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Introduction. We consider a pseudodifferential equation:

(1) a(x, D)u = f

with data / having Gevrey index s ^ 1. Here a(x, D) is a pseudodifferen-
tial operator of type S™δ of Hormander (cf. [4]). We are interested in
the Gevrey regularity of solutions, more precisely, in which way the
Gevrey index of solutions depends on p, δ and s.

In [3], we have given the definition of a class of hypoelliptic pseudo-
differential operators of symbol class S™δfσ(ΩxRn), ΩcRn, 0 ^ δ < p ^ 1,
σ ^ 1, which consists of symbols a(x, ξ)eS™δ(ΩxRn) satisfying

(2) \a(x,ς)\ ^c\ζ\m' , |fI ^B, - o o < m ' < oo ,

( 3 ) \a®(x, ζ)\ ̂  Cβl'^al β\a\a{x, f)|(l + | f |)-Ί«I+ W ,

xeΩ, \ξ\ ^ B\a\°, ff = σ/(ρ - δ) .

Under these conditions, we have constructed a parametrix b of a(x, D)
with symbol b(x, ξ) eS^?t'σ(ΩxRn). Here b is expressed by an infinite
series of symbols, and the remainder r = ba — I is an integral operator
with a kernel of Gevrey function of index θ = σ/(p — 8) (cf. Theorem 3.1
and Corollary 3.1 of [3]). Thus we have max(σ/(|0 — δ), s) as the Gevrey
index for solutions of the equation (1). This gives the best possible
index when p = 1, O<S<5<1 as was shown by several examples in [3],
but not necessarily the best possible when 0 < p < 1.

It seems impossible to apply directly the method of [3] to obtain
sharper results if 0 < p < 1. We use a finite approximation of parametrix
instead of infinite approximation used in [3]. The remainder term is not
necessarily smooth, so we are forced to estimate all derivatives of
solutions inductively. This method seems unusual in the study of
hypoellipticity because it looks tedious. However, surprisingly this
method provides a sharper result for Gevrey hypoellipticity. For the
nonlinear problem such a method was used by Friedman [2] to get
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analyticity of solutions of elliptic and parabolic systems and by Volevic
[16] for a class of pseudodifferential equations.

Now we would like to summarize the basic idea of this paper partly
motivated by [14] without going into technical details. We consider the
equation (1) with a(x, ζ) satisfying

( 2 ) \a(x,ξ)\^c\ξF' , \ξ\^B,

(3') | < ; f e ί ) | ^ C 0 C i « + ^ ^ xeΩ, \ξ\^B.

The condition (3') is slightly stronger than (3) but enough for applications.
We first construct a left parametrix bN(x, D) of a(x, D) consisting of a finite
number of pseudodifferential operators. Then we reduce the equation (1)
into an integral equation.

u = bNf- rNu , (bNau = bNf= u + rNu) .

By induction on k = | a |, k = 0, 1, , we obtain successive estimates of
type

( 4 ) sup \D*u\£ C0C^a\m™{8'θ) , θ = max(l//of σ/(l - 8)) ,
xeKcczΩ

(cf. Theorem 3.1) .

Since we have σ/(p - δ) > max(l//o, σ/(l - δ)) for 0 < δ < p < 1 and σ ^ 1,
this improves our previous result of [3].

The plan of the paper is as follows. In §1, we start with the precise
definition of pseudodifferential operators considered in this paper. The
regularity properties of their kernels and the pseudolocal property will
be studied. In §2, we shall consider the symbolic calculus of a composed
operator. In §3, we shall prove the main result (Theorem 3.1) on Gevrey
hypoellipticity of pseudodifferential equations. In §4, we shall give some
examples of differential operators.

Finally we remark that the same problem has been investigated in
[7] and [14] recently. In [7], similar results have been obtained by con-
structing parametrices for a class of degenerate parabolic pseudodifferential
operators, and in [14] by applying the theory of multiple products of
pseudodifferential operators. Compared with these results our proof given
here would be significantly elementary.

The author would like to express his gratitude to Y. Morimoto for
useful discussion and also to the referee who has given many valuable
suggestions.

