COMPACT STRUCTURES ON $C^{*} \times C^{*}$

Anant R. Shastri

(Received June 20, 1986)

0 . Introduction.

0.1. By a "surface" we mean a connected 2-dimensional complex manifold. By a 'compact structure' on a surface V we mean an equivalence class of pairs (S, C) where S is a compact surface with $S-C$ as a Zariski-open subset biholomorphic to V; two such pairs (S, C) and (S^{\prime}, C^{\prime}) being 'equivalent' if there is a chain $(S, C)=\left(S_{0}, C_{0}\right), \cdots,\left(S_{i}, C_{i}\right), \cdots$, $\left(S_{n}, C_{n}\right)=\left(S, C^{\prime}\right)$ where each pair $\left(S_{i+1}, C_{i+1}\right)$ is obtained from (S_{i}, C_{i}) by blowing down an exceptional curve of the first kind or by blowing up a point, in C_{i}. For a given V if (S, C) exists then V is said to be 'compactifiable'. We prove:

Theorem A. Let V be proper homotopy equivalent to $\boldsymbol{C} \times \boldsymbol{C}^{*}$. Then $\left(\boldsymbol{P}^{2}, 2 L\right)$ is the only compact structure on $i t$, where $2 L$ denotes the union of two lines on \boldsymbol{P}^{2}.

Theorem B. Let V be proper homotopy equivalent to $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$. Then the compact structures on V are one of the following:
(i) $\left(\boldsymbol{P}^{2} ; 3 L\right)$ where $3 L$ denotes the union of any three lines in general position.
(ii) (X, E), where X is the total space of a \boldsymbol{P}^{1}-bundle over an elliptic curve and E is a section with $\left(E^{2}\right)=0$.
(iii) (H, E), where H is a Hopf surface and E an elliptic curve on H.
0.2. If we replace "proper homotopy equivalent" by "biholomorphic", then the above two theorems are contained in [Si], [U] and [Su]. The problem of classifying compact structures on $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$ was first considered by Simha [Si] where he proved that if S is algebraic and C is irreducible, $S-C$ biholomorphic to $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$, then S is a \boldsymbol{P}^{1}-bundle over an elliptic curve with a unique section C and $\left(C^{2}\right)=0$, i.e., a Serre structure. Note that (ii) in Theorem B includes these along with $E \times \boldsymbol{P}^{1}$. Ueda [U] classified all irrational structures on $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$ and then Suzuki [Su] completed the picture by classifying the rational ones. Suzuki heavily depends
on the results of Nishino-Suzuki [N-S] on cluster sets of holomorphic mappings. In our context these results are not applicable and this is precisely the point where this paper differs from the earlier works. So our main tool is the Mumford-Ramanujam method of studying the combinatorics of C with the help of the local fundamental group G of C. As everybody else, we also make extensive use of Kodaira's classification of surfaces.
0.3. By using Neumann's results [N], the method of this paper can be employed to prove the following two results:

Theorem C. Let V be proper homotopy equivalent to the total space of an affine C-bundle of degree $n(\geqq 0)$ over an elliptic curve. Then any compact structure on V is one of the following:
(i) (X, E), where X is a P^{1}-bundle over an elliptic curve and E is a section with $\left(E^{2}\right)= \pm n$.
(ii) $\left(S_{n, \alpha, t}, D_{n, \alpha, t}\right)$ where $S_{n, \alpha, t}$ denote the Inoue surfaces of class VII and $D_{n, \alpha, t}$ is the unique curve with $\left(D_{n, \alpha, t}^{2}\right)=0$ (see [E1]).

Theorem D. Let V be proper homotopy equivalent to the total space of an affine C-bundle of degree n over a smooth curve of genus $g \geqq 2$. Then any compact structure on V is (X, Δ), where X is a \boldsymbol{P}^{1}-bundle of degree n over a smooth curve of genus g and Δ is a section with $\left(\Delta^{2}\right)=$ $\pm n$.

Of course one has to use the main theorem of Enoki [E1] in proving Theorem C. Here again if V is actually an affine C-bundle over an elliptic curve, then Theorem C is due to Enoki [E2]. We shall not give any proof of Theorems C and D here. Note, however, that the case when $g=0$ in Theorem D remains unsolved.

