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Introduction. In his article [6], Mustafin gives, among other things,
a proof of the so-called "geometric analogue of the Mumford-Tate Conjec-
ture" for certain family of abelian varieties. However, there he imposes
on the generic fiber some conditions about the dimension of the irreduc-
ible components of its first cohomology group as the representation
space of its Hodge group. The purpose of this note is to remove these
restrictions and to generalize some of his results. In fact, we show that
the "stable non-degeneracy" (see (1.1) below) of the generic fiber is
sufficient for the validity of the Conjecture, if its simple components are
not of type IV. (As for the reason why we must exclude "type IV", see
Remark (3.7).) In [3], we give a characterization of the stable non-
degeneracy of an abelian variety and show that many interesting abelian
varieties fall into this category. We also note that abelian varieties
satisfying Mustafin's conditions are stably non-degenerate, but that the
converse does not always hold. So this note gives some new examples
of abelian varieties for which the Conjecture holds. Moreover, our argu-
ment shows that the most suitable category for which Mustafin's argu-
ment goes well is that of stably non-degenerate abelian varieties.

Here I would like to thank Professor Wei-bon Wang for valuable
conversation. Also, I wish to express my thanks to Ms. Michiko Toki
and Ms. Yoshiko Kiyono for careful reading of the manuscript. Finally,
I am indebted to the referee who suggested improvement of some argu-
ments in the original version.

NOTATION. For a projective variety X over C, we denote by ^
the Hodge ring @^X^\X) = φ ^ x H2ί(X, Q ) n # M ( X ) and by &
the subalgebra of &*(X) generated by the divisor classes. For a group
G (resp. Lie algebra g) and its representation space V, we denote by [V]G

(resp. [F]9) the subspace of G-(resp. g-) invariant elements of V. For an
abelian variety A, we denote by End A the endomorphism ring of A and
put End0 A = End A (g) Q. Finally, the "reduced dimension", rdimA, of
A is defined as follows: When A is simple,
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dim A if A is of type I ,

(l/2)dim A if A is of type II ,
rdim A = •<

dim A if A is of type III ,

(l/cZ)dimA if A is of type IV with cf = [End°A: Cent(End°A)]

(for the definition of "type", see [5]). When A is isogenous to ΠίU-AΓS
where At (1 ^ ί ^ k) are simple and mutually non-isogenous, we define
rdim A — ΣJU rdim At.

1. Stably non-degenerate abelian varieties. In this section we
review some results in [3].

DEFINITION 1.1. Let A be an abelian variety over C. A is said to
be stably non-degenerate if ^*(An) = £&*(An) holds for any n ^ 1.

In [3], we give the following characterization of stably non-degenerate
abelian varieties:

THEOREM 1.2. An abelian variety A is stably non-degenerate if and
only if rank(-S&(Hg(A)c)) = rdim A, where Hg(A) denotes the Hodge group
of A.

Among the examples of stably non-degenerate abelian varieties, the
following are contained: generic abelian varieties, a power of an elliptic
curve, the jacobian variety of the modular curve X0(N) for any level N,
abelian varieties of prime dimension, etc. (See [3] for the reason why
these are stably non-degenerate.)

2. Preliminaries. Let S be a normal, irreducible algebraic variety
over C and let ΎJ denote its generic point. A finite, surjective morphism
S' —> S from another normal irreducible algebraic variety to S is said to
be a finite covering of S. In this section we establish some results
related to the problem of extension of various objects on the generic
fiber of an abelian scheme over S.

PROPOSITION 2.1. Let A, B be abelian schemes over S. Suppose
that we are given a homomorphίsm uη: Av —> Bη of their generic fibers.
Then it can be prolonged to a unique homomorphism u: A —> B of abelian
schemes.

PROOF. By [2, Theoreme B], the induced homomorphism Tι(uη):
Tt(Aη) —> Tι(Bη) of their Tate modules can be prolonged to a homomorphism
Uχ\ Tι(A)—> Tι{B). Further, by the main theorem of [2], there exists a
homomorphism u: A —> B of abelian schemes such that Tt(u) — ux. Then
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this u coincides with uη on the generic fiber, since the ln-division points
(Aη)ιn for all n ^ 0 constitute a dense subset of Av. q.e.d.

PROPOSITION 2.2. Notation being as above, suppose that Aη is a
product Π?=i Xi of abelian subvarieties Xi (i = 1, , k) defined over C(η).
Then there exist abelian subschemes Bύ (i — 1, •••,&) over S such that
(Bt)η = Xt for any i and that A = Bί xs xs Bk.

