INEQUALITIES OF FEJÉR-RIESZ AND HARDY-LITTLEWOOD

Nozomu Mochizuki

(Received October 16, 1986)

Introduction. In this note, we shall derive some inequalities concerning the growth of mean values of holomorphic functions which extend classical results. Section 1 deals with the Fejér-Riesz inequality for H^{p} functions on the unit ball in C^{n} and on the generalized half-plane, and the results of [8] are extended. In Section 2, two types of HardyLittlewood inequalities are obtained. Section 3 concerns the weighted Bergman space on the unit ball which is closely related to the Hardy space.

1. The Fejér-Riesz inequality. Let B denote the open unit ball in $C^{n}, n \geqq 2$, and D be the generalized half-plane defined by $\operatorname{Im} z_{1}-\left|z^{\prime}\right|^{2}>0$, $\left(z_{1}, z^{\prime}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{n-1}$. We shall write $L_{j, k}=\boldsymbol{R}^{i} \times \boldsymbol{C}^{k} \times\{0\} \times \cdots \times\{0\} \subset \boldsymbol{C}^{n}, 1 \leqq$ $j \leqq n, \quad 0 \leqq k \leqq n-j, L_{0, k}=\boldsymbol{C}^{k} \times\{0\} \times \cdots \times\{0\}, 1 \leqq k \leqq n$, and $L_{j-1, k}^{\prime}=$ $(i \boldsymbol{R})^{j-1} \times \boldsymbol{C}^{k} \times\{0\} \times \cdots \times\{0\} \subset \boldsymbol{C}^{n-1}, 1 \leqq j \leqq n, 0 \leqq k \leqq n-j$, where \boldsymbol{R} means the real line in C. $d z$ will denote the Lebesgue measure on $L_{j, k}$.

If $c=1$ and $j=1$ in Theorems 1 and 2 , the inequalities coincide with those of [8], except in the case $k=n$ in (2) and (4). Here we note that the method used in [8] does not work for the present situation. Theorem 1 generalizes the Fejér-Riesz inequality given in [1]. It also contains a recent result of Power's [9, Corollary] as a special case $c=1$ and $n=j=2$.

Theorem 1. Let $c \geqq$. Then there is a constant $C=C(n, j, k, c)$ such that the following holds for any $p, 0<p<+\infty$, and for any $f \in H^{p}(B):$

$$
\begin{align*}
\int_{B \cap L_{j, k}}|f(z)|^{c p}\left(1-|z|^{2}\right)^{c n-(j+2 k+1) / 2} d z \leqq C\left(\|f\|_{p}\right)^{c p} \tag{1}\\
1 \leqq j \leqq n, \quad 0 \leqq k \leqq n-j
\end{align*}
$$

There is a constant $C^{\prime}=C^{\prime}(n, k, c)$ such that

$$
\begin{equation*}
\int_{B \cap L_{0, k}}|f(z)|^{\rho^{p}}\left(1-|z|^{2}\right)^{c n-k-1} d z \leqq C^{\prime}\left(\|f\|_{p}\right)^{c p}, \quad 1 \leqq k \leqq n, \tag{2}
\end{equation*}
$$

Partially supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.
where $c>1$ for $k=n$. The exponents $c n-2^{-1}(j+2 k+1)$ and $c n-k-1$ are the best possible in all cases.

Theorem 2. For the same constants C and C^{\prime} as in Theorem 1, the following hold for $f \in H^{p}(D), 0<p<+\infty$, where each exponent is unique:

$$
\begin{equation*}
\int_{0}^{+\infty} d y_{1} \int_{L_{j-1}^{\prime}, k}\left|f\left(x_{1}+i y_{1}+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)\right|^{{ }^{p}} y_{1}^{c n-(j+2 k+1) / 2} d z^{\prime} \leqq C\left(\|f\|_{p}\right)^{c p} \tag{3}
\end{equation*}
$$

for any $x_{1} \in \boldsymbol{R}, 1 \leqq j \leqq n, 0 \leqq k \leqq n-j$.

$$
\begin{align*}
& \int_{0}^{+\infty} d y_{1} \int_{L_{1}, k-1}\left|f\left(x_{1}+i y_{1}+i\left|z^{\prime}\right|^{2}, z^{\prime}\right)\right|^{c p} y_{1}^{c n-k-1} d x_{1} d z^{\prime} \tag{4}\\
& \leqq 2 C^{\prime}\left(\|f\|_{p}\right)^{c p}, \quad 1 \leqq k \leqq n
\end{align*}
$$

where $c>1$ for $k=n$.
We shall denote by $A^{p}(\Omega)$ the class of holomorphic functions on $\Omega \subset C^{n}$ which belong to $L^{p}(\Omega, d z)$. It is obvious that $H^{p}(B) \subset A^{p}(B)$, $0<p<+\infty$. The relation between these classes will be made clear in the following corollary. B_{k} denotes the open unit ball in $\boldsymbol{C}^{k}, 1 \leqq k \leqq n$. For a function g on $B_{k}, 1 \leqq k \leqq n-1, E_{n, k} g$ is defined by $\left(E_{n, k} g\right)\left(w, w^{\prime}\right)=g(w)$, $\left(w, w^{\prime}\right) \in B$. The statement (5) is a generalization of [3, Theorem E].

