2X\{0} is graph measurable and

SF Φ 0 then for all #* e Γ , σ(x*, \ F)

= supj(aΛ x): xe ^ F J = }oσFm(x*)dμ(ω) .

PROOF. Our proof follows Rockafellar [15, Theorem 3A].
From Theorem 5.10, of Wagner [19] we know that F( ) admits a

Castaing representation {/n( )}n*i Hence

^{«)(»*) = sup(x*, fn(ω)) ==> ω -* σFlω)(x*) is measurable.

Also since (x*,Aω))£σrw(x*) and (x*f /(O)eL 1 for f(-)eSF, we
deduce that for all #*eX*, ω -+ σF{ω)(x*) is quasiintegrable (i.e.,
[σ^ix^reU).

Directly from the definitions we can see that we always have:

σ(x*, \QF) <ί \oσFW(x*)dμ(ω) .

Fix a ; * e Γ and let β < \ σF,ω)(x*)dμ(ω). Our goal is to show that

there exists f( )eSF such that

β < \ (x*, f(ω))dμ(ω) .

Take {i3n}n̂ i monotone increasing in Σ such that μ(Ωn) < oo and Ω =
Un îfln and let p( )eL+, p(ω) > 0 for all ωeΩ. For n ^ 1 define:

An = {ω 6 Ω: σFlω)(x*) ^

Then set
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gn(ω) = σF{ω)(x*) - —p(ώ) for ω e Ann

= (x*, f(ω)) - —p(ω) for ωeΩ\An.n

Clearly gn(-)eU and gn(ω) | σF{ω)(x*) μ-a.e. So we can find n0 ^ 1
such that \ gn(a))dμ(ω) > β for all n ^ n0. Set flr( ) = 0»o( ) Let R(ω) =
(a;eF(α)): (̂α>) ^ (a?*, α;)}. Because flr(α>) < σFίω)(x*) μ-a.e., we see that
B(ω) Φ 0 , for all ωeΩ' = Ω\N, μ(N) = 0. Also Gr J2 |fl, = {(α>, a?) e β' x X:
flf(ω) - (x*, x) ^ 0} Π Gr F e (Σ Π 2β/) x J5(Z). Hence we can apply Aumann's
selection theorem to find h: Ωr —> X measurable such that h(ω) e R(ω) for
all ωeΩ'. Extend Λ( ) on i2. Then A( ) becomes a measurable selector
of F( ) but it is not necessarily in Lχ(Ω). Furthermore note that

β < [ (a?*, h(ω))dμ{ω) .
Jo

Next let β s = {o)6i2: ||Λ(<»II ^»}ίlA, and define:

λ ( ) = XBS'M ) + XOχBn( )f( )

Clearly {/n( ) U £ ^ and

( (x*, fn(ω))dμ(ω) = ( (x*, h{ω))dμ{ω) + \ (x*, f{ω))dμ{ω)
JΩ JBn jΩ\Bn

^ ( 9(ω)dμ(ω) + \ (x*, f(ω))dμ(ω)

= \ g(ω)dμ(ω) + \ [(»*, /(α>) - flr(ω))]^(w).

Recalling that I g{ω)dμ(ω) > β and that μ{Ω\Bn) [ 0 we finally have that
Jo

for large enough n

\ (x*,λ(ω))dμ(ω)>β.
JΩ

Since fn( )eSF9 the proof is finished. q.e.d.

The next proposition establishes the convexity of the set valued in-
tegral. Our result generalizes the corresponding theorem for Rn-valued
multifunctions (see for example Theorem 7.1.6 in Klein-Thompson [7]).
So assume that (Ω, Σ, μ) is nonatomic, σ-finite, with Σ a Souslin family
and X is a separable Banach space.

PROPOSITION 2.2. IfF: Ω -+2X\{0} is graph measurable and SFΦ0

then cl\ F{ω)dμ(ω) is convex.
JΩ
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PROOF. Let xlt x2 e ell F(ω)dμ(ω). Then given e > 0 there exist /!(•)>
JΩ

