CLASSICAL SCHOTTKY GROUPS OF REAL TYPE OF GENUS TWO, I

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

Hiroki Sato

(Received July 16, 1986)
0. Introduction. With respect to the boundaries of the Schottky spaces many results were obtained by Chuckrow, Marden, Bers, Sato, Rodriguez, and others. Chuckrow [2] studied the boundary groups of the space as limits of sequences of Schottky groups, and Marden [6] showed by studying the boundary groups of the Schottky space and the classical Schottky space that not every Schottky group is classical. On the other hand, Bers [1] and Sato [12], [13] studied the augmented Schottky space obtained by adding points representing compact Riemann surfaces with nodes to the Schottky space. Sato [14] obtained a uniformization theorem of compact Riemann surfaces with nodes. The boundary of the Schottky space consists of the boundary points due to Chuckrow, namely some discrete groups, and the boundary points due to Bers-Sato, namely points representing compact Riemann surfaces with nodes (Rodriguez [11]).

In this paper we will consider a subspace of the classical Schottky space of genus two, which is called the classical Schottky space of real type of genus two, and we will determine the structure of the boundary of the subspace. The space consists of all equivalence classes of marked classical Schottky groups generated by the following Möbius transformations A_{1} and $A_{2}: A_{j}(z)=\left(a_{j} z+b_{j}\right) /\left(c_{j} z+d_{j}\right)\left(a_{j}, b_{j}, c_{j}, d_{j} \in \boldsymbol{R}, a_{j} d_{j}-b_{j} c_{j} \neq 0\right.$; $j=1,2$). We will divide the space into eight subspaces according to type (see §1). The space of the fourth type corresponds to the Teichmüller space for tori with a hole, with respect to which beautiful results were obtained by Keen [3].

This is the first part of a series of papers entitled "Classical Schottky groups of real type of genus two". In the first part, we will only consider the spaces of the first and fourth types. The first part has the following three aims: (1) to represent the shape of the spaces of the first and fourth types by using the coordinates introduced in Sato [12], [13] (Theorems 1 and 4); (2) to determine fundamental regions for the Schottky

[^0]modular group of genus two acting on the above spaces (Theorems 2 and 5); (3) to consider which Riemann surface a point on the closure of the spaces represents. By combining our results (Theorems 1 and 4) with Purzitsky [9, Theorems 2 and 3], we see that the Schottky spaces of the first and fourth types coincide with the classical Schottky spaces of the same types, respectively.

In $\S 1$ we will state definitions and divide the Schottky space of real type into eight subspaces according to type. In §2 we will consider automorphisms of the free group on two generators and list properties of the automorphisms in a series of lemmas. In §3 we will represent the shape of the classical Schottky space of the first type by using the coordinates introduced in Sato [12], [13]. In §4 we will determine a fundamental region for the Schottky modular group acting on the space. In $\S 5$ we will consider which Riemann surface a point on the closure of the space represents. In $\S 6$ we will treat the classical Schottky space of the fourth type. In $\S 7$ we will consider the relationship between the Teichmüller space in Keen [3] for tori with a hole and the space of the fourth type.

Thanks are due to the referees for their careful reading and valuable suggestions.

1. Definitions.

1.1. Definition 1.1. Let $C_{1}, C_{g+1} ; \cdots ; C_{g}, C_{2 g}$ be a set of $2 g, g \geqq 1$, mutually disjoint Jordan curves on the Riemann sphere which comprise the boundary of a $2 g$-ply connected region ω. Suppose there are g Möbius transformations A_{1}, \cdots, A_{g} which have the property that A_{j} maps C_{j} onto C_{g+j} and $A_{j}(\omega) \cap \omega=\varnothing, 1 \leqq j \leqq g$. Then the g necessarily loxodromic transformations A_{j} generate a marked Schottky group $G=$ $\left\langle A_{1}, \cdots, A_{g}\right\rangle$ of genus g with ω as a fundamental region. In particular, if all $C_{j}(j=1,2, \cdots, 2 g)$ are circles, then we call A_{1}, \cdots, A_{g} a set of classical generator of G. A classical Schottky group is a Schottky group for which there exists some set of classical generators.

Definition 1.2. We say two marked Schottky groups $G=$ $\left\langle A_{1}, \cdots, A_{g}\right\rangle$ and $\hat{G}=\left\langle\hat{A}_{1}, \cdots, \hat{A}_{g}\right\rangle$ to be equivalent and denote the fact by $G \sim \widehat{G}$ if there exists a Möbius transformation T such that $\hat{A}_{j}=T A_{j} T^{-1}$ for all $j=1,2, \cdots, g$. The Schottky space of genus g, denoted by \mathfrak{S}_{g}, is the set of all equivalence classes of marked Schottky groups of genus $g \geqq 1$.

Definition 1.3. The classical Schottky space, denoted by \mathfrak{S}_{g}^{0}, is
defined to consist of all elements of \mathfrak{S}_{g} for which there exists some set of classical generators. We denote by \mathfrak{S}_{g}^{00} the set of all equivalence classes of marked Schottky groups $G=\left\langle A_{1}, \cdots, A_{g}\right\rangle$ of genus g such that A_{1}, \cdots, A_{g} is a set of classical generators.
1.2. In this paper, we only consider the spaces $\mathfrak{S}_{2}, \mathfrak{S}_{2}^{0}$, and \mathfrak{S}_{2}^{00} of genus $g=2$. Let $G=\left\langle A_{1}, A_{2}\right\rangle$ be a marked Schottky group. Let λ_{j} $\left(\left|\lambda_{j}\right|>1\right), p_{j}$ and $p_{2+j}(j=1,2)$ be the multiplier, the repelling and the attracting fixed points of A_{j}, respectively. We define t_{j} by setting $t_{j}=$ $1 / \lambda_{j}(j=1,2)$. Thus $t_{j} \in D^{*}=\{z|0<|z|<1\}$. We determine a Möbius transformation T by $T\left(p_{1}\right)=0, T\left(p_{3}\right)=\infty$ and $T\left(p_{2}\right)=1$ and define ρ by $\rho=T\left(p_{4}\right)$. Thus $\rho \in \boldsymbol{C}-\{0,1\}$.

Remarks. (1) Let $G_{0}=\left\langle A_{10}, A_{20}\right\rangle$ be a fixed marked Schottky group. Let $C_{10}, C_{30} ; C_{20}, C_{40}$ be mutually disjoint Jordan curves and ω_{0} a fundamental region as in Definition 1. Let C_{50} be a Jordan curve in ω_{0} such that C_{10} and C_{30} (resp. C_{20} and C_{40}) are in the interior (resp. the exterior) of C_{50}. Then $\Sigma_{0}=\left\{C_{10}, C_{20}, C_{30}, C_{40} ; C_{50}\right\}$ is a standard system of Jordan curves (see [14, p. 558] for the definition).
(2) We can define a mapping ϕ of \mathfrak{S}_{2} into $D^{* 2} \times(\boldsymbol{C}-\{0,1\})$ by setting $\phi([G])=\left(t_{1}, t_{2}, \rho\right)$, where $[G]$ denotes the equivalence class of G, that is, a point in \mathfrak{S}_{2}. We denote by $\mathfrak{S}_{2}\left(\Sigma_{0}\right)$ the image of \mathfrak{S}_{2} under the mapping ϕ. We call $\Im_{2}\left(\Sigma_{0}\right)$ the Schottky space associated with Σ_{0}. We similarly define the classical Schottky space associated with Σ_{0}, which is denoted by $\mathfrak{S}_{2}^{0}\left(\Sigma_{0}\right)$, and we can similarly define the space $\mathfrak{S}_{2}^{00}\left(\Sigma_{0}\right)$. Conversely λ_{1}, λ_{2} and p_{4} are uniquely determined from a given point $\tau=\left(t_{1}, t_{2}, \rho\right) \in D^{* 2} \times(C-\{0,1\})$ under the normalization condition $p_{1}=0$, $p_{3}=\infty$ and $p_{2}=1$; we define $\lambda_{j}(j=1,2)$ and p_{4} by setting $\lambda_{j}=1 / t_{j}$ and $p_{4}=\rho$, respectively. We determine $A_{1}(\tau, z), A_{2}(\tau, z) \in$ Möb from τ as follows: The multiplier, the repelling and the attracting fixed points of $A_{j}(\tau, z)$ are λ_{j}, p_{j} and p_{2+j}, respectively. Thus we obtain a mapping ψ of $D^{* 2} \times(C-\{0,1\})$ into Möb by setting $\psi(\tau)=\left\langle A_{1}(\tau, z), A_{2}(\tau, z)\right\rangle$. Then we note that $\psi \phi=\mathrm{id}$. (see [13, pp. 28-29] for the detail).

Definition 1.4. A Möbius transformation $A(z)=(a z+b) /(c z+d)$ is called a real Möbius transformation if $a, b, c, d \in \boldsymbol{R}$ and $a d-b c \neq 0$. If $G=\left\langle A_{1}, \cdots, A_{g}\right\rangle$ is a marked (classical) Schottky group such that A_{j} is a real Möbius transformation for each $j=1,2, \cdots, g$, (that is, $\phi([G]) \in \boldsymbol{R}^{3}$ if $g=2$), then we call G a marked (classical) Schottky group of real type.

In the case of $g=2$, there are eight kinds of marked (classical) Schottky groups of real type as follows.

Definition 1.5. Let $\left(t_{1}, t_{2}, \rho\right)$ be the point in $\mathbb{S}_{2}\left(\Sigma_{0}\right)$ corresponding to the equivalence class [G] of a marked Schottky group $G=\left\langle A_{1}, A_{2}\right\rangle$.
(1) G is of the first type (Type I) if $t_{1}>0, t_{2}>0$ and $\rho>0$.
(2) G is of the second type (Type II) if $t_{1}>0, t_{2}<0$ and $\rho>0$.
(3) G is of the third type (Type III) if $t_{1}>0, t_{2}<0$ and $\rho<0$.
(4) G is of the fourth type (Type IV) if $t_{1}>0, t_{2}>0$ and $\rho<0$.
(5) G is of the fifth type (Type V) if $t_{1}<0, t_{2}>0$ and $\rho>0$.
(6) G is of the sixth type (Type VI) if $t_{1}<0, t_{2}<0$ and $\rho>0$.
(7) G is of the seventh type (Type VII) if $t_{1}<0, t_{2}<0$ and $\rho<0$.
(8) G is of the eighth type (Type VIII) if $t_{1}<0, t_{2}>0$ and $\rho<0$.

Definition 1.6. For each $k=\mathrm{I}, \mathrm{II}, \cdots$, VIII, we call the set of all equivalence classes of marked Schottky groups of Type k or the set of all points (t_{1}, t_{2}, ρ) of Type k the real Schottky space of Type k, and denoted it by $R_{k} \mathscr{S}_{2}$.

Definition 1.7. For each $k=\mathrm{I}$, II, \cdots, VIII, the intersection of $R_{k} \mathbb{G}_{2}$ with $\Theta_{2}^{0}\left(\Sigma_{0}\right)$ is called the real classical Schottky space of Type k, and is denoted by $R_{k} \Im_{2}^{0}$. We denote by $R_{k} \Xi_{2}^{00}$ the intersection of $R_{k} \Xi_{2}$ with $\mathfrak{G}_{2}^{00}\left(\Sigma_{0}\right)$ for each $k=\mathrm{I}$, II, \cdots, VIII.

2. Automorphisms of a free group on two generators.

2.1. Let $G=\left\langle A_{1}, A_{2}\right\rangle$ be a free group on two generators. We will use the following theorem in $\S \S 4$ and 6.

Theorem A (Neumann [6]). Then group Φ_{2} of automorphisms of G has the following presentation:

$$
\begin{aligned}
\Phi_{2}=\left\langle N_{1}, N_{2}, N_{3}\right|\left(N_{2} N_{1} N_{2} N_{3}\right)^{2} & =1, N_{3}^{-1} N_{2} N_{3} N_{2} N_{1} N_{3} N_{1} N_{2} N_{1}=1, \\
N_{1} N_{3} N_{1} N_{3} & \left.=N_{3} N_{1} N_{3} N_{1}\right\rangle,
\end{aligned}
$$

where

$$
N_{1}:\left(A_{1}, A_{2}\right) \mapsto\left(A_{1}, A_{2}^{-1}\right), \quad N_{2}:\left(A_{1}, A_{2}\right) \mapsto\left(A_{2}, A_{1}\right)
$$

and

$$
N_{3}:\left(A_{1}, A_{2}\right) \mapsto\left(A_{1}, A_{1} A_{2}\right) .
$$

Let $G=\left\langle A_{1}, A_{2}\right\rangle$ be a marked Schottky group. Then $S=\Omega(G) / G$ is a compact Riemann surface of genus 2, where $\Omega(G)$ is the region of discontinuity of G. The homeomorphisms of the Riemann surface S induced by the elements of Φ_{2} include orientation preserving as well as orientation reversing ones. The mapping N_{3} preserves orientation, while N_{1} and N_{2} reverse orientation.
2.2. Let E be the space of marked free groups on two generators. By defining $N_{j}(j=1,2,3)$ as in Theorem A for each $G=\left\langle A_{1}, A_{2}\right\rangle \in E$, we can regard N_{j} as automorphisms of E. If $G=\left\langle A_{1}, A_{2}\right\rangle$ and $\hat{G}=$ $\left\langle\hat{A}_{1}, \hat{A}_{2}\right\rangle$ are equivalent marked free groups on two generators, then $N_{j}\left(\left\langle A_{1}, A_{2}\right\rangle\right)$ is equivalent to $N_{j}\left(\left\langle\hat{A}_{1}, \hat{A}_{2}\right\rangle\right)$ for each $j=1,2,3$. Therefore we can regard $N_{j}(j=1,2,3)$ as automorphisms of the space of all equivalence classes of marked free groups on two generators.