Corollary. Let $0<p<+\infty$.

$$
\begin{equation*}
H^{p}(B) \subset A^{(n+1) p / n}(B), \text { and } H^{p}(B) \not \subset A^{q}(B) \text { for } q>n^{-1}(n+1) p \tag{5}
\end{equation*}
$$

$H^{p}\left(B_{k}\right)$ is imbedded in $H^{n p / k}(B)$, by the operator $E_{n, k}$, where $k^{-1} n p$ is the best possible.

$$
\begin{equation*}
H^{p}(D) \subset A^{(n+1) p / n}(D), \text { and } H^{p}(D) \not \subset A^{q}(D) \text { for } q \neq n^{-1}(n+1) p \tag{7}
\end{equation*}
$$

In (5) and (7), H^{p} is properly contained in $A^{(n+1) p / n}$.
Proof of Theorem 1. For $\xi \in \partial B$ and $r>0$, let $K(\xi, r)=\{z \in B \| 1-$ $\left.\langle z, \xi\rangle \mid<r^{2}\right\}$. Let μ be a positive finite measure on B. Suppose that, for $c \geqq 1$, there are positive numbers A, δ such that

$$
\begin{equation*}
\mu(K(\xi, r)) \leqq A r^{2 c n} \tag{8}
\end{equation*}
$$

for every $\xi \in \partial B$ and $0<r<\delta$. If μ is a measure supported on $\left\{z \in \boldsymbol{C}^{n}\left|2^{-1} \leqq|z|<1\right\}\right.$, then by the same argument as in [9], we can see that, for $f \in L^{1}(\partial B)$ and $\lambda>0, \mu(\{|P[f]|>\lambda\}) \leqq\left(C \lambda^{-1}\|f\|_{1}\right)^{c}$, where $P[f]$ denotes the Poisson integral of f. The Marcinkiewicz interpolation theorem then shows that $\|P[f]\|_{L^{2 c(\mu)}} \leqq C^{\prime}(n, \mu, c)\|f\|_{2}, f \in L^{2}(\partial B)$. Let μ be supported on B. Take $f \in H^{p}(B), 0<p<+\infty$. Then there is an $h \in L^{2}(\partial B)$
such that $h \geqq 0,\left(\|h\|_{2}\right)^{2}=\left(\|f\|_{p}\right)^{p}$, and $|f|^{p / 2} \leqq P[h]$. It follows that

$$
\int_{B}|f|^{c p} d \mu \leqq \int_{|z|<1 / 2}\left(P\left[h^{2}\right]\right)^{c} d \mu+\int_{1 / 2 \leqq|z|<1}(P[h])^{2 c} d \mu \leqq C(n, \mu, c)\left(\|f\|_{p}\right)^{c p}
$$

First, we shall prove (1). It suffices to see that the measure $d \mu(z)=$ $\left(1-|z|^{2}\right)^{\alpha} d z, z \in B \cap L_{j, k}$, satisfies (8) for $0<r<1$, where $\alpha=c n-2^{-1}$ $(j+2 k+1)$. Put $K=K(\xi, r)$ and $K^{\prime}=\left\{z \in B \mid 1-\operatorname{Re}\langle z, \xi\rangle<r^{2}\right\}$. Clearly, $K \subset K^{\prime}$. Suppose that $K \cap L_{j, k} \neq \varnothing$. Using real coordinates for C^{n}, we write $\xi=\left(a^{\prime}, b^{\prime}, a^{\prime \prime}, b^{\prime \prime}, a^{\prime \prime \prime}, b^{\prime \prime \prime}\right)$, where $\left(a^{\prime}, b^{\prime}\right)=\left(a_{1}, b_{1}, \cdots, a_{j}, b_{j}\right) \in \boldsymbol{R}^{2 j}, z_{l}=$ $a_{l}+i b_{l}, 1 \leqq l \leqq j$. Similarly, ($a^{\prime \prime}, b^{\prime \prime}$) and ($a^{\prime \prime \prime}, b^{\prime \prime \prime}$) represent points of \boldsymbol{C}^{k} and \boldsymbol{C}^{n-j-k}, respectively. The inner product in \boldsymbol{R}^{m} will be denoted by $[x, y], x, y \in \boldsymbol{R}^{m}$. Now take $z \in K^{\prime} \cap L_{j, k}$. Then $z=\left(x^{\prime}, 0^{\prime}, x^{\prime \prime}, y^{\prime \prime}, 0^{\prime \prime \prime}, 0^{\prime \prime \prime}\right)$ with $\left|x^{\prime}\right|^{2}+\left|x^{\prime \prime}\right|^{2}+\left|y^{\prime \prime}\right|^{2}<1$ and $1-\operatorname{Re}\langle z, \xi\rangle=1-\left[\left(x^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right),\left(a^{\prime}, a^{\prime \prime}, b^{\prime \prime}\right)\right]<r^{2}$. Writing $a=\left(a^{\prime}, a^{\prime \prime}, b^{\prime \prime}\right)$ and $G=\left\{x=\left(x^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right) \in B_{j, k} \mid 1-[x, a]<r^{2}\right\}$, where $B_{j, k}$ denotes the open unit ball in $\boldsymbol{R}^{j+2 k}$, we see that

$$
I_{j, k}(r):=\mu(K) \leqq \int_{K^{\prime} \cap L_{j, k}}\left(1-|z|^{2}\right)^{\alpha} d z=\int_{G}\left(1-|x|^{2}\right)^{\alpha} d x
$$