ι — \ fi(ω)dμ(ω) < e/2 and \\x2 — \ f2(co)dμ(ω)
JΩ II JΩ

A(-)eSι

F such that

e/2. Consider the vector valued measure r: Σ —>XxX defined by

r{A) =

Because μ( ) is nonatomic, Corollary 1 of Kluvanek-Knowles [8, p. 98]
tells us that the norm closure of the range of r( ) is convex. Note that

r (0) = (0, 0) andr(Ω) = (^Qf1(ω)dμ(ω)9 ^ f*(ω)dμ(ώή. Hence for λ e (0, 1),

there exists A e Σ such that

- λr(β)|| < e/4 and ||r(X?\A) - (1 - X)r(Ω)\\ < e/4

e/4

and

fi(ω)dμ(ω) - (1 - λ)( flω)dμ{ώ)
A JΩ

<ε/4
)a\Λ JΩ

for i = 1, 2. Set / = TLJX + %fiU/2. Clearly / e Sι

F. Then we have:

- \aΛ<o)dμ(ω)\\

c, - λί f^dμiω) + λ( Uω)dμ(ω) - \ Uώ)dμ{ω)
JΩ JΩ JA

I (1 - λ)a?2 - (1 - λ)( A(ω)dμ(ω)

Uω)dμ{ώ) -

< λε/2 + e/4 + (1 - λ)e/2 + e/4 = ε .

So indeed cl\ F(ω)dμ(ω) is convex.
JΩ

q.e.d.

Using the previous two propositions we can have the following in-
teresting property of the set valued integral. Let (42, Σ, μ) be a non-
atomic, complete, σ-finite measure space, while X is still a separable
Banach space.

PROPOSITION 2.3. If F:Ω->2X\{0} is graph measurable and SF Φ 0

then ell F(ω)dμ(ω) = ell clconv F(ω)dμ(ω).
JΩ JΩ

PROOF. For all &*eX*, using Proposition 2.1 we have:
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σ(x*> elf ί7) = σ(x*, J ^ ) =\ σrw(x*)dμ(ω) = j *G**. clconv F{ώ))dμ{ώ) .

Using Theorem IΠ-40 of Castaing-Valadier [2], we have that α>->
clconv -F(α>) is measurable. So a new application of Proposition 2.1.
gives us:

I σ(x*, clconv F(ω))dμ(ώ) — σ(x*9 I clconv Fj

clconv

For all #*eX*. But from Proposition 2.2. we know that ell F is
JΩ

convex. So finally we have:

ell F(ω)dμ(ω) = ell clconv F{ω)dμ(ω) .
JΩ JΩ

q.e.d.

REMARK. If F: i2->2x is integrably bounded and has nonempty, w-com-

pact, convex values, then we have: ell F(ω)dμ(ω) = I clconv F(ω)dμ(ω)
JΩ JΩ

(see the Corollary to Proposition 3.1. in [13]).
3. Main theorem. Let T = [0, b] be a closed, bounded subinterval

in R+ and let X be a separable, Banach space.
We will consider the following two multivalued Cauchy problems.

(x(t)eF(t,x(t))
( k
and

(x(t)econvF(t,x(t))

By a solution of (*) (resp. of (**)) we understand an absolutely con-
tinuous function &(•) satisfying (*) (resp. (**)) almost everywhere. We
will denote the solution set of (*) by P and the solution set of (**) by
Pc. The next theorem gives us a relation between those two solution
sets. We remark that we could have stated the theorem for a locally
defined orientor field i.e., domF = TxBr(x0), where Br(x0) = {x e X:
ll# — #oll < r)y i n which case the solutions are, in general, defined on a
subinterval of T. But in order to simplify an already lengthy and com-
plicated proof, we have decided to work with a globally defined orientor
field, i.e., d o m F = TxX. Also note that the conditions that we need
in order to prove our relaxation theorem also guarantee the nonemptiness



DIFFERENTIAL INCLUSIONS IN BANACH SPACES 511

of the solution sets (see Theorem 4.2 of [14]).

THEOREM 3.1. If F: TxX-> Pk(X) is a multifunction such that
(1) for all xeX, t-+ F(t, x) is measurable and F(tf x) £ G(t) a.e.,

where G: T—> Pke(X) is integrably bounded;
(2) for all (x, y)eXxX we have h(F(t, x), F(t, y)) ^ w(t, \\x - y\\)

a.e., where w( , •) is a Kamke function.
Then Pc = P where the closure is taken in CX{T).

PROOF. Because the proof is lengthy and complicated, in order to
assist the reader in following our reasoning, we will divide it into steps.

Step 1. Given x(-)ePe and ε > 0 we will find v(-) eCx(T) such that
v(0) = x0, v(t)eF(t, x{t)) a.e., and \\v(t) - x{t)\\ < ε for all t e T.