Definition 2.1. Let ϕ_{1} and ϕ_{2} be automorphisms of $G=\left\langle A_{1}, A_{2}\right\rangle$. We say ϕ_{1} and ϕ_{2} are equivalent if $\phi_{1}(G)$ is equivalent to $\phi_{2}(G)$, and denote this by $\phi_{1} \sim \phi_{2}$.

Definition 2.2. Let $G=\left\langle A_{1}, A_{2}\right\rangle$ be a marked Schottky group and Φ_{2} the group of automorphisms of G. The modular group of the Schottky space of genus 2 or the Schottky modular group of genus 2, which is denoted by $\operatorname{Mod}\left(\mathscr{S}_{2}\right)$, is the set of all equivalence classes of orientation preserving automorphisms in Φ_{2}. We denote by [Φ_{2}] the set of all equivalence classes of automorphisms in Φ_{2}.

Let $\left(t_{1}, t_{2}, \rho\right)$ be the point in $\Im_{2}\left(\Sigma_{0}\right)$ corresponding to a marked Schottky group $G=\left\langle A_{1}, A_{2}\right\rangle$. Let $\left(t_{1}(j), t_{2}(j), \rho(j)\right)$ be the images of (t_{1}, t_{2}, ρ) under the mappings $N_{j}(j=1,2,3)$, that is, $\left(t_{1}(1), t_{2}(1), \rho(1)\right)$, ($\left.t_{1}(2), t_{2}(2), \rho(2)\right)$ and $\left(t_{1}(3), t_{2}(3), \rho(3)\right)$ are the points in $\mathfrak{S}_{2}\left(\Sigma_{0}\right)$ corresponding to marked Schottky groups $\left\langle A_{1}, A_{2}^{-1}\right\rangle,\left\langle A_{2}, A_{1}\right\rangle$ and $\left\langle A_{1}, A_{1} A_{2}\right\rangle$, respectively. Let p and q be two solutions of the equation

$$
t_{1}\left(1-t_{2}\right) z^{2}-\left(\rho-t_{2}-\rho t_{1} t_{2}+t_{1}\right) z+\rho\left(1-t_{2}\right)=0
$$

We set $X=\rho-t_{2}-\rho t_{1} t_{2}+t_{1}$ and $Y=\rho-t_{2}+\rho t_{1} t_{2}-t_{1}$. Then by easy calculation, we have the following.

Lemma 2.1. (1) $t_{1}(1)=t_{1}, t_{2}(1)=t_{2}$ and $\rho(1)=1 / \rho$.
(2) $t_{1}(2)=t_{2}, t_{2}(2)=t_{1}$ and $\rho(2)=\rho$.
(3) $t_{1}(3)=t_{1}, t_{2}(3)^{1 / 2}+1 / t_{2}(3)^{1 / 2}=Y /\left(t_{1}^{1 / 2} t_{2}^{1 / 2}(\rho-1)\right)$,
and for Type I

$$
\rho(3)^{1 / 2}+1 / \rho(3)^{1 / 2}= \begin{cases}X /\left(\rho^{1 / 2} t_{1}^{1 / 2}\left(1-t_{2}\right)\right) & \text { if } \quad p>0 \quad \text { and } \quad q>0 \\ -X /\left(\rho^{1 / 2} t_{1}^{1 / 2}\left(1-t_{2}\right)\right) & \text { if } \quad p<0 \quad \text { and } \quad q<0\end{cases}
$$

and for Type IV,

$$
\begin{aligned}
& (-\rho(3))^{1 / 2}+1 /(-\rho(3))^{1 / 2} \\
& \quad=\left(X^{2}-4 t_{1} \rho\left(1-t_{2}\right)\right)^{1 / 2} /(-\rho)^{1 / 2} t_{1}^{1 / 2}\left(1-t_{2}\right)
\end{aligned}
$$

2.3. Let $A(z)=(a z+b) /(c z+d), a d-b c=1$, be a loxodromic transformation. We denote by $\lambda(A)(|\lambda(A)|>1), p(A)$ and $q(A)$ the multiplier, the repelling and the attracting fixed points of A, respectively. We define $t(A)$ and $\rho(A)$ by $t(A)=1 / \lambda(A)$ and $\rho(A)=q(A) / p(A)$, respectively, if $p(A) \neq 0$. Let $\left(t_{1}, t_{2}, \rho\right)$ be the point in $\mathbb{S}_{2}\left(\Sigma_{0}\right)$ corresponding to a marked Schottky group $G=\left\langle A_{1}, A_{2}\right\rangle$. We can set

$$
A_{1}(z)=z / t_{1}
$$

and

$$
A_{2}(z)=\left(\left(\rho-t_{2}\right) z+\rho\left(t_{2}-1\right)\right) /\left(\left(1-t_{2}\right) z+\left(t_{2} \rho-1\right)\right)
$$

We note that $t_{j}=t\left(A_{j}\right)(j=1,2)$ and $\rho=\rho\left(A_{2}\right)$. We denote by \boldsymbol{Z} the set of all integers. We easily see the following lemmas.

Lemma 2.2. $\left\langle A_{1}^{-1}, A_{2}^{-1}\right\rangle$ is equivalent to $\left\langle A_{1}, A_{2}\right\rangle$.
Proof. We set $T(z)=\rho / z$. Then $T A_{1}^{-1} T^{-1}=A_{1}$ and $T A_{2}^{-1} T^{-1}=A_{2}$. q.e.d.

Lemma 2.3. If $l+m=n$, l, $m, n \in \boldsymbol{Z}$, then $\left\langle A_{1}, A_{1}^{n} A_{2}\right\rangle$ is equivalent to $\left\langle A_{1}, A_{1}^{m} A_{2} A_{1}^{l}\right\rangle$.

Lemma 2.4. Let t_{1} be a real number with $0<t_{1}<1$. Assume that $1 / t_{1}^{k}<\rho<1 / t_{1}^{k+1}$ for an integer k. Let $m, n \in \boldsymbol{Z}$. Then
(1) $\rho\left(A_{1}^{n} A_{2}\right)>\rho\left(A_{1}^{m} A_{2}\right)$ if $n>m$;
(2) $t\left(A_{1}^{n} A_{2}\right)<t\left(A_{1}^{m} A_{2}\right)$ if $|n+k|>|m+k|$ and $t\left(A_{1}^{n} A_{2}\right)=t\left(A_{1}^{m} A_{2}\right)$ if $|n+k|=|m+k|$.

Lemma 2.5. Let t_{1} be a real number with $0<t_{1}<1$. Assume that $-1 / t_{1}^{k+1}<\rho<-1 / t_{1}^{k}$ for an integer k. Let $m, n \in \boldsymbol{Z}$. Then
(1) $\rho\left(A_{1}^{n} A_{2}\right)<\rho\left(A_{1}^{m} A_{2}\right)<0$ if $n>m$;
(2) $t\left(A_{1}^{n} A_{2}\right)<t\left(A_{1}^{m} A_{2}\right)$ if $|n+k|>|m+k|$ and

$$
t\left(A_{1}^{n} A_{2}\right)=t\left(A_{1}^{m} A_{2}\right) \text { if }|n+k|=|m+k| .
$$

We define $\tau(A)^{2}$ by $\tau(A)^{2}=t(A)+(1 / t(A))+2$ for a Möbius transformation $A(z)$. By noting that

$$
\tau\left(A_{1}^{n} A_{2}\right)^{2}-\tau\left(A_{1}^{n} A_{2}^{-1}\right)=\frac{\rho+1}{\rho-1} \frac{\left(1-t_{1}^{2 n}\right)\left(1-t_{2}^{n}\right)}{t_{1}^{n} t_{2}}
$$

we have the following lemmas:
Lemma 2.6. (1) Let $\rho>1$ and let n be an integer.
(i) If $n>0$, then $t\left(A_{1}^{n} A_{2}\right)<t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)>\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.
(ii) If $n<0$, then $t\left(A_{1}^{n} A_{2}\right)>t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)>\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.
(2) Let $0<\rho<1$ and let n be an integer.
(i) If $n>0$, then $t\left(A_{1}^{n} A_{2}\right)>t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)<\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.
(ii) If $n<0$, then $t\left(A_{1}^{n} A_{2}\right)<t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)<\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.

Lemma 2.7. (1) Let $\rho<-1$ and let n be an integer.
(i) If $n>0$, then $t\left(A_{1}^{n} A_{2}\right)<t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)<\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.
(ii) If $n<0$, then $t\left(A_{1}^{n} A_{2}\right)>t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)<\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.
(2) Let $-1<\rho<0$ and let n be an integer.
(i) If $n>0$, then $t\left(A_{1}^{n} A_{2}\right)>t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)>\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.
(ii) If $n<0$, then $t\left(A_{1}^{n} A_{2}\right)<t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)>\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.
(3) Let $\rho=-1$ and let n be an integer. Then $t\left(A_{1}^{n} A_{2}\right)=t\left(A_{1}^{n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right)=\rho\left(A_{1}^{n} A_{2}^{-1}\right)$.

Lemma 2.8. Let $l, m, n \in \boldsymbol{Z}$. Then
(1) $\quad t\left(A_{1}^{n} A_{2}^{-1}\right)=t\left(A_{1}^{-n} A_{2}\right)$ and $\rho\left(A_{1}^{n} A_{2}^{-1}\right) \rho\left(A_{1}^{-n} A_{2}\right)=1$.
(2) $t\left(A_{1}^{n} A_{2}\right)=t\left(A_{1}^{-n} A_{2}^{-1}\right)$ and $\rho\left(A_{1}^{n} A_{2}\right) \rho\left(A_{1}^{-n} A_{2}^{-1}\right)=1$.
(3) $t\left(A_{1}^{n} A_{2}^{m}\right)=t\left(A_{2}^{m} A_{1}^{n}\right)$ and $\rho\left(A_{1}^{n} A_{2}^{m}\right)=\rho\left(A_{2}^{m} A_{1}^{n}\right)$.
(4) $t\left(A_{1}^{n} A_{2}^{m} A_{1}^{l}\right)=t\left(A_{1}^{n+l} A_{2}^{m}\right)$ and $\rho\left(A_{1}^{n} A_{2}^{m} A_{1}^{l}\right)=\rho\left(A_{1}^{n+l} A_{2}^{m}\right)$.

3. The first type-The domain of existence.

3.1. In this section we will determine the shape of the real classical Schottky space $R_{\mathrm{I}} \mathfrak{S}_{2}^{0}$ of type I in \boldsymbol{R}^{3}. Throughout this section let

$$
A_{1}(z)=z / t_{1}
$$

and

$$
A_{2}(z)=\left(\left(\rho-t_{2}\right) z+\rho\left(t_{2}-1\right)\right) /\left(\left(1-t_{2}\right) z+\left(\rho t_{2}-1\right)\right),
$$

where $0<t_{1}<1,0<t_{2}<1$ and $\rho>0$. The following proposition is fundamental in this section.