PROOF. Let piιV denote the ί-th projection Av—> Xt (i = 1, •••,&)
which we consider as endomorphisms of A,. Note that they have the
properties pi>v°Pi,v = pi>η and lm(pitη) = Xt. Then, by Proposition (2.1),
there exist endomorphisms pt: A —> A over S which induces pi>rj on the
generic fiber for any ί. By the uniqueness of prolongation we have the
equalities p^Pi — pt for any i. Therefore, if we put Bt = Im(pt), then
we obtain the desired decomposition. q.e.d.

PROPOSITION 2.3. Let X be an abelian subvariety of Aη. Then there
exists an abelian subscheme B of A such that Bη = X.

PROOF. Let Bf denote the scheme-theoretic closure of X in A. Then,
by the same argument as in [4, Remark 20.9], there exists an open sub-
set Uof S such that B'σ — Bf xsU-*U has a (unique) structure of abelian
scheme. Note that for any n ^ 0, (Bu)ιn extends to an etale covering
over S, since it is contained in (Aπ)ιn which does extend. So, by [2,
Corollary 4.2], B'v extends to an abelian scheme β"—>S. Then it follows
from Proposition 2.1 that there exists a homomorphism u: B"->A of abelian
schemes. The image Im(^) of u has the desired property. q.e.d.

PROPOSITION 2.4. Let A, B be abelian schemes over S and let u:
A—>B be a homomorphism of abelian schemes. If the induced homomor-
phism uη:Aη-^Bv on the generic fibers is an isogeny, then u is also an
isogenyf i.e., a finite, flat, surjective homomorphism.

PROOF. Since u is smooth, proper and the dimension of ker(^) is
equal to zero, u has the desired properties. q.e.d.

Combining these propositions, we obtain the following:

PROPOSITION 2.5. Let A be an abelian scheme over S. Suppose that
there exist abelian varieties Xi over C{ΎJ) (i — 1, , k) and an isogeny
Φ Πi=i Xi -^ Aη over C(η). Then there exist abelian subschemes Bt of A
(i = 1, , k) and an isogeny u: Π^i^i —> A such that (Bt)η is isogenous
to X,.

PROOF. Put Yi — Im(9>|x<)cA9. Then ΠiW^i is also isogenous to Aη.
It follows from Proposition 2.3 that every Yt extends to an abelian sub-
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scheme Bt of A. Since the product u of the inclusion map of Bt into A
satisfies the assumption of Proposition 2.4, u is an isogeny. q.e.d.

Now we define "simplicity" of an abelian scheme:

DEFINITION 2.6. An abelian scheme A over S is said to be simple if
for any finite covering S' —> S, the induced abelian scheme A! — A xs

S' —• S' has no non-trivial abelian subschemes.

We have the following correspondence between the simplicity of an
abelian scheme and the simplicitity (in the classical sense) of its generic
fiber:

PROPOSITION 2.7. Let A be an abelian scheme over S. Then A is
simple if and only if Aη is simple.

PROOF. The if-part is obvious. Conversely, suppose that Aη is not
simple. Then there exists a finite extension Kr of C(τj) such that Aη xC{ϊ]) Kr

has a non-trivial abelian sub variety X defined over K'. Let Sf denote the
normalization of S in K!. Then A xs S' has a non-trivial abelian subscheme
by Proposition 2.3. q.e.d.

Now we introduce one more terminology:

DEFINITION 2.8. Let A be an abelian scheme over S. If for some
finite covering S' of S there exist simple abelian schemes Bt over S'
(i = 1, •••,&) and an isogeny φ: Π?=i B{ —> A XSS', then we call φ an
isogeny decomposition of A.

Combining all the preceding results, we obtain the following:

PROPOSITION 2.9. Let A be an abelian scheme over S. Then an
isogeny decomposition of A in the above sense induces an isogeny decom-
position of the generic fiber Aη in the classical sense and vice versa.

3. Statement of the main theorem. Let S be a normal, irreducible
algebraic variety over C and let η be the generic point of S.

DEFINITION 3.1. An abelian scheme A over S is said to be constant
if there exists an abelian variety Ao over C such that A is isomorphic
to Ao xcS over S.

DEFINITION 3.2. An abelian scheme A over S is said to be potentially
trivial (resp. iso-trivial) if there exists a finite (resp. finite etale) covering
S' —> S so that A xs Sf —> S' becomes a constant abelian scheme.

PROPOSITION-DEFINITION 3.3. Let A be an abelian scheme over S.
Let G(A —> S; s) denote the connected component of the unity of the Zariski
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closure ofπ^S, s) (seS) in Aut(ίP(A8, Q)). Then there exists a countable
union T of proper closed subsets of S such that G(A —> S; s)cHg(i g ) for
seS — T. The points in S — T are called general in the sense of Hodge
([6, p. 256]).