1. A class of pseudodifferential operators. Let Ω be an open subset
of Rn whose p o i n t is d e n o t e d b y x = (xίf , %n)- We use g e n e r a l n o t a t i o n
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such as \a\ = oti + + an for a multi-index a = (alf , an) and Da =
A"1 Dp, A = 1/id/dxj, j = l, , w, etc.

DEFINITION 1.1. Let ueC°°(Ω). Then we say that u is in G8 in Ω
(s ^ 1) if for any compact set K of Ω there are positive constants C(

and d such that

(1.1) sup \D*u(x)\ S C0Ciα | |α|8 | α | , aeZΐ .

0

xeK

DEFINITION 1.2. Let - oo < m < oo; 0 £ δ < p £1; σ ^ 1. We

denote by S£ M (β x i2n) the set of all a(x, ξ) e C~(Ω x J2n) such that for
every compact set K of Ω there are positive constants Co, CΊ and B such
that

(1.2) sup |α[;Ka, f)| ^ C0C1

|β+^

where α|;j(a?, f) = 3?2)fα(af ξ)f 3, =

We associate with such a symbol α(&, ζ) a pseudodiίferential operator
as usual:

a(x, D)u(x) = (27r)-"j je'^-^VaJ, ξMv)dydξ , % 6 C0°°(β) .

Let JBΓ(a?, y) e £2f\Ω x ώ) be the distribution kernel of a(x, D) expressed
by the oscillatory integral:

K(x, y) = (2π)

The following theorems strengthen Theorem 1.1 in [3].

THEOREM 1.1. Let a(x, ζ) eS™δyO(ΩxRn). Then we have

K(x, y) e GΘ

X%
1/P(Ω x Ω\J) , Δ = {(a?, x); x e Ω) , θ0 = max(l/p, σ + δ/p) .

THEOREM 1.2. If ue'ίf'(Ω) which is in G* (s ^ 1) in a neighborhood
of xoeΩ, then we have a(x, D)ueGθl in the same neighborhood of xoeΩ,
where θ1 = max(s, σ + sδ, lip, σ + δ/p). More precisely, we have

(1) θx = max(l//o, σ + δ/p) if 1 ^ s ^ min(l//θ, σ/(l - δ))

(2 ) θ, = σ + sδ if 1/p^s^ σ/(l - <5)

(3) ^ = Ijp if σ/(l -δ)£8£l/σ;

(4) θ, = s if s ^ max(l/ft σ/(l - δ)) .

PROOF OF THEOREM 1.1. Let C7 be any compact set of ΩxΩ\Δ.
For each (x,y)eU and a,βeZ+, we have in the sense of oscillatory
integral:



450 T. MATSUZAWA

, y) = (2JΓ)- Σ
+

ψi-ξfaUx, ξ)dζ .

We have the estimate

(1.3) I ( e^-^ei-ζYa^x, ζ)dξ

with constants Co and C1 independent of a, β and τ ̂  α. Next, by setting

β\ + δ\τ\ + m+ + n + 2)/ρ] , m+ = max(m, 0) ,

we have for a fixed i, 1 ̂  i ^ n,

* - Vi)N\ i-ςyanix, ζ)dζ

Σ (x< -
k=0

\ζ\=B

= G&, y) - G2(x, y) .

By the hypothesis (1.2) the integrand of Gx is estimated by

r *
k\(N -

Taking another couple of constants Co and CΊ we can estimate this by

C0Q
a+β[τΓN\(l + |f I)"*- 1.

By the definition of the number N, we have

τ\σN\ < C |α+iί ||iS|(li9|//>>|7|(lrl/it>)|r|(α+ί/''>|Γ|

with a constant C independent of α, β and τ ^ a. Hence we have an
estimate of type

(1.5) IGΛayy)! ^ C o C ^ ' l α l ^ l / S r 1 ^ 1 , θ0 = max(l/ft σ +

Similar estimate holds for G2(x, y). Since U is a compact set of ΩxΩ\J,
one can find a direction i, 1 ̂  i ^ w, such that \xt — ̂ | ̂  d > 0 for any
(a?, y)e U and finally we have the estimate

(1.6) sup \D;DξK(x, y)\ ^ C0CIa+βl\a\θ^\β\m/^ , a,βeZϊ,
{x,V)eU

where the constants CQ and Cx are independent of a and β.
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PROOF OF THEOREM 1.2. We first remark that for /eCO°°(i2'), Ω' is a
relatively compact open subset of Ω, and we have

