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INEQUALITIES OF FEJER-RIESZ AND HARDY-LITTLEWOOD

NOZOMU MOCHIZUKI

(Received October 16, 1986)

Introduction. In this note, we shall derive some inequalities con-
cerning the growth of mean values of holomorphic functions which extend
classical results. Section 1 deals with the Fejer-Riesz inequality for Hp

functions on the unit ball in Cn and on the generalized half-plane, and
the results of [8] are extended. In Section 2, two types of Hardy-
Littlewood inequalities are obtained. Section 3 concerns the weighted
Bergman space on the unit ball which is closely related to the Hardy
space.

1. The Fejer-Riesz inequality. Let B denote the open unit ball in
Cn, n^2, and D be the generalized half-plane defined by I m ^ — |2' |2>0,
(zlf z')eCxCn-\ We shall write Lith - Λ'xC*x{0}x • x{0}cCn, 1 ^
j ^ n, 0 ^ k ^ n - j , LOtk = C*x{0}x x{0}, 1 ^ k ^ n, and L'd-ltk =
(iRy-1 x Ck x {0} x x {0}(zCn-\ 1 ^ j ^ n, 0 ^ k ^ n - j , where R means
the real line in C. dz will denote the Lebesgue measure on Ljtk.

If c = 1 and j = 1 in Theorems 1 and 2, the inequalities coincide
with those of [8], except in the case k = n in (2) and (4). Here we note
that the method used in [8] does not work for the present situation.
Theorem 1 generalizes the Fejer-Riesz inequality given in [1]. It also
contains a recent result of Power's [9, Corollary] as a special case c = 1
and n = j = 2.

THEOREM 1. Let c ^ 1. Then there is a constant C = C(n, j , k, c)
such that the following holds for any p, 0 < p < +°o, and for any
f 6 H'(B):

(l) \

There is a constant C — C'(n, k, c) such that

(2) \
JBr)LOtk
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where c > 1 for ft = n. The exponents en — 2~\j + 2ft + 1) αwcϊ em — ft — 1
are £/&e 6esί possible in all cases.

THEOREM 2. For the same constants C and C as in Theorem 1,
the following hold for feHp(D), 0 < p < +°o, where each exponent is
unique:

( 3 ) [^dyλ , |/to + i^ + i |*T *0lβpltf

for any x1eR, 1 ^ j ^ nt 0 ^ k ^ n — j .

(4) p d ^ ί i /to + iVl + i î 'i2, ^or^r^- 1 ^^'

^ 2C/(||/||pr , 1 ^ ft ^ n ,

where c > 1 /or k — n.

We shall denote by Ap(42) the class of holomorphic functions on
i2cCn which belong to LP(Ω, dz). It is obvious that Hp(B)<zA9(B),
0 < p < +oo. The relation between these classes will be made clear in
the following corollary. Bk denotes the open unit ball in Ck, 1 ^ ft ^ n.
For a function # on Bk, l<Lk<*n — l, En>kg is defined by (En>kg)(w, w') = g{w),
(w, wf)eB. The statement (5) is a generalization of [3, Theorem E].

COROLLARY. Let 0 < p < +oo,

( 5 ) Hp(B)czA{n+1)p/n(B), and HP(B)(£A%B) for q > n~\n + \)p .

(6) Hp(Bk) is imbedded in Hnp/k(B), by the operator En>k ,

where k~ιnp is the best possible.

( 7 ) Hp(D)aA{n+1)p/n(D), and Hp(D)ςtAg(D) for q Φ n~\n + l)p .

In (5) α^d (7), Hp is properly contained in A{n+1)p/n.

PROOF OF THEOREM 1. For ξedB and r > 0, let K(ζ, r) = {« e JB| 11 —
<2, ζ) I < r2}. Let /ί be a positive finite measure on B. Suppose that,
for c ^ 1, there are positive numbers A, δ such that

(8) μ(K(ξ, r)) £ Ar»*

for every ξedB and 0 < r < < 5 . If μ is a measure supported on
{zeCn\2~1 ^ \z\ < 1}, then by the same argument as in [9], we can see
that, for feL\3B) and λ > 0, μ({\P[f]\ > λ}) ^ (Cλ^ll/IIJ , where P[/]
denotes the Poisson integral of/. The Marcinkiewicz interpolation theorem
then shows that \\P[f]\\L2C{μ) ^ Cf(w, μ, c) | |/ | | 2 , feL\dB). Let ,« be sup-
ported on 5. Take / e HP{B)9 0 < p < + co. Then there is an h e L\dB)
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such that h ^ 0, (\\h\\,Y = ( | |/ | | ,) ' , and \f\"2 ^ P[K\. It follows that

\ \f\ 'dμ ^ \ (PW]) dμ + \ (P\h]rdμ <ί C(n, μ, c){\\ f \\,)» .