Proposition 3.1. Fix t_{1} with $0<t_{1}<1$.
(1) Let $1<\rho<1 / t_{1}$. If $t_{2}^{1 / 2}=\left(1-t_{1}^{1 / 2} \rho^{1 / 2}\right) /\left(\rho^{1 / 2}-t_{1}^{1 / 2}\right)$, then $A_{1} A_{2}^{-1}$ is a parabolic transformation whose fixed point is $\rho^{1 / 2} t_{1}^{-1 / 2}$. Furthermore $G=\left\langle A_{1}, A_{2}\right\rangle$ is a discontinuous group and the region bounded by the following four circles C_{1}, C_{2}, C_{3} and C_{4} is a fundamental region for G :
$C_{1}: \quad|z|=\rho^{1 / 2} t_{1}^{1 / 2}$,
$C_{2}: \quad\left|z-\left\{(1+\rho) / 2+\rho^{1 / 2} t_{1}^{1 / 2}\right\} / 2\right|=\left\{(1+\rho) / 2-\rho^{1 / 2} t_{1}^{1 / 2}\right\} / 2$,
$C_{3}: \quad|z|=\rho^{1 / 2} t_{1}^{-1 / 2}$,
$C_{4}: \quad\left|z-\left\{\rho^{1 / 2} t_{1}^{-1 / 2}+\left(\rho+t_{2}\right) /\left(t_{2}+1\right)\right\} / 2\right|=\left\{\rho^{1 / 2} t_{1}^{-1 / 2}-\left(\rho+t_{2}\right) /\left(t_{2}+1\right)\right\} / 2$.
(2) Let $t_{1}<\rho<1$. If

$$
t_{1}^{1 / 2}=\left(\rho^{1 / 2}-t_{1}^{1 / 2}\right) /\left(1-t_{1}^{1 / 2} \rho^{1 / 2}\right)
$$

then $A_{1} A_{2}$ is a parabolic transformation whose fixed point is $\rho^{1 / 2} t_{1}^{-1 / 2}$. Furthermore $G=\left\langle A_{1}, A_{2}\right\rangle$ is a discontinuous group and the region
bounded by the following four circles C_{1}, C_{2}, C_{3} and C_{4} is a fundamental region for G :
$C_{1}: \quad|z|=\rho^{1 / 2} t_{1}^{1 / 2}$,
$C_{2}: \quad\left|z-\left\{\rho^{1 / 2} t_{1}^{-1 / 2}+(1+\rho) / 2\right\} / 2\right|=\left\{\rho^{1 / 2} t_{1}^{-1 / 2}-(1+\rho) / 2\right\} / 2$,
$C_{3}: \quad|z|=\rho^{1 / 2} t_{1}^{-1 / 2}$,
$C_{4}: \quad\left|z-\left\{\left(\rho+t_{2}\right) /\left(t_{2}+1\right)+\rho^{1 / 2} t_{1}^{1 / 2}\right\} / 2\right|=\left\{\left(\rho+t_{2}\right) /\left(t_{2}+1\right)-\rho^{1 / 2} t_{1}^{1 / 2}\right\} / 2$.
This proposition is proved by straightforward computations.
For the sake of simplicity, we introduce the following notation:

$$
t_{2, n}\left(t_{1}, \rho\right)=\left(1-t_{1}^{n / 2} \rho^{1 / 2}\right) /\left(\rho^{1 / 2}-t_{1}^{n / 2}\right)
$$

for each integer n.
Proposition 3.2. Fix t_{1} with $0<t_{1}<1$.
(1) Let $1 / t_{1}^{n-1}<\rho<1 / t_{1}^{n}$ for a positive integer n. Then the intersection point of two curves

$$
K^{-}(n): t_{2}^{1 / 2}=-t_{2, n-1}\left(t_{1}, \rho\right) \quad \text { and } \quad K^{+}(n): t_{2}^{1 / 2}=t_{2, n}\left(t_{1}, \rho\right)
$$

is $P(n):=\left(t_{1}, t_{2, n}\left(t_{1}\right), \rho_{n}\left(t_{1}\right)\right)$, where

$$
t_{2, n}\left(t_{1}\right)^{1 / 2}=\frac{t_{1}^{(n-1) / 2}\left\{\left(1-t_{1}^{n}\right)^{1 / 2}-t_{1}^{1 / 2}\left(1-t_{1}^{n-1}\right)^{1 / 2}\right\}}{\left(1-t_{1}^{n-1}\right)^{1 / 2}+\left(1-t_{1}^{n}\right)^{1 / 2}}
$$

and

$$
\rho_{n}\left(t_{1}\right)^{1 / 2}=\frac{t_{1}^{(2 n-1) / 2}+1+\left\{\left(1-t_{1}^{n-1}\right)\left(1-t_{1}^{n}\right)\right\}^{1 / 2}}{t_{1}^{(n-1) / 2}\left(t_{1}^{1 / 2}+1\right)}
$$

(2) Let $t_{1}^{n}<\rho<t_{1}^{n-1}$ for a positive integer n. Then the intersection point of two curves

$$
K^{-}(-n): t_{2}^{1 / 2}=-t_{2, n-1}\left(t_{1}, \rho\right)^{-1} \quad \text { and } \quad K^{+}(-n): t_{2}^{1 / 2}=t_{2, n}\left(t_{1}, \rho\right)^{-1}
$$

is $P(-n):=\left(t_{1}, t_{2,-n}\left(t_{1}\right), \rho_{-n}\left(t_{1}\right)\right)$, where

$$
t_{2,-n}\left(t_{1}\right)^{1 / 2}=\frac{\left(1-t_{1}^{n}\right)^{1 / 2}-\left(1-t_{1}^{n-1}\right)^{1 / 2}}{t_{1}^{(n-1) / 2}\left\{t_{1}^{1 / 2}\left(1-t_{1}^{n-1}\right)^{1 / 2}+\left(1-t_{1}^{n}\right)^{1 / 2}\right\}}
$$

and

$$
\rho_{-n}\left(t_{1}\right)^{1 / 2}=\frac{t_{1}^{(2 n-1) / 2}+1-\left\{\left(1-t_{1}^{n-1}\right)\left(1-t_{1}^{n}\right)\right\}^{1 / 2}}{t_{1}^{(n-1) / 2}\left(t_{1}^{1 / 2}+1\right)} .
$$

We have this proposition by elementary calculations.
Remarks. (1) $t_{2, n}\left(t_{1}\right)=t_{2,-n}\left(t_{1}\right), \quad \rho_{n}\left(t_{1}\right) \rho_{-n}\left(t_{1}\right)=1$ and $P(1)=P(-1)$ (cf. Lemma 2.8).
(2) $\left\{\rho_{n}\left(t_{1}\right)\right\}$ and $\left\{t_{2, n}\left(t_{1}\right)\right\}(n=1,2,3, \cdots)$ are monotone increasing and decreasing sequences, respectively.
(3) Both $\left\{\rho_{-n}\left(t_{1}\right)\right\}$ and $\left\{t_{2,-n}\left(t_{1}\right)\right\} \quad(n=1,2,3, \cdots)$ are monotone decreasing sequences.

Proposition 3.3. Fix t_{1} with $0<t_{1}<1$.
(1) Let $1 / t_{1}^{n-1}<\rho<\rho_{n}\left(t_{1}\right)(n=2,3, \cdots)$. If $t_{2}^{1 / 2}=-t_{2, n-1}\left(t_{1}, \rho\right)$, then $A_{1}^{n-1} A_{2}^{-1}$ is parabolic.
(2) Let $\rho_{n}\left(t_{1}\right)<\rho<1 / t_{1}^{n} \quad(n=1,2, \cdots)$. If $t_{2}^{1 / 2}=t_{2, n}\left(t_{1}, \rho\right)$, then $A_{1}^{n} A_{2}^{-1}$ is parabolic.
(3) Let $\rho_{-n}\left(t_{1}\right)<\rho<t_{1}^{n-1} \quad(n=2,3, \cdots)$. If $t_{2}^{1 / 2}=-t_{2, n-1}\left(t_{1}, \rho\right)^{-1}$, then $A_{1}^{n-1} A_{2}$ is parabolic.
(4) Let $t_{1}^{n}<\rho<\rho_{-n}\left(t_{1}\right) \quad(n=1,2, \cdots)$. If $t_{2}^{1 / 2}=t_{2, n}\left(t_{1}, \rho\right)^{-1}$, then $A_{1}^{n} A_{2}$ is parabolic.
3.2. We introduce the following sets in \boldsymbol{R}^{3}. For the sake of simplicity, we write τ for a point $\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3}$ in the definitions. We set

$$
\begin{aligned}
& H(n)=\left\{\tau \mid t_{2}=0, t_{1}^{-(n-1)}<\rho<t_{1}^{-n}, 0<t_{1}<1\right\} \quad(n \geqq 1), \\
& H(-n)=\left\{\tau \mid t_{2}=0, t_{1}^{n}<\rho<t_{1}^{n-1}, 0<t_{1}<1\right\} \quad(n \geqq 1), \\
& H(1, n)=\left\{\tau \mid t_{1}=0, t_{2}^{-(n-1)}<\rho<t_{2}^{-n}, 0<t_{2}<1\right\} \quad(n \geqq 1), \\
& H(-1,-n)=\left\{\tau \mid t_{1}=0, t_{2}^{n}<\rho<t_{2}^{n-1}, 0<t_{2}<1\right\} \quad(n \geqq 1), \\
& F^{-}(n)=\left\{\tau \mid t_{2}^{1 / 2}=-t_{2, n-1}\left(t_{1}, \rho\right), t_{1}^{-(n-1)}<\rho<\rho_{n}\left(t_{1}\right), 0<t_{1}<1\right\} \quad(n \geqq 2), \\
& F^{-}(-n)=\left\{\tau \mid t_{2}^{1 / 2}=-t_{2, n-1}\left(t_{1}, \rho\right)^{-1}, \rho_{n}\left(t_{1}\right)<\rho<t_{1}^{n-1}, 0<t_{1}<1\right\} \quad(n \geqq 2), \\
& F^{+}(n)=\left\{\tau \mid t_{2}^{1 / 2}=t_{2, n}\left(t_{1}, \rho\right), \rho_{n}\left(t_{1}\right)<\rho<t_{1}^{-n}, 0<t_{1}<1\right\} \quad(n \geqq 1), \\
& F^{+}(-n)=\left\{\tau \mid t_{2}^{1 / 2}=t_{2, n}\left(t_{1}, \rho\right)^{-1}, t_{1}^{n}<\rho<\rho_{-n}\left(t_{1}\right), 0<t_{1}<1\right\} \quad(n \geqq 1), \\
& F_{0}=\left\{\tau \mid 0<t_{1}<1,0<t_{2}<1, \rho=1\right\} .
\end{aligned}
$$

3.3. We now inductively introduce many surfaces from $F^{+}(n)$ and $F^{-}(n)$. For $n_{0}=1,2,3, \cdots$ and $m_{0}=2,3, \cdots$, we let

$$
F^{+}\left(1, n_{0}\right)=N_{2}\left(F^{+}\left(n_{0}\right)\right) \quad\left(\text { resp. } F^{+}\left(-1,-n_{0}\right)=N_{2}\left(F^{+}\left(-n_{0}\right)\right)\right),
$$

and

$$
F^{-}\left(1, m_{0}\right)=N_{2}\left(F^{-}\left(m_{0}\right)\right) \quad\left(\text { resp. } F^{-}\left(-1,-m_{0}\right)=N_{2}\left(F^{-}\left(-n_{0}\right)\right)\right),
$$

respectively, where N_{2} is the automorphism defined in $\S 2$.
For $n=2,3, \cdots, n_{0}=1,2, \cdots$ and $m_{0}=2,3, \cdots$, we let

$$
\begin{aligned}
& F^{+}\left(n, n_{0}\right)=N_{3}^{n-1}\left(F^{+}\left(1, n_{0}\right)\right), \quad F^{+}\left(-n,-n_{0}\right)=N_{3}^{-(n-1)}\left(F^{+}\left(-1,-n_{0}\right)\right), \\
& F^{-}\left(n, m_{0}\right)=N_{3}^{n-1}\left(F^{-}\left(1, m_{0}\right)\right) \quad \text { and } \quad F^{-}\left(-n,-m_{0}\right)=N_{3}^{-(n-1)}\left(F^{-}\left(-1,-m_{0}\right)\right),
\end{aligned}
$$

where N_{3} is the automorphism defined in $\S 2$.
Inductively, we now define: For $n=2,3, \cdots$, we let

$$
\begin{aligned}
& F^{+}\left(1, n_{k}, \cdots, n_{1}, n_{0}\right)=N_{2}\left(F^{+}\left(n_{k}, \cdots, n_{1}, n_{0}\right)\right), \\
& F^{+}\left(n, n_{k}, \cdots, n_{1}, n_{0}\right)=N_{3}^{n-1}\left(F^{+}\left(1, n_{k}, \cdots, n_{1}, n_{0}\right)\right) \\
& \quad \text { for } n_{j} \geqq 1(0 \leqq j \leqq k) ; \\
& F^{-}\left(1, n_{k}, \cdots, n_{1}, n_{0}\right)=N_{2}\left(F^{-}\left(n_{k}, \cdots, n_{1}, n_{0}\right)\right), \\
& F^{-}\left(n, n_{k}, \cdots, n_{1}, n_{0}\right)=N_{3}^{n-1}\left(F^{-}\left(1, n_{k}, \cdots, n_{1}, n_{0}\right)\right) \\
& \quad \text { for } n_{0} \geqq 2 \text { and } n_{j} \geqq 1(1 \leqq j \leqq k) ; \\
& F^{+}\left(-1,-n_{k}, \cdots,-n_{1},-n_{0}\right)=N_{2}\left(F^{+}\left(-n_{k}, \cdots,-n_{1},-n_{0}\right)\right) \\
& F^{+}\left(-n,-n_{k}, \cdots,-n_{1},-n_{0}\right)=N_{3}^{-(n-1)}\left(F^{+}\left(-1,-n_{k}, \cdots,-n_{1},-n_{0}\right)\right) \\
& \quad \text { for } n_{j} \geqq 1(0 \leqq j \leqq k) ; \\
& F^{-}\left(-1,-n_{k}, \cdots,-n_{1},-n_{0}\right)=N_{2}\left(F^{-}\left(-n_{k}, \cdots,-n_{1},-n_{0}\right)\right) \\
& F^{-}\left(-n,-n_{k}, \cdots,-n_{1},-n_{0}\right)= \\
& N_{3}^{-(n-1)}\left(F^{-}\left(-1,-n_{k}, \cdots,-n_{1},-n_{0}\right)\right) \\
& \text { for } n_{0} \geqq 2 \text { and } n_{j} \geqq 1(1 \leqq j \leqq k) .
\end{aligned}
$$

REMARKS. (1) $F^{+}(n, 1)=F^{+}(n)$ and $F^{+}(-n,-1)=F^{+}(-n)$ for $n=1,2, \cdots$.
(2) $\quad F^{-}(n, 1)=F^{-}(n)$ and $F^{-}(-n,-1)=F^{-}(n)$ for $n=2,3, \cdots$.
3.4. We have the following Lemmas 3.1, 3.2, 3.3 and 3.4 by Proposition 2.1 and straightforward calculations.