REMARK 3.4. It follows from [9, Proof of 7.5] that Hg(A8) is locally
constant on S — T. On the other hand, S — T is arc wise connected if
S is quasi-projective ([6, p. 276]). So, we have Hg(As) = Ή.g(Av) for
seS — T in this case.

Moreover, we have the following:

THEOREM 3.5 ([8, 7.3]). Notation being as above, G(A->S;s) is a
normal subgroup of Hg(Aβ).

Thus if Hg(As) is Q-simple and the abelian scheme A is not iso-trivial,
then we have G(A —> S; s) — Hg(As). However, in order to ensure the
Q-simplicity of Hg(Aβ), Mustafin imposed the following conditions: (1) A8

is simple, (2) when Hι{AB, C) is decomposed into irreducible components
as a representation space of Hg(As)c, their common dimension is not
divisible by four. Our purpose is to show that the stable non-degeneracy
of As (which is much weaker than the above two conditions) is "almost"
sufficient. More precisely, we prove the following:

THEOREM 3.6 (Geometric analogue of the Mumford-Tate Conjecture).
Let S be a normal, irreducible quasi-projective variety over C and let
A be an abelian scheme over S. Let s eS be a point which is general in
the sense of Hodge. Then G(A —> S; s) — Hg(As), if the following two
conditions are satisfied:
(3.6.1) the simple components which appear in the isogeny decomposition

(see (2.8)) are not potentially trivial,
(3.6.2) As is stably non-degenerate and has no simple components of

type IV.

REMARK 3.7. It is known that G(A —> S; s) is always semi-simple ([1])
and that Hg(Aβ) has a non-trivial central torus if As has a component of
type IV ([3, p. 503]). This is the reason why we must exclude those of
type IV in the above theorem.

REMARK 3.8. If A8 satisfies the condition (3.6.2), then so does Aηj

since this condition is expressible in term of the Hodge group and Hg(A8) =
Hg(A,) by (3.4).

REMARK 3.9. The condition (3.6.1) is satisfied, for example, when
AxC{r}) K has no non-trivial Z/C-trace for any finite extension K of C(τj).
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COROLLARY 3.10. Under the same conditions as in (3.6), ^p(A1

8

ι) =
[H2p{An

9, Q)]πi{S>8) holds for all n, p. Further, we have Ends,(A') =
End(ϋJV^Z) for any finite Stale covering S' —> S, where A' = Axs S' and
πA>\ A' —> S' is the natural projection. (Here Ena(R^A*Z) denotes the
algebra of endomorphisms of the local system {H\A8>, Z)}8>es> over S'.)

PROOF OF (3.10). First note that G(Axs - - xsA->S;s) coincides
with G(A-*S;s). Indeed, a proof similar to the one for the Hodge
group goes well (see [3, (1.10)]: Replace T by π^S, s) and the representa-
tion space H\A, Q) by H\Aa, Q)). So the first part of the corollary
follows from the fact that the space of Hodge cycles is that of invariant
elements in the cohomology space under the action of the Hodge group.
Further, the second part follows from (3.6) and the result of [6] that
the equality G(A —> S; s) = Ή.g(A8) is equivalent to the last assertion of
(3.10). q.e.d.

4. Proof of the main theorem. First we note the following:

PROPOSITION 4.1. Let A be an abelian scheme over S and let Ube an
open subset of S which contains a given point seS. Then G(A —• S; s) =
G(A\Ό -> U; s) holds in Ant(H\A8f Q)).

PROOF. Since S— Uis of real codimension^2, we see that the induced
homorphism πt( U, s) —> π^S, s) is surjective. Further, the action of πx( U, s)
on H\A8, Q) factors through the action of πx(S, s) since the abelian scheme
A \u —> U extends to A —> S. Therefore the images of πx( U, s) and π^S, s)
in Aut(ίί1(A8, Q)) coincide. Hence G(A\π-*U;s) = G(A->S; s) q.e.d.

PROPOSITION 4.2. Let A be an abelian scheme over S and let f: S'-+S
be an Stale covering which sends a given point s 'eS ' to se S. Then

^S'->S'; β') = G(A->S] s) in Aut(ίP((Ax5S').', Q)) = Aut(iP(A8, Q)).

PROOF. Let G (resp. G') denote the Zariski closure of π&S, s) (resp.