(1.7) \D?{a(x, D)f(x)}\ ^ Σ
+

where the constant C depends only on Ω' and N = N(τ) = [(<? \ τ | + m+ +
n + 2)/2]. Indeed, we have

, D)f(x) = (2π) Σ

+

Σ (

= (2τr)-" Σ f α ) ( ( e < < - ' *>(l + \ξ\TNaM(x, |)(1 - AyYDlf{y)dydζ

which gives the estimate (1.7).
Now we take ue&'(Ω) which is in G8 in a bounded neighborhood V

of xoeΩ. Let [7 be a neighborhood of xQ such that Ϊ7c V. There is a
positive number d such that 0 < d < dis( Z7, Rn\V). Let {#JΓ=O be a
series of functions in C0°°(F) such that g%{x) = 1 on {x; dis(α?, U) < d} and
\D"gι(x)\ <Ξ Cιa\ if | α | ^ i, where the constant C is independent of I (cf.
[5]). Then we have for x e U

(1.8) 2?ί{α(α, D)w(aO} = Dx«{a(x, D)gιu{x)} + D;\κ(x, y){l - gι(y)}u(y)dy .

By using (1.7) we have

Σ [

where ΛΓ = [(δ \τ\ + m+ + n + 2)/2]. Taking ί = 2 | α | we have

\Dx

aa(x, D)gιu(x)\ ^ C^+1 Σ | r | ( * + e ' ) | r | | 7 | t l 3 r | ^ C 2

I α l + 1 | α | m a x ( β ' σ + β δ ) | α | .
ΐ+τ=a

By Theorem 1.1, the last term of (1.8) is in Gθ° in U, θ0 = max(l//o, σ + δ/p).
Thus α(a;, i))% is in Gθl in C7, where θx = max(s, σ + sδ, lip, σ + δ//θ).
We only verify the case (4), the other cases being treated similarly.
Namely, we assume s ^ max(l/jθ, σ/(l — <?)). Then we have s ^ σ + sδ
and s ^ σ + <5/ι°, which proves the assertion (4).

2. Symbolic calculus. Let a(x, ξ) e S£δί<Jψ x Rn) and 6(x, f) e S&\a(Ω x
JSn). Let i2' be a relatively compact open subset of Ω and take h e C0°°(i2)
so that h = 1 on a neighborhood ί7 of β\ Then the symbol of the operator
r(x, D) = a(x, D)hb(x, D) is given by
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(2.1) r(x, ξ) = a(x, D + ξ)h(x)b(x, ξ)

= (2π)-"( [ β«-* %(x, f + VMy)b(y, ξ)dydη .

We set

rN(x, ξ) = Σ —aM{x, ξ)bw(x, ξ) , N = 0,1, .

Then we easily see rN(x, ζ)eSZΛΩxRn)> rn = mf + m", N = 0,1,

THEOREM 2.1. We have

r(x, D) = rN(x, D) + FN(x, D) in Ω' ,

where FN(x, D) can be written as a sum of two operators, FN(x, D) =
F? + Fξ. F? is an integral operator from C°°(β') into G\Ωr) with
kernel F?(x, y), (x, y) e (Ω'xxΩ'y), θ = max(l//t>, σ/(l — $)). Fξ is a pseudo-
differential operator with symbol Fξ(x, ξ) satisfying the condition

(F) \Didr

9F?(x, ς)\ ^

m+ = max(m, 0), a? eΩ\ \ξ\ ̂  5 (cf. (1.3)) .

More precisely, we can write

where each uτ(x, ξ) satisfies an estimate of type

(F) \d7

ξu
τ(x, ξ)\ ̂  CoCf+ ̂ Wl'Ύl/SI^τl^lf \*++n-<p-i)

xeΩ', \ξ\^B.