Lemma 3.1. Let N_{1} be the automorphism defined in §2.
(1) $N_{1}\left(F^{+}\left(n_{k}, \cdots, n_{1}, n_{0}\right)\right)=F^{+}\left(-n_{k}, \cdots,-n_{1},-n_{0}\right)$ for $n_{j}= \pm 1$, $\pm 2, \cdots(0 \leqq j \leqq k)$.
(2) $N_{1}\left(F^{-}\left(n_{k}, \cdots, n_{1}, n_{0}\right)\right)=F^{-}\left(-n_{k}, \cdots,-n_{1},-n_{0}\right)$ for $\quad n_{0}= \pm 2$, $\pm 3, \cdots$ and $n_{j}= \pm 1, \pm 2, \cdots(1 \leqq j \leqq k)$.
(3) $N_{1}\left(F_{0}\right)=F_{0}$.

Lemma 3.2. Let N_{3} be the automorphism defined in $\S 2$.
(1) $\quad N_{3}\left(F^{+}\left(n_{0}\right)\right)=F^{+}\left(n_{0}+1\right)$ for $n_{0} \geqq 1$,

$$
N_{3}\left(F^{+}\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)\right)=F^{+}\left(n_{k}+1, n_{k-1}, \cdots, n_{0}\right) \quad \text { for } \quad n_{k} \geqq 1
$$

$n_{j} \geqq 2(0 \leqq j \leqq k-1), k \geqq 1$.
(2) $N_{3}\left(F^{+}\left(-n_{k},-n_{k-1}, \cdots,-n_{0}\right)\right)=F^{+}\left(-n_{k}+1,-n_{k-1}, \cdots,-n_{0}\right)$ for $n_{j} \geqq 2(0 \leqq j \leqq k)$.
(3) $N_{3}\left(F^{-}\left(n_{0}\right)\right)=F^{-}\left(n_{0}+1\right)$ for $n_{0} \geqq 2$,

$$
N_{3}\left(F^{-}\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)\right)=F^{-}\left(n_{k}+1, n_{k-1}, \cdots, n_{0}\right) \quad \text { for } \quad n_{k} \geqq 1
$$

$n_{j} \geqq 2(0 \leqq j \leqq k-1), k \geqq 1$.
(4) $N_{3}\left(F^{-}\left(-n_{0}\right)\right)=F^{-}\left(-n_{0}+1\right)$ for $n_{0} \geqq 3$,

$$
N_{3}\left(F^{-}\left(-n_{k},-n_{k-1}, \cdots,-n_{0}\right)\right)=F^{-}\left(-n_{k}+1,-n_{k-1}, \cdots,-n_{0}\right)
$$

for $n_{j} \geqq 2(0 \leqq j \leqq k), k \geqq 1$.
Lemma 3.3. Let N_{3} be automorphism defined in $\S 2$.
(1) $N_{3}^{-1}\left(F^{+}(1)\right)=\left\{\left(t_{1}, 1,1\right) \mid 0<t_{1}<1\right\}$.
(2) $N_{3}^{-1}\left(F^{-}(2)\right)=\left\{\left(t_{1}, 1,1\right) \mid 0<t_{1}<1\right\}$.
(3) $N_{3}\left(F^{+}(-1)\right)=\left\{\left(t_{1}, 1,1\right) \mid 0<t_{1}<1\right\}$.
(4) $N_{3}\left(F^{-}(-2)\right)=\left\{\left(t_{1}, 1,1\right) \mid 0<t_{1}<1\right\}$.
(5) $N_{3}\left(F_{0}\right)=\left\{\left(t_{1}, 0,1 / t_{1}\right) \mid 0<t_{1}<1\right\}$.
(6) $\quad N_{3}^{-1}\left(F_{0}\right)=\left\{\left(t_{1}, 0, t_{1}\right) \mid 0<t_{1}<1\right\}$.

Lemma 3.4. Let N_{3} be the automorphism defined in §2.
(1) $\quad N_{3}\left(F^{+}(-1,-2)\right)=F^{+}(1,2)$,

$$
N_{3}\left(F^{+}\left(-1,-n_{0}\right)\right)=F^{+}\left(1,2, n_{0}-1\right) \quad\left(n_{0} \geqq 3\right)
$$

(2) $N_{3}\left(F^{+}\left(-1,-2,-n_{k-2}, \cdots,-n_{0}\right)\right)=F^{+}\left(1, n_{k-2}+1, n_{k-3}, \cdots, n_{0}\right)$, $N_{3}\left(F^{+}\left(-1,-n_{k-1},-n_{k-2}, \cdots,-n_{0}\right)\right)=F^{+}\left(1,2, n_{k-1}-1, n_{k-2}, \cdots, n_{0}\right)$ $\left(n_{k-1} \geqq 3\right)$
(3) $N_{3}\left(F^{-}(-1,-2)\right)=\left\{\left(t_{1}, 1,1\right) \mid 0<t_{1}<1\right\}$, $N_{3}\left(F^{-}\left(-1,-n_{0}\right)\right)=F^{-}\left(1,2, n_{0}-1\right)\left(n_{0} \geqq 3\right)$.
(4) $N_{3}\left(F^{-}\left(-1,-2,-n_{k-2}, \cdots,-n_{0}\right)\right)=F^{-}\left(1, n_{k-2}+1, n_{k-3}, \cdots, n_{0}\right)$,

$$
N_{3}\left(F^{-}\left(-1,-n_{k-1},-n_{k-2}, \cdots,-n_{0}\right)\right)=F^{-}\left(1,2, n_{k-1}-1, n_{k-2}, \cdots, n_{0}\right)
$$

for $n_{k-1} \geqq 3(k \geqq 2)$.
3.5. We denote by $M(1)$ (resp. $M(-1)$) the three-dimensional manifolds bounded by $H(1), H(1,1), F^{+}(1)$ and F_{0} (resp. $H(-1), H(-1,-1), F^{+}(-1)$ and $\left.F_{0}\right)$, and denote by $M(n)(n= \pm 2, \pm 3, \cdots)$ the three-dimensional manifolds bounded by three surfaces $H(n), F^{+}(n)$ and $F^{-}(n)$. Then we easily see the following lemmas.

Lemma 3.5. If $\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{I}} \mathfrak{S}_{2}^{00}$, then $1<\rho<1 / t_{1}$ or $t_{1}<\rho<1$ for each $0<t_{1}<1$.

Lemma 3.6. Let $\left(t_{1}, t_{2}, \rho\right) \in R_{1} \mathbb{S}_{2}^{00}$. If $0<t_{1}^{\prime} \leqq t_{1}$ and $0<t_{2}^{\prime} \leqq t_{2}$, then $\left(t_{1}^{\prime}, t_{2}^{\prime}, \rho\right) \in R_{\mathrm{I}} \mathbb{S}_{2}^{00}$.

From Proposition 3.1 and Lemmas 3.5 and 3.6, we have the following.
Proposition 3.4. $\quad R_{\mathrm{T}} \mathfrak{S}_{2}^{00}=M(1) \cup M(-1)$.
3.6. We denote by $\boldsymbol{R}_{\mathrm{I}}^{3}$ the set $\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid 0<t_{1}<1,0<t_{2}<1\right.$, $\rho>0\}$. We denote by $M\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)$ (resp. $M\left(-n_{k},-n_{k-1},-n_{0}\right)$) the three-dimensional manifolds in $\boldsymbol{R}_{\mathrm{I}}^{3}$ bounded by $F^{+}\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)$ and $F^{-}\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)$ (resp. $F^{+}\left(-n_{k},-n_{k-1}, \cdots,-n_{0}\right)$ and $F^{-}\left(-n_{k},-n_{k-1}\right.$, $\left.\cdots,-n_{0}\right)$) for $n_{k} \geqq 1$ and $n_{j} \geqq 2(0 \leqq j \leqq k-1)$.

Remark. $\quad M(n)=M(n, 1)$ and $M(-n)=M(-n,-1)$ for $n \geqq 2$.
The following proposition follows from Lemmas 3.1, 3.2, 3.3 and 3.4.
Proposition 3.5. Let $N_{j}(j=1,2,3)$ be the automorphisms defined
in §2. Then for either $n_{k} \geqq 1, n_{j} \geqq 2(0 \leqq j \leqq k-1)$, or $n_{k} \leqq-1$, $n_{j} \leqq-2(0 \leqq j \leqq k-1)$,
(1) (i) $N_{1}(M(1))=M(-1), N_{1}(M(-1))=M(1)$,
(ii) $\quad N_{1}\left(M\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)\right)=M\left(-n_{k},-n_{k-1}, \cdots,-n_{0}\right)(k \geqq 1)$;
(2) $\quad N_{2}\left(M\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)\right)= \begin{cases}M\left(\pm 1, n_{k}, n_{k-1}, \cdots, n_{0}\right) & \text { if } n_{k} \neq \pm 1 \\ M\left(n_{k-1}, n_{k-2}, \cdots, n_{0}\right) & \text { if } n_{k}= \pm 1,\end{cases}$
(3) (i) $N_{3}\left(M\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)\right)=\bar{M}\left(n_{k}+1, n_{k-1}, \cdots, n_{0}\right)$ if $\bar{n}_{k} \geqq 1$ or $n_{k} \leqq-2$,
(ii) $\quad N_{3}(M(-1,-2))=M(1,2)$,

$$
N_{3}\left(M\left(-1,-n_{0}\right)\right)=M\left(1,2, n_{0}-1\right) \text { for } n_{0} \geqq 3
$$

(iii) $\quad N_{3}\left(M\left(-1,-2,-n_{k-2}, \cdots,-n_{0}\right)\right)=M\left(1, n_{k-2}+1, n_{k-3}, \cdots, n_{0}\right)$ for $n_{j} \geqq 2(0 \leqq j \leqq k-2), k \geqq 2$,

$$
\bar{N}_{3}\left(M\left(-1,-n_{k-1},-n_{k-2}, \cdots,-n_{0}\right)\right)=M\left(1,2, n_{k-1}-1, n_{k-2}, \cdots, n_{0}\right)
$$

for $n_{k-1} \geqq 3, n_{j} \geqq 2(0 \leqq j \leqq k-2), k \geqq 2$.
3.7. Noting that $R_{\mathrm{I}} \mathbb{\Im}_{2}^{0}=\cup \phi\left(\Im_{2}^{00}\right)=\cup \phi(M(1) \cup M(-1))$, where ϕ runs through $\operatorname{Mod}\left(\mathscr{S}_{2}\right)$, we have the following theorem from Proposition 3.5 and Theorem A.

Theorem 1.

$$
R_{\mathrm{I}} \Im_{2}^{0}=\bigcup_{k=0}^{\infty} \bigcup_{\substack{n_{k} \geq 1 \\ n_{j} \geq 20}}^{\cup}\left(M\left(n_{k}, n_{k-1}, \cdots, n_{0}\right) \cup M\left(-n_{k},-n_{k-1}, \cdots,-n_{0}\right)\right) .
$$

Problem. It is well-known that the classical Schottky space does not coincide with the Schottky space (Marden [6], Zarrow [16]). Thus we could ask: Does the real classical Stottky space $R_{k} \mathfrak{S}_{2}^{0}$ of the k-th type ($k=$ I, II, $\cdot \cdot$, VIII) coincide with the real Schottky space $R_{k} \Im_{2}$ of the k-th type?

From the above theorem and Purzitsky [9, Theorem 3], the answer to the problem is affirmative for the first type.

Corollary 1. $R_{\mathrm{I}} \Im_{2}^{0}=R_{\mathrm{I}} \Im_{2}$.
Remark. An example due to Zarrow [16, p. 721] shows that the answer to the problem is negative for the second type. However, recently, we showed that the example constructed by Zarrow turns out to be a classical Schottky group (cf. [16]). We have reasons to believe that $R_{\mathrm{II}} \mathfrak{S}_{2}^{0}, R_{\mathrm{V}} \Im_{2}^{0}$ and $R_{\mathrm{VII}} \widetilde{S}_{2}^{0}$ coincide with $R_{\mathrm{II}} \mathfrak{S}_{2}, R_{\mathrm{V}} \mathfrak{S}_{2}$ and $R_{\mathrm{VII}} \mathfrak{S}_{2}$, respectively (cf. [15]).