If we put $|a|=t$, then $0<t \leqq 1$, since $G \neq \varnothing$. Take $P \in O(j+2 k)$ so that $P e=t^{-1} a$, where $e=(1,0, \cdots, 0) \in \boldsymbol{R}^{j+2 k}$. Let $G^{\prime}=\left\{x \in B_{j, k} \mid 1-t x_{1}<r^{2}\right\}$ and $G^{\prime \prime}=\left\{x \in B_{j, k} \mid 1-r^{2}<x_{1}<1\right\}$. Then $P\left(G^{\prime}\right)=G$ and $G^{\prime} \subset G^{\prime \prime}$. Thus, by integration over $G^{\prime \prime}$ instead of G and by Fubini's theorem in the case $j+2 k \geqq 2$, we get $I_{j, k}(r) \leqq C(n, j, k, c) r^{2 c n}$. To verify (2), let $\alpha=c n-k-1$. Note that $\alpha>-1$ in all cases. We shall show that μ satisfies (8) for $0<r<2^{-1 / 2}$. We write $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$ with $\xi^{\prime} \in C^{k}$ and put $\left|\xi^{\prime}\right|=t$. Suppose that $K \cap L_{0, k} \neq \varnothing$. Then $2^{-1}<t \leqq 1$. Take $U \in U(k)$ so that $U e=t^{-1} \xi^{\prime}$, where $e=(1,0, \cdots, 0) \in \boldsymbol{C}^{k}$. Let $G=\left\{w \in \boldsymbol{C}^{k}| | w\left|<1,\left|1-\left\langle w, \xi^{\prime}\right\rangle\right|<r^{2}\right\}\right.$ and $G^{\prime}=\left\{w \in C^{k}| | w\left|<1,\left|1-t w_{1}\right|<r^{2}\right\}\right.$. Then $U\left(G^{\prime}\right)=G$, and

$$
I_{k}(r):=\mu(K)=\int_{G^{\prime}}\left(1-|w|^{2}\right)^{\alpha} d w
$$

Using Fubini's theorem when $2 \leqq k \leqq n$, we have

$$
I_{k}(r)=C(k, \alpha) \int_{G^{\prime}}\left(1-\left|w_{1}\right|^{2}\right)^{c_{n-2}} d w_{1}
$$

where $G^{\prime \prime}=\left\{w_{1} \in \boldsymbol{C}| | w_{1}\left|<1,\left|1-t w_{1}\right|<r^{2}\right\}\right.$. Modifying the change of variables made in $[10,5.1 .4]$, we define $\phi: w_{1}=\phi(\lambda)=t^{-1}\left(1-r^{2} \lambda^{-1}\right)$, $\lambda \in C-\{0\}$. Since $\phi^{-1}\left(G^{\prime \prime}\right) \subset\left\{\lambda|\operatorname{Re} \lambda>0,|\lambda|>1\}\right.$ and $1-|\phi(\lambda)|^{2}<2 t^{-2} r^{2}|\lambda|^{-2} \operatorname{Re} \lambda$, it is seen that

$$
\int_{G^{\prime \prime}}\left(1-\left|w_{1}\right|^{2}\right)^{c n-2} d w_{1} \leqq C(n, c) r^{2 c n}
$$

Suppose that $\alpha<c n-2^{-1}(j+2 k+1)$. Then, for $b=(2 c)^{-1}(2 \alpha+j+2 k+1)$, the function $\left(1-z_{1}\right)^{-b}$ belongs to $H^{1}(B)$ and it is easily seen that

$$
\int_{B \cap L_{j, k}}\left|1-z_{1}\right|^{-b c}\left(1-|z|^{2}\right)^{\alpha} d z=+\infty
$$

If $-1<\alpha<c n-k-1$, then just as in [8], the integral in (2) becomes $+\infty$ for $f(z)=\left(1-z_{1}\right)^{-b}$ with $b=c^{-1}(\alpha+k+1)$.

Proof of Theorem 2. This is very similar to the proof of [8, Theorem 2]. Let $w=\Psi(z)$, where $z=\left(i y_{1}, \cdots, i y_{j}, z_{j+1}, \cdots, z_{j+k}, 0, \cdots, 0\right)$, $y_{1}>y_{2}^{2}+\cdots+y_{j}^{2}+\left|z_{j+1}\right|^{2}+\cdots+\left|z_{j+k}\right|^{2}$. Then Ψ transforms $D \cap L_{j, k}^{\prime}$ onto $B \cap L_{j, k}$ and the Jacobian determinant is $2^{j+2 k}\left(y_{1}+1\right)^{-(j+2 k+1)}$, so that the inequality (3) follows. Suppose that $\alpha \neq c n-2^{-1}(j+2 k+1)$ and put $b=(2 c)^{-1}(2 \alpha+j+2 k+1)$. If $\alpha>c n-2^{-1}(j+2 k+1)$ then $\left(z_{1}+i\right)^{-b} \in H^{1}(D)$, and if $\alpha<c n-2^{-1}(j+2 k+1)$ then $z_{1}^{-b}\left(z_{1}+i\right)^{-2 n+b} \in H^{1}(D)$. A simple computation shows that the integrals in (3), with y_{1}^{α}, become $+\infty$ for these functions. The inequality (4), as well as the uniqueness of the exponent, can similarly be verified.