Addendum. Recently, using Theorem 1.1 of Y. Miyaoka's paper, "The maximal number of quotient singularities on surfaces with given numerical invariant, Math. Ann. 268 (1984), p. 159-171", we have settled the case $g=0$ also in Theorem D, viz.,
"Let V be proper homotopy equivalent to the total space of an affine \boldsymbol{C}-bundle of degree $n, n \in \boldsymbol{Z}$, over \boldsymbol{P}^{1}, and let (X, Δ) be a compact structure on V. Then X is a Hirzebruch surface; if $n \neq 0$, then Δ is a smooth section with $\Delta^{2}=-n^{\prime \prime}$.
0.4. The above theorems can also be read as a Ramanujam-type topological characterization of certain compactifiable surfaces, e.g., Theorem A can be read as:

Theorem A^{\prime}. Let V be a compactifiable surface which is proper
homotopy equivalent to $\boldsymbol{C} \times \boldsymbol{C}^{*}$. Then V is biholomorphic to $\boldsymbol{C} \times \boldsymbol{C}^{*}$, and carries a unique algebraic structure.

Indeed we begin by observing that Ramanujam's theorem can be restated as follows:

Theorem 1 (Ramanujam). Let V be a compactifiable, topologically contractible smooth surface which is simply connected at infinity. Then V is biholomorphic to \boldsymbol{C}^{2} and carries a unique algebraic structure.

Similarly, the result in [G-S] can be restated as:
THEOREM 2 (Gurjar-Shastri). Let V be a two-dimensional normal variety over C. Suppose V is contractible and has finite fundamental group G at infinity. If V is compactifiable, then V is biholomorphic to \boldsymbol{C}^{2} / G, where $G \subset G L(2, \boldsymbol{C})$ is a small subgroup. In particular, V has at most one singular point.
0.5 . In $\S 1$ we set up the notation and recall the relevant materials from [M], [R] and [W]. In §2, we state and prove some propositions which describe the combinatorics of C in terms of its associated graph Γ_{c}. In §3 the proofs of Theorems A and B are completed.

This paper arose out of a coffee-table conversation the author had with R.R. Simha. It was felt that instead of using the results of Nishino-Suzuki, one should be able to stick to the Mumford-Ramanujam method throughout. The author is thankful to Simha for showing and explaining him the materials in [Si], [Su] and [U], and also for many other helpful discussions.

1. Mumford-Ramanujam ingredients. In this section we recall the basic facts about the Mumford-Ramanujam method.
1.1. As in the introduction we consider an equivalence class of pairs (S, C), where S is a surface and C is a connected Zariski-closed subset of codimension one (i.e. a curve). C is said to be with simple normal crossings, (SNC) for short, if
(i) each irreducible component C_{i} of C is smooth, say $C=\bigcup_{i=0}^{t} C_{i}$
(ii) $\left(C_{i} \cdot C_{j}\right) \leqq 1$, for distinct C_{i} and C_{j}, and
(iii) $C_{i} \cap C_{j} \cap C_{k}=\varnothing$, for distinct C_{i}, C_{j}, C_{k}.
1.2. Associated to such a pair (S, C) is its dual weighted graph Γ_{c} defined as follows: The vertex set of Γ_{C} is the set of irreducible components $\left\{C_{i}\right\}$ of C. Two vertices C_{i} and C_{j} are joined by an edge if and only if $\left(C_{i} . C_{j}\right)=1$. Each vertex C_{i} carries two weights Ω_{i} and g_{i} where $\Omega_{i}=\left(C_{i} . C_{i}\right)$ and g_{i} is the genus of C_{i}. (see for instance [W]). Schema-
tically, at the vertex C_{i} the graph Γ_{C} may appear as in Figure 1.

Figure 1
Whenever, the genus of a curve is zero this will not be indicated in the schematic presentation (see Figure 2, for instance). We shall denote by $A\left(n_{1}, \cdots, n_{k}\right)$ the tree dual to a linear chain of rational curves C_{1}, \cdots, C_{k} with $C_{i}^{2}=n_{i}, \quad i=1, \cdots, k,\left(C_{i} . C_{i+1}\right)=1$ and $\left(C_{i} . C_{j}\right)=0$ if $|i-j| \neq 1,0$, as in Figure 2.

Figure 2
The operation of blowing-up and blowing-down on C with the restriction that C always remains (SNC), carry onto the associated graph Γ_{c} also in an obvious manner. More generally one can take an abstract weighted graph Γ and then define these blowing-up and blowing-down operations of Γ. A graph Γ is said to be minimal if we cannot perform any blowing down operation on it, i.e., Γ has no vertex v which is linear in Γ and has weights $\Omega_{v}=-1$, and $g_{v}=0$.
1.3. Given a weighted graph Γ, the intersection matrix I_{Γ} is defined by

$$
\left(I_{\Gamma}\right)_{u, v}=\left\{\begin{array}{l}
1 \text { if } u \neq v, \text { and } u \text { and } v \text { are joined in } \Gamma \\
\Omega_{v} \text { if } u=v .
\end{array}\right.
$$