From Theorem 1, Corollary 1 to Theorem 1 and remarks after Proposition 3.2 we have the following.

Corollary 2. Let $G=\left\langle A_{1}, A_{2}\right\rangle$ be a purely loxodromic discrete group
such that $t_{1}>0, t_{2}>0$ and $\rho>0$, where $\left(t_{1}, t_{2}, \rho\right)$ is the point in $D^{* 2} \times$ ($\boldsymbol{C}-\{0,1\}$) corresponding to $\left\langle A_{1}, A_{2}\right\rangle$. Then the following valids.
(1) If $t_{1} \geqq c_{1}$ and $t_{2} \geqq c_{2}$ for some positive constants c_{1} and c_{2}, then $1 / c \leqq \rho \leqq c$ for a positive constant c with $c>1$ depending on c_{1} and c_{2}.
(2) If $t_{1} \geqq c_{1}$ for some positive constant c_{1} and if $\rho \geqq c$ or $\rho \leqq 1 / c$ for some constant $c>1$, then $0<t_{2} \leqq c_{2}$ for a constant $c_{2}\left(0<c_{2}<1\right)$ depending on c_{1} and c.

4. The first type-Fundamental regions.

4.1. In this section we will determine fundamental regions for [Φ_{2}] and $\operatorname{Mod}\left(\mathfrak{S}_{2}\right)$ acting on $R_{I} \mathfrak{S}_{2}^{0}$. Throughout this section let $N_{j}(j=1,2,3)$ be the automorphisms defined in $\S 2$.

We set

$$
\begin{aligned}
T_{2, n}\left(t_{1}, \rho\right)= & \left(1-\rho t_{1}^{(2 n-1) / 2}\right) /\left(\rho-t_{1}^{(2 n-1) / 2}\right) \\
& \text { for } 1 / t_{1}^{n-1} \leqq \rho \leqq 1 / t_{1}^{n}, \quad 0<t_{1}<1(n=1,2, \cdots)
\end{aligned}
$$

and

$$
\begin{aligned}
T_{2,-n}\left(t_{1}, \rho\right) & =\left(\rho-t_{1}^{(2 n-1) / 2}\right) /\left(1-\rho t_{1}^{(2 n-1) / 2}\right) \\
& \text { for } t_{1}^{n} \leqq \rho \leqq t_{1}^{n-1}, \quad 0<t_{1}<1(n=1,2, \cdots) .
\end{aligned}
$$

We have the following proposition by straightforward computations.
Proposition 4.1. Fix t_{1} with $0<t_{1}<1$.
(1) Let $1 / t_{1}^{n-1} \leqq \rho \leqq 1 / t_{1}^{n} \quad(n=1,2, \cdots)$. If $t_{2}=T_{2, n}\left(t_{1}, \rho\right)$, then $\left\langle A_{1}, A_{2}\right\rangle$ is equal to $\left\langle A_{1}, A_{1}^{2 n-1} A_{2}\right\rangle$ as marked groups. The points $P(n)=$ $\left(t_{1}, t_{2, n}\left(t_{1}\right), \rho_{n}\left(t_{1}\right)\right)$ dfined in $\S 3$ and $\left(t_{1}, 0, t_{1}^{-(2 n-1) / 2}\right)$ lie on the curve $t_{2}=$ $T_{2, n}\left(t_{1}, \rho\right)$.
(2) Let $t_{1}^{n} \leqq \rho \leqq t_{1}^{n-1}(n=1,2, \cdots)$. If $t_{2}=T_{2,-n}\left(t_{1}, \rho\right)$, then $\left\langle A_{1}, A_{2}\right\rangle$ is equal to $\left\langle A_{1}, A_{1}^{2 n-1} A_{2}\right\rangle$ as marked groups. The points $P(-n)=\left(t_{1}, t_{2,-n}\left(t_{1}\right)\right.$, $\rho_{-n}\left(t_{1}\right)$) defined in $\S 3$ and $\left(t_{1}, 0, t_{1}^{2 n-1}\right)$ lie on the curve $t_{2}=T_{2,-n}\left(t_{1}, \rho\right)$.

By Lemma 3.1 (3), the set of invariant points in $R_{1} \mathscr{S}_{2}$ under the mapping N_{1} is the surface F_{0} defined in $\S 2$. By Lemma 2.1 (2) we easily see the following.

Proposition 4.2. The set of invariant points in $R_{1} \mathfrak{S}_{2}$ under the mapping N_{2} is the surface

$$
\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{I}} \mathfrak{S}_{2} \mid t_{1}=t_{2}, 0<t_{1}<1, \rho>0\right\}
$$

We introduce the following sets in $\boldsymbol{R}_{\mathrm{I}}^{3}$: For $n=1,2, \cdots$, we set

$$
L(n)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{I}}^{3} \mid t_{2}=T_{2, n}\left(t_{1}, \rho\right), \rho_{n}\left(t_{1}\right) \leqq \rho<1 / t_{1}^{n}, 0<t_{1}<1\right\}
$$

and

$$
L(-n)=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}_{\mathbf{1}}^{3} \mid t_{2}=T_{2,-n}\left(t_{1}, \rho\right), t_{1}^{n} \leqq \rho \leqq \rho_{-n}\left(t_{1}\right), 0<t_{1}<1\right\}
$$

where $\boldsymbol{R}_{\mathrm{I}}^{3}$ is as defined in §3.6. Then we easily see the following by Lemma 2.1 (1) and (3).

Proposition 4.3. (1) $N_{1}(L(n))=L(-n)$ for $n= \pm 1, \pm 2, \cdots$.
(2) $N_{3}(L(n))=L(n+1)$ for $n=1,2, \cdots$ or $n=-2,-3, \cdots$.
(3) $N_{3}(L(-1))=L(1)$.

Remark. For a constant c, we set

$$
D_{c}=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{1} \mathbb{S}_{2} \mid 1<\rho<1 / t_{1}, 0<t_{1}<1, t_{2}=c\right\}
$$

Then the limit as $c \rightarrow 1$ of the images of D_{c} under N_{3} is the set $F^{-}(2)$ defined in §3.
4.2. Now we will determine fundamental regions for $\left[\Phi_{2}\right]$ and $\operatorname{Mod}\left(\mathscr{S}_{2}\right)$ acting on $R_{1} \Im_{2}$. We set

$$
S=N_{1} N_{3} N_{1} \quad \text { and } \quad T=N_{1} N_{2} .
$$

Then S and T are elements in $\operatorname{Mod}\left(\mathscr{S}_{2}\right)$. We easily see that $T^{2} \sim 1$ and $(T S)^{3}=1$, where $T^{2} \sim 1$ means that T^{2} is equivalent to the identity mapping (see Definition 2.1). We introduce $\rho\left(t_{1}, t_{2}\right)$ for $0<t_{1}<1$ and $0<t_{2}<1$ as follows:

$$
\rho\left(t_{1}, t_{2}\right)=\left(1+t_{1}^{1 / 2} t_{2}\right) /\left(t_{1}^{1 / 2}+t_{2}\right) .
$$

Remark. $\quad T_{2,1}\left(t_{1}, \rho\left(t_{1}, t_{2}\right)\right)=t_{2}$ and $\rho\left(t_{1}, T_{2,1}\left(t_{1}, \rho\right)\right)=\rho$.
Theorem 2. Set
$F_{\mathrm{I}}\left(\left[\Phi_{2}\right]\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{I}} \Im_{2} \mid 1<\rho<\rho\left(t_{1}, t_{2}\right), 0<t_{2}<t_{1}, 0<t_{1}<1\right\}$
$F_{\mathrm{I}}\left(\operatorname{Mod}\left(\mathscr{S}_{2}\right)\right)=F_{\mathrm{I}}\left(\left[\Phi_{2}\right]\right) \cup N_{1}\left(F_{\mathrm{I}}\left(\left[\Phi_{2}\right]\right)\right)$

$$
=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{r}} \mathfrak{S}_{2} \mid \rho\left(t_{1}, t_{2}\right)^{-1}<\rho<\rho\left(t_{1}, t_{2}\right), \rho \neq 1,0<t_{2}<t_{1}, 0<t_{1}<1\right\} .
$$

Then $F_{\mathrm{I}}\left(\left[\Phi_{2}\right]\right)$ and $F_{\mathrm{I}}\left(\operatorname{Mod}\left(\Im_{2}\right)\right)$ are fundamental regions for $\left[\Phi_{2}\right]$ and $\operatorname{Mod}\left(\mathfrak{S}_{2}\right)$ acting on $R_{1} \mathfrak{S}_{2}$, respectively.

We obtain the proof by combining Theorem 3 and Proposition 4.4 which follow.
4.3. Lemma 4.1. $N_{1}^{2}=1, N_{2}^{2}=1, N_{1} N_{2} \sim N_{2} N_{1}, N_{1} N_{3} N_{1} N_{3} \sim 1$ and $S \sim N_{3}^{-1}$.

This lemma and the following lemma come from straightforward calculations.

Lemma 4.2. $\quad N_{1} N_{3}^{n} N_{1}=S^{n}, \quad N_{1} N_{3}^{n} N_{2}=S^{n} T, \quad N_{2} N_{3}^{n} N_{1} \sim T S^{n} \quad$ and $N_{2} N_{3}^{n} N_{2} \sim T S^{n} T$ for each integer n.

Let A, B, C, \cdots be distinct Möbius transformations. A word W in A, B, C, \cdots is a finite sequence

$$
f_{1} f_{2} f_{3} \cdots f_{m-1} f_{m}
$$

where each of the $f_{k}(k=1,2, \cdots, m)$ is one of the transformations $A, B, C, \cdots, A^{-1}, B^{-1}, C^{-1}, \cdots$. The length $L(W)$ of W is the integer m. For convenience we introduce the empty word 1 of length zero. If we wish to exhibit the transformations involved in W, then we write $W(A, B, C, \cdots)$.

By Theorem A in §2, an element ψ in $\operatorname{Mod}\left(\mathfrak{S}_{2}\right)$ is represented in one of the following seven ways: (1) $\psi=W\left(N_{1}\right)=N_{1}^{2 n}, n \in Z$; (2) $\psi=$ $W\left(N_{2}\right)=N_{2}^{2 n}, n \in \boldsymbol{Z}$; (3) $\psi=W\left(N_{3}\right)=N_{3}^{n}, n \in \boldsymbol{Z}$; (4) $\psi=W\left(N_{1}, N_{2}\right)$ where $L\left(W\left(N_{1}, N_{2}\right)\right)$ is even and $\psi \neq W\left(N_{1}\right), W\left(N_{2}\right)$; (5) $\psi=W\left(N_{1}, N_{3}\right)$ where the number of $N_{1}^{ \pm 1}$ in $W\left(N_{1}, N_{3}\right)$ is even and $\psi \neq W\left(N_{1}\right), W\left(N_{3}\right) ;(6) \psi=\left(N_{2}, N_{3}\right)$ where the number of $N_{2}^{ \pm 1}$ in $W\left(N_{2}, N_{3}\right)$ is even and $\psi \neq W\left(N_{2}\right), W\left(N_{3}\right)$; (7) $\psi=W\left(N_{1}, N_{2}, N_{3}\right)$, where the sum of the number of $N_{1}^{ \pm 1}$ and $N_{2}^{ \pm 1}$ in $W\left(N_{1}, N_{2}, N_{3}\right)$ is even and $W\left(N_{1}, N_{2}, N_{3}\right)$ is neither of (1) through (6) above.

Theorem 3. The Schottky modular group $\operatorname{Mod}\left(\mathfrak{S}_{2}\right)$ is generated by S and T, that is,

$$
\operatorname{Mod}\left(\Im_{2}\right)=\left\langle T, S \mid T^{2} \sim 1,(T S)^{3}=1\right\rangle
$$

Proof. We will show that $\psi \in \operatorname{Mod}\left(\mathfrak{S}_{2}\right)$ is represented by T and S in each of the above seven cases.

Case (1). Since $\psi=N_{1}^{2 n}$ and $N_{1}^{2}=1$, we have $\psi=1$.
Case (2). For the same reason as in Case (1), $\psi=1$.
Case (3). Since $N_{3} \sim S^{-1}$, we have $\psi=W\left(N_{3}\right)=N_{3}^{n}=S^{-n}$.
Case (4). From Lemma 4.1, we see that $\psi=N_{1} N_{2}=T$, $\psi=N_{2} N_{1} \sim T$, or $\psi=1$.

Case (5). In this case we have four subcases: (i) $\psi=N_{1} N_{3}^{n_{1}} N_{1} \ldots$ $N_{1} N_{3}^{n_{k}} N_{1}$, (ii) $\psi=N_{1} N_{3}^{n_{1}} N_{1} \cdots N_{1} N_{3}^{n_{k}}$, (iii) $\psi=N_{3}^{n_{1}} N_{1} \cdots N_{1} N_{3}^{n_{k}} N_{1}$, (iv) $\psi=$ $N_{3}^{n_{1}} N_{1} \cdots N_{1} N_{3}^{n_{k}}$. Since the number of N_{1} is even, we have $\psi=$ $W\left(N_{1}, N_{3}\right) \sim S^{m}$ for some integer m in each case by Lemmas 4.1 and 4.2.