Proof of Corollary. (5): By (2), the identity mapping of $H^{p}(B)$ into $A^{(n+1) p / n}(B)$ is continuous. If $q>n^{-1}(n+1) p$, then $\left(1-z_{1}\right)^{-(n+1) / q} \in H^{p}(B)$ and $\notin A^{q}(B)$. (6): From the relation $H^{p}\left(B_{k}\right) \subset A^{(k+1) p / k}\left(B_{k}\right)$ and [10, 7.2.4, (a)], it follows that $H^{p}\left(B_{k}\right)$ is imbedded in $H^{(k+1) p / k}\left(B_{k+1}\right)$ by the operator $E_{k+1, k}$. This procedure gives (6). (7): $A^{p}(B)$ is a complete, linear metric space, as will be seen from (19) with $q=+\infty, k=n$. Now assume that $H^{p}(B)=A^{q}(B), q=n^{-1}(n+1) p$. The open mapping theorem would imply that, if $\left\{f_{j}\right\}$ is a sequence of holomorphic functions on B, bounded in L^{q}, then it is also bounded in $H^{p}(B)$. Let $g_{j}(z)=z_{1}^{2 j}, z \in B, j=1,2, \cdots$. Then

$$
\begin{aligned}
I_{j} & :=\int_{\partial B}\left|g_{j}(\zeta)\right|^{p} d \sigma(\zeta)=\frac{2 \pi^{n} \Gamma(p j+1)}{\Gamma(p j+n)}, \\
J_{j} & :=\int_{B}\left|g_{j}(z)\right|^{p} d z=\frac{\pi^{n} \Gamma(p j+1)}{\Gamma(p j+n+1)}
\end{aligned}
$$

Here, by Stirling's formula, $I_{j} \approx j^{-n+1}$ and $J_{j} \approx j^{-n}$ as $j \rightarrow \infty$. Putting $f_{j}(z)=j^{a(n)} g_{j}(z), a(n)=((n+1) p)^{-1} n^{2}$, we see that $\left\|f_{j}\right\|_{p} \rightarrow \infty$ as $j \rightarrow \infty$, while $\left\|f_{j}\right\|_{L^{q}}$ are bounded. Next, (4) implies that $H^{p}(D) \subset A^{(n+1) p / n}(D)$. Put $b=q^{-1}(n+1)$. If $q<n^{-1}(n+1) p$, then $\left(z_{1}+i\right)^{-b} \in H^{p}(D)$ and $\notin A^{q}(D)$. If $q>n^{-1}(n+1) p$, then $z_{1}^{-b}\left(z_{1}+i\right)^{-(2 n / p)+b} \in H^{p}(D)$ and $\notin A^{q}(D)$. Now, with $q=n^{-1}(n+1) p$, we define Ψ^{*} by $\left(\Psi^{*} g\right)(z)=2^{2 n / q} g(\Psi(z))\left(z_{1}+i\right)^{-(2 n+2) / q}, z \in D$, for $g \in A^{q}(B)$. Since the Jacobian determinant of Ψ is $2^{2 n}\left|z_{1}+i\right|^{-2 n-2}$, we have $\Psi^{*} g \in A^{q}(D)$. It is clear that Ψ^{*} is an isometric isomorphism of
$A^{q}(B)$ onto $A^{q}(D)$. If Ψ^{*} is restricted to $H^{p}(B)$, then this induces the isometric isomorphism of $H^{p}(B)$ onto $H^{p}(D)$, due to [13], up to a constant multiple ([8], (8)). Thus, the rest of the assertion follows.
2. Hardy-Littlewood inequalities. (11) and (12) in the following Theorem 3 generalize a theorem of Hardy and Littlewood ([5], [6]) and are immediate consequences of Theorem 1, (2). The fact that these are the best possible can be seen by reduction to the one variable case ([2], [12]), where Corollary, (6) plays an essential role. Theorem 1, (2) will again be used to complete the proof of Theorem 4. Related results are contained in [4] and [7], in the case $k=n$.

For a continuous function f on B and for $k, 1 \leqq k \leqq n$, we define means $M_{q}(f, k ; r), 0 \leqq r<1,0<q \leqq+\infty$, as follows:

$$
\begin{gathered}
M_{\infty}(f, k ; r)=\max _{\zeta \in \partial B_{k}}\left|f_{r}\left(\zeta, 0^{\prime}\right)\right|, \\
M_{q}(f, k ; r)=\left(\int_{\partial B_{k}}\left|f_{r}\left(\zeta, 0^{\prime}\right)\right|^{q} d \sigma_{k}(\zeta)\right)^{1 / q}, \quad 0<q<+\infty,
\end{gathered}
$$

where σ_{k} denotes the surface measure on ∂B_{k}. In the case $q=+\infty$, [10, 7.2.5] implies that, if $f \in H^{p}(B), 0<p<+\infty$, and $1 \leqq k \leqq n$, then

$$
\begin{gather*}
M_{\infty}(f, k ; r)=o\left((1-r)^{-n / p}\right) \quad \text { as } \quad r \rightarrow 1, \tag{9}\\
M_{\infty}(f, k ; r) \leqq A(n, p)\|f\|_{p}(1-r)^{-n / p} \quad 0 \leqq r<1 . \tag{10}
\end{gather*}
$$

In the case $k=n$, (11) and (12) follow from (9) and (10), since $M_{q}(f, n ; r)^{q} \leqq$ $M_{\infty}(f, n ; r)^{q-p} M_{p}(f, n ; r)^{p}$. Let $\left(R_{k, n} f\right)(w)=f\left(w, 0^{\prime}\right), w \in B_{k}, 1 \leqq k \leqq n-1$, for a function f on B. If $R_{k, n} f \in H^{k p / n}\left(B_{k}\right)$ for $f \in H^{p}(B)$, then (11) and (12) would follow from the same argument. But this is not the case, because $H^{k p / n}\left(B_{k}\right) \varsubsetneqq R_{k, n}\left(H^{p}(B)\right)$, which will be seen in Section 3.

