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0. Introduction. With respect to the boundaries of the Schottky
spaces many results were obtained by Chuckrow, Marden, Bers, Sato,
Rodriguez, and others. Chuckrow [2] studied the boundary groups of the
space as limits of sequences of Schottky groups, and Marden [6] showed
by studying the boundary groups of the Schottky space and the classical
Schottky space that not every Schottky group is classical. On the other
hand, Bers [1] and Sato [12], [13] studied the augmented Schottky space
obtained by adding points representing compact Riemann surfaces with
nodes to the Schottky space. Sato [14] obtained a uniformization theorem
of compact Riemann surfaces with nodes. The boundary of the Schottky
space consists of the boundary points due to Chuckrow, namely some
discrete groups, and the boundary points due to Bers-Sato, namely points
representing compact Riemann surfaces with nodes (Rodriguez [11]).

In this paper we will consider a subspace of the classical Schottky
space of genus two, which is called the classical Schottky space of real
type of genus two, and we will determine the structure of the boundary
of the subspace. The space consists of all equivalence classes of marked
classical Schottky groups generated by the following Mobius transforma-
tions A1 and A2: Aά(z) — (aόz + b5)j{cμ + dd) {ajf bd, cjf djSR, aόdj — bόcό Φ 0;

j = 1, 2). We will divide the space into eight subspaces according to
type (see §1). The space of the fourth type corresponds to the
Teichmϋller space for tori with a hole, with respect to which beautiful
results were obtained by Keen [3].

This is the first part of a series of papers entitled "Classical Schottky
groups of real type of genus two". In the first part, we will only
consider the spaces of the first and fourth types. The first part has the
following three aims: (1) to represent the shape of the spaces of the first
and fourth types by using the coordinates introduced in Sato [12], [13]
(Theorems 1 and 4); (2) to determine fundamental regions for the Schottky
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modular group of genus two acting on the above spaces (Theorems 2
and 5); (3) to consider which Riemann surface a point on the closure of
the spaces represents. By combining our results (Theorems 1 and 4)
with Purzitsky [9, Theorems 2 and 3], we see that the Schottky spaces
of the first and fourth types coincide with the classical Schottky spaces
of the same types, respectively.

In § 1 we will state definitions and divide the Schottky space of real
type into eight subspaces according to type. In §2 we will consider
automorphisms of the free group on two generators and list properties
of the automorphisms in a series of lemmas. In §3 we will represent
the shape of the classical Schottky space of the first type by using the
coordinates introduced in Sato [12], [13]. In §4 we will determine a
fundamental region for the Schottky modular group acting on the space.
In §5 we will consider which Riemann surface a point on the closure
of the space represents. In §6 we will treat the classical Schottky space
of the fourth type. In §7 we will consider the relationship between the
Teichmϋller space in Keen [3] for tori with a hole and the space of the
fourth type.

Thanks are due to the referees for their careful reading and valuable
suggestions.

1. Definitions.

1.1. DEFINITION 1.1. Let Cί9 Cg+1; •••;(?„ C2g be a set of 2g, g ^ 1,
mutually disjoint Jordan curves on the Riemann sphere which comprise
the boundary of a 2#-ply connected region ω. Suppose there are g
Mδbius transformations A19 , Ag which have the property that As maps
Cj onto Cg+j and Aj(ω)Πω=0f 1 ^ j ^ g- Then the g necessarily
loxodromic transformations As generate a marked Schottky group G =
<AX, •••, Agy of genus g with ω as a fundamental region. In particular,
if all Cj (j = 1, 2, , 2g) are circles, then we call Al9 , Ag a set of
classical generator of G. A classical Schottky group is a Schottky group
for which there exists some set of classical generators.

DEFINITION 1.2. We say two marked Schottky groups G =
<AW , Ag) and G = (Alf , Ag} to be equivalent and denote the fact
by G ~ G if there exists a Mobius transformation Γsuch that As = TA,T~l

for all j = 1,2, , g. The Schottky space of genus g, denoted by @g,
is the set of all equivalence classes of marked Schottky groups of genus

DEFINITION 1.3. The classical Schottky space, denoted by @J, is
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defined to consist of all elements of ©^ for which there exists some
set of classical generators. We denote by @J° the set of all equivalence
classes of marked Schottky groups G = (Al9 , Ag} of genus g such
that Alf , Ag is a set of classical generators.

1.2. In this paper, we only consider the spaces @2, @j|, and @S° of
genus g = 2. Let G = <AX, A2> be a marked Schottky group. Let x3-
(|λy| > 1), p, and p 2 + i (i = 1, 2) be the multiplier, the repelling and the
attracting fixed points of Ajf respectively. We define tά by setting ts —
1/χ. (j = 1, 2). Thus tseD* = {z\0 < \z\ < 1}. We determine a Mobius
transformation T by Tfa) = 0, Γ(p8) = °° and T(p2) = 1 and define p by
p = Γ(pj. Thus /o 6 C - {0, 1}.

REMARKS. ( 1 ) Let Go = <A10, A20> be a fixed marked Schottky
group. Let C10, C30; C20, C40 be mutually disjoint Jordan curves and ω0

a fundamental region as in Definition 1. Let C50 be a Jordan curve in ω0

such that C10 and C30 (resp. C20 and C40) are in the interior (resp. the
exterior) of Cδ0. Then Σo = {Clo, C20, C30, C40; C50} is a standard system of
Jordan curves (see [14, p. 558] for the definition).

( 2 ) We can define a mapping φ of @2 into Z>* 2 x(C- {0, 1}) by
setting φ([G]) = (tl9 t2, p), where [G] denotes the equivalence class of G,
that is, a point in @2. We denote by @2(2Ό) the image of @2 under
the mapping φ. We call @2(2Ό) the Schottky space associated with Σo.
We similarly define the classical Schottky space associated with Σo, which
is denoted by @2(2Ό) > and we can similarly define the space @2°(2Ό).
Conversely χlf χ2 and p4 are uniquely determined from a given point
T — (*i, ί2> |0)e ί )* 2 x(C— {0, 1}) under the normalization condition px = 0,
p3 = oo and p2 = 1; we define λ, (i = 1, 2) and p4 by setting λy = l/ίy

and p4 = |O, respectively. We determine A^r, «), A2(r, «) 6 Mob from τ as
follows: The multiplier, the repelling and the attracting fixed points of
Aj(τ, z) are λ, , Vό and p2+j, respectively. Thus we obtain a mapping ψ of
D * 2 x ( C ~ {0, 1}) into Mob by setting ψ{τ) = <Ax(r, z), A2(τ, z)). Then we
note that ψφ = id. (see [13, pp. 28-29] for the detail).

DEFINITION 1.4. A Mδbius transformation A(z) = (az + b)/(cz + d) is
called a reαϊ Mobius transformation if α, 6, c, deR and ad — δc Φ 0. If
G = <Aj, , Aff> is a marked (classical) Schottky group such that As is
a real Mobius transformation for each j — 1, 2, , #, (that is, ^([G]) e JB3

if 0 = 2), then we call G a marked (classical) Schottky group of real
type.

In the case of g = 2, there are eight kinds of marked (classical)
Schottky groups of real type as follows.
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DEFINITION 1.5. Let (t19 t2, p) be the point in @2(2Ό) corresponding
to the equivalence class [G] of a marked Schottky group G = (Al9 A2>.

(1) G is of the first type (Type I) if t, > 0, t2 > 0 and p > 0.
(2) G is of the second £?/pe (Type II) if t, > 0, ί2 < 0 and p > 0.
(3) G is of the third type (Type III) if t, > 0, £2 < 0 and p < 0.
(4) G is of the fourth type (Type IV) if tγ > 0, £2 > 0 and <o < 0.
(5) G is of the fifth type (Type V) if tx < 0, £> > 0 and /O > 0.
(6) G is of the sixth type (Type VI) if t, < 0, ί2 < 0 and p > 0.
(7) G is of the seventh type (Type VII) if ίx < 0, t2 < 0 and ^ < 0.
(8) G is of the ei^ίfc type (Type VIII) if ί : < 0, t2 > 0 and p < 0.