First, we shall prove (1). It suffices to see that the measure dμ(z) =
(1 - \z\2)adz, zeBnLjfk, satisfies (8) for 0 < r < 1, where a = en - 2"1

C/ + 2fc + l). Put K= K(ξ, r) and iΓ = {zeB\l-Re(z, ξ)<r2}. Clearly,
KaKf. Suppose that Kf]LJtkΦ 0 . Using real coordinates for Cn, we
write ξ = (α', b', a", 6", α'", V"), where (α', 6') = (αlf 6lf , aJf bj) e R2\ zι =
ΛΪ + iδz, 1 ^ ϊ ^ i Similarly, (α", 6") and (α'", 6'") represent points of
Ck and cn~j~k, respectively. The inner product in Rm will be denoted by
[x, V], x,ye Rm. Now take zeK'nLith. Then z = (x\ 0', x'\ y", 0'", 0"')
with K|2 + K| 2 + |2/"|2 < 1 and 1-Re<z, ξ) = l-[(x', x", y"), (α'f α", 6")] < r2.
Writing α - (α', α", 6") and G = {x = (x'f x'\ y") e Bj}k \ 1 - [x, a] < r2}, where
Bjk denotes the open unit ball in Rj+2k, we see that

Ijik(r) := μ(K) ^\ (1 - | ^ | 2 ) ^ = ( (1 - \x\2Tdx .

If we put |α| = ί, then 0 < t <; 1, since G ̂  0 . Take PeO(j + 2fc) so
that Pe = r'a, where e = (1,0, , 0) eR>'+2k. Let G'= {xeBj^l-tx^r2}
and G" = {xeBjfk\l - r2 < x, < 1}. Then P(G') - G and G'cG". Thus,
by integration over G" instead of G and by Fubini's theorem in the case
j + 2k ̂  2, we get /, ,fc(r) ̂  C(w, i, fc, c)r2cn. To verify (2), let a = cn-k-1.
Note that α > —1 in all cases. We shall show that μ satisfies (8) for
0 < r < 2~1/2. We write ξ = (£', f") with f' 6 Ck and put |f'| = t. Suppose
that K Γ\LOtk Φ 0 . Then 2"1 < t ^ 1. Take ?7e [/(&) so that C/β = r 1 ^ ,
where e = (1, 0, ••-, 0)eC*. Let G = {w eCk\ \w\ < 1, |1 - <w, f'>|< r2}
and G' = {̂  eCfc| \w\ < 1, |1 - tw±\ < r2}. Then ί/(Gf) = G, and

Using Fubini's theorem when 2 ^ k tί n9 we have

Ik{r) = C{k, a)\ (1 - \w1\
2Yn~2dw1 t

JG"

where G" = {wλ eC\ \wt\ < 1, |1 — twj < r2}. Modifying the change of
variables made in [10, 5.1.4], we define φ: w1 == ̂ (λ) = t~\l — τ2x~ι),
λ6C-{0}. Since ^ 1 (G")c{λ|Reλ>0, ]λ|>l} and l-μ(λ)Γ<2r 2 r 2 |λ |- 2 Reλ,
it is seen that

( (1 - iw^Y^dw, ^ C(n, c)r2cn .
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Suppose that a < en - 2-\j+2k + l). Then, for b = (2c)~\2a + j + 2k + 1),
the function (1 — zλ)-h belongs to H\B) and it is easily seen that

|1 - Z j - ^ l - \z\2)«dz = +oo .
-BΠLj}k

If — 1 < a <cn — k — 1, then just as in [8], the integral in (2) becomes
+ so for f(z) = (1 - z,)-1 with b = e~\a + k + 1).