S i n c e x ( - ) e Pΰ, f o r a l l teT w e h a v e t h a t

x(t) 6 xQ + \ clconv F(s, x(s))ds .
Jo

From the corollary of Proposition 3.1 of [13] we know that

S clconv F(s, x(s))dsePfc(X). Also from Proposition 2.3 we have that
0

5 t ct

clconvF(s, x(s))ds = ell F(s, x(s))ds .
o Jo

So for all teT, we have:

x(t) 6 x0 + ell F(s, x(s))ds .
Jo

Let {Tk}k=1 be a subdivision of T into n disjoint intervals such that

\ |G(s)|ds < ε/3. Also let zk( ) GiS (̂. ,<.„ such that
J?k

i \JJ\O) — zk\s))as\\ <^ ε/on
I Jτk II

Define z( ) e SF{.tXH) b y s e t t i n g z{t) = zk(t) f o r a l l teTk, k = 1, -- ,n.

Then set v{t) = x0 + \ z(s)ds. Suppose Tk £ [0, t] for k = 1, , m ^ n.
Jo

Then we have:

\\v(t) — x(t)\\ = Σ j (Φ) — %(s))ds + 1 (z(s) — x(s))ds\\

^ Σ l (Zh(s)'— *(β))ώ + 21 \G(s)\ds < n(ε/3n) + 2(e/3) = ε .
k=i \)τk II 3τm+1

This completes the proof of Step 1.
So from this step we know that we can find {vn( )}nZ1g:Cx(T) such

that
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and

\\vn(t) - x(t)\\ < — for all teT.
n

Step 2. W = \y(<) e CX(T): y{t) = x0 + fy(s)ds, teT,ge SfcJ is a com-

pact subset of CX{T).
Let 2/( ) e W and t,tr eT,t <* t'. Then for some g(-)eSι

β we have:

\\y(t) — y(t)\\ = a?0 + \ g(s)ds — x0 — \ g(s)ds\\ ^ \ ||flf(s)||ds ϊ
II Jo Jo II Jt

which shows t h a t W is equicontinuous.

Also for all y( )eW and all teT we have t h a t

y(t)ex0 + \tG(s)ds .
Jo

Since (?(•) is P^JQ-valued, because of the Radstrom embedding (see Theo-
rem 17.2.1, of Klein-Thompson [7, p. 189]). G( ) can be viewed as an X
valued, integrable, single valued function, where X is a separable Banach
space (in fact X = C(J5ί), where Bf is the unit ball of the dual of X).
Then I G(s)ds can be viewed as a Bochner integral and so finally \ G(s)ds e

Pke(X).° Hence for all ί e T, d{y(t)}y{.)eWePk(X). Finally let {yn(-)}n^QW
c cτ\

a n d a s s u m e t h a t y n ( ) ^~~^ V(')- T h e n f o r a l l n S 1 a n d a l l t e T w e h a v e :

= Xo + \ gn(s)ds ,
Jo

where gn(-)eSa. But from Proposition 3.1 of [13] we know that SQ is
w-compact in LZ(T) and by the Eberlein-Smulian theorem it is sequentially
w-compact. Hence by passing to a subsequence, if necessary, we may

assume that gn{ ) > g(-) as n —> oo => \ gn(s)ds —• 1 g(s)ds => yn(t) = xQ +

[gn(s)ds ^>xo+ [g(s)ds => y(t) = xQ + [g^ds for all 16 Γ=> »(•) 6 T7=-ΐ^
Jo ' Jo Jo

is closed in CX(T). So invoking the Arzela-Ascoli theorem we deduce
that W is a compact subset of CX(T).

Next let Rn: Tx W~>Pk(X) be defined as follows:

RJt, y) = {ue F(t, y(t)): \\vn(t) - u\\ ^ d(ύn(fi), F(t, )))
n

where {vn( )}nsi are the function obtained in Step 1.
Step 3. it, y) —> J?n(ί, /̂) in graph measurable for every n ^ 1.

Consider the map α ŵ: Tx WxX-+ R defined by
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fn(t, y( ), u) = \\ύn(t) - u\\ - diΰjjb), F(t,

Note that because of our hypotheses on F{ , ) for all z e X(t, y) —>
z, jP(t, 2/)) is a Caratheodory function ==> t —> cϊ(2, F(t, y(t)) is measurable.

Then for the same reason t —• d(vn(t), F(t, y(t))) is measurable. So we
deduce that t -+ψu(t, y( ), u) is measurable. Furthermore, using the fact
that F(t, ) is Hausdorίf continuous for all te T, we can easily see that
(y(')y u) -* φn(t, y( ), u) is continuous. Thus (ί, #(•), %) -> ̂ n(ί, y( ), u) is
a Caratheodory function, hence it is jointly measurable. Therefore we
have that:

I n

^Gr RneΣxB(W)xB(X)

=> Rn(-, •) is graph measurable, n*zl.