DEFINITION 1.6. For each k = I, II, , VIII, we call the set of all
equivalence classes of marked Schottky groups of Type k or the set of
all points (tlf t2, p) of Type k the real Schottky space of Type fc, and
denoted it by Rk&2.

DEFINITION 1.7. For each ft = I, II, , VIII, the intersection of Rjβ2

with @2(2Ό) is called the real classical Schottky space of Type ft, and is
denoted by Rjβl. We denote by Rjβf the intersection of Rk&2 with

for each k = I, II, , VIII.

2. Automorphisms of a free group on two generators.

2.1. Let G = (Alf A2) be a free group on two generators. We will
use the following theorem in §§4 and 6.

THEOREM A (Neumann [6]). Then group Φ2 of automorphisms of G
has the following presentation:

Φ2 = <JV l f ΛΓ2,

where

N,: (Alf A2) κ> (A19 Λ"1) , N2: (Λ, A2) h-> (A2, A,)

and

Nz\ (Alf A2) H> (A19 A,A2) .

Let G = <Ai, A2> be a marked Schottky group. Then S = Ω(G)/G is
a compact Riemann surface of genus 2, where i2(G) is the region of
discontinuity of G. The homeomorphisms of the Riemann surface S
induced by the elements of Φ2 include orientation preserving as well as
orientation reversing ones. The mapping Ns preserves orientation, while
iVi and N2 reverse orientation.
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2.2. Let E be the space of marked free groups on two generators.
By defining Nd (j = 1, 2, 3) as in Theorem A for each G = <Alf A2> e E,
we can regard Nj as automorphisms of E. If G = (Alf A2) and G =
(Alf A2> are equivalent marked free groups on two generators, then
N3{(Alf A2)) is equivalent to N3-((A19 A 2 » for each j = 1, 2, 3. Therefore
we can regard N3 (j — 1, 2, 3) as automorphisms of the space of all
equivalence classes of marked free groups on two generators.

DEFINITION 2.1. Let φx and <f>2 be automorphisms of G = (Alf A2).
We say φλ and φ2 are equivalent if φx(G) is equivalent to φ2{G), and denote
this by Φi~ φ2

DEFINITION 2.2. Let G = (Alf A2) be a marked Schottky group and
Φ2 the group of automorphisms of G. The modular group of the Schottky
space of genus 2 or the Schottky modular group of genus 2, which is
denoted by Mod(@2), is the set of all equivalence classes of orientation
preserving automorphisms in Φ2. We denote by [Φ2] the set of all
equivalence classes of automorphisms in Φ2.

Let (ίx, ί2, /0) be the point in @2(2Ό) corresponding to a marked Schottky
group G = (Alf A2). Let faϋ), t2(j), p(j)) be the images of (f19 t2, p) under
the mappings N5 (j = 1, 2, 3), that is, (^(1), ί2(l), p(l)), W), U2), p(2))
and (ίi(3), t2(3), p(S)) are the points in @2(^o) corresponding to marked
Schottky groups (A19 Λ" 1), <A2, At> and <Alf AXA2>, respectively. Let p
and g be two solutions of the equation

U l - t 2 ) z 2 - ( ρ - t 2 - ptj2 + Q z + ρ ( l - « , ) = < ) .

We set X—p — t2 — ptxt2 + ^ and Y = p — t2 + ρtxt2 — ίlβ Then by easy
calculation, we have the following.

LEMMA 2.1. ( 1 ) ^(1) = tlf t2(l) = t2 and ρ(l) =

(2 ) tx(2) = ί2, ί.(2) = ίx α^d |O(2) = p.

(3 ) ί,(8) = tl9 ί,(3r + l/ί2(3)1/2 = YHtiΠPiP - D),

/or Ttype I

= ί w / w "ί2)) v p > °
l M - Q) if p < 0 and q<0,

and for Type IV,

= (X2 - 4ί l | 0 (l -
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2.3. Let A(z) = (az + b)/(cz + d), ad — be = 1, be a loxodromic trans-
formation. We denote by λ(A) (|λ(A)| > 1), p(A) and q(A) the multiplier,
the repelling and the attracting fixed points of A, respectively. We
define t(A) and p(A) by <(A) = l/λ(A) and p(A) = q(A)/p(A), respec-
tively, if p(A) Φ 0. Let (ίx, t2, /o) be the point in @2UΌ) corresponding
to a marked Schottky group G = <AX, A2>. We can set

A,(z) = zft,

and

A2(z) = ((P - « « + p(t2 ~ i))/((i - *o« + (t2p - 1)).

We note that t5 = ί(Ay) (i = 1, 2) and p = ρ(A2). We denote by Z the
set of all integers. We easily see the following lemmas.

LEMMA 2.2. (Aϊ\ Aϊ1} is equivalent to (Alf A2).

PROOF. We set T(z) = p/z. Then TAr'T'1 = A, and TA^T'1 = A,.
q.e.d.

LEMMA 2.3. If I + m = n, I, m, neZ, then (Alf A"A2) is equivalent
to (Alf ATA2A[).

LEMMA 2.4. Let tx be a real number with 0 < tx < 1. Assume that

1/ί* < P < l/£f+1 for an integer k. Let m, neZ. Then
(1) p{An

λA2) > p{ATA2) ifn>m;
(2) t(AΐA2) < t(A?A2) if \n + k\ > \m + k\ and

t{An,A2) = ί(AΓA2) i/ |n + k\ = \m + k .

LEMMA 2.5. Lei tλ be a real number with 0 < tt < 1. Assume ίfcαί
— l/ίi+1 < p < — 1/ίf /or an integer k. Let m, neZ. Then

(1) /O(AΓAO < P(ATA2) <0 if n>m;
(2) t(A?A2) < ί(AΓA2) ΐ / | n + fc|>|m + fc| and

£(A?A2) = ί(AΓA2) i/ |n + k\ = \m + k\.

We define τ(A)2 by τ(A)2 = ί(A) + (l/ί(A)) + 2 for a Mobius trans-
formation A(z). By noting that

we have the following lemmas:

LEMMA 2.6. (1) Lei /O > 1 and let n be an integer.
(i) // n > 0, ίfeen ί(AM2) < tiA^A^1) and p(An

xA2) >
(ii) If n < 0, ίfeen ί(A?A2) > ^(AMr1) and p{An

xA2) >
(2) Let 0 < p <1 and let n be an integer.
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( i) // n > 0, then t(A?A2) >
(ii) If n <0, then t(AΐA2) <

and p(A?A2) < ρ(AΐAϊλ).
and p(AlA2) < ρ(AlA2

ι).

( i)
(ii)

(i)
(ii)

LEMMA 2.7. ( 1 ) Let p < — 1 and let n be an integer.
If n> 0, then t(A?A2) < KAlAς1) and p{AlA2) < pίAlAϊ1).
If n <0, then t(A?A2) > t(AlA2

x) and p(A?A2) <
( 2 ) Let — 1 < p < 0 and let n be an integer.
If n > 0, then t(A?A2) > t{An

λA2

ι) and p{An

xA2) >
If n < 0, then t(AΐA2) < t{AlA2

x) and p(An

λA2) >
( 3 ) Let p — — 1 ami let n be an integer. Then t(A"A2) —

LEMMA 2.8. Let I, m, ne Z. Then
( 1 ) KAΓAΓ1) = t(ArnA2) and piAΐA^pUrA,) = 1.
( 2 ) t(AΐA2) = tiAΓA;1) and p(AίA^p(ArArι) = 1.
( 3 ) t(AΐA?) = t(ATAΐ) and ρ(A?A?) = ρ{A?Aΐ).
( 4 ) t(A^ATA[) = t(Aΐ+ιAT) and p(A?A?A\) = p(A?+ιA?).