PROOF OF THEOREM 2. This is very similar to the proof of [8,
Theorem 2]. Let w = W(z), where z = (iylf , iyJf zj+lr , zi+k, 0, , 0),
Vi > y\ + + V) + 1̂ +iΓ + + \zj+k\\ Then Ψ transforms DΓ\L'ίtk onto
BnLJtk and the Jacobian determinant is 2j+2k(y1 + i)-<*+**+«, so that the
inequality (3) follows. Suppose that a Φ en — 2~1(j + 2k + 1) and put
6 = (2c)-1(2α + i + 2fc+l). If a > en-2~\j + 2& + 1) then fe + i)~b e H\D),
and if a < en - 2~\j + 2k + 1) then z^fo + Ό~2n+δ e ίίXD). A simple com-
putation shows that the integrals in (3), with y", become +°o for these
functions. The inequality (4), as well as the uniqueness of the exponent,
can similarly be verified.

PROOF OF COROLLARY. (5): By (2), the identity mapping of HP(B)
into A{n+ι)^n{B) is continuous. If q>n~\n + l)pf then (1—z1)"(n+1)/9eίίJ>(JB)
and $Aq(B). (6): From the relation Hp{Bk)aA{k+1)p/k(Bk) and [10, 7.2.4,
(a)], it follows that Hp{Bk) is imbedded in H{k+1)p/k(Bk+1) by the operator
Ek+1>k. This procedure gives (6). (7): AP(B) is a complete, linear metric
space, as will be seen from (19) with q = + °°, k = n. Now assume that
HP{B) = Aq(B), q = n~\n + l)p. The open mapping theorem would imply
that, if {/}} is a sequence of holomorphic functions on B, bounded in
L\ then it is also bounded in HP(B). Let gά(z) = z\3', zeB, j = 1,2,
Then

I,:=\ IfltfOI'&KC) = 2 ^ f ( ? i + 1 ) ,
hs Γ{pj + n)

Here, by Stirling's formula, Ij^j"11*1 and Jjp&j-" as j—>°o. Putting
//«) = 3a{n)gά{z), a(n) = ((n + 1)2?)~V, we see that ||/,||,-» «> as j - > » ,
while 11/ίlU, are bounded. Next, (4) implies that ff'φ)cAWlll""(O).
Put 6 = q~\n + 1). If q < n~\n + l)p, then (^ + i)'" 6 ίZ"p(D) and 0 A"(D).
lΐ q> n~\n + ί)p, then 2Γδfe + i)-< 2^'+6 e H'(D) and ί Af(i>). Now, with
q = Λ - i ( Λ + l)p, we define f* by (f *£?)(«) = 2t^fff(f(«)X«l + i)-(2K+2)/', zeί>,
for 3eA'(ΰ). Since the Jacobian determinant of ?F is 22"|z1 + i|-2n~2, we
have f*£f 6 A'(I>). It is clear that Ψ* is an isometric isomorphism of
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Aq(B) onto A9(D). If ?F* is restricted to HP(B), then this induces the
isometric isomorphism of HP(E) onto HP(D), due to [13], up to a constant
multiple ([8], (8)). Thus, the rest of the assertion follows.

2. Hardy-Littlewood inequalities. (11) and (12) in the following
Theorem 3 generalize a theorem of Hardy and Littlewood ([5], [6]) and
are immediate consequences of Theorem 1, (2). The fact that these are
the best possible can be seen by reduction to the one variable case ([2],
[12]), where Corollary, (6) plays an essential role. Theorem 1, (2) will
again be used to complete the proof of Theorem 4. Related results are
contained in [4] and [7], in the case k = n.

For a continuous function f on B and for k, 1 5g k ^ n, we define
means Mq(f, k r), 0 <£ r < 1, 0 < q ^ + oo, as follows:

M»(f, k; r) = max |/r(ζ, O')| ,
dB

G \ί/Q

dBk\fr(ζ,0')\qdσk(ζ)) , 0<q< + o o ,

where σk denotes t h e surface measure on dBk. In t h e case q= + o o ,

[10, 7.2.5] implies t h a t , if feHp(B), 0 <p < + oo, and l ^ k ^ n , t h e n

( 9 ) A U / , k; r) = o((l - r)~n/p) as r -> 1 ,

(10) MJίf, k; r) ^ A(n, p)\\ f \\p(l - r)-«* , 0 ^ r < 1 .