PROOF. First we choose cut-off functions ht(x) e C0°°(i2), = 1 on the
neighborhood U of Ωf, with support in a fixed compact set. Moreover,
we assume

(2.2) |2>βΛi(a0| ̂  C ια! , | α | ^ Z + m+ + n + 2 , I = 0, 1, ,

where the constant C is independent of i. We express F(x, ζ) — r(x, ξ) —
rN(x, ξ) by

(2.3) F»(x, ξ) = r(a?f ί) - r ^ , f) + r^α, £) - rf(a?, f) + r?(x, ξ) ~ ^(α, ί)

= r\(x, ξ) + r\{x, ξ) + rite ξ) ,

where r^x, ξ) = α(», D + f)/ιz(α;)6(x, <f) and
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r?(x, ξ) = Σ -±-a{"\x, ξ)D°ΛΠx)b{x, ξ)) .
\a\£N a\

We note that r\(X, ξ) = 0 in Ω' x Λ\ Let £.(&, y) and Kb(x, y) e &\Ω x Ω)
be the distribution kernels of a(x, D) and b(x, D), respectively. Then for
ueC^(Ω) we have

r\(x, D)u(x) = JiΓαfe «){λ(«) - *,(«)} j j^(«, y)u(y)dy\dz

Hence the kernel of r}(#, i?) is given by

(2.4) ^(α?, ») = ( Ka(x, z){h(z) - Mz)}Kh(z, y)dz .

This is in Gio

t'y
/p in β' x Ωf uniformly with respect to hl9 I = 0, 1, , (cf.

Theorem 1.1), and so we shall use this as if it is not depending on I.
Next we observe r\(x, ξ). We have for x, ξ e Ωr x Rn

rKx, ξ) = (2πrn\\eί<χ-y'4a(xf ξ + η) - Σ -^-a{a)(x, f ) Λ ( » , ξ)dydη ,

where we have written u(y, ξ) = hι(y)b(y, ξ). We shall need the following
cut-off functions Xfe) eCZ(Rn), j = 0, 1, , such that X^ξ) = 1 for |£ | ^
1/4, Xj(ξ) = 0 for \ξ\ ^ 1/2 and \X{;\ξ)\ ^ C^'α! for | α | ^ j + 1, where the
constant C is independent of j , j = 0, 1, •••. By using %/f) we divide
rf(a?, f) into four parts:

r\{x, ξ) = (2π)-λ\ei<^4a(x9 ς + V)- Σ -±-a<«\x, ζ)ηΛχlJL\u{y, ζ)dydη

I«ISΛΓ α ;

Jt(«, f) .

Concerning I^x, ζ), we have

Σ
ι i v

Σ ^ f
£β\τ/\{t j JJ ι«ι=iv+i α ! Jo
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W e h a v e \ξ\/2 ^ \ξ + fη\ ^ 3 | f |/2 a n d \η\ ^ \ξ\/2 w h e n Xfiηl\ξ\) Φ 0 a n d
0 ^ t ^ 1. By using this and taking j = N + | 7 | + 1 and I = N + \β\,
we have an estimate of type

(2.5)

Next we consider I2(x, ξ). We have

If I

-LαίS wίίB, f)

where

Noting that \Xj(x)dx = Zy(0) = 1 and that the other moment of X3 is equal

to zero, we see that the first sum on the right hand side is equal to

Σ Σ fβ)(7lUsrfc,ξ) Σ N+1-a\(y/\ς\)<
\a\ZN τ£β\Z l \ μ J CC\ \κ\=N+l-\a\ fC\ J

xufcξlT+t)(x - ty/\ξ\, f)(l - t)N-^+1dtXj(y)dy .

We have by the definition of Xi9 j = N + \Ύ\ + 1,

\\y%(y)\dy ^ CN+^+1al , | α | ^ iSΓ+ 1 .

We recall that we have taken I = N+ \β\. Then we have \a + β—τ + /c| ^
iV+ |/5| + 1 and noting that suppS&ty/lf | )c{ | ξ | /4^ | ^ | ^ |f |/2}, λ ^ O , we
have finally