Step 4. For every n^l9 y(m)-*Rn(t, y) is continuous for the K—M
convergence for almost all te T.

W
Fix n ^ 1 and let #«(•)--*!/(') as m—> oo. Define

«.(«, w) = »*.(«) ~ tell - d{vn{t\ F(t, yjm + δ(u, F(t, ym{t)))

and

z(t, u) = ||«n(t) ~ w|| - d(vn(t), F(t, y(t))) + δ(u, F(t, y{t))) .

Observe that d(vn(t), F(t, yjfi))) -> d(vn(t), F(t, y(t))) as m -> oo, for all t 6
T\N'n, X(N'n) — 0. Note that N'n is independent of the sequence {ym(-)}m^lf

and is the union of the exceptional sets postulated from the inequality
of the hypothesis 2 and the fact that ίn( ) exists almost everywhere.

Also since F(t, ym(t)) -^ Fit, y(t)) for all t e T and F(t, «)SG(ί) a.e., it is
jς Λ^

easy to see that F(t, ym(t)) > F(t, y{t)) a.e. So from Mosco [10], we
get that

for all teT\N", X(N") = 0. Again ΛΓ" is independent of {yΛ( )} ϋ and
is the null set, outside of which we have G( ) bounding JF( , •)• Let
Nn == N'nUN". Then λ(iVJ = 0. Let ί 6 Γ\JSΓn. From Lemma 1.10 of
Mosco [10] (see also Lemma 1.1 of Salinetti-Wets [16]) we know that we

can find {um}m^QX, um—>u such that

( 1 ) limsup 8(uu9 F(t, ym(t))) ^ δ(u, F(t,
m-*oo

=> limsup zm(t, um) ^ z(t, u) .
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w
Also for any {wm}w2sl £ X, such that um —> u using once more the lemma

of Mosco [10] and the fact that in a Banach space the norm is weakly-
lower semicontinuous we have that

δ(u, F(t, y(t))) ^ liminf δ(uM, F(t, ym(t)))
m-*oo

and
\\ύjjt) - u\\ ίS liminf \\ύjjt) - uj\ .

1»-»C3O

Combining those two facts we get that

(2 ) z(t, u) ^ liminf zm(t, uj .
m-*oo

From (1), (2) and Lemma 1.10 of Mosco [10], we deduce that for all
t e T\Nn, X(Nn) = 0, we have:

Let N= Όn^Nn. Invoking Corollary 4 of Wets [21, p. 262] we have
that for all n ^ 1 and all t e T\N, \(N) = 0,

T / TWΓ

Ll(t)=-=iL(ί) as m-+oo ,

where Li(ί) = {ue X: zm(t, u) ^ 1/n} and L\t) = {ueX: z(t, u) ^ 1/n}. But
note that L;(ί) = Rn(t, yj and Ln(t) = Rn(t, y). So for all n ^ 1 we have
that

RJt, yj™RJt, V)

for all t e T\N, x(N) = 0. By redefining 22n( , •) on the set N, we may
assume that y(-)-+Rn(t, y) is continuous for the K—M convergence for all
te T, n^l. This in particular implies that for all n ^ 1 and all teT,
y(-) —> Rn(t, y) is lower semicontinuous.

Consider the multifunction Hn: W-*2Ll{τ>x)\{0} defined by Hn(y) =
SRnί-,v)> n^l. Since j?n( , y) is graph measurable and Rn(t, j/)£F(t, j/(t)),
we" deduce that iϊn( ) is Pf{L\T, X))-valued, n ^ 1.

Step 5. For all n i> 1, jH"n( ) is lower semicontinuous.

Let 2/m( )—>!/(•)• Then for every q(')eL\Tf X) we have:

= inf {jjgCί) - r(t)\\dt: r( ) e S^K2/

= \ inf [||gf(ί) - te||: u 6 βn(ί, yj]dt = ( d(q(jb), Rn(t, yj)dt

— limsup ( d(ff(ί), RJt, vJ))dt ^ ( limsup d(q(t), Ru(t, ym))dt .
m-*oo JT JT m-*oo

From Theorem 2.2. (i) of Tsukada [18] (Tsukada states his results for
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convex sets. However a look at his proof can convince the reader that
it is also true for nonconvex ones), we have

limsup d(q(t), Rn(t, yj) ^ d{q{t)y s-liminf Rn(t, yj)
m-»oo m-» oo

But we have already seen that Rn(t, •) is lower semicontinuous. So we
have:

RJt, »)C s-liminf Λn(ί,yJ
m->oo

— d(q(t), s-liminf RΛ(t, yj) ^ d(q(t), Rn(t, y))
W-+00

— limsup d(q, Si.,.,,.,) ύ \ d(q(t), Rn(t, y))dt = d(q, S1^,..,,) .