In the case k = n, (11) and (12) follow from (9) and (10), since Mq(f, n; r)g ^
Λf-oί/, n; r)q~pMp(f, n; r)p. Let (RkJ){w) = f(w, 0'), w e Bk, 1 ^ k ^ n -1,
for a function / on £. If RkJ e Hkp/n(Bk) for feHp(B), then (11) and
(12) would follow from the same argument. But this is not the case,
because Hkp/n(Bk)^Rk>n(Hp(B)), which will be seen in Section 3.

THEOREM 3. Suppose feHp(B), 0 < p < + o o . Let p^ίq<+°° (p<q
when k = n) and put a = p~ιn — q~ιk, 1 ^ k ^ n. Then

(11) Mq(f, k; r) = o((l - r)~a) as r -> 1 ,

(12) Mq(f, k; r) ^ A(n, k, p, q)\\ f ||p(l - r)~α , 0 ^ r < 1 .

The exponent a cannot be replaced by any smaller value. Moreover, (9),
(10), (11), and (12) are the best possible in the sense that for any function
φ{r), 0 ^ r < 1, such that φ(r) > 0 and φ(r)—>0 as r—>1, there exists
f e HP(B) with Mq(f, k; r) Φ O(φ(r)(l - r)~a) as r -> 1, 1 ^ k ^ n.

THEOREM 4. Suppose f eHP(B), 0<p< + oo. Let p<Lq^+°° (p<q
when k = n) and put a = p~ιn — q~ιk, 1 <^ k ^ n. Let p ^ λ < + °o.
Then
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(13) ( [ M < ( / > k; r )" ( 1 ~ ry^

where A = A(n, k, p, q, λ). The exponent a is the best possible. If 0 <
q < p, then (13) does not hold.

PROOF OF THEOREM 3. We write M(r) for Mq(f, k; r)\ temporarily.
Let c = p~γq and β = cn—k—l. Then, by integration in polar coordinates,
(2) becomes

[M(r)(l - ryr^dr ^ C(| |/ | |^ .
Jo

Since M(r) is an increasing function, we can find a constant A(β, k),
depending only on β and k, such that

M(r)(l — r)βdr ^ A{β, ,
0

Hence we have

(14) [MM k; r)Kl - r)βdr ^ C(||/||p) .
Jo

Now, as in [3, (1.3)], we have

f, k; m i - t)βdt ^ (β + lYlMq(f k; r)q(l - r)β+1 , 0 rg r < 1 ,

whence (11) and (12) follow. Next, we prove that (9) and (10) are the
best possible. Let U be the unit disc in C. Take an arbitrary function
Φ(r), 0 ^ r < 1, with the property that φ(r) > 0 and φ(r) -> 0 as r -> 1.
Then [12, Theorem 1'] shows that, for φ(r)m, there exists g e Hp/n(U)
such that \g{rό)\ ^ C^(r, )1/2(1 -r,)" 7 1 ^, i = 1, 2, , where C is a constant
and {vj} is a sequence: rt < r2 < , rά -> 1 as j 1 -> oo. Put / = £r

n>1^. Then
f e H p ( B ) , b y ( 6 ) , a n d w e s e e t h a t MJ(f, k \ r s ) ^ C φ t o ί
j = 1, 2, , l^k^n. This means that ikL(/, fc; r)
as r—>1. The case 0 < q < +°o will be settled after [2], as follows.
Taking an feHp(B), as above, for the function φ(r1/2), we see that
M^f, k; iή) ^ CφiXiXl - r>Γn/\ j = 1, 2, - - , 1 £ k ^ n. The Cauchy
formula implies that, for 0 <̂  r < 1,

/r(w, 0') = C(fc)( (1 - <w, ζ»"fc/r(ζ, 0f)dσ*(C) , weBk.

Put .w = rζ, ζedBk. If 1 < q < +oo, then by Holder's inequality,

\f(r% 0')| ^ CΛff(/f fe;
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The above integral is ^ (1 - γ*)-w-»f by [10, 1.4.10], and hence
JkL(/, k; r2) ^ CMq(f, k; r)(l - r)~k/q. It follows that Mq(f, k; rά) ^ Cψ(rά)
(l — rά)~a, j = 1, 2, •••. Similarly, this inequality is seen to hold for
g = 1. Finally, let 0 < g < 1. If we take feHp(B), for 0(r)«, so that
ΛΓi(/; &; ry) ^ C0(ry)*(l - Tj)-^p)+\ j = 1, 2, - -, then, since Jl*i(/f fc; r) ^
Afcβί/, Λ; ry-gMq(f, k; r)q ^ C(l - r)(-"/ί))(1-9)M,(/, fc; r) g , by (10), the desired
result follows.