(2.6) \Dξdr

ξI2\ ^ CoC1

2f+ |β+^iSΓ!ατ!/8!iel l l |-(^aϊΛΓ^ l j r |+i^1 , xeΩ' , |£ | ^ B ,

where the constants Co and Cx are independent of N, β and 7.
Now we consider Is(x, ζ). We have

x, f) = ( 2 π ) " " Σ ( ̂  ) ( Ύ ) JJβ*<—*">αίS(αj, f + 57)

xsr([i -
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>β\(y\(y-μ\ Σ

£ | £ \ - / \ r- i \ '- / =. N,

where

αjgία?, f

Observing that the support of the integrand is in the domain | η \ ̂  | ξ |/4
and \ξ + 77! ̂  If 1/4, we have the estimate

where the constant C is independent of N, μ and τ. On the other hand,
since we have taken 1 = N+ \β\ and τ ̂  β, \a\ = N', we have an estimate
of type

|(-4)^'/%ί^-o(</, f)l ^ C0Cf+ ̂  ̂ >iV!σλ!(/3 - τ)r
χ Γ g I Γ II J <jj * | « ι " -

From these estimates we have

(2.7)

Finally we shall consider It(x, ξ). We rewrite

Ux,ξ) = (2π)-"Jjβ1<-'">o(aj, ξ + η)[ht(y) - hk(y)]b(y, ξ)dydη

, ξ + y)[Uv) - hk(y)]b(y,

, ξ + V)[UV) - h(y)]b(y, ζ)

f f + y)hk{y)b{y, ζ)[l -
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We can easily see that JM(#, D) is an integral operator with kernel in
Gθ

xy
p in Ω'xΩ' uniformly with respect to l,keZ+ (cf. (2.4)).
Next we have

)Σ

{f!(ίc, ξ + V)0- ~ Λ) f3ϊ-'{Zi( | ^ )[λ«(») - hk(y)]b(y, ξ)\dydη .

By taking q = q{τ) = [Qβ — τ\ + N)/2], we have an estimate of type

(2.8) \D&tIttt(x, ξ)\ :g C0C1

Λr+l^+' |iV!< '7!/3!<Ίίr++ n- ( '>- ί ) Λ Γ-'" ) ' l + { l ί l ,

xeΩ', \ξ\^B.

We can handle IitS(x, ξ) similarly as in Is(x, ξ). I t remains to consider
J M . We have

a«. s) = (2JΓ)-"Σ

Taking r = [ ( | / 3 - τ | + < 5 | r | + s + w + 2)/2(l - δ)] depending on τ and
s = 0, 1, , and taking & = 2r, we have the estimate

(2.9) I I M ( f t (* , f)| ^ C,C;+'"(β + I β I)! "/(1- ί ) I ί I—< J ! + 1 ) ,

XBΩ', \ξ\^B, seZ+.

By virtue of (2.9), the kernel of IiΛ{x, D) given by

is in G^Ω'xXΩ,), θ = max(l/(0, σ/(l - δ)). Indeed, we have

= ( 2 π ) - Σ f " ) (e<<-''i>r|-'+ri«.«(ft(a!, f)df

and we have the estimate (taking s = \a — β + 7|)

I D«xD
rJUx> *)l ^ CoCî 2-11α + 71!σ / ( 1~δ ) , (OJ, z)eΩ'xΩ' ,

where the constants Co and Cx are independent of α, 7 e Z+. Summing
up, we can split the operator as FN(x, D) = F? + Fξ, where Ff* is an
integral operator from Gθ(Ωf) into G\Ωf) and F? is a pseudodifferential
operator with symbol satisfying the condition (F). By the above argument
the property (F') is obviously verified.
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3. Gevrey hypoellipticity.

THEOREM 3.1. (cf. [3, Theorem 3.1].) Let a(x, ξ) e Sfo,σ(i2 x Rn) {see
Definition 1.2), and assume that there are positive constants c and B
and — oo < m' < oo such that

(HJ | α ( a , £ ) | 2 = c | £ | - \ xeΩ, \ζ\^B.

Assume also that for any compact set KaΩ, there are positive constants
Co and CΊ such that

(H2) l α S ^ ^ I ^ C o C ^ ' α l ^ I ^ l α ^ ^ l l ί l - ^ ^ ^ ^ , XGK, \ξ\^B.

Then the operator a(x, D) is Gevrey hypoelliptic of order θ, θ = max(l//θ,
(j/(l — δ))9 that is, if ueί?r(Ω) and a(x, D)u is in G8 in Ωf, Ω'aΩ, then
u is also in G8 in Ω' for s ^ θ.