Since s-liminf^ Si.,.,,., ={})6L\T, X): \\mm^ d(p, Si.,.,,.,) = 0} (see
Kuratowski [9, p. 333]), from the above inequality we deduce that:

Si.,.,,, S s-liminf Si.,.,,.,
m-»oo

— fl.(y)£ s-liminf #„(*.)
m-»oo

=> JH"n( ) is lower semicontinuous for all n ^ 1.

Step 6. We can find xn(-)eP such that ||*n(ί) - *n(t)|| ^ d(*n(ί),
^(«, »«(*)) + 1/Λ a.e.

We saw in Step 2 that W is compact in C(Γ, X). Also in Step 5 we
proved that Hn(>) is lower semicontinuous on W. So we can apply the
selection theorem of Fryszkowski [6] and get continuous functions hn: W —>
L\T, X) such that hn(y)eHn(y) for all y( ) 6 W => hn{y)(t) e RJjb, y) a.e. =>
for all Λ ^ I hjy){t) e F(jb, yit)) a.e. and \\vjt) - hjy)(t)\\ ύ d(vn(t),

t V(t))) + Vn a e Consider the integral operator Φn:W~>W defined by

ΦJy){t) = xo+ [hn(y)(s)ds ,
Jo

te T.

Clearly Φn( ) is continuous. Using the Schauder fixed point theorem we
can find {xn( )}n^ £ W such that Φ(xn) — xn. Hence we have

xn(-)eP and \\ύjt) - 4n(ί)|| ^ d(ϋjt), F(t, x(t))) + -L a.e.
n

Step 7. We will show that xJ )-^—*x(- ) as n—>.©o.
Since {xJ )}n^ιQW and W is compact in CZ(T), by passing to a sub-

sequence if necessary, we may assume that xj')—-*y(%) e W. Let

Kit) = \\vjt) - χjt)\\.

Then kjt)~^k(t) = ||a?(t) - i/(ί)|| for all teT. Also using the hy-
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pothesis 2 we have:

kn(t) ^ \\vn{t) - xn(t)\\ ̂  d(ύn(t), F(fi, xn(t))) + — ^ w(t, \\xn(t) - s(t)ll) + i - a.e.
n n

( \\n() ( ) l l )
n n

Take B > 0 stch that ||a?w(ί) - x(t)\\ < B for all n ^ 1 and all t e T. From
the Scorza-Dragoni theorem we know that we can find a measurable set
Tm with X(T\Tm) < 1/m such that w|rmX[0,j3] is uniformly continuous. So
given δ > 0 we can find nm(δ) such that for n^ nm and for all ί 6 Tm

we have:

w(ίf \\xn{t) - a?(ί)||) ^ w(ί, \\y(t) - x(t)\\) + δ

=> K(t) ^ «;(«, fc(ί)) + — + δ a.e. on Tm , m ^ 1 .

Also from Theorem 4.1 of Davy [4] we have that:

* °° °° .

k(t) 6 Π clconv U fcn(t) a.e.

So at the limit as n —> °o we get that:

fc(ί) ̂  w(ί, fc(t)) + δ a.e. on Tm , m ^ 1 .

Recall that £ > 0 was arbitrary. Hence finally we can write that

Ht) ^ w(t, k(t)) a.e. on Tm , m ^ 1 .

But λ ( Γ \ U Ϊ = i Γ J = 0 . Therefore k(f)^w(t9 k(t)) a.e. Since fc(O)=Hy(O)-

α5(0)|| = ||g0 — flColI — 0 a n d w('> ') is a Kamke function, we have that &(•) =

0=>y(t) = flc(ί) for all ίeT=>a;n( ) ^ ( ). Because aι,( ) 6 P , the proof

of the theorem is completed. q.e.d.

REMARK. When X = Rn we get an improved version of Theorem 1
of Pianigiani [11], since we do not require the orientor field to be con-
tinuous in the time variable i. Pianigiani assumed that F( , •) was jointly
continuous.
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