Case (6). Similarly as in Case (5), we have four subcases:
(i) $\psi=N_{2} N_{3}^{n_{1}} N_{2} \cdots N_{2} N_{3}^{n_{k}} N_{2} \sim\left(T S^{n_{1}} T\right) S^{-n_{2}}\left(T S^{n_{3}} T\right) \cdots S^{n_{k-1}}\left(T S^{n_{k}} T\right)$,
(ii) $\psi=N_{2} N_{3}^{n_{1}} N_{2} \cdots N_{3}^{n_{k}} \sim\left(T S^{n_{1}} T\right) S^{-n_{2}} \cdots\left(T S^{n_{k-1}} T\right) S^{-n_{k}}$,
(iii) $\psi=N_{3}^{n_{1}} N_{2} \cdots N_{2} N_{3}^{n_{k}} N_{2} \sim S^{-n_{1}}\left(T S^{n_{2}} T\right) S^{-n_{2}} \cdots\left(T S^{n_{k}} T\right)$, and
(iv) $\psi=N_{3}^{n_{1}} N_{2} N_{3}^{n_{2}} \cdots N_{2} N_{3}^{n_{k}} \sim S^{-n_{1}}\left(T S^{n_{2}} T\right) S^{-n_{3}} \cdots\left(T S^{n_{k-1}} T\right) S^{-n_{k}}$.

Case (7). We have the following four subcases:
(i) $)_{k} \quad \psi=U_{1} N_{3}^{n_{1}} U_{2} N_{3}^{n_{2}} U_{3} \cdots U_{k} N_{3}^{n k} U_{k+1}$,
(ii) $k_{k} \quad \psi=U_{1} N_{3}^{n_{1}} U_{2} N_{3}^{n_{2}} U_{3} \cdots U_{k} N_{3}^{n_{k}}$,
(iii) $)_{k} \quad \psi=N_{3}^{n_{1}} U_{1} N_{3}^{n_{2}} U_{2} \cdots U_{k-1} N_{3}^{n_{k}} U_{k}$, and
(iv) $k_{k} \quad \psi=N_{3}^{n_{1}} U_{1} N_{3}^{n_{2}} U_{2} \cdots U_{k} N_{3}^{n_{k+1}}$,
where $U_{i}(i=1,2, \cdots, k+1)$ are words $W_{i}\left(N_{1}, N_{2}\right)$ in N_{1} and N_{2} such that $\sum_{i=1}^{k} L\left(W_{i}\left(N_{1}, N_{2}\right)\right)$ is even.

By induction we will show that $\psi=W\left(N_{1}, N_{2}, N_{3}\right)$ is represented by S and T. First we note that $N_{1} N_{2} \sim N_{2} N_{1}$. For $k=1$,
(i $)_{1} \psi=U_{1} N_{3}^{n_{1}} U_{2}$. There are three possibilities: $\psi=N_{1} N_{3}^{n_{1}} N_{2}=$ $S^{n_{1}} T ; \psi=N_{2} N_{3}^{n_{1}} N_{1} \sim T S^{n_{1}} ; \psi \sim N_{1} N_{2} N_{3}^{n_{1}} N_{1} N_{2} \sim T S^{-n_{1}} T$.
(ii) $)_{1} \quad \psi=U_{1} N_{3}^{n_{1}} \sim N_{1} N_{2} N_{3}^{n_{1}} \sim T S^{-n_{1}}$.
(iii) ${ }_{1} \quad \psi=N_{3}^{n_{1}} U_{2} \sim N_{3}^{n_{1}} N_{1} N_{2} \sim S^{-n_{1}} T$.
(iv) $)_{1} \psi=N_{3}^{n_{1}} U_{1} N_{3}^{n_{2}} \sim N_{3}^{n_{1}} N_{1} N_{2} N_{3}^{n_{2}}=S^{-n_{1}} T S^{-n_{2}}$.

We assume that in each of (i) $)_{j}$ through (iv) $j_{j}(j=1,2, \cdots, k) \psi$ is represented by S and T, that is, $\psi=W_{j, l}(S, T)(j=1,2, \cdots, k ; l=$ $1,2,3,4$), where the latter numbers $1,2,3,4$ correspond to i, ii, iii, iv, respectively. Then we will show that in each of (i) $)_{k+1}$ through (iv) ${ }_{k+1}$, ψ is represented by S and T.

$$
\begin{aligned}
& (i))_{k+1} \\
& \psi=\left\{\begin{array}{l}
\left(U_{1} N_{3}^{n_{1}} U_{2} \cdots U_{k} N_{3}^{n k} U_{k+1}\right)\left(N_{3}^{n k+1} U_{k+2}\right) \text { for } U_{k+2}=N_{1} N_{2} \text { or } N_{2} N_{1} \\
\left(U_{1} N_{3}^{n_{1}} U_{2} \cdots U_{k} N_{3}^{n_{k}} U_{k+1,1}\right)\left(U_{k+1,2} N_{3}^{n_{k+1}} U_{k+2}\right) \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where $U_{k+1,1} U_{k+1,2}=U_{k+1}$ and $L\left(U_{k+1,2}\right)$ is odd. In the first case $\psi=$ $W_{k, 1}(S, T) W_{1,3}(S, T)$ and in the second case $\psi=W_{k, 1}(S, T) W_{1,1}(S, T)$.
(ii $)_{k+1}$

$$
\psi=\left\{\begin{array}{l}
\left(U_{1} N_{3}^{n_{1}} U_{2} \cdots U_{k} N_{3}^{n_{k}}\right)\left(U_{k+1} N_{3}^{n_{k+1}}\right) \text { for } U_{k+1}=N_{1} N_{2} \text { or } N_{2} N_{1} . \\
\left(U_{1} N_{3}^{n_{1}} U_{2} \cdots U_{k} N_{3}^{n_{k}} U_{k+1,1}\right)\left(U_{k+1,2} N_{3}^{n_{k+1}}\right) \text { otherwise },
\end{array}\right.
$$

where $U_{k+1,1} U_{k+1,2}=U_{k+1}$, and $L\left(U_{k+1,1}\right)=1$ and $L\left(U_{k+1,2}\right)=2$. In the first case $\psi=W_{k, 2}(S, T) W_{1,2}(S, T)$ and in the second case $\psi=W_{k, 1}(S, T) W_{1,2}(S, T)$.

$$
(\mathrm{iii})_{k+1}
$$

$$
\psi=\left\{\begin{array}{lll}
\left(N_{3}^{n_{1}} U_{1} \cdots\right. & \left.U_{k-1} N_{3}^{n_{k}} U_{k}\right)\left(N_{3}^{n_{k+1}} U_{k+1}\right) & \text { for } \\
\left(N_{3}^{n_{1}} U_{1} \cdots\right. & U_{k+1}=N_{1} N_{3} & \text { or } N_{k}^{n k} U_{2} N_{1} \\
\left.U_{k}\right)\left(U_{k, 2} N_{3}^{n k+1} U_{k+1}\right) & \text { otherwise }
\end{array}\right.
$$

where $U_{k, 1} U_{k, 2}=U_{k}$ and $L\left(U_{k, 2}\right)$ is odd. In the first case $\psi=$ $W_{k, 3}(S, T) W_{1,3}(S, T)$ and in the second case $\psi=W_{k, 3}(S, T) W_{1,1}(S, T)$.

$$
\begin{aligned}
& \text { (iv })_{k+1} \\
& \psi= \begin{cases}\left(N_{3}^{n_{1}} U_{1} \cdots U_{k} N_{3}^{n_{k+1}}\right)\left(U_{k+1} N_{3}^{n_{k+2}}\right) & \text { for } U_{k+1}=N_{1} N_{2} \text { or } N_{2} N_{1} \\
\left(N_{3}^{n_{1}} U_{1} \cdots U_{k} N_{3}^{n_{k+1}} U_{k+1}\right) N_{3}^{n_{k+2}} & \text { otherwise }\end{cases}
\end{aligned}
$$

In the first case $\psi=W_{k, 4}(S, T) W_{1,2}(S, T)$ and in the second case $\psi=$ $W_{k, 3}(S, T) S^{-n_{k+2}}$. Our proof is now complete.
4.4. The boundary of $F_{\mathrm{I}}\left(\operatorname{Mod}\left(\mathfrak{S}_{2}\right)\right)$ consists of the following seven surfaces B_{1} through B_{7} : We recall the terminology $\rho\left(t_{1}, t_{2}\right)$ introduced in $\S 4.2$ and we set

$$
\begin{aligned}
& B_{1}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid \rho=\rho\left(t_{1}, t_{2}\right), 0<t_{2} \leqq t_{1}, 0<t_{1}<1\right\}, \\
& B_{2}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid \rho=\rho\left(t_{1}, t_{2}\right)^{-1}, 0<t_{2} \leqq t_{1}, 0<t_{1}<1\right\}, \\
& B_{3}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid 1<\rho \leqq \rho\left(t_{1}, t_{2}\right), t_{2}=t_{1}, 0<t_{1}<1\right\}, \\
& B_{4}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid \rho\left(t_{1}, t_{2}\right)^{-1} \leqq \rho<1, t_{2}=t_{1}, 0<t_{1}<1\right\}, \\
& B_{5}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid 0<t_{2} \leqq t_{1}, 0<t_{1}<1, \rho=1\right\}, \\
& B_{8}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid 1<\rho \leqq t_{1}^{-1 / 2}, 0<t_{1}<1, t_{2}=0\right\},
\end{aligned}
$$

and

$$
B_{7}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid t_{1}^{1 / 2} \leqq \rho<1,0<t_{1}<1, t_{2}=0\right\}
$$

Remarks. (1) B_{1}, B_{2}, B_{3} and B_{4} are in the interior of $R_{1} \mathscr{G}_{2}$.
(2) B_{5}, B_{6} and B_{7} are on the boundary of $R_{1} \Im_{2}$.

We easily see the following by Lemma 2.1.
Proposition 4.4. (1) $S\left(B_{1}\right)=B_{2}$ and $T\left(B_{3}\right)=B_{4}$.
(2) $S\left(B_{8}\right)=B_{7}$.
(3) $T\left(B_{\delta}\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R^{3} \mid t_{1} \leqq t_{2}<1,0<t_{1}<1, \rho=1\right\}$.

5. The first type-Riemann surfaces.

5.1. The boundary of the Schottky space consists of the following two kinds of points (cf. Rodriguez [11]):
(1) marked Möbius transformation groups which are limits of marked Schottky groups;
(2) points which represent Riemann surfaces with nodes.

For (1), every boundary group G is discrete (Chuckrow [2]) and either G is a cusp or $\Omega(G)=\varnothing$ (Rodriguez [11]), where $\Omega(G)$ is the region of discontinuity of G. For (2), Bers [1] studied compact Riemann surfaces with non-dividing nodes, and Sato [12], [13] studied Riemann surfaces with non-dividing nodes and dividing nodes corresponding to points on the augmented Schottky space. Furthermore Rodriguez [10], [11] studied relationship between Schottky-type groups and Riemann surfaces with nodes and cusps. In this section we will consider the following problem: Which Riemann surface does a point on the closure of $R_{1} \mathfrak{S}_{2}$ represent?

Definition 5.1. A Riemann surface with nodes is a complex space each point P of which has a neighborhood isomorphic either to a disk $|z|<1$ in C (with P corresponding to $z=0$) or to the set $|z|<1$,
$|w|<1, z w=0$ in C^{2} (with P corresponding to $z=w=0$). In the latter case, P is called a node.

Proposition 5.1. A point in $\mathfrak{S}_{2}\left(\Sigma_{0}\right)$ represents a compact Riemann surface of genus two without nodes.

This proposition is well-known.
Proposition 5.2 (cf. Sato [12]). A point on the surface $F_{0}=$ $\left\{\left(t_{1}, t_{2}, 1\right) \mid 0<t_{1}<1,0<t_{2}<1\right\}$ represents a compact Riemann surface of genus two with one dividing node.

Proposition 5.3 (cf. [12]). A point on the surfaces $H(n), H(-n)$, $H(1, n)$ and $H(-1,-n)$ defined in $\S 3.2$ represents a compact Riemann surface of genus two with one non-dividing node.

Proposition 5.4 (cf. [12]). A point on the set $\left\{\left(t_{1}, 0,1\right) \mid 0<t_{1}<1\right\}$ and $\left\{\left(0, t_{2}, 1\right) \mid 0<t_{2}<1\right\}$ represents a compact Riemann surface of genus two with one dividing node and one non-dividing node.

Proposition 5.5 (cf. [12]). A point on the set $\{(0,0, \rho) \mid 0<\rho, \rho \neq 1\}$ represents a compact Riemann surface of genus two with two non-dividing nodes.