For the proof we need two lemmas. We first define the symbol of
a left parametrix of a(x9 D) as usual by:

(3.1) bo(x, ζ) = l/a(x, ξ) , x e Ω , \ξ\^B,

(3.2) δ y ( a ? , f ) = - 6 0 ( ^ f ) Σ b p l a { a { a ) ( x , ξ ) , x e Ω , \ ζ \ ^ B , j = l , 2 r - .

Take a function X(ζ)eC~(Rn) such that X(ξ) = 0 for \ξ \ ^ B and X(ξ) = 1
for \ξI :> B + 1, and set

3=0

Then we have bN(x, ξ) eS™'δ,σ(ΩxRn).

LEMMA 3.1. Let Ωf be a relatively compact open subset of Ω, and take
a function h e C™(Ω) such that h = 1 in a neighborhood of Ωf. Then we
have

bN{x, D)ha{x, D) = 1 + RN(xf D) in Ω' ,

RN(x, D) = R» + Rξ ,

where iZf is an integral operator from C°°(Ω') into GΘ(Ω') with kernel
Ri(x, y) and R? is a pseudodifferential operator with symbol R^ix, ξ)
satisfying the conditions (F) and (F') in Theorem 2.1.

PROOF. By Theorem 2.1 we have

bN(x, D)ha(x, D) = rN{x, D) + FN in Ω' ,

where the symbol of rN(x, D) is given by

r»(x, ξ) = Σ Σ - V ? ( Σ bfa ξ))aw(x, ξ) , xeΩ' , \ζ\^B.
fc=0 \a\=k (χ\ \i=0 /
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By the definition of bά(x, ξ), j = 0, 1, , we have

rN(x, ζ) = 1 + r»(x, ξ Y , xeΩ', \ξ\^B9

X(ξ)rN(x, ξ)' e S ^ - { p ~ δ ) N ( Ω f x R n ) .

All the symbols of the class S™/-{p-δ)N(Ω'xRn) satisfy the conditions (F)
and (F') Hence we have the assertion of Lemma 3.1.

LEMMA 3.2. Let Rξ(x, y) be the kernel of the operator Rξ(x, D) given
in Lemma 3.1. Then

Rξ(x, y) e Gl-ϊ'W x Ω'\J) , A = {(x, x); x e Ω'} ,

where θ = max(l/^>, σ/(l — δ)).

PROOF. For simplicity we assume N is so large that N^ (m+ + n + 2)/
(p — d). Let U be a relatively compact open subset of Ω'xΩ'\Λ. We
shall estimate

By virtue of the construction of RN and by the fact θ ^ ΘQ, as in the
proof of Theorem 1.1 the problem is reduced to estimating each term of
the form

for a fixed i, 1 ^ i ^ ^ and τ ^ β ^ a.

By using the property (F'), we have an estimate of the form

(3.3) \I\ ^ Cβ?^Λ+^N\βΊ\^{a - β)\1/pβ\στ\°\β - τ)lδ/pτ\δ2/p .

For the right hand side of (3.3) we have an estimate of type

(a - β)l1/pβlστlσδ(β - τ)!'"τ! | f /> ^ C |α |(α - Ĵ̂ J(•+•«+««//») .

Observing that we have

θ = max(l//o, σ/(l - δ)) ^ 1/ ,̂ σ + δ/p, σ + σδ + δ2/|0 .
The last term is estimated by C | β |α!*. Thus we obtain an estimate of
the form

(3.4) sup \Da

xD
r

yRξ(x, y)\ ^ CJC^al'Ίl1* .
u

We remark that we must take I — I a I + iSΓ in the construction of i2f.



GEVREY HYPOELLIPTICITY 459

However R?(x, y) is in Gθ in Ω'xΩ' uniformly with respect to i, I =
0,1, , and so we may use the operator Rξ as if it is not depending
on I.