3. The first type The domain of existence.

3.1. In this section we will determine the shape of the real classical
Schottky space R&l of type I in R\ Throughout this section let

= z\tγ

and

A2(z) = ((p - ρ(t2

where 0 < ίx < 1, 0 < £ 2 < l and p > 0.
fundamental in this section.

- Qz + (pt2 - 1)) ,

The following proposition is

PROPOSITION 3.1. Fix tx with 0 < tx < 1.

( 1 ) Let 1 < p < l/ί lβ // β/2 = (1 - t{/2p1/2)/(p1/2 - ί}/2), ίfce^ A.A,"1 is
a parabolic transformation whose fixed point is p1/2t^1/2. Furthermore
G = (Alf A2) is a discontinuous group and the region bounded by the
following four circles Clf C2, C3 and C4 is a fundamental region for G:

Cx: \z\ = pVHY2,
C2: \z - {(1 + p)/2 + p1/2t{/2}/2\ = {(1 + ρ)/2 - p1/2t\/2}/2,
C3: \z\ = p1/2tll/2,

( 2 ) Let t,< ρ<l. If

AiAz is a -parabolic transformation whose fixed point is pmtzm.
Furthermore G = (Alt A2> is a discontinuous group and the region
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bounded by the following four circles Cu C2, Cs and C4 is a fundamental
region for G:

C2: \z- {p1/2tτ1/2 + (1 + p)/2}/2\ = {^Γ 1 / 2 - (1 + p)/2}/2,
Cs: \z\ = pVHr1/2,
C4: \z- {(p + ί2)/(ί2 + 1) + p1/2t\/2}/2\ = {(p + ί2)/(ί2 + 1) - p1/2t{/2}/2.

This proposition is proved by straightforward computations.
For the sake of simplicity, we introduce the following notation:

for each integer n.

PROPOSITION 3.2. Fix tx with 0 < ίx < 1.
( 1 ) Let 1/ί""1 < p < 1/tι for a positive integer n. Then the inter-

section point of two curves

K~{n): tl/2 = -«.,._!(«!, p) and K+(n): t\/2 = ί2fn(t lf /o)

is P(n):= (tlf t2,n(tγ\ pM), where

t (t γn - ^

(l - trψ2 + α - t?y2

and
+ (2n—l)/2 _L 1 _l //I +n—ΓvΛI *n\\l/2

Q u \i/2 Jo ~r 1 ~r tv ̂  — *α A 1- — ^l/j

( 2 ) Lei tι<p< ti'1 for a positive integer n. Then the intersection
point of two curves

K-(-n): t\/2 = -«,,»_!&, pr1 and K+(-n): t\/2 = thn(tlf p)'1

is P(—ri):= (t19 ί2,-n(*i)> P-n(td)> where

a +n\l/2 (Λ 4.n-\\\l2

We have this proposition by elementary calculations.

REMARKS. ( 1 ) «,,„&) = t2,_n{Q, pJLQp-Jίtd = 1 and P(l) = P ( - l )
(cf. Lemma 2.8).

( 2 ) {^n(ίi)} and {ί2,n(̂ i)} (w = 1, 2, 3, ) are monotone increasing and
decreasing sequences, respectively.
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( 3 ) Both {<o_n(ίi)} and {i2f_«(ίi)} (n = 1, 2, 3, •) are monotone
decreasing sequences.

PROPOSITION 3.3. Fix tx with 0 < tx < 1.

( 1 ) Let 1/fr1 < P < pn(ft) (n = 2, 3, •). // ̂ / 2 = -ί2,»-i(ίi, p), then
Al~ιA2

ι is parabolic.
( 2 ) Let Pnitj) <. p < 1/ti (n = 1, 2, •)• i f ^ / 2 = *2,n(ίi> P)t then

AlA2

ι is parabolic.

o L/et P-TSJΊ) \ r <C ίi ^ = Z, o, •;. lj t2 == —ί2,n-ivίi> r/ >

ίfceti A " " 1 ^ is parabolic.

( 4 ) Lei tΐ < p < |0_n(ί1) O = 1, 2, •)- // ^ / 2 = ί2,n(ίi> I0)"1* ^ ^

A?A2 is parabolic.

3.2. We introduce the following sets in J?3. For the sake of
simplicity, we write τ for a point (tlf t2, p)eR* in the definitions. We
set

H(ri) — {τ\t2 — 0, ί-(n-1} < p < ί p , 0 < ^ < 1} (n ̂  1) ,

H(-ri) = {r|ί2 = 0, ί? < ^ < fr 1, 0 < ίx < 1} (n ̂  1) ,

ίf(l, t̂ ) = {r|ίχ = 0, t2

{n~1] < |O < ί2~n> 0 < ί2 < 1} (w ^ 1) ,

iϊ( —1, —^) = {r|ii = 0, ί? < ί> < ί r \ 0 < t2 < 1} (w ̂  1) ,

F~(n) = {τ\tl/2 = - ί , , , ^ , p), fΓ(n-1) < ί> < ^ ( ί j , 0 < tx < 1} (n ̂  2) ,

F - ( - n ) = {τ\t\n = - ί ^ n ^ ί i , /o)"1, ^(ίx) < ί> < fr 1, 0 < ίx < 1} (n ̂  2) ,

^o = {τ|0 < tλ < 1, 0 < t2 < 1, |O = 1} .

3.3. We now inductively introduce many surfaces from F+{n) and
F~(n). For n0 = 1, 2, 3, and m0 = 2, 3, , we let

F+(l, n0) = N2(F+(n0)) (resp. F+(-l, -n0) =

and

F~(l, m0) = N2(F~(mQ)) (resp. F~( —1, — m0) =

respectively, where iV2 is the automorphism defined in §2.
For n = 2, 3, , n0 = 1, 2, and m0 = 2, 3, , we let

F~(n, m0) = N?~\F-(1, m0)) and F~( — n, — m0) = -N'r(n"1)(-Pτ"( —1> -w 0 )) ,

where iSΓ3 is the automorphism defined in §2.
Inductively, we now define: For n = 2, 3, , we let
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F+(l, nk, , nlf w0) = N2(F+(nk, , wx, w0)) ,

F+(n, nk, , nlf w0) = NΓ\F+(1, nk, , w,, w0))

f o r ns ^ 1 (0 ^ j ^ fc)

i ^ - ( l , wΛ, , w l f w0) = N2(F~(nk, , wx, w0)) ,

-P-(w, w*, , wx, w0) = N?-\F~(1, nk, , ww w0))

for w0 ^ 2 a n d w, ^ 1 (1 <: i ^ fc)

i ^ + ( - l , -w f c , •••, -Wi, - w 0 ) = N2(F+(-nk, •••, - w l f - w 0 ) )

F+(-n, -nk, . . . , - w , , - w 0 ) = ^ ^ ^ ( ^ ( - l , -nk, ••., - w l f - w 0 ) )

f o r w, ^ 1 (0 ^ i ^ fc)

F-{-l, -nk, •••, - w x , - w 0 ) = N2(F-(-nk, •••, - w l f - w 0 ) )

F~(-n, - n k , •••, - w l f -Wo) = N^^iF'i-l, - n k J •••, - n l f - w 0 ) )

for w0 ^ 2 and Wy ^ 1 (1 ^ i ^ fc) .

REMARKS. (1) F+(n, 1) = F+(n) and F+(-w, -1) = F+(-n)
f or w = 1, 2, .