Theorem 3. Suppose $f \in H^{p}(B), 0<p<+\infty$. Let $p \leqq q<+\infty \quad(p<q$ when $k=n$) and put $\alpha=p^{-1} n-q^{-1} k, 1 \leqq k \leqq n$. Then

$$
\begin{gather*}
M_{q}(f, k ; r)=o\left((1-r)^{-\alpha}\right) \quad \text { as } \quad r \rightarrow 1, \tag{11}\\
M_{q}(f, k ; r) \leqq A(n, k, p, q)\|f\|_{p}(1-r)^{-\alpha}, \quad 0 \leqq r<1 . \tag{12}
\end{gather*}
$$

The exponent α cannot be replaced by any smaller value. Moreover, (9), (10), (11), and (12) are the best possible in the sense that for any function $\phi(r), 0 \leqq r<1$, such that $\phi(r)>0$ and $\phi(r) \rightarrow 0$ as $r \rightarrow 1$, there exists $f \in H^{p}(B)$ with $M_{q}(f, k ; r) \neq O\left(\phi(r)(1-r)^{-\alpha}\right)$ as $r \rightarrow 1,1 \leqq k \leqq n$.

Theorem 4. Suppose $f \in H^{p}(B), 0<p<+\infty$. Let $p \leqq q \leqq+\infty(p<q$ when $k=n$) and put $\alpha=p^{-1} n-q^{-1} k, 1 \leqq k \leqq n$. Let $p \leqq \lambda<+\infty$. Then

$$
\begin{equation*}
\left(\int_{0}^{1} M_{q}(f, k ; r)^{\lambda}(1-r)^{\lambda \alpha-1} d r\right)^{1 / \lambda} \leqq A\|f\|_{p} \tag{13}
\end{equation*}
$$

where $A=A(n, k, p, q, \lambda)$. The exponent α is the best possible. If $0<$ $q<p$, then (13) does not hold.

Proof of Theorem 3. We write $M(r)$ for $M_{q}(f, k ; r)^{q}$, temporarily. Let $c=p^{-1} q$ and $\beta=c n-k-1$. Then, by integration in polar coordinates, (2) becomes

$$
\int_{0}^{1} M(r)\left(1-r^{2}\right)^{\beta} r^{2 k-1} d r \leqq C\left(\|f\|_{p}\right)^{q}
$$

Since $M(r)$ is an increasing function, we can find a constant $A(\beta, k)$, depending only on β and k, such that

$$
\int_{0}^{1} M(r)(1-r)^{\beta} d r \leqq A(\beta, k) \int_{0}^{1} M(r)(1-r)^{\beta} r^{2 k-1} d r
$$

Hence we have

$$
\begin{equation*}
\int_{0}^{1} M_{q}(f, k ; r)^{q}(1-r)^{\beta} d r \leqq C\left(\|f\|_{p}\right)^{q} \tag{14}
\end{equation*}
$$

Now, as in [3, (1.3)], we have

$$
\int_{r}^{1} M_{q}(f, k ; t)^{q}(1-t)^{\beta} d t \geqq(\beta+1)^{-1} M_{q}(f, k ; r)^{q}(1-r)^{\beta+1}, \quad 0 \leqq r<1
$$

whence (11) and (12) follow. Next, we prove that (9) and (10) are the best possible. Let U be the unit disc in C. Take an arbitrary function $\phi(r), 0 \leqq r<1$, with the property that $\phi(r)>0$ and $\phi(r) \rightarrow 0$ as $r \rightarrow 1$. Then [12, Theorem 1'] shows that, for $\phi(r)^{1 / 2}$, there exists $g \in H^{p / n}(U)$ such that $\left|g\left(r_{j}\right)\right| \geqq C C_{\phi}\left(r_{j}\right)^{1 / 2}\left(1-r_{j}\right)^{-n / p}, j=1,2, \cdots$, where C is a constant and $\left\{r_{j}\right\}$ is a sequence: $r_{1}<r_{2}<\cdots, r_{j} \rightarrow 1$ as $j \rightarrow \infty$. Put $f=E_{n, 1} g$. Then $f \in H^{p}(B)$, by (6), and we see that $M_{\infty}\left(f, k ; r_{j}\right) \geqq C \phi\left(r_{j}\right)^{-1 / 2} \phi\left(r_{j}\right)\left(1-r_{j}\right)^{-n / p}$, $j=1,2, \cdots, 1 \leqq k \leqq n$. This means that $M_{\infty}(f, k ; r) \neq O\left(\phi(r)(1-r)^{-n / p}\right)$ as $r \rightarrow 1$. The case $0<q<+\infty$ will be settled after [2], as follows. Taking an $f \in H^{p}(B)$, as above, for the function $\phi\left(r^{1 / 2}\right)$, we see that $M_{\infty}\left(f, k ; r_{j}^{2}\right) \geqq C \phi\left(r_{j}\right)\left(1-r_{j}\right)^{-n / p}, \quad j=1,2, \cdots, \quad 1 \leqq k \leqq n$. The Cauchy formula implies that, for $0 \leqq r<1$,

$$
f_{r}\left(w, 0^{\prime}\right)=C(k) \int_{\partial B_{k}}(1-\langle w, \zeta\rangle)^{-k} f_{r}\left(\zeta, 0^{\prime}\right) d \sigma_{k}(\zeta), \quad w \in B_{k}
$$

Put $w=r \xi, \xi \in \partial B_{k}$. If $1<q<+\infty$, then by Hölder's inequality,

$$
\left|f\left(r^{2} \xi, 0^{\prime}\right)\right| \leqq C M_{q}(f, k ; r)\left(\int_{\partial B_{k}}|1-\langle r \xi, \zeta\rangle|^{-k q^{\prime}} d \sigma_{k}(\zeta)\right)^{1 / q^{\prime}}
$$