PROOF OF THEOREM 4. Suppose first that l < ; p < + ° ° . lί u = P[h],
heLp(dB), then as in (10), we have

(15) MJμ, k; r) ^ A(n, p)\\ h | |p(l - r)~n/p , 0 ^ r < 1 , l ^ f c ^ ^ .

We are going to show that, for p ^ q < +oo, l ^ f c ^ t i ,

(16) ikfg(^, fe; r) ^ A(n, k, p, q)\\ h | |p(l - r ) " α , 0 ^ r < 1 .

By (15), we have

Mq(u, fc; rf £ (A\\h\\p(l - rY^A \u(rζ, 0')\>dσk(ζ) .

Here, with z = (rζ, 0'),

where P(z, η) denotes the Poisson kernel for B. Putting η = (ξ, ξ'), ξeCk,
we see that

, 0'), (ί, ί')) = C(n)(l - r T I l - <rζ,

Since IS-BJ-^l - M 2 ) | l - (w, ζ>Γ2)*, w6β f c , ζ e3B t , is the Poisson kernel
for Bk9 we get

Mq(u, k; rY £ (A| |λ | | p(l - r ) - ^ r p C ( l - r)-+ f c( | |Λ| | p)* .

Next, following [3], we shall show that, for l<p<q^ + °o9 p ^
and % = P[h] with Λ e Lp(dB),

M,(%, fc; r)'(l - r)^" 1 ^) ^ C|| λ ||, , 1 ^ fc ^ » ,

where C = C(%, A;, p, q, λ). Suppose, for the moment, that l<,
Fix k, l^k^n. We define a measure v by dy(r) = (1 — r)n~ιdr, 0 ^
Let (Tft)(r) = Mq(u, k;r)(l - r )-* Λ , heL*(dB). Then the operator Γ is
subadditive and, by (15) and (16), (2%)(r) ^ A| |λ 11,(1 - r)~n/p, 0 ^ r < 1.
Hence, for any s^A\\h\\P, G := {re[0, l ) | (Γ/ι)(r)>s}c{r | l
r < ! } = : # . If 0 < s < Λ| |λ | | p f then £7= [0, 1). Thus
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{G) £ \ (1 -

The Marcinkiewicz interpolation theorem shows that || Th\\LP{v) ^ C(n, k,
p, q)\\h\\p for 1 < p < q. This means that (17) is valid in the case p = λ.
Let p < λ. Then, since Mq(u, k; r)λ £ (A\\h\\p(l - r)-«)λ-pMq{u, k; r)p by (15)
a n d (16), w e o b t a i n (17). N o w l e t feHp(B), 0 < p < + o o , a n d t a k e

h e L 2 ( d B ) w i t h t h e p r o p e r t y t h a t \f\p/2 ^ P[h], (\\h\\2)
2 = ( \ \ f \ \ p ) p . L e t q, λ

be such that p<q^ + oo, p^χ< + oo. Then Afβ(/, fc; r)λ^M{2q)/p(u, k; r){n)/\
where we put 2p~ιq = +oo when q = +oo. Taking 2, 22)"^, and 2p~1λ
in place of p, q, and λ in (17), we can get (13). Finally, let p = q^>x< + °°,
1 ^ k ^ n — 1. Then, putting c = 1 in (14), we obtain (13) with p = λ.
In the case p < λ, (13) follows from (12). To see that a is the best
possible, let 0<β<a. Then f(z):= (l-zjr*~{h/q) 6iPCB), and Λfff(/, fc; r ) «
(1 — r)~β as r - » l . Thus, the integral in (13) becomes +°o, if a is
replaced by β. Suppose 0<q<p. It is enough to assume that l^k^n—1
and q~\n — 1)<p~ ιn. Putting g5(z) — z\s, as in the proof of the Corollary,
we have

= ( 2πkΓ(gj + l ) W Γ ( 2 λ j + l)Γ(λ«) V"
Γ(qj + k) I VΓ(2λi + 1 + λα) /

Also, HflFίll, = (2π Γ(pi + l)(Γ(pj + nTψ". We can write
C4(j)3iVq)-Wr), where //(i) -> 1 as i->°o.