πi(β'f s')) in Aut(iΓ(G4x,S')8,, Q)) (resp. Aut(H\A8, Q))). // πi(S', sf) is a
normal subgroup of 7Γi(S, s), then πλ(S, s) normalizes G', too. For, xG'x'1

is also a Q-subgroup of Aat(H\(A xs S')a>, Q)) = Aut(H\A8, Q)) for any
xeπ^S, s), and this implies the equality G' — xG'x~ι by the minimality
of G'. So G coincides with the subgroup generated by {%G'}xeπi{SfB), which
contains G' as a subgroup of finite index. Thus, we obtain G(ix s S'->
S'; s') = G(A -> S; s) in this case. The general case when πλ(S\ s') is not
necessarily normal subgroup of π^S, s) is reduced to the proceding one
by considering Γ\xeπi(S)S) xπλ(S', s')^"1 which is of finite index in π^S, s).

q.e.d.
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PROPOSITION 4.3. Let A be an abelian scheme over S. Then
G(A —> S; s) = {1} if and only if there exists a finite etale covering S' of
S such that AxsS' —> S' is constant.

PROOF. This follows from the fact that G(A -> S; s) is of finite index
in the Zariski closure of π^S, s) in Aut(H\A99 Q)). q.e.d.

PROPOSITION 4.4. Let A be an abelian scheme over S and let f:S'—*S
be a finite covering which sends a given point s 'eS ' to se S. Suppose
that f is unramified at β\ Then G{A XSS' —> S' s') = G(A —> S; s) in
Aut(H\(AxsS')8,, Q)) = Aut(H\A8, Q)).

PROOF. Let UczS be the complement of the ramification locus of /
and put U' = f-\U)(zS'. Then

G{A xs S' -> S'; 8') - G(A \π xπ Ur -> ίΓ; s') (by Prop. 4.1)

= G(A \u -+ U; s) (by Prop. 4.2)

= G(A -> S; s) (by Prop. 4.1) . q.e.d.

PROPOSITION 4.5. Let u: A—>B be an isogeny of abelian schemes A,
B over S and let s be a point of S. Then G(A —» S; s) = G(B —> S; s) in
Aut(fP(A., Q)) = Aut(H\Bs, Q)).

PROOF. This follows from the fact that u induces a π^S, s)-equivariant
isomorphism H\A9, Q) ~> H\B8, Q). q.e.d.

Now let us start the proof of the main theorem. First we consider
the case where A8 is simple.

PROPOSITION 4.6. Notation being as in (3.6), suppose that A8 is a
simple stably non-degenerate abelian variety which is not of type IV.
Then Hg(As) is Q-simple.

PROOF. We recall the following lemma due to Mustafin:

LEMMA 4.7 ([6, §4, Lemma 3]). Let ρ:Q-*EnάV be a faithful Q-
irreducible representation of a semi-simple Lie algebra Q over Q and put
e — dim<?(Cent(Endfl V)). Suppose that (*) the number of simple components
of Qc is equal to e. Then Q is Q-simple.

Let us put g = .S&(Hg(A,)) and V = H\Aβ, Q). It is known that g
is semi-simple and that End g F=End°A s (see [7]). So we are reduced
to showing that, if A8 is a simple stably non-degenerate abelian variety
which is not of type IV, then Q satisfies the condition (*) in (4.7). But
this is proved in [3, p. 499] when A8 is of type I, and in [3, p. 502] when
A8 is of type II. Further we know that an abelian variety of type III
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cannot be stably non-degenerate ([3, p. 502, Case 3]). Thus Proposition
(4.6) is proved. q.e.d.

Hence we obtain the Q-simplicity of Ή.g(As) in this case. This implies
by (3.5) that G(A ->S;s) = Hg(Aβ). This completes the proof of (3.6) when
A8 is simple.

Next we consider the general case where As is not necessarily simple.
By (2.9), (3.8), (4.4) and (4.5), we may assume that there exist simple,
mutually non-isogenous abelian schemes β t (i = 1, , k) over S such that
A = UU BfK Then we have Rg(A8) = ΠίU HgKBJ,) by [3, p. 507]. Note
that Hg((,Bί)8) is Q-simple for every i by the preceding proof. Since
G(A->S; s) is normal in Hg(As), we have G(A->S; s) = Πi=i Hg(0BA{i)),) for
some increasing function h: {1, , ί} —> {1, •••,&} (I ^ k), However, if
there exists a number, m ί Im(fe), then for some finite covering S' the
abelian scheme Am has to be constant, which contradicts the assumption
of (3.6). So we obtain the equality G(A -> S; s) = UU Hg((5,)s) = Hg(A8).
This completes the proof of (3.6). q.e.d.
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