PROOF OF THEOREM 3.1. We are considering the equation

a(x, D)u = / , u e &\Ω) , / e &\Ω) ,

where / is assumed to be G* in β ' c c β , s ^ θ. For simplicity we shall
prove the case where s = θ — max(l/p, σ/1 — p). It is well known (cf.
[4]) that u is in C°°(Ω') under the hypotheses of Theorem 3.1. Now take
an arbitrary point xQeΩ' and a small neighborhood Ud — {x: \x—xo\<d}c:Ω',
d > 0. Let φeC"(Ud) be such that φ(x) = 1 on Ud/2. Then we have by
Theorem 1.1

a(x, D)φn = / - a(x, D)(l - φ)u = A e

Next take N sufficiently large so that N ^ (m+ + n + 2)/(/t> — δ), and take
heC"(Ω) so that Λ, = 1 on Ω\ Then by Lemma 3.1, we have

bN(x, D)ha(x, D)φu = φu + RN(x, D)φu = bN(x, D)hfx

namely, we have an integral equation with respect to φu:

(3.5) ^ = bN(x, DW, - JΛΓίa?, v)φ(yMy)dy - ^Rξ(x, y)φ(y)u(y)dy

- JΛf(a;, y)φ(y)u(y)dy ,

where f̂(ίc) is a function in Gθ(Ud/2). We set i2(fic, j/) = i2f(x, t/) and denote
its symbol by R(x, £). Let α> = ί7d/4 and assume 0 < d ^ 1. We denote by
ωε the open set of points in ω at distance > ε from the complement of
ω denoted by ωc. Then ωe = 0 if ε > 1/4. We want to prove that there
exists a constant 5 such that for every ε > 0 and every integer j > 0
we have

(3.6) εθ]a] sup \D*u(x)\ ^ £ | α | + 1 if \a\ £ j ,
ω\a\ε

and

(3.6)' ε̂ & sup |(1 - AT™u(x)\ ^ Bk+1 if fc ^ j

It follows from (3.6) or (3.6)' that u is in Gθ in ω. Indeed, let K be a
compact subset of ω and choose c > 0 so that Kaωc. Setting j = | α |
and ε = c/|α| in (3.6), we obtain

sup ]Dαtt| ^ sup \D«u\ ^

which proves that u e Gθ{ω).
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We shall prove (3.6) by induction on j . This is obviously true when
j = 1 if B is sufficiently large. Assuming that (3.6) is proved for j — 1,
j ^ 2, we shall show that (3.6) follows for j if B is sufficiently large
and independent of j . To do so we only have to estimate the derivatives
Dau with \a\ = j (j ^ 2). Differentiation of (3.5) gives

εθj sup \Dau(x)\ ̂  Aj+1 + εθj sup
ωjε x eωjε

, y)φ{y)n(y)dy

where A is a positive constant independent of j . By observing the
construction of R — Rξ we have

(3.7) , y)φ{y)n(y)dy =
a\ β f y)D«y-

β(φu)dy

, y)Da

y(φu)dy .

By virtue of the property (F') we have

Kβ(x, y) = Σ, , ξ)dξ .

First we shall treat the last term in (3.7). From the proof of Lemma
3.2, we may assume that there is a constant C > 0 such that

(3.8) \Dl(x, y)\ ̂

For | α | = j , rewrite a = α' + α" with |α ' | = j — 1, | α " | = 1. We have

εθj sup I \R(X, y)D«y(φ(y)u(y))dy = β" sup I (2>;"12(aj, y)Da

y\φ(y)u(y))dy
a>jε I J ω ί ε I J

^ ε '̂c2 sup \Da'n\ + ε^'sup lί Da

y"R{%, y)Df(φ(y)u(y))dy\

= /! + /,.
By assumption we have

I, ^ εθC'C2B>' ,

where C" is a small constant depending on ω. Denoting symbolically by
Dy the differentiation of order k ̂  0, we have

I2 ^ ε^'Σ sup I ( D*R(x, y)Dtk~1udSy
k=l xe<ojε \jdω(j_k)ε

"Σsup \\ Dk

y

+1R(x
k=l xeωje I J ω ( 3 _ f c _ 1 ) e \ ω ( j _A. ) e

θj sup 1 Da

yR{x, y)φ(y)u(y)dy
xea>jε | J ω c

= - ^ 2 , 1 I
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By the induction assumption and by using (3.8), we have

/ 21 ^ Cεε
θ Σ Ck+1k\θεkθ(kεy-k+1)/pB3-k ^ εθCBCB^ (C/B)k .

k l k l
Σ
k=l

Similarly we have

and

/2,3 ^ εθCΌ'+1 .

Hence if we take B greater than 2C we have an estimate of the form

(3.9) Ix + I2 ^ εθCε(C2B>' + &+1) , | a | = j .