Proposition 5.6 (cf. [12]). A point ($0,0,1$) represents a compact Riemann surface of genus two with one dividing node and two nondividing nodes.
5.2. Throughout this section, let $p>1$ and $c>0$. We set

$$
\widehat{A}(z)=\left\{(p c+1) z-p^{2} c\right\} /\{c z-(p c-1)\}
$$

Then we have the following Lemmas 5.1, 5.2 and Corollary by straightforward computations.

Lemma 5.1. \hat{A} is a parabolic transformation whose fixed point is $z=p$.

Lemma 5.2. Let $x>0$. (1) The minimum value of $A(x) / x$ is $((p c+1) /(p c-1))^{2}$, which is attained at the point $x=p(p c-1) /(p c+1)$.
(2) $\hat{A}(p(p c-1) /(p c+1))=p(p c+1) /(p c-1)$.

Corollary. Set

$$
C_{2}:\left|z-p^{2} c /(p c+1)\right|=p /(p c+1)
$$

and

$$
C_{4}:\left|z-p^{2} c /(p c-1)\right|=p /(p c-1)
$$

Then the circle C_{2} touches the circle C_{4} at the point $z=p$, and $\hat{A}\left(C_{2}\right)=C_{4}$.

Let A_{1} and A_{2} be the Möbius transformations as in $\S 3.1$. Then

$$
A_{1}^{-1} A_{2}(z)=\left\{t_{1}\left(\rho-t_{2}\right) z+t_{1} \rho\left(t_{2}-1\right)\right\} /\left\{\left(1-t_{2}\right) z+\rho t_{2}-1\right\} .
$$

Lemma 5.3. Let $t_{2}^{1 / 2}=\left(\rho^{1 / 2} t_{1}^{1 / 2}-1\right) /\left(\rho^{1 / 2}-t_{1}^{1 / 2}\right)\left(1<\rho \leqq \rho_{2}\left(t_{1}\right)\right)$, where $\rho_{2}\left(t_{2}\right)$ is as defined in §3.1. Then (1) $A_{1}^{-1} A_{2}$ is a parabolic transformation whose fixed point is $t_{1}^{1 / 2} \rho^{1 / 2}$.
(2) The minimum value of $A_{1}^{-1} A_{2}(x) / x$ for $x>0$ is

$$
\left(t_{1}^{1 / 2}\left(\rho-2 t_{1}^{1 / 2} \rho^{1 / 2}+1\right) /\left(2 \rho^{1 / 2}-\rho t_{1}^{1 / 2}-t_{1}^{1 / 2}\right)\right)^{2}
$$

which is attained at $x=\rho^{1 / 2}\left(2 \rho^{1 / 2}-\rho t_{1}^{1 / 2}-t_{1}^{1 / 2}\right) /\left(\rho-2 t_{1}^{1 / 2} \rho^{1 / 2}+1\right)$.
Proof. This follows from Lemmas 5.1 and 5.2 by substituting $t_{1}^{1 / 2} \rho^{1 / 2}$ and $\left(1-t_{1}\right) / t_{1}^{1 / 2}\left(\rho^{1 / 2} t_{1}^{1 / 2}-1\right)\left(\rho^{1 / 2}-t_{1}^{1 / 2}\right)$ for p and c, respectively. q.e.d.

Lemma 5.4. Let p and c be as in the proof of Lemma 5.3. Set

$$
\varepsilon=\left(p /\left(1+t_{1}\right)\right)\left\{(p c-1) /(p c+1)-t_{1}(p c+1) /(p c-1)\right\} .
$$

Then (1) $A_{1}(p(p c-1) /(p c+1)-\varepsilon)=p(p c+1) /(p c-1)+\varepsilon$.
(2) $\varepsilon=0$ if and only if

$$
\rho^{1 / 2}=\left\{t_{1}^{3 / 2}+1+\left(1-t_{1}\right)\left(1+t_{1}\right)^{1 / 2}\right\} / t_{1}^{1 / 2}\left(t_{1}^{1 / 2}+1\right)
$$

This lemma comes from straightforward computations.
Corollary. Set

$$
C_{1}:|z|=p /(p c+1)-\varepsilon
$$

and

$$
C_{3}:|z|=p /(p c-1)+\varepsilon,
$$

where ε is as in Lemma 5.4. Then $A_{1}\left(C_{1}\right)=C_{3}$.
Lemma 5.5. Let $G=\left\langle A_{1}, A_{2}\right\rangle$ be a marked discontinuous group. Let $\phi(G)$ be the image of G under a mapping ϕ in $\operatorname{Mod}\left(\Im_{2}\right)$. Then $\phi(G)$ is a marked discontinuous group and represents the same Riemann surface as G does, that is, $\Omega(\phi(G)) / \phi(G)$ is conformally equivalent to $\Omega(G) / G$.

This lemma is well-known.
Proposition 5.7. A point on the surfaces $F^{+}(1)-P(1), F^{+}(-1)-$ $P(-1)$ and $F^{-}(2)-P(2)$ represents a Riemann surface of genus one with two punctures, where $P(1), P(-1)$ and $P(2)$ are the sets defined in §3.1.

Proof. This proposition for $F^{+}(1)-P(1)$ and $F^{+}(-1)-P(-1)$ follows from Proposition 3.1. Therefore we will only prove it for $F^{-}(2)-P(2)$.

First we consider a marked group $\left\langle A_{1}, A_{1}^{-1} A_{2}\right\rangle$. Let C_{1}, C_{2}, C_{3} and C_{4} be the circles as in corollaries to Lemmas 5.2 and 5.4 , where p and
c are as in the proof of Lemma 5.3, and ε is as in Lemma 5.4. Then by corollaries to Lemmas 5.2 and 5.4 we see that the region bounded by the four circles is a fundamental region for $\left\langle A_{1}, A_{1}^{-1} A_{2}\right\rangle$, and that the group $\left\langle A_{1}, A_{1}^{-1} A_{2}\right\rangle$ represents a Riemann surface of genus one with two punctures.

Next we consider a marked group $\left\langle A_{1}, A_{2}\right\rangle$. We easily see that $\left\langle A_{1}, A_{2}\right\rangle=N_{3}\left(\left\langle A_{1}, A_{1}^{-1} A_{2}\right\rangle\right)$. Hence by $N_{3} \in \operatorname{Mod}\left(\mathfrak{S}_{2}\right)$, Lemma 5.5 and the first part of this proof, $\left\langle A_{1}, A_{2}\right\rangle$ represents a Riemann surface of genus one with two punctures.
q.e.d.

From Proposition 5.7 and Lemma 5.5, we have the following:
Corollary. Let $P(n)(n= \pm 1, \pm 2, \cdots)$ be the sets defined in $\S 3.1$. Then a point on the surfaces $F^{+}\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)-P\left(n_{k}\right)$ and $F^{-}\left(n_{k}, n_{k-1}, \cdots, n_{0}\right)-P\left(n_{k}\right)$ represents a Riemann surface of genus one with two punctures.

Proposition 5.8. A point on the set $P(n)(n= \pm 2, \pm 3, \cdots)$ defined in §3.1 represents a Riemann surface of genus zero with four punctures.

Proof. We only consider this proposition for $n=2$, since the other cases follow from the case for $n=2$ and Lemma 5.5. By Proposition 3.2,

$$
\rho_{2}\left(t_{1}\right)=\left(t_{1}^{3 / 2}+1+\left(1-t_{1}\right)\left(1+t_{1}\right)^{1 / 2}\right) / t_{1}^{1 / 2}\left(t_{1}^{1 / 2}+1\right)
$$

for $n=2$. We easily see that both $A_{1}^{-1} A_{2}$ and $A_{1}^{-2} A_{2}$ are parabolic. Let C_{1}, C_{2}, C_{3} and C_{4} be the circles in the proof of Proposition 5.7 and let ε be the number in Lemma 5.4. Then by Lemma 5.4 we see that $\varepsilon=0$. Therefore the circle C_{2} touches the circles C_{1} and C_{4}, and the circle C_{3} touches the circle C_{4}. Hence $\left\langle A_{1}, A_{1}^{-1} A_{2}\right\rangle$ represents a Riemann surface of genus zero with four punctures. By Lemma 5.5, $\left\langle A_{1}, A_{2}\right\rangle$ represents the same Riemann surface as $\left\langle A_{1}, A_{1}^{-1} A_{2}\right\rangle$ does. Our proof is now complete.
5.3. We will consider which Riemann surfaces the other boundary points of $R_{1} \mathfrak{S}_{2}$ represent. In our coordinates (t_{1}, t_{2}, ρ), it is natural to consider for the problem as follows:
(1) A point $\left(t_{1}, 1,1\right)\left(0<t_{1}<1\right)$ or ($\left.1, t_{2}, 1\right)\left(0<t_{2}<1\right)$ represents a Riemann surface of genus one with two punctures and one dividing node.
(2) The points ($0,1,1$) and ($1,0,1$) represent Riemann surfaces of genus one with two punctures, one dividing node and one non-dividing node.
(3) The point (1, 1, 1) represents a Riemann surface of genus zero with four punctures and one dividing node.
(4) A point $\left(t_{1}, 0,1 / t_{1}\right)\left(0<t_{1}<1\right)$ or ($\left.0, t_{2}, 1 / t_{2}\right)\left(0<t_{2}<1\right)$ represents a Riemann surface of genus one with one puncture.

6. The real classical Schottky space of the fourth type.

6.1. In this section we will determine the shape of the real classical Schottky space of the fourth type $R_{I v} \mathbb{S}_{2}^{0}$ and fundamental regions for [Φ_{2}] and $\operatorname{Mod}\left(\Im_{2}\right)$ acting on $R_{1 \mathrm{~V}} \mathfrak{S}_{2}^{0}$, and consider the relationship between points on the closure of $R_{\mathrm{IV}} \mathfrak{S}_{2}^{0}$ and Riemann surfaces. We denote by $\boldsymbol{R}_{\mathrm{IV}}^{3}$ the set $\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid 0<t_{1}<1,0<t_{2}<1, \rho<0\right\}$.

PROPOSITION 6.1. Let $\left(t_{1}, t_{2}, \rho\right)$ correspond to $G=\left\langle A_{1}, A_{2}\right\rangle$. If

$$
\begin{equation*}
2 t_{1}^{1 / 2} t_{2}^{1 / 2}(1-\rho)=(-\rho)^{1 / 2}\left(1-t_{1}\right)\left(1-t_{2}\right) \tag{*}
\end{equation*}
$$

then $A_{1} A_{2} A_{1}^{-1} A_{2}^{-1}$ is a parabolic transformation. Furthermore G is a discontinuous group and the union of two open sets bounded by the four circles $C_{j}:\left|z-a_{j}\right|=r_{j}(j=1,2,3,4)$ is a fundamental region for G, where

$$
\begin{aligned}
& a_{1}=-\rho(1+\rho)\left(1-t_{2}\right)^{2}\left(1+t_{1}\right) / 4\left(1-\rho t_{2}\right)\left(t_{2}-\rho\right), \\
& r_{1}=-\rho\left(1+t_{1}\right)\left(1-t_{2}^{2}\right)(1-\rho) / 4\left(1-\rho t_{2}\right)\left(t_{2}-\rho\right), \\
& a_{2}=\rho\left(1+t_{1}\right)^{2}\left(t_{2}-1\right) / 4 t_{1}\left(t_{2}-\rho\right), \\
& r_{2}=\rho\left(1-t_{1}^{2}\right)\left(t_{2}-1\right) / 4 t_{1}\left(t_{2}-\rho\right), \\
& a_{3}=a_{1} / t_{1}, \quad r_{3}=r_{1} / t_{1}, \quad a_{4}=\rho\left(1+t_{1}\right)^{2}\left(1-t_{2}\right) / 4 t_{1}\left(1-\rho t_{2}\right), \\
& r_{4}=\rho\left(1-t_{1}^{2}\right)\left(t_{2}-1\right) / 4 t_{1}\left(1-\rho t_{2}\right) .
\end{aligned}
$$

For given $0<t_{1}<1$ and $\rho<0$, we write $t_{2}^{*}\left(t_{1}, \rho\right)$ for $t_{2}\left(0<t_{2}<1\right)$ satisfying the above equation (*). As in the proofs of Lemmas 3.5 and 3.6 and Proposition 3.4, we have the following.

Proposition 6.2.

$$
R_{\mathrm{IV}} \mathbb{S}_{2}^{00}=\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}_{\mathrm{IV}}^{3} \mid 0<t_{2}<t_{2}^{*}\left(t_{1}, \rho\right), 0<t_{1}<1, \rho<0\right\}
$$

Theorem B (Nielsen [8]). Let $G=\left\langle A_{1}, A_{2}\right\rangle$ and let \widetilde{A}_{1} and \tilde{A}_{2} be the images of A_{1} and A_{2} under any element of Φ_{2}. Then $\widetilde{A}_{2}^{-1} \widetilde{A}_{1}^{-1} \widetilde{A}_{2} \widetilde{A}_{1}=$ $U\left(A_{2}^{-1} A_{1}^{-1} A_{2} A_{1}\right)^{ \pm 1} U^{-1}$, where U is a word in A_{1} and A_{2}.