The above integral is $\approx\left(1-r^{2}\right)^{-\left(k q^{\prime}-k\right)}$, by [10, 1.4.10], and hence $M_{\infty}\left(f, k ; r^{2}\right) \leqq C M_{q}(f, k ; r)(1-r)^{-k / q}$. It follows that $M_{q}\left(f, k ; r_{j}\right) \geqq C \dot{\phi}\left(r_{j}\right)$ $\left(1-r_{j}\right)^{-\alpha}, j=1,2, \cdots$. Similarly, this inequality is seen to hold for $q=1$. Finally, let $0<q<1$. If we take $f \in H^{p}(B)$, for $\phi(r)^{q}$, so that $M_{1}\left(f, k ; r_{j}\right) \geqq C_{\phi}\left(r_{j}\right)^{q}\left(1-r_{j}\right)^{-(n / p)+k}, j=1,2, \cdots$, then, since $M_{1}(f, k ; r) \leqq$ $M_{\infty}(f, k ; r)^{1-q} M_{q}(f, k ; r)^{q} \leqq C(1-r)^{(-n / p)(1-q)} M_{q}(f, k ; r)^{q}$, by (10), the desired result follows.

Proof of Theorem 4. Suppose first that $1 \leqq p<+\infty$. If $u=P[h]$, $h \in L^{p}(\partial B)$, then as in (10), we have

$$
\begin{equation*}
M_{\infty}(u, k ; r) \leqq A(n, p)\|h\|_{p}(1-r)^{-n / p}, \quad 0 \leqq r<1, \quad 1 \leqq k \leqq n \tag{15}
\end{equation*}
$$

We are going to show that, for $p \leqq q<+\infty, 1 \leqq k \leqq n$,

$$
\begin{equation*}
M_{q}(u, k ; r) \leqq A(n, k, p, q)\|h\|_{p}(1-r)^{-\alpha}, \quad 0 \leqq r<1 \tag{16}
\end{equation*}
$$

By (15), we have

$$
M_{q}(u, k ; r)^{q} \leqq\left(A\|h\|_{p}(1-r)^{-n / p}\right)^{q-p} \int_{\partial B_{k}}\left|u\left(r \zeta, 0^{\prime}\right)\right|^{p} d \sigma_{k}(\zeta)
$$

Here, with $z=\left(r \zeta, 0^{\prime}\right)$,

$$
\int_{\partial B_{k}}\left|u\left(r \zeta, 0^{\prime}\right)\right|^{p} d \sigma_{k}(\zeta) \leqq \int_{\partial B}\left(|h(\eta)|^{p} \int_{\partial B_{k}} P(z, \eta) d \sigma_{k}(\zeta)\right) d \sigma(\eta)
$$

where $P(z, \eta)$ denotes the Poisson kernel for B. Putting $\eta=\left(\xi, \xi^{\prime}\right), \xi \in \boldsymbol{C}^{k}$, we see that

$$
\begin{aligned}
P\left(\left(r \zeta, 0^{\prime}\right),\left(\xi, \xi^{\prime}\right)\right) & =C(n)\left(1-r^{2}\right)^{n}|1-\langle r \zeta, \xi\rangle|^{-2 n} \\
& \leqq C(n, k)(1-r)^{-n+k}\left(\left(1-|r \xi|^{2}\right)|1-\langle r \xi, \zeta\rangle|^{-2}\right)^{k}
\end{aligned}
$$

Since $\left|\partial B_{k}\right|^{-1}\left(\left(1-|w|^{2}\right)|1-\langle w, \zeta\rangle|^{-2}\right)^{k}, w \in B_{k}, \zeta \in \partial B_{k}$, is the Poisson kernel for B_{k}, we get

$$
M_{q}(u, k ; r)^{q} \leqq\left(A\|h\|_{p}(1-r)^{-n / p}\right)^{q-p} C(1-r)^{-n+k}\left(\|h\|_{p}\right)^{p}
$$

Next, following [3], we shall show that, for $1<p<q \leqq+\infty, p \leqq \lambda<+\infty$, and $u=P[h]$ with $h \in L^{p}(\partial B)$,

$$
\begin{equation*}
\left(\int_{0}^{1} M_{q}(u, k ; r)^{\lambda}(1-r)^{\lambda \alpha-1} d r\right)^{1 / \lambda} \leqq C\|h\|_{p}, \quad 1 \leqq k \leqq n \tag{17}
\end{equation*}
$$

where $C=C(n, k, p, q, \lambda)$. Suppose, for the moment, that $1 \leqq p<q \leqq+\infty$. Fix $k, 1 \leqq k \leqq n$. We define a measure ν by $d \nu(r)=(1-r)^{n-1} d r, 0 \leqq r<1$. Let $(T h)(r)=M_{q}(u, k ; r)(1-r)^{-k / q}, h \in L^{p}(\partial B)$. Then the operator T is subadditive and, by (15) and (16), $(T h)(r) \leqq A\|h\|_{p}(1-r)^{-n / p}, 0 \leqq r<1$. Hence, for any $s \geqq A\|h\|_{p}, G:=\{r \in[0,1) \mid(T h)(r)>s\} \subset\left\{r \mid 1-\left(A\|h\|_{p} s^{-1}\right)^{p / n}<\right.$ $r<1\}=: E$. If $0<s<A\|h\|_{p}$, then $E=[0,1)$. Thus

$$
\nu(G) \leqq \int_{E}(1-r)^{n-1} d r \leqq\left(C\|h\|_{p} s^{-1}\right)^{p} .
$$