(2 ) F-(w, 1) = î -(w) and F-(-w, -1) = F~(n) for w = 2, 3, .

3.4. We have the following Lemmas 3.1, 3.2, 3.3 and 3.4 by
Proposition 2.1 and straightforward calculations.

LEMMA 3.1. Let Nt be the automorphism defined in §2.
( 1 ) N^F+in,, , nlf w0)) - F+(-nkf , -w l f -w0) for nd = ± 1 ,

± 2 , (0 ^ j ^ fc).
( 2 ) NjiF'in^ , Wi, w0)) = F~(-nkf , -w l f -w0) /or w0 = ± 2 ,

± 3 , αweZ w, = ± 1 , ±2, (1 ^ j ^ Jfc).
( 3 ) N1(F0) = F0.

LEMMA 3.2. Let Ns be the automorphism defined in §2.
( 1 ) N3(F+(n0)) = F+(n0 + 1) /or w0 ^ 1,

N3(F+(nk, nk_19 , w0)) = F+(nk + 1, w*.!, , w0) for nk ^ 1,

w, ^ 2 (0 ^ i ^ A? - 1), k ^ 1.

( 2 ) Nz(F+(-nk, -nk_ιy , -w 0 )) = F+{-nk + 1, - w , ^ , , -w 0 )

for n3- ̂  2 (0 ^ i ^ k).
( 3 ) N3(F-(n0)) = F~(n0 + 1) for nQ ^ 2,

N3(F~(nk, nk_19 , w0)) = F"(wfc + 1, nk_lf , w0) /or nk ^ 1,
w,. ^ 2 (0 ^ i ^ k - 1), A; ̂  1.

( 4 ) iV3(F-(-w0)) = F~(-nQ + 1) /or w0 ^ 3,
N3(F-(-nk, -nk_lf , -w0)) = F~{-nk + 1, - w ^ , , -w0)

for ns ^ 2 (0 ^ i ^ fc), fc ^ 1.

LEMMA 3.3, Lei iV8 be automorphism defined in §2.
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( l ) J V Γ W D ) = {&, i , D l o < ίx < i}.
(2 ) N?(F-(2)) = {(tu 1, 1) 10 < ίt < 1}.
( 3 ) Ns(F+( -1)) = {(ίu 1, 1) 10 < ίx < 1}.
(4 ) # 3 ( F - ( - 2 ) ) = {&, 1, 1) |0 < U < 1}.
(5 ) N3(F0) = {(tu 0, 1/tJ 10 < t, < 1}.
( 6 ) N

LEMMA 3.4. Let iV3 be the automorphism defined in §2.
( 1 ) ΛΓ 3CF+(-l, - 2 ) ) = F+(l, 2),

i V . ( F + ( - l , - O ) - F + ( l , 2, n 0 - 1) (n0 ^ 3).
( 2 ) J V 3 ( F + ( - l , - 2 , -nk_2, , - n 0 ) ) = i^ + (l, nk_2 + 1, ^fc_3, , ^ 0 ) ,

i V 3 ( F + ( - l , - % _ ! , - % _ 2 , , - ^ O ) ) = F + ( 1 , 2 , nk_λ-l, nk_2, ,w0)
K - i S 3)

( 3 ) Ns(F-(-l, - 2 ) ) = {(ίlf 1, l ) | 0 <tt< 1},
iSΓ 8(F-(-l, -Wo)) = F " ( l , 2, ^ 0 - 1) (n0 ^ 3).

( 4 ) ΛΓ 3 (F-(-l , - 2 , -nk_2, , -w 0 )) = .P-(l, nk_2 + 1, ^&_3, , nQ),
N Ά ( F - ( - l , - n k _ ί f - n k _ 2 , •••, - n o ) ) = F ~ ( l f 2 f n k _ x - \ , n k _ 2 , •• , ^ 0 )

for nk_x ^ 3 (fc ^ 2).

3.5. We denote by Λf(l) (resp. Af( —1)) the three-dimensional manifolds
bounded by ίf(l), i/(l, 1), F + ( l ) and ,P0 (resp. H{-ϊ), H(-l, - 1 ) , F + ( - l )
and Fo), and denote by M{n) {n = ±2, ± 3 , •••) the three-dimensional
manifolds bounded by three surfaces H(ri), F+(n) and F~(n). Then we
easily see the following lemmas.

LEMMA 3.5. If (t19 t2J p)eRτ®?, then 1 < p < lfc or tx < p < 1 for
each o < ίi < l

LEMMA 3.6. Let (t19 t2, p) e R&T. If 0 < t[ ^ t, and 0 < t[ ^ ί2,

(t'1,t'2,p)eR1&°2°.

From Proposition 3.1 and Lemmas 3.5 and 3.6, we have the following.

PROPOSITION 3.4. R&l0 = M ( l ) u M ( - l ) .

3.6. We denote by Jίϊ the set {(tlf t2, p) eRB\0 < t, < 1, 0 < t2 < 1,
p > 0}. We denote by M(nk, nk_19 , n0) (resp. M(—nk, —nk_19 —nQ)) the
three-dimensional manifolds in R\ bounded by F+(nkf nk_ly , nQ) and
F-(nkfnk_19 •• , ^ 0 ) ( r e s p . F+(-nkJ - n k _ 1 9 •••, - n 0 ) a n d F~{-nk9 - n k _ 1 9

• , -^o)) f ° r Kh ̂  1 and nβ ^ 2 (0 ^ i ^ & - 1).

REMARK. Λf(w) = M(n, 1) αticί M(-n) = lf( —n, - 1 ) /or % ^ 2.

The following proposition follows from Lemmas 3.1, 3.2, 3.3 and 3.4.

PROPOSITION 3.5. Let Ns (j = 1, 2, 3) 6β the automorphisms defined
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in §2. Then for either nk^lf n5 ^ 2 (0 <^ j ^, k — 1), or nk ^ — 1 ,
n y ^ - 2 (0 ^ i ^ k - 1),

( 1 ) ( i ) 2Vi(Jlf(l)) = M ( - l ) , ^(AΓζ-l)) = M(l),
(ii) N^Minjc, nk_lt , w0)) = Λf(-wfc, -w*^, , -n0) (k^ 1);

ί 2 ϊ N(M(n v . n )) - ί ^ ^ 1 ' ^ n*-» ' * ' ' n^ lf n*> φ ± λ

( 2 ) i V 2 ( M ( ^ , ^ . , , , n0)) - \M{Uk_i9 Uk_2f . . . 9 U o ) ifnh=±if

( 3 ) ( i ) N5(M(nk, nk_lf , n0)) = M(nk + 1, w ^ l f , nQ) if n k ^ l

or nk ^ —2,
(i i) 2V,(M(-1, -2)) = M(1,2),

iV,(M(-l f -n 0 ) ) = M(l, 2, ^ 0 - 1) for n0 ^ 3,
(iii) iV3(M(-l, - 2 , -n f c_ 2, , -w0)) = Λf(l, w*-2 + 1, %-s, , ^o)/or

% ^ 2 (0 ^ i ^ fc - 2), fc ^ 2,
iV3CM(-l, -wfc_lf -^ Λ _ 2 , , - O ) = Λf(l, 2, % _ ! - l , nk_2, , w0)

/or ^A_! ^ 3, % ^ 2 (0 ^ j ^ A; - 2), fc ^ 2.

3.7. Noting that R&l = U (̂@2

00) = U^(M(1)UM(~1)), where 0 runs
through Mod(@2), we have the following theorem from Proposition 3.5
and Theorem A.

THEOREM 1.