3. The weighted Bergman space. This is the class of holomorphic
functions f on B such that

II/H,.,:=(5J/GOI'(1 - \z\ΎdzJ'< +00 ,

where p > 0 and δ > - 1 , and will be denoted by AP>!(B). Note that (2)
implies ff'(B)cA ' "— 1(£) for c > l , with H / I U , , ^ ^ C| |/ | | , , feH"(B).
We can see that this inclusion is proper, as in the proof of the Corollary,
(7).

THEOREM 5. Suppose f e A" S(B). Let p S q sS + >̂ and put a =
p~\n + 1 + 8) - q-'Jc, 1 ^ Jc ^ n. Then

(18) Mq(f, k] r) - o((l - r )-) as r -> 1 ,

(19) Λff(/f Λ; r) ^ A(n, fc, p, 9, $)\\ f ||,.,(1 - r ) - , 0 ^ r < 1 .

These are the best possible; namely, for any φ(r), 0 sί r < 1, swcΛ
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φ{r) > 0 and φ(r) -> 0 as r-> 1, there exists f e AP>\B) with Mq(f, k; r) Φ
O(φ(r)(l - r)-°) as r -> 1, 1 ^ k ^ n.

PROOF. Suppose first that / is a holomorphic function on B such
that Mp(f, n; r) ^ C(l - r)~β, 0 ^ r < 1, with constants /3, C > 0. Then,
for 1 <> k ^ n, p ^ q ^ +oo,

(20) Λf,(/, k; r) ^ K(n, k, p, q, β)C(l - r)~^ , 0 ^ r < 1 ,

where α = p~xn - q~λk. Indeed, since freHp(B) with | | / r | | p ^ C(l - r)~β,
0 < r < 1, (10) implies that Λfoo(/r, ft; /t>) ̂  A(n, j))C(l - r)~^(l - ρ)~n/p,
0^ρ<l, hence, letting /o = r, we have MJίf9k\ r2)^A(n,p,β)C(l-rT{n/p)~β,
proving the case q = + ° ° . The case q < +oo is similar, by (12). Next,
we can derive (18) and (19) when p = q and k — n, following [11, Theorem
B]. Take f eAp>δ. It is enough to assume that 2"1 ^ r < 1. From

(\\f\\Ptδ)> ^ [Mp(f, n; tni - fYf^dt

^ C(n, δ)Mp(f, n; τ)p{l - rf+δ

it follows that

(21) Mp(f, n; r) = o((l - r)-{1+δ)/p) as r -> 1 ,

(22) ikf,(/, n; r) £ C| |/ | | p ,,(l - r)-«+δ)/p , 0 ^ r < 1 .

Let l<>k^n and p <L q <L -fco. Then, combining (20) with (22), we
obtain (19). Finally, from (21), (10), and (12), we can see that
Mq(fr, k; p) ^ Ae(r)(l - r)-{1+δ)/p(l - p)~a, 0 < p < 1, where ε(r) ->0 as
r—>1, whence we get (18). To see that (18) and (19) are the best
possible, take an arbitrary φ(r). Then Theorem 3 shows that there is
/ 6 H{np)/{n+1+δ\B) such that Mq(f, k; r) Φ O(φ(r)(l - r)~°) as r -> 1. Since
H{np]/{n+1+δ)(B)czAp'δ(B), the proof is completed.

We have mainly been concerned with restrictions of Hp functions
from B to Bk. In this respect, Hp and APyδ are closely connected in the
following manner. The case k = n — 1 is in [10, 7.2.4].

The operator Enyk defines a linear isometry of Ap'n~k~\Bk) into HP(B),
l^k^n — ly and Rk>n is a continuous operator of HP(B) onto Ap'n~k~\Bk).
The latter contains Hkp/n(Bk) properly. Indeed, taking g eAp'n~k~\Bk)f we
can see from [8, (7)] that

\j(En,kg)r(ζ, ζTdσ(ζ, C) = \dBn_k\\ \gr(.w)\

= \dBn_k\ r~A I flr(w)|»(l - r~2 \ w
J\w\<r
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where the integral converges to (||^||?),n_fc_1)
2), increasingly, as r—>1. On

the other hand, it follows that Rktn: HP(B) -> APtn~k~\Bk) is continuous
and onto, from (2) and the relation Rk>noEn>k = identity.
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