The Marcinkiewicz interpolation theorem shows that $\|T h\|_{L^{p_{(2)}}} \leqq C(n, k$, $p, q)\|h\|_{p}$ for $1<p<q$. This means that (17) is valid in the case $p=\lambda$. Let $p<\lambda$. Then, since $M_{q}(u, k ; r)^{\lambda} \leqq\left(A\|h\|_{p}(1-r)^{-\alpha}\right)^{\lambda-p} M_{q}(u, k ; r)^{p}$ by (15) and (16), we obtain (17). Now let $f \in H^{p}(B), 0<p<+\infty$, and take $h \in L^{2}(\partial B)$ with the property that $|f|^{p / 2} \leqq P[h],\left(\|h\|_{2}\right)^{2}=\left(\|f\|_{p}\right)^{p}$. Let q, λ be such that $p<q \leqq+\infty, p \leqq \lambda<+\infty$. Then $M_{q}(f, k ; r)^{2} \leqq M_{(2 q) / p}(u, k ; r)^{(22) / p}$, where we put $2 p^{-1} q=+\infty$ when $q=+\infty$. Taking $2,2 p^{-1} q$, and $2 p^{-1} \lambda$ in place of p, q, and λ in (17), we can get (13). Finally, let $p=q \leqq \lambda<+\infty$, $1 \leqq k \leqq n-1$. Then, putting $c=1$ in (14), we obtain (13) with $p=\lambda$. In the case $p<\lambda$, (13) follows from (12). To see that α is the best possible, let $0<\beta<\alpha$. Then $f(z):=\left(1-z_{1}\right)^{-\beta-(k / q)} \in H^{p}(B)$, and $M_{q}(f, k ; r) \approx$ $(1-r)^{-\beta}$ as $r \rightarrow 1$. Thus, the integral in (13) becomes $+\infty$, if α is replaced by β. Suppose $0<q<p$. It is enough to assume that $1 \leqq k \leqq n-1$ and $q^{-1}(n-1)<p^{-1} n$. Putting $g_{j}(z)=z_{1}^{2 j}$, as in the proof of the Corollary, we have

$$
\begin{aligned}
I_{j} & :=\left(\int_{0}^{1} M_{q}\left(g_{j}, k ; r\right)^{\lambda}(1-r)^{\lambda \alpha-1} d r\right)^{1 / \lambda} \\
& =\left(\frac{2 \pi^{k} \Gamma(q j+1)}{\Gamma(q j+k)}\right)^{1 / q}\left(\frac{\Gamma(2 \lambda j+1) \Gamma(\lambda \alpha)}{\Gamma(2 \lambda j+1+\lambda \alpha)}\right)^{1 / \lambda}
\end{aligned}
$$

Also, $\left\|g_{j}\right\|_{p}=\left(2 \pi^{n} \Gamma(p j+1)(\Gamma(p j+n))^{-1}\right)^{1 / p}$. We can write $I_{j}\left(\left\|g_{j}\right\|_{p}\right)^{-1}=$ $C \Delta(j) j^{(1 / q)-(1 / 2))}$, where $\Delta(j) \rightarrow 1$ as $j \rightarrow \infty$.
3. The weighted Bergman space. This is the class of holomorphic functions f on B such that

$$
\|f\|_{p, s}:=\left(\int_{B}|f(z)|^{p}\left(1-|z|^{2}\right)^{s} d z\right)^{1 / p}<+\infty,
$$

where $p>0$ and $\delta>-1$, and will be denoted by $A^{p, s}(B)$. Note that (2) implies $H^{p}(B) \subset A^{\text {cp,cn-n-1}(B)}$ for $c>1$, with $\|f\|_{c p, e n-n-1} \leqq C\|f\|_{p}, f \in H^{p}(B)$. We can see that this inclusion is proper, as in the proof of the Corollary, (7).

Theorem 5. Suppose $f \in A^{p, \bar{b}}(B)$. Let $p \leqq q \leqq+\infty$ and put $\sigma=$ $p^{-1}(n+1+\delta)-q^{-1} k, 1 \leqq k \leqq n$. Then

$$
\begin{gather*}
M_{q}(f, k ; r)=o\left((1-r)^{-\sigma}\right) \quad \text { as } \quad r \rightarrow 1, \tag{18}\\
M_{q}(f, k ; r) \leqq A(n, k, p, q, \delta)\|f\|_{p, \delta}(1-r)^{-\sigma}, \quad 0 \leqq r<1 . \tag{19}
\end{gather*}
$$

These are the best possible; namely, for any $\phi(r), 0 \leqq r<1$, such that
$\phi(r)>0$ and $\phi(r) \rightarrow 0$ as $r \rightarrow 1$, there exists $f \in A^{p, s}(B)$ with $M_{q}(f, k ; r) \neq$ $O\left(\phi(r)(1-r)^{-\sigma}\right)$ as $r \rightarrow 1,1 \leqq k \leqq n$.

Proof. Suppose first that f is a holomorphic function on B such that $M_{p}(f, n ; r) \leqq C(1-r)^{-\beta}, 0 \leqq r<1$, with constants $\beta, C>0$. Then, for $1 \leqq k \leqq n, p \leqq q \leqq+\infty$,

$$
\begin{equation*}
M_{q}(f, k ; r) \leqq K(n, k, p, q, \beta) C(1-r)^{-\alpha-\beta}, \quad 0 \leqq r<1 \tag{20}
\end{equation*}
$$