Ri®l = U U (M(nk, nk_lf , n0) \jM(-nk, -nk_lf , -n0)) .
k=0 nk^l

PROBLEM. It is well-known that the classical Schottky space does not
coincide with the Schottky space (Marden [6], Zarrow [16]). Thus we
could ask: Does the real classical Stottky space Rk®

0

2 of the k-th type
(k = I, II, , VIII) coincide with the real Schottky space Rk&2 of the k-th
type!

From the above theorem and Purzitsky [9, Theorem 3], the answer
to the problem is affirmative for the first type.

COROLLARY 1. R&l = Rτ&2.

REMARK. An example due to Zarrow [16, p. 721] shows that the
answer to the problem is negative for the second type. However, recently,
we showed that the example constructed by Zarrow turns out to be a
classical Schottky group (cf. [16]). We have reasons to believe that
i2n@2, βy@2° and JBVn@2 coincide with JBΠ@2, RΎ&2 and i?vΠ@2, respectively
(cf. [15]).

From Theorem 1, Corollary 1 to Theorem 1 and remarks after
Proposition 3.2 we have the following.

COROLLARY 2. Let G = (A19 A2) be a purely loxodromic discrete group
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such that tγ > 0, t2 > 0 and p > 0, where (tlf £2, /O) ΐs ί/&e pom£ m £>*2x
(C— {0, 1}) corresponding to (A1} A2>. TΛew ίfee following valids.

( 1 ) Ift1'^c1 and t2 ^ c2 /or some positive constants c1 and c2, £/ιe%
1/c ^ p ^ c for a positive constant c with c > 1 depending on cx and c2

( 2 ) If tλ^ cλ for some positive constant cx and if p ^ c or p fS 1/c
/or some constant c > 1, ίΛen 0 < ί2 ^ c2 /or α constant c2 (0 < c2 < 1)
depending on cx and c.

4. The first type—Fundamental regions.

4.1. In this section we will determine fundamental regions for [Φ2]
and Mod(@2) acting on i?i@2. Throughout this section let Ns (j = 1, 2, 3)
be the automorphisms defined in §2.

We set

τutlf p) = a - ptr~^)/(p - e~i)/2)
for 1/ίJ"1 ^ P^ 1/ί? , 0 < ίx < 1 {n = 1, 2, •)

and

for tl^p^ tΓι , 0 < tx < 1 (Λ = 1, 2, • •)

We have the following proposition by straightforward computations.

PROPOSITION 4.1. Fix tt with 0 < tx < 1.

( 1 ) L ^ 1/tr1 ^ P ^ l/ί? (n = 1, 2, . ) . If ί, = Γ*,»(ίi, Λ, then
<AX, A2) is e ^ α ϊ to (Alf Al^A^ as marked groups. The points P{n) =
(*i> *2fn(*i)> i°n(*i)) dfined in %Z and (tlf 0, trί2n~~1)/2) lie on the curve t2 =
T2,n(tlf p).

( 2 ) Lettΐ^p^ tΓ1 (n = 1, 2, ). If t2 = T2i_n(tlf p), then (A19 A2) is
equal to (Alf A2

1

n~1A2) as marked groups. The points P( — n) — (tl9 ί2f-n(*i)>
P-n(tι)) defined in §3 and (tlf 0, ί?71"1) lie on the curve t2 = T2t_n(tly p).

By Lemma 3.1 (3), the set of invariant points in i?i@2 under the
mapping Nx is the surface Fo defined in §2. By Lemma 2.1 (2) we easily
see the following.

PROPOSITION 4.2. The set of invariant points in i?i@2 under the
mapping N2 is the surface

{(tlf t2, p)eR1&2\t1 = t2, 0 < t, < 1, p > 0} .

We introduce the following sets in R\; For n = 1, 2, , we set

i(%) = ί(ίi, «» /O) €Λ! | ί 8 = Γ2fn(ίlf ί>), /O^ίJ ^ |O < 1/t 0 < tx < 1}

and
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L(-n) = {(ίlf t2, ρ)eR\\t2 = T2)_n(tlf p)9 tl ^ p ^ p^{tx\ 0 < t, < 1} ,

where R\ is as defined in §3.6. Then we easily see the following by-
Lemma 2.1 (1) and (3).

PROPOSITION 4.3. (1) N^Liri)) = L(-n) for n = ± 1 , ±2,
( 2 ) Nz(L(n)) = L(n + 1) for n = 1, 2, . or n = - 2 , - 3 ,
( 3 )

REMARK. For a constant c, we set

A = ί(ίi, t2, p)eR1@2\l <p < l/tlf 0 < t, < 1, ί2 = c} .

Then the limit as c -> 1 of the images of Dc under ΛΓ3 is the set F~(2)
defined in §3.

4.2. Now we will determine fundamental regions for [Φ2] and Mod(@2)
acting on JBi@2. We set

iS = iV1iV8JV1 and T = N,N2 .

Then S and T are elements in Mod(Θ2). We easily see that T2 ~ 1 and
(TS)3 = 1, where T2 ~ 1 means that Γ2 is equivalent to the identity
mapping (see Definition 2.1). We introduce ρ(tlf t2) for 0 < tx < 1 and
0 < t2 < 1 as follows:

P(t19 Q = (1 + ίi/2ί2)/(ίϊ/2 + ί2) .

REMARK. Γ2fl(ίlf /o(tlf ί2)) = t2 and ^(ί,, r . , ^ , /9)) = p.

THEOREM 2. Sβί

= ί(ίi, «2, ί>) eΛ!@2 | l < ί>< /o(ίlf t2), 0 < ί2 < t l f 0 < ίx < 1}

ί 2)" 1 < |t) < p(tlf ί2), |O ̂  1, 0 < ί2 < ίlf 0 < t, < 1} .

Then FX([Φ2]) and jPi(Mod(@2)) are fundamental regions for [Φ2] and

Mod(@2) acting on i?i©2, respectively.

We obtain the proof by combining Theorem 3 and Proposition 4.4
which follow.

4.3. LEMMA 4.1. N2 = 1, Ni = 1, N,N2 - N2NU N.N^N, - 1 α^d

S - iSΓΓ1.

This lemma and the following lemma come from straightforward
calculations.

LEMMA 4.2. NMNi = Sn> Ni
N2N?N2 - TSnT for each integer n.
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Let A, B, C, be distinct Mobius transformations. A word W in
Ay By C, is a finite sequence

/1/2/3 * * * /m-l/m t

where each of the fk(k = 1, 2, , m) is one of the transformations
AyByC, , A~\ B~\ C~\ . . . . The length L{W) of T7 is the integer m.
For convenience we introduce the empty word 1 of length zero. If we
wish to exhibit the transformations involved in W, then we write

By Theorem A in §2, an element ψ in Mod(@2) is represented in one
of the following seven ways: (1) ψ=W(N1) = Nln

f neZ; (2) ψ =
W(N2) = Nt\ n e Z; (3) ψ = T7(ΛΓ3) = Nz

n, n e Z; (4) ψ = T7(iVlf ΛΓ2) where
L(TΓ(JVlf JV2)) is even and f =* WTO, TF(ΛΓ2); (5) ψ = W(Nlf NΛ) where the
number of JV?1 in W(N19 N5) is even and ψ Φ W{Nύ, W(NΛ); (6) ψ = (ΛΓ2, i\Γ3)
where the number of ΛΓf1 in W(N2f Ns) is even and ψ Φ W(N2)t W(NS);
(7) ψ = WίΛΓx, iV2, JW8), where the sum of the number of iVf1 and NΪ1 in
W(N19 N2y Nz) is even and W(Nlf N29 N3) is neither of (1) through (6) above.

THEOREM 3. The Schottky modular group Mod(©2) is generated by S
and Ty that is,

Mod(@2) = (Ty S\ T2 - 1, (TSf = 1> .

PROOF. We will show that ψ e Mod(@2) is represented by T and S
in each of the above seven cases.