We want to apply the same method to estimate the first sum on the
right hand side of (3.7). By virtue of the property (F') we have

Kβ(x, y) =

Setting

Kr

β(x, y) = γ<χ-y>

we have the following estimate as in (3.8):

(3.10) \DlK%xf y)\ S Clβ+rl+1βΓΎlθτ\σδ\x - y

Our purpose is to estimate ε<?ix(3.7) in the form

(3.11) e" Σ ( ? ) Σ f k

Ί ) sup I \κ;(x, y)Di~\l - Δy

k—\β\

where j = \a\. As before, we have for 1 <̂  k ^ j and 0 ^ I ^ fe,

J V * ) sup \κ%x, v)D*-ha - ΛyY
m-l)+δ2l)/\φu)dy

ck+ίk\σl\σδ sup
k

kj\l

By assumption we have

sup - Λyy
δlk-l)+δ2ι)/2(φu)dy
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Ί \ I k
1>ktl ^ C'Ck+1Bjl ] c l l l

Since ε ̂  1/4;/, we have

/T" T I T σ 7 I σ δ / I \θ((l-δ)k+δll-δ)l)

U, S C,C.«BiB-«-»-17_^iL_-(X) B '-'

Thus we have
k

δ 2-1 l\,k,l ^ ^ε

1=0

Hence if B{1~δ)2 ^ 2C, we have
3 k

(3.12) ε^'ΣΣ-
k=ί 1=0 ' '

In the same way as we treated 72, we have

^ I { ) ( k

Ί \ Σ " 1 sup I ( D;K;(X, y)D'-h—\ι - jyT
δ(k-l)+δ2l)/*u(y)dS

\JC J\l I =1 «>ie | j 3 ω ( i _ 1 ) e

+1 3

Ί ) ( \ V ΐ 1 sup IS 2);ίτj(a?,y)Dtk-\i-4υT
δ(k- l)+δ2l)/2Wy)dy

\fC J\ I I =l ««,•« I J«(i-ί-i)>(i-β)ϊ

( j \ ( k \ I f - 2

Λ / U j " 1 ? . i J i . " βX'y y φU

We have as before

/ n \ I h \
\β-ti-δ)k . ε(k+i-δ(k-l)+δH)θ

χ β-δd-δH^σ^oδ °^ X

8 = 0

"-'* = C.CBΊC/B(X - δff .

Hence we have

(3.13) e ' g j S I ί . M ^ C . C t f ' ,

if β(1-J)2 ^ 2C. In the same way, we have an estimate of the form

(3.14) e" ± Σ (if..., + /,%.«) ̂  2CεCB* .
fc=l i=0
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Combining the estimates (3.9), (3.12), (3.13) and (3.14) we have

εθjsup \D«u{x)\ ^ A>'+1 + CεC((C + 5)5 ' + C ) .
ωjε

Hence if we can take B so large that

A*+1 + CεC((C + 5)E>* + CO ^ B>'+1

the proof of (3.6) is completed. This condition is fulfilled for every j if
B ^ max(l, (2C)1/(1"δ)2, 2A, A + CεC(C + 6)). q.e.d.

4. Examples. We consider the following differential operators:

(4.1) P, = -x*d2/dx2 + 1 in - oo < α < oo ,

(4.2) P 2 = x\d/dy - d2/dx2) + 1 in Rl>y .

We can easily verify that the characteristic polynomial P^x, ξ) = x4ζ2 + 1
satisfies the conditions (HJ and (H2) in Theorem 3.1 with σ — p = 1 and
δ = 1/2. Hence we have θ = 2. We have a solution

r1/ίC a? > 0 ,

of the equation P^Ca?) = 0 and v(x) is in G2 in any neighborhood of the
origin of R1.

We can also easily verify that P2(x, y;ξ,y) = v\iη + ξ2) + 1 satisfies
(HJ and (H2) with σ = 1, p = 1/2 and δ = 1/4. Hence we have θ = 2 also
for P2. We have a solution of the equation P2w = 0 as a function ex-
pressed by u(x, y) = v(a?), where v(α?) is the function given above.

We remark that we have only θ = l/(p — S) = 4 by the result of [3].
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