where $\alpha=p^{-1} n-q^{-1} k$. Indeed, since $f_{r} \in H^{p}(B)$ with $\left\|f_{r}\right\|_{p} \leqq C(1-r)^{-\beta}$, $0<r<1$, (10) implies that $M_{\infty}\left(f_{r}, k ; \rho\right) \leqq A(n, p) C(1-r)^{-\beta}(1-\rho)^{-n / p}$, $0 \leqq \rho<1$, hence, letting $\rho=r$, we have $M_{\infty}\left(f, k ; r^{2}\right) \leqq A(n, p, \beta) C\left(1-r^{2}\right)^{-(n / p)-\beta}$, proving the case $q=+\infty$. The case $q<+\infty$ is similar, by (12). Next, we can derive (18) and (19) when $p=q$ and $k=n$, following [11, Theorem B]. Take $f \in A^{p, \delta}$. It is enough to assume that $2^{-1} \leqq r<1$. From

$$
\begin{aligned}
\left(\|f\|_{p, \delta}\right)^{p} & \geqq \int_{r}^{1} M_{p}(f, n ; t)^{p}\left(1-t^{2}\right)^{\delta} t^{2 n-1} d t \\
& \geqq C(n, \delta) M_{p}(f, n ; r)^{p}(1-r)^{1+\delta}
\end{aligned}
$$

it follows that

$$
\begin{align*}
& M_{p}(f, n ; r)=o\left((1-r)^{-(1+\delta) / p}\right) \quad \text { as } \quad r \rightarrow 1 \tag{21}\\
& M_{p}(f, n ; r) \leqq C\|f\|_{p, \delta}(1-r)^{-(1+\delta) / p} \quad, \quad 0 \leqq r<1 \tag{22}
\end{align*}
$$

Let $1 \leqq k \leqq n$ and $p \leqq q \leqq+\infty$. Then, combining (20) with (22), we obtain (19). Finally, from (21), (10), and (12), we can see that $M_{q}\left(f_{r}, k ; \rho\right) \leqq A \varepsilon(r)(1-r)^{-(1+\delta) / p}(1-\rho)^{-\alpha}, \quad 0<\rho<1$, where $\varepsilon(r) \rightarrow 0$ as $r \rightarrow 1$, whence we get (18). To see that (18) and (19) are the best possible, take an arbitrary $\phi(r)$. Then Theorem 3 shows that there is $f \in H^{(n p) /(n+1+\delta)}(B)$ such that $M_{q}(f, k ; r) \neq O\left(\phi(r)(1-r)^{-\sigma}\right)$ as $r \rightarrow 1$. Since $H^{(n p) /(n+1+\delta)}(B) \subset A^{p, \delta}(B)$, the proof is completed.

We have mainly been concerned with restrictions of H^{p} functions from B to B_{k}. In this respect, H^{p} and $A^{p, \delta}$ are closely connected in the following manner. The case $k=n-1$ is in [10, 7.2.4].

The operator $E_{n, k}$ defines a linear isometry of $A^{p, n-k-1}\left(B_{k}\right)$ into $H^{p}(B)$, $1 \leqq k \leqq n-1$, and $R_{k, n}$ is a continuous operator of $H^{p}(B)$ onto $A^{p, n-k-1}\left(B_{k}\right)$. The latter contains $H^{k p / n}\left(B_{k}\right)$ properly. Indeed, taking $g \in A^{p, n-k-1}\left(B_{k}\right)$, we can see from [8, (7)] that

$$
\begin{aligned}
\int_{\partial B}\left|\left(E_{n, k} g\right)_{r}\left(\zeta, \zeta^{\prime}\right)\right|^{p} d \sigma\left(\zeta, \zeta^{\prime}\right) & =\left|\partial B_{n-k}\right| \int_{B_{k}}\left|g_{r}(w)\right|^{p}\left(1-|w|^{2}\right)^{n-k-1} d w \\
& =\left|\partial B_{n-k}\right| r^{-2 k} \int_{|w|<r}|g(w)|^{p}\left(1-r^{-2}|w|^{2}\right)^{n-k-1} d w
\end{aligned}
$$

where the integral converges to $\left(\|g\|_{p, n-k-1}\right)^{p}$, increasingly, as $r \rightarrow 1$. On the other hand, it follows that $R_{k, n}: H^{p}(B) \rightarrow A^{p, n-k-1}\left(B_{k}\right)$ is continuous and onto, from (2) and the relation $R_{k, n} \circ E_{n, k}=$ identity.

References

[1] P. L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143-146.
[2] P.L. Duren and G. D. Taylor, Mean growth and coefficients of H^{p} functions, Illinois J. Math. 14 (1970), 419-423.
[3] T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749-768.
[4] I. Graham, The radial derivative, fractional integrals, and the comparative growth of means of holomorphic functions on the unit ball in C^{n}, Ann. Math. Stud. 100, Princeton Univ. Press, 1981, 171-178.
[5] G. H. Hardy and J. E. Littlewood, A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634.
[6] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403-439.
[7] J. Mitchell and K. T. Hahn, Representation of linear functionals in H^{p} spaces over bounded symmetric domains in \boldsymbol{C}^{N}, J. Math. Anal. Appl. 56 (1976), 379-396.
[8] N. Mochizuki, Fejér-Riesz inequalities for lower dimensional subspaces, Tôhoku Math. J. 38 (1986), 433-439.
[9] S. C. Power, Hörmander's Carleson theorem for the ball, Glasgow Math. J. 26 (1985), 13-17.
[10] W. Rudin, Function theory in the unit ball of \boldsymbol{C}^{n}, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
[11] J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
[12] G. D. Taylor, A note on the growth of functions in H^{p}, Illinois J. Math. 12 (1968), 171-174..
[13] N. J. Weiss, An isometry of H^{p} spaces, Proc. Amer. Math. Soc. 19 (1968), 1083-1086.
College of General Education
Tôhoku University
Kawauchi, Sendai 980
Japan