Case (1). Since ψ = N?n and N} = 1, we have ψ = 1.
Case (2). For the same reason as in Case (1), ψ = 1.
Case (3). Since N3 - S'\ we have ψ = T7(iV3) - ΛΓ3

n = S~\
Case (4). From Lemma 4.1, we see that ψ = N,N2 = T9 ψ = N2N, — Tf

or T̂  = 1.
Case (5). In this case we have four subcases: (i) ψ = N1N^1N1

NMkNlf (ii) ^ = NM'Ni W , (in) ψ = N^N, N.N^N.y (iv) ψ =
N^Nj. iViiVs71*. Since the number of Λ/Ί is even, we have ψ> =

ί, iSΓ3) ^ Sm for some integer m in each case by Lemmas 4.1 and 4.2.
Case (6). Similarly as in Case (5), we have four subcases:
( i ) ψ = N2N?N2 N2N^N2 - (TSnίT)S-n*(TSn*T) - . Snk~KTSnkT)y

(iii) t = iVjiiV, N2N^N2 - S~ni(TSn*T)S-n* (Γfif"*Γ), and
(iv) ψ = NpNJfp iSΓ22Vjp - S-nί(TSn*T)S~n* (TSnk-^T)S-nK
Case (7). We have the following four subcases:
( i )k ψ= KNPUJWU. UkN^Uk+lf

(ii )> f = E W ϋ^Vϊ ϋ i . . . UkNψy
(iii), f = N?UxNpU2 Uk_MkUky and
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(iv), t
where Ϊ7, (i = 1, 2, , k + 1) are words Wt(N19 N2) in JVΊ and N2 such
that ΣJt-iUWANu N2)) is even.

By induction we will show that ψ = W(Nlf N2, N3) is represented by
S and T. First we note that NXN2 ~ N2N,. For fc = 1,

( i X φ = UiNpUi. There are three possibilities: ψ = N1Nζ1N2 =

(ii X ψ =
(iiiX ψ =

We assume that in each of (i)y through (iv)y (i = 1, 2, , k) ψ is
represented by S and T, that is, α^= Wifl(iS, T) (j = 1, 2, , fc; Z =
1, 2, 3, 4), where the latter numbers 1, 2, 3, 4 correspond to i, ii, iii, iv,
respectively. Then we will show that in each of (i)A+1 through (i
ψ is represented by S and T.

( ( ^ ^ ^ ^ ^ ^ X ^ ^ ) for UM = NιNi or

((UM'U 2 .. UkN?Uk+ltl)(Uk+lί2N
n^Uk+2) otherwise ,

where Uk+1>1Uk+1}2 = Uk+1 and L(Uk+1>2) is odd. In t h e first case ψ =
WkA(S, T)WltZ(S, T) and in the second case ψ = Whfl(S, T)Wltl(S, T).

K i J , k^)(k+1N^) for ϋ , + ι = N,N2 or iV2iVx .

{(UM1 U2. > UkNϊkUk+ltίχUk+lι9Np») otherwise ,

where Uk+lylUk+1}2 = Uk+1, and L(Uk+ljl) = 1 and L(Uk+li2) = 2. In the first
case ψ= Wk>2(S, T)Wlf2(S, T) and in the second case ψ=Wk>1(S, T)Wlt2(S, T).

•-1 Uk+1) for Uk+1 = NλN2 or N2N±

1Ϊ71 Uk_1NlkUk^(Ukt2Nlk+1Uk+^ otherwise ,

where UkΛUk>2= Uk and L(Uk>2) is odd. In t h e first case
Wk>s(S, T)WlfS(S, T) and in the second case f = WktS(S, T)Wlfl(S, T).

. . . . . „ „ .,i^+2) for U^^N.N, or „ .

1/χ^rr UkN%k+1Uk+1)N%k+z o t h e r w i s e .

In the first case <̂  = TFfc>4(S, T)W1>2(S, T) and in. the second case
Wkti(S, T)S~nk+κ Our proof is now complete.
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4.4. The boundary of i^i(Mod(@2)) consists of the following seven
surfaces Bx through B7: We recall the terminology p(t19 t2) introduced
in §4.2 and we set

J5i = {(ti, t2, ρ)eR*\p = p(tlf t2), 0 < t2 ^ t19 0 < t, < 1} ,

B2 = {(ίlf ίa, /o) e Rz 110 = ^(ί l f ί£)-\ 0 < t2 ^ t19 0 < ίx < 1} ,

B5 = {(tlf t2, ρ)eR*\l<p^ p(tlf ί2), ί2 = tx, 0 < tx < 1} ,

B, = {(ίlf ί* /o) e Λ31 /o(ίlf Q-1 ^ p < 1, t2 = tlf 0 < t, < 1} ,

5 β = {fe ί2, ί>) e i ϊ 3 | 0 <ti£t1,O<t1<l,ρ = l} ,

Bβ = {(ίlf ί2, p) e i ί 3 | l < /o ̂  ίr1/2, 0 < tλ < 1, t2 = 0} ,

and

# 7 = {(ti, «2, Λ eR*\t\/2 ^ io < 1, 0 < ίx < 1, ΐ2 = 0} .

REMARKS. ( 1 ) Blf B2, Bz and JB4 are in the interior of J2i©2.
( 2 ) JB6, β 6 and β 7 are on the boundary of i?i@2.

We easily see the following by Lemma 2.1.

PROPOSITION 4.4. ( 1 ) S{BX) = B2 and T(B3) = B4.

( 2 ) S(Bβ) = B7.
( 3 ) T(B β ) = {(tlf t2, ρ)eR*\tί £t2<l,0<t1<l,p = l}.

5. The first type—Riemann surfaces.

5.1. The boundary of the Schottky space consists of the following
two kinds of points (cf. Rodriguez [11]):

(1) marked Mobius transformation groups which are limits of
marked Schottky groups;

(2) points which represent Riemann surfaces with nodes.
For (1), every boundary group G is discrete (Chuckrow [2]) and either
G is a cusp or Ω(G) = 0 (Rodriguez [11J), where Ω(G) is the region of
discontinuity of G. For (2), Bers [1] studied compact Riemann surfaces
with non-dividing nodes, and Sato [12], [13] studied Riemann surfaces
with non-dividing nodes and dividing nodes corresponding to points
on the augmented Schottky space. Furthermore Rodriguez [10], [11]
studied relationship between Schottky-type groups and Riemann surfaces
with nodes and cusps. In this section we will consider the following
problem: Which Riemann surface does a point on the closure of i2i@2

represent?

DEFINITION 5.1. A Riemann surface with nodes is a complex space
each point P of which has a neighborhood isomorphic either to a disk

l in C (with P corresponding to z = 0) or to the set
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\w\ < 1, zw = 0 in C2 (with Pcorresponding to z = w = 0). In the latter
case, P is called a

PROPOSITION 5.1. A point in @2(̂ Ό) represents a compact Riemann
surface of genus two without nodes.

This proposition is well-known.

PROPOSITION 5.2 (cf. Sato [12]). A point on the surface Fo =
{(tlf t2, 1) 10 < ίi < 1, 0 < t2 < 1} represents a compact Riemann surface of
genus two with one dividing node.

PROPOSITION 5.3 (cf. [12]). A point on the surfaces H(n), H(-ri),
H(l, n) and Hi —1, —n) defined in §3.2 represents a compact Riemann
surface of genus two with one non-dividing node.

P R O P O S I T I O N 5.4 (cf. [12]). A point on the set {{tlf 0, l ) | 0 < ίx < 1}

and {(0, t2, 1) 10 < t2 < 1} represents a compact Riemann surface of genus
two with one dividing node and one non-dividing node.