From Theorem B, we have the following.
PROPOSITION 6.3. $\quad R_{\mathrm{IV}} \widetilde{S}_{2}^{0}=R_{\mathrm{IV}} \widetilde{S}_{2}^{00}$.
The following theorem follows from Proposition 6.3 and a result of Purzitsky [9, Theorem 2].

THEOREM 4. $\quad R_{\mathrm{IV}} \mathfrak{S}_{2}=R_{\mathrm{IV}} \mathfrak{S}_{2}^{0}=R_{\mathrm{IV}} \mathfrak{S}_{2}^{00}$.
6.2. Throughout this section let $N_{j}(j=1,2,3)$ be the automorphisms
defined in §2.1. The following Propositions 6.4 through 6.7 follow from Lemma 2.1.

Proposition 6.4. The set of invariant points in $\boldsymbol{R}_{\mathrm{IV}}^{3}$ under the mapping N_{1} is $\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}_{\mathrm{IV}}^{3} \mid 0<t_{1}<1,0<t_{2}<1, \rho=-1\right\}$.

Proposition 6.5. The set of invariant points in $R_{\text {IV }} \mathfrak{S}_{2}$ under the mapping N_{2} is $\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{IV}} \mathbb{S}_{2} \mid \rho<0, t_{2}=t_{1}, 0<t_{1}<1\right\}$.

We set $\rho^{*}\left(t_{1}, t_{2}\right)=\left(1-t_{1}^{1 / 2} t_{2}\right) /\left(t_{2}-t_{1}^{1 / 2}\right)$ for $0<t_{1}<1$ and $0<t_{2}<1$.
Proposition 6.6. The set of invariant points in $R_{\text {IV }} \Im_{2}$ under the mapping N_{3} is $B_{8}=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{IV}} \mathfrak{S}_{2} \mid \rho=\rho^{*}\left(t_{1}, t_{2}\right), \rho<0,0<t_{1}<1,0<\right.$ $\left.t_{2}<1\right\}$.

Proposition 6.7. The set of invariant points in $R_{\mathrm{IV}} \Im_{2}$ under the mapping $\left(A_{1}, A_{2}\right) \rightarrow\left(A_{1}, A_{1}^{-1} A_{2}\right)$ is $B_{9}=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{IV}} \mathfrak{S}_{2} \mid \rho=\rho^{*}\left(t_{1}, t_{2}\right)^{-1}, \rho<0\right.$, $\left.0<t_{1}<1,0<t_{2}<1\right\}$.

Now we will determine fundamental regions for $\left[\Phi_{2}\right]$ and $\operatorname{Mod}\left(\mathbb{S}_{2}\right)$ acting on $R_{\text {IV }} \mathscr{S}_{2}$. As in $\S 4$, we set $S=N_{1} N_{3} N_{1}$ and $T=N_{1} N_{2}$. We set

$$
B_{10}=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{IV}} \mathbb{S}_{2} \mid-1<\rho<\rho^{*}\left(t_{1}, t_{2}\right)^{-1}, t_{2}=t_{1}, 0<t_{1}<1\right\} .
$$

and

$$
B_{11}=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{IV}} \mathfrak{S}_{2} \mid \rho^{*}\left(t_{1}, t_{2}\right)<\rho<-1, t_{2}=t_{1}, 0<t_{1}<1\right\}
$$

PROPOSITION 6.8. $\quad S\left(B_{8}\right)=B_{8}$ and $T\left(B_{10}\right)=B_{11}$.
From Proposition 6.8, we have the following.
Theorem 5. Set

$$
\begin{gathered}
F_{\mathrm{IV}}\left(\operatorname{Mod}\left(\mathfrak{S}_{2}\right)\right)=\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{Iv}} \mathfrak{S}_{2} \mid \rho^{*}\left(t_{1}, t_{2}\right)<\rho<\rho^{*}\left(t_{1}, t_{2}\right)^{-1}\right. \\
\left.t_{2}<t_{1}, 0<t_{2}<t_{2}^{*}\left(t_{1}, \rho\right), 0<t_{1}<1\right\}
\end{gathered}
$$

and

$$
\begin{aligned}
F_{\mathrm{IV}}\left(\left[\Phi_{2}\right]\right) & =\left\{\left(t_{1}, t_{2}, \rho\right) \in R_{\mathrm{Iv}} \mathfrak{S}_{2} \mid \rho^{*}\left(t_{1}, t_{2}\right)<\rho<-1, t_{2}<t_{1},\right. \\
& \left.0<t_{2}<t_{2}^{*}\left(t_{1}, \rho\right), 0<t_{1}<1\right\},
\end{aligned}
$$

respectively. Then $F_{\mathrm{IV}}\left(\operatorname{Mod}\left(\Im_{2}\right)\right)$ and $F_{\mathrm{IV}}\left(\left[\Phi_{2}\right]\right)$ are fundamental regions for $\operatorname{Mod}\left(\mathfrak{S}_{2}\right)$ and $\left[\Phi_{2}\right]$, respectively, acting on $R_{1 \mathrm{~V}} \mathfrak{S}_{2}$.
6.3. Finally, we will consider the following problem: Which Riemann surface does a point on the closure of $R_{\mathrm{IV}} \mathscr{S}_{2}$ represent?

Proposition 6.9. A point in $R_{\mathrm{IV}} \mathscr{S}_{2}$ represents a compact Riemann surface of genus two without nodes.

This proposition is well-known.

Proposition 6.10. A point in the set $\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}_{\mathrm{IV}}^{3} \mid t_{2}=t_{2}^{*}\left(t_{1}, \rho\right)\right.$, $\left.0<t_{1}<1, \rho<0\right\}$ represents two Riemann surfaces each of which is of genus one with one puncture.

This proposition comes from Proposition 6.1.
Proposition 6.11 (cf. [12]). A point on the sets $\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid t_{1}=0\right.$, $\left.0<t_{2}<1, \rho<0\right\}$ or $\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid t_{2}=0,0<t_{1}<1, \rho<0\right\}$ represents a compact Riemann surface of genus two with one non-dividing node.

Proposition 6.12 (cf. [12]). A point on the set $\left\{\left(t_{1}, t_{2}, \rho\right) \in \boldsymbol{R}^{3} \mid t_{1}=\right.$ $\left.t_{2}=0, \rho<0\right\}$ represents a compact Riemann surface of genus two with two non-dividing nodes.
7. Trace moduli. In this section we will consider the relationship between Keen's results in [3] and our results in §6. In [3] keen sets $x=\operatorname{trace} A_{1}, y=\operatorname{trace} A_{2}, z=\operatorname{trace} A_{1} A_{2}$, and $k=\operatorname{trace} A_{2}^{-1} A_{1}^{-1} A_{2} A_{1}$. Then the equation $k=x^{2}+y^{2}+z^{2}-x y z-2$ is always satisfied. Keen considered Fuchsian groups representing Riemann surfaces of genus one with one hole or one puncture. In our terminology, she considered the real Schottky groups of the fourth type.

Theorem C (Keen [3]). (1) The moduli space for tori with a hole is the three-dimensional manifold M described by the equations $x^{2}+y^{2}+$ $z^{2}-x y z-2-k=0, x>2, y>2, z>2, k<-2$.
(2) The intersection of M with the half spaces $x \leqq y, y \leqq z, z \leqq$ $x y / 2$ is a fundamental region with respect to the action of Φ_{2} on M. The intersection of M with the half spaces $x \leqq y, y \leqq z, x y \geqq 2 z, x z \geqq 2 y$ is a fundamental region with respect to the action of $\operatorname{Mod}\left(\mathfrak{S}_{2}\right)$ on M.

Let us represent the equation $x^{2}+y^{2}+z^{2}-x y z=0$, and the inequalities $x>2, y>2$ and $z>2$ in our coordinates $\left(t_{1}, t_{2}, \rho\right)$. We easily see that $x^{2}=t_{1}+1 / t_{1}+2, y^{2}=t_{2}+1 / t_{2}+2$ and $z^{2}=\left(t_{1} t_{2} \rho-t_{2}+\rho-t_{1}\right)^{2} j$ $\left(t_{1} t_{2}(\rho-1)^{2}\right)$.

It is now straightforward to verify the following three propositions. We recall the notation $\rho^{*}\left(t_{1}, t_{2}\right)=\left(1-t_{1}^{1 / 2} t_{2}\right) /\left(t_{2}-t_{1}^{1 / 2}\right)$ and $t_{2}=t_{2}^{*}\left(t_{1}, \rho\right)$ introduced in §6. We set $\rho^{* *}\left(t_{1}, t_{2}\right)=\left(1-t_{1} t_{2}^{1 / 2}\right) /\left(t_{1}-t_{2}^{1 / 2}\right)$.

Proposition 7.1. (1) $2 z \leqq x y$ if and only if $\rho \geqq-1$.
(2) $2 y \leqq x z$ if and only if $\rho \leqq\left(t_{2}-t_{1}\right) /\left(1-t_{1} t_{2}\right)$.
(3) $x \leqq y$ if and only if $t_{1} \geqq t_{2}$.
(4) $x \leqq z$ if and only if $\rho \leqq \rho^{* *}\left(t_{1}, t_{2}\right)^{-1}$.
(5) $y \leqq z$ if and only if $\rho \leqq \rho^{*}\left(t_{1}, t_{2}\right)^{-1}$.
(6) $z>y(x-1)$ if and only if $\rho>\rho^{*}\left(t_{1}, t_{2}\right)$.
(7) $x^{2}+y^{2}+z^{2}-x y z=0$ if and only if $t_{2}=t_{2}^{*}\left(t_{1}, \rho\right)$.

Let $N_{j}(j=1,2,3)$ be the automorphisms defined in $\S 2$. We set $S=$ $N_{1} N_{3} N_{1}$ and $T=N_{1} N_{2}$.

Proposition 7.2. The images of the sets $\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid x z=2 y\right\}$ and $\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid y=z\right\}$ under the mapping S are $\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid x y=2 z\right\}$ and $\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid z=y(x-1)\right\}$, respectively.

Proposition 7.3. The image of the set $\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid x^{2}+y^{2}+z^{2}-\right.$ $x y z=0,2 z<x y, y<z\}$ under the mapping T is $\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid x^{2}+y^{2}+\right.$ $\left.z^{2}-x y z=0,2 z>x y, z>y(x-1)\right\}$.

From Theorem C and Propositions 7.2 and 7.3, we have the following.
Proposition 7.4. The three-dimensional manifold

$$
\left\{(x, y, z) \in R^{3} \mid y<z, z>y(x-1), x<y\right\} \cap M
$$

is a fundamental region for $\operatorname{Mod}\left(\Im_{2}\right)$ acting on M.
Remark. The above fundamental region coincides with the set $F_{\mathrm{IV}}\left(\operatorname{Mod}\left(\Im_{2}\right)\right)$ in $\S 6$.

References

[1] L. Bers, Automorphic forms for Schottky groups, Advances in Math. 16 (1975), 332-361.
[2] V. Chuckrow, On Schottky groups with applications to Kleinian groups, Ann. of Math. 88 (1969), 47-61.
[3] L. KeEn, On fundamental domains and the Teichmüller modular group, in Contributions to Analysis (L. V. Ahlfors, ed.), 185-194, Academic Press, New York-London, 1974.
[4] L. KeEn, A modular group and Riemann surfaces of genus 2, Math. Z. 142 (1975), 205-219.
[5] W. Magnus, A. Karass and D. Solitar, Combinatorial Group Theory, Interscience, New York-London, 1966.
[6] A. Marden, Schottky groups and circles, in Contributions to Analysis (L. V. Ahlfors, ed.), 273-278, Academic Press, New York-London, 1974.
[7] B. H. Neumann, Die Automorphismengruppe der freien Gruppen, Math. Ann. 107 (1932), 367-386.
[8] J. Nielsen, Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385-397.
[9] N. Purzitsky, Real two-dimensional representation of two-generator free groups, Math. Z. 127 (1972), 95-104.
[10] R. Rodriguez, On Schottky-type groups with applications to Riemann surfaces with nodes I, Complex Variables 1 (1983), 279-291.
[11] R. Rodriguez, On Schottky-type groups with applications to Riemann surfaces with nodes II, Complex Variables 1 (1983), 293-310.
[12] H. Sato, On augmented Schottky spaces and automorphic forms, I, Nagoya Math. J. 75 (1979), 151-175.
[13] H. Sato, Introduction of new coordinates to the Schottky space-The general case-, J. Math. Soc. Japan 35 (1983), 23-35.
[14] H. Sato, Augmented Schottky spaces and a uniformization of Riemann surfaces, Tôhoku Math. J. 35 (1983), 557-572.
[15] H. Sato, Classical Schottky groups of real type of genus two, II, in preparation.
[16] H. Sato, On a paper of Zarrow, Duke Math. J., to appear.
[17] R. Zarrow, Classical and non-classical Schottky groups, Duke Math. J. 42 (1975), 717-724.
Department of Mathematics
Faculty of Science
Shizuora University
Shizuoka, 422
Japan

[^0]: Partly supported by the Grants-in-Aid for Scientific and Co-operative Research, the Ministry of Education, Science and Culture, Japan.