P R O P O S I T I O N 5.5 (cf. [12]) . A point on the set {(0, 0, p)\0 < p, p Φ 1}

represents a compact Riemann surface of genus two with two non-dividing
nodes.

PROPOSITION 5.6 (cf. [12]). A point (0, 0, 1) represents a compact
Riemann surface of genus two with one dividing node and two non-
dividing nodes.

5.2. Throughout this section, let p > 1 and c > 0. We set

A{z) = {{pc + l)z - p2c}/{cz - (pc - 1)} .

Then we have the following Lemmas 5.1, 5.2 and Corollary by straight-
forward computations.

LEMMA 5.1. A is a parabolic transformation whose fixed point is
z = p.

LEMMA 5.2. Let x > 0. (1) The minimum value of A(x)/x is
((pc + l)l(pc — I))2, which is attained at the point x = p(pc — 1)1 (pc + 1).

( 2 ) A(p(pc - l)l(pc + 1)) = p(pc + l)/(po - 1).

COROLLARY. Set

C2:\z- p2c/(pc + 1)| = p/(pc + 1)

and

C±:\z ~ p2cl(pc ~ 1 ) | = p/(pc - 1) .

Then the circle C2 touches the circle C4 at the point z = p, and A(C2) = C4.
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Let Aι and A2 be the Mδbius transformations as in §3.1. Then

AϊιAJt*) = {UP - Qz + tjiU - 1)}/{(1 - Qz + pt2 - 1} .

LEMMA 5.3. Let tψ = (ρ1/2t{/2 - l)/(ρ1/2 - t{/2) (K p ^ p2(t1))f where
p2(t2) is as defined in §3.1. Then (1) A^A2 is a parabolic transformation
whose fixed point is t[/2p1/2.

( 2 ) The minimum value of A^A2(x)/x for x > 0 is

(t[/2(ρ - 2t{/2ρ1/2 + l)/(2p1/2 - pt[/2 - t[/2))2

which is attained at x - p1/2(2p1/2 - pt\/2 - t\/2)l(p - 2t{/2ρ1/2 + 1).

PROOF. This follows from Lemmas 5.1 and 5.2 by substituting t\/2p1/2

and (1 - tJltl'^pvψ/2 - 1)(|O1/2 - t\/2) for p and c, respectively. q.e.d.

LEMMA 5.4. Let p and c be as in the proof of Lemma 5.3. Set

e = (p/(l + tMvc - l)l(pc + 1) - Upc + l)/(pc - 1)} .

Then (1) A^pipc - l)/(pc + 1) - s) = p(pc + l)/(pc - 1) + ε.
( 2 ) s = 0 if and only if

pv* = {if + 1 + (l - tx)(l + tJ^/ί^Ct1^ + 1) .

This lemma comes from straightforward computations.

COROLLARY. Set

1) + ε ,

where ε is as in Lemma 5.4. T%ew ^(CJ = C8.

LEMMA 5.5. Lei G = (A^ A2) 6e a marked discontinuous group. Let
φ(G) be the image of G under a mapping <j> in Mod(@2). Then φ(G) is a
marked discontinuous group and represents the same Riemann surface as
G does, that is, Ω(φ(G))/φ(G) is conformally equivalent to Ω(G)/G.

This lemma is well-known.

PROPOSITION 5.7. A point on the surfaces F+(l) - P(l), F+(-l) -
P( — 1) and F~{2) — P(2) represents a Riemann surface of genus one with
two punctures, where P(l), P( — 1) and P(2) are the sets defined in §3.1.

PROOF. This proposition for F+(l) - P(l) and F+(-l) - P ( - l )
follows from Proposition 3.1. Therefore we will only prove it for
F"(2) - P(2).

First we consider a marked group <Alf AΐιA2)>. Let Clf C2, C3 and
C4 be the circles as in corollaries to Lemmas 5.2 and 5.4, where p and
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c are as in the proof of Lemma 5.3, and ε is as in Lemma 5.4. Then
by corollaries to Lemmas 5.2 and 5.4 we see that the region bounded by
the four circles is a fundamental region for (Alf Aτ1A2)1 and that the
group (Alf ArλA2} represents a Riemann surface of genus one with two
punctures.

Next we consider a marked group (A19 A2). We easily see that
<Ai, A2) = N3((Alt A^Az)). Hence by iV3eMod(@2), Lemma 5.5 and the
first part of this proof, (Alf A2) represents a Riemann surface of genus
one with two punctures. q.e.d.

From Proposition 5.7 and Lemma 5.5, we have the following:

COROLLARY. Let P(n) {n = ± 1 , ± 2 , •••) be the sets defined in §3.1.
Then a point on the surfaces F+(nk, nk_19 , n0) — P{nk) and
F~(nk, nk_lf , n0) — P(nk) represents a Riemann surface of genus one
with two punctures.

PROPOSITION 5.8. A point on the set P{n) (n = ± 2 , ± 3 , •••) defined
in §3.1 represents a Riemann surface of genus zero with four punctures.

PROOF. We only consider this proposition for n = 2, since the other
cases follow from the case for n = 2 and Lemma 5.5. By Proposition 3.2,

Aίtj = (tr + l + (l - α i + t^WΛtϊ2 + l)
for n = 2. We easily see that both A^A2 and Ar2A2 are parabolic. Let
Clf C2, CΆ and C4 be the circles in the proof of Proposition 5.7 and let ε
be the number in Lemma 5.4. Then by Lemma 5.4 we see that ε = 0.
Therefore the circle C2 touches the circles Cx and C4, and the circle C3

touches the circle C4. Hence (Alf A^A2} represents a Riemann surface
of genus zero with four punctures. By Lemma 5.5, (Alf A2} represents
the same Riemann surface as <AX, A^A2) does. Our proof is now com-
plete.

5.3. We will consider which Riemann surfaces the other boundary
points of Rι&2 represent. In our coordinates (t19 t2J p), it is natural to
consider for the problem as follows:

(1) A point (tlf 1, 1) (0 < t, < 1) or (1, t2f 1) (0 < t2 < 1) represents
a Riemann surface of genus one with two punctures and one dividing
node.

(2) The points (0, 1, 1) and (1, 0, 1) represent Riemann surfaces of
genus one with two punctures, one dividing node and one non-dividing
node.

(3) The point (1, 1, 1) represents a Riemann surface of genus zero
with four punctures and one dividing node.
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(4) A point (tlf 0, l/tx) (0 < tx < 1) or (0, t2, l/ί2) (0 < t2 < 1) repre-
sents a Riemann surface of genus one with one puncture.

6. The real classical Schottky space of the fourth type.

6.1. In this section we will determine the shape of the real classical
Schottky space of the fourth type Rπ&l and fundamental regions for
[φ2] and Mod(@2) acting on RΪΎ&°2, and consider the relationship between
points on the closure of i?IV©2 and Riemann surfaces. We denote by Jίϊv
the set {(tly t2, p) 6 Rz \ 0 < tx < 1, 0 < ί2 < 1, p < 0}.

PROPOSITION 6.1. Let (tu t2, p) correspond to G = (Alf A2). If

then AiAzA^Aϊ1 is a parabolic transformation. Furthermore G is a
discontinuous group and the union of two open sets bounded by the
four circles C/. | z — a3- \ = r$ (j = 1, 2, 3, 4) is a fundamental region for G,
where

- pt2)(t2 - p) ,

- /oί 8)(ί 8 - P) ,

a2 = p ( l + ί x ) 2 ( ί 2 - l ) / ^ * . - p ) ,

r2 - p ( l - t j ) ( ί 2 - l ) / 4 ^ ( ί 2 - /o) ,

For given 0 < ίx < 1 and p < 0, we write ί2*(ίlf p) for t2 (0 < ί2 < 1)
satisfying the above equation (*). As in the proofs of Lemmas 3.5 and
3.6 and Proposition 3.4, we have the following.

PROPOSITION 6.2.

ΛIY@Ϊ° = {(ti, *» Λ e/23

IV|O < t2 < tί(t19 p), 0 < tx < 1, p < 0} .

THEOREM B (Nielsen [8]). Lei G = (Alf A2) and let Άx and Ά2 be the
images of Ax and A2 under any element of Φ2. Then Az1Az1Ά2A1 —
U(Aϊ1Ai~1AιA1)

±1U~1, where U is a word in Ax and A2.

From Theorem B, we have the following.

PROPOSITION 6.3. RlΎ&°2 .= R^&l0.

The following theorem follows from Proposition 6.3 and a result of
Purzitsky [9, Theorem 2].

THEOREM 4. RΪY&2 = R1Y®1 = R1Ύ&?.

6.2. Throughout this section let N3- (j = 1, 2, 3) be the automorphisms
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defined in §2.1. The following Propositions 6.4 through 6.7 follow from
Lemma 2.1.

PROPOSITION 6.4. The set of invariant points in R\γ under the
mapping N, is {(tlf t2, p) e JB|V 10 < tx < 1, 0 < t2 < 1, p = -1} .

PROPOSITION 6.5. The set of invariant points in i?iV@2 under the
mapping N2 is {(tlf t2, p)eRlγ&2\ρ < 0, t2 = t19 0 < tx < 1}.

We set p*(t19 t2) = (1 - t\f%)l{t2 - t\n) for 0 < tx < 1 and 0 < t2 < 1.

PROPOSITION 6.6. The set of invariant points in RiY&2 under the

mapping Ns is B8 = {(t19 t2, p)eRIY&2\p = p*(t19 t2\ p < 0, 0 < tx < 1, 0 <

ί, < 1}.

PROPOSITION 6.7. The set of invariant points in -BiV@2 under the
mapping (Alf A2)->(Alf A^A2) is B9= {(tlf t2, p)eR1Ύ&2\p = p*(tlf t2)~\ p<0,
0 < tx < 1, 0 < t2 < 1}.

Now we will determine fundamental regions for [Φ2] and Mod(@2)
acting on i2iV@2 As in §4, we set S = N^^ and Γ = i V ^ . We set

Blo = {(tlf ί2, |O) eE I V@ 2 | - 1 < /o < /o*(ίlf t,)-1, t2 = t l f 0 < t < 1} .

and

Bn = {(t, ί2> ρ)eRiv&2\ρ*(t1, t2)< p < - 1 , t2 - t l f 0 < ίx < 1} .

PROPOSITION 6.8. S(Bβ) = β 8 and T(B1Q) = .Bπ.

From Proposition 6.8, we have the following.

THEOREM 5. Set

F I V ( M o d ( @ 2 ) ) = {(tlf t2J p ) e R l y ® i \ p * ( f i 1 , t2)<p< p * ( t 1 9 t 2 ) ~ \

t2 < t19 0 < t2 < ί,*(ίlf p)9 0 < ίx < 1}

and

F1Y([Φ2]) = {(ί l f ί2, ρ)eRιγ&2\p*(t1, t 2 ) < p < - l , t 2 < t l f

0<t2< ί (tlf /o), 0 < t t < 1} ,

respectively. Then jPiV(Mod(@2)) cmd i^ivί^]) C6̂ β fundamental regions
for Mod(@2) α^cϊ [Φ2], respectively, acting on RiY<&2.

6.3. Finally, we will consider the following problem: Which Riemann
surface does a point on the closure of i2ϊv@2 represent?

PROPOSITION 6.9. A point in RιY<&2 represents a compact Riemann
surface of genus two without nodes.

This proposition is well-known.
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PROPOSITION 6.10. A point in the set {(tlft29p)eR\Y\t2 = tf(t1,p)f

0 < tλ < 1, p < 0} represents two Riemann surfaces each of which is of
genus one with one puncture.

This proposition comes from Proposition 6.1.

PROPOSITION 6.11 (cf. [12]). A point on the sets {(tlf t2, p)eR*\t1 = 0,
0 < t2 < 1, p < 0} or {(*!, t2, p) e Rs \ t2 = 0, 0 < tx < 1, p < 0} represents a
compact Riemann surface of genus two with one non-dividing node.

PROPOSITION 6.12 (cf. [12]). A point on the set {(ίlf t2, ρ)eR5\t1 =
t2 = 0, p < 0} represents a compact Riemann surface of genus two with
two non-dividing nodes.

7. Trace moduli. In this section we will consider the relationship
between Keen's results in [3] and our results in §6. In [3] keen sets
x = trace Alf y = trace A2, z = trace AγA2, and k = trace A^A^A^. Then
the equation k = x2 + y2 + z2 — xyz — 2 is always satisfied. Keen con-
sidered Fuchsian groups representing Riemann surfaces of genus one with
one hole or one puncture. In our terminology, she considered the real
Schottky groups of the fourth type.

THEOREM C (Keen [3]). (1) The moduli space for tori with a hole
is the three-dimensional manifold M described by the equations x2 + y2 +
z2 - xyz - 2 - k = 0, x > 2, y > 2, z > 2, k < - 2 .

(2) The intersection of M with the half spaces x ^y, y ?S-z, z ^
xy/2 is a fundamental region with respect to the action of Φ2 on M. The
intersection of M with the half spaces x ^ y, y ^ z, xy ^ 2z, xz^2y is
a fundamental region with respect to the action of Mod(@2) on M.

Let us represent the equation x2 + y2 + z2 — xyz — 0, and the in-
equalities x > 2, y > 2 and z > 2 in our coordinates (tί9 t2f p). We easily
see that x2 = t, + 1/ίχ + 2, y2 = t2 + l/ί2 + 2 and z2 = (txt2p - t2 + p - t.fί
{tup -1) 2 ) .

It is now straightforward to verify the following three propositions.
We recall the notation ρ*(t19 t2) = (1 - tl/2t2)/(t2 - t[/2) and t2 = if (ίlf p) in-
troduced in §6. We set ρ**(tlf t2) = (1 - t^2)!^ - t\/2).

PROPOSITION 7.1. (1) 2z<>xy if and only if p^ — 1.
(2) 2y <,xz if and only if p ^ (t2 - ^)/(l - ί^2).
(3 ) x Sy if and only if tλ >̂ t2.
(4) x^z if and only if p ^ p**^, t^-1.
( 5 ) y ^z if and only if p ^ /o*(ilf ί j - 1 .
( 6 ) z>y(x -1) if and only if p > ρ*(f19 t2).
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( 7 ) x2 + y2 + z2 -xyz = 0 if and only if t2 =• tf(t19 p).

Let N, (j"= 1, 2, 3) be the automorphisms defined in §2. We set S —
N.N.N, and T = N,N2.

PROPOSITION 7.2. The images of the sets {(x, y, z)eR3\xz = 2y} and
{(x, y, z) eR3\y = z) under the mapping S are {(x, y, z) eR3\xy = 2z} and
{(x, y, z)eR3\z = y(x — 1)}, respectively.

PROPOSITION 7.3. The image of the set {{x, y, z)eR3\x2 + y2 + z2 —

xyz = 0, 2z < xy, y < z) under the mapping T is {(x, y, z) 6 R? \ x2 + y2 +

z2 - xyz = 0, 2z > xy, z > y(x - 1)}.

From Theorem C and Propositions 7.2 and 7.3, we have the following.

PROPOSITION 7.4. The three-dimensional manifold

{(%, y, z)eR3\y < z,z> y(x - 1), x < y}Γ\M

is a fundamental region for Mod(@2) acting on M.

REMARK. The above fundamental region coincides with the set
FIV(Mod(@2)) in §6.
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