I_{Γ} is symmetric and so defines a symmetric bilinear form over \boldsymbol{R}, which will also be denoted by I_{Γ}. For a curve C with (SNC) we write I_{C} for $I_{\Gamma_{C}} . \quad \Gamma$ is said to be negative definite, unimodular etc. according as I_{Γ} is negative definite, unimodular etc. We will often use Γ_{C} and C interchangeably.
1.4. Given a weighted graph Γ, let $P(\Gamma)$ denote the compact 4dimensional plumbed manifold with boundary, and let $M_{\Gamma}=\partial P(\Gamma)$. For
a curve C with (SNC) on a surface we can construct a system of tubular neighbourhoods U_{C} of C so that the boundaries ∂U_{C} are smooth and have the same homotopy type and a retraction map $\varphi: U_{C} \rightarrow C$ inducing a surjection $\pi_{1}\left(U_{C}\right) \rightarrow \pi_{1}(C) . \quad U_{C}$ can be idnentified with $P\left(\Gamma_{C}\right)$ (See [M] or [R]). If e_{i} denotes the homology class represented by a loop that goes around a component C_{i} exactly once in the positive direction, then the kernel K of $\varphi_{*}: H_{1}\left(M_{C}\right) \rightarrow H_{1}(C)$ is generated by $\left\{e_{i}\right\}$ with the relations

$$
\sum_{j=0}^{t}\left(C_{i} . C_{j}\right) e_{j}=0, \quad i=0, \cdots, t .
$$

In particular we have

$$
\operatorname{rank} I_{C}=t+1-\operatorname{rank} H_{1}\left(M_{C}\right)+\operatorname{rank} H_{1}(C)
$$

1.5. For a compactifiable surface V which is connected at infinity, we have (S, C), with $S-C$ biholomorphic to V, such that C is connected. By blowing up if necessary, we may assume that C has (SNC). Then $G=\pi_{1}\left(M_{C}\right)$ is the same as the fundamental group at infinity, $\pi_{1}^{\infty}(V)$. On the other hand, $\pi_{1}(C)$ is a free product

$$
\pi_{1}(C) \simeq \pi_{1}\left(\Gamma_{c}\right) *\left\{\pi_{1}\left(C_{i}\right)\right\}_{0 \leq i \leq t}
$$

of $\pi_{1}\left(\Gamma_{C}\right)$ and the group $\pi_{1}\left(C_{i}\right)$, and $\pi_{1}\left(\Gamma_{\sigma}\right)$ is a free group of rank r where r is the number of 'essential' cycles in Γ_{c}. In this paper we deal with situations where $G \simeq \pi_{1}\left(M_{C}\right)$ is finite or abelian. So, by the surjection $\pi_{1}\left(M_{C}\right) \rightarrow \pi_{1}(C)$, we need to consider only the following three cases.
(a) Γ_{C} is a tree of lines (i.e. each C_{i} is rational)
(b) Γ_{C} has only one essential cycle and all C_{i} are rational
(c) Γ_{C} is a tree, all C_{i} are rational except C_{0}, say, which is an elliptic curve.
1.6. In each of the above cases we have a presentation of G as follows (see [W] for instance): Let $s_{i j}=\left(C_{i} . C_{j}\right)$.
(a) generators: $C_{0}, C_{1}, \cdots, C_{t}$
relations: $\left[C_{i}, C_{j}\right]=1$ whenever $s_{i j} \neq 0$ or $i=j$,

$$
\prod_{j=0}^{t} C_{j}^{s_{i j}}=1, \quad \text { for all } \quad i=0, \cdots, t
$$

(b) In this case let C_{0}, \cdots, C_{r} be the vertices on the essential cycle ($r \geqq 2$ by (SNC)). Then
generators: C_{0}, \cdots, C_{t}, u
relations: $\quad\left(\begin{array}{l}C_{0}^{s_{0}, 0} C_{1}^{s_{0}, 1} \cdots C_{r-1}^{s_{0}, r-1} u^{-1} C_{r} u C_{r+1}^{s_{0}, r+1} \cdots C_{t}^{s_{0}, t}=1, \\ C_{0}^{s_{i, 0}} \cdots C_{t}^{s_{t, t}}=1, \text { for } i \neq 0, r,\end{array}\right.$

$$
\left\{\begin{array}{l}
u C_{0} u^{-1} C_{1}^{s_{r, 1}} \cdots C_{t}^{s_{r, t}}=1, \\
{\left[C_{i}, C_{j}\right]=1 \text { if } s_{i j} \neq 0 \text { and }(i, j) \neq(0, r) \text { or }(r, 0),} \\
C_{0} u^{-1} C_{r} u=u^{-1} C_{r} u C_{0} .
\end{array}\right.
$$

(c) In this case let C_{0} denote the elliptic curve in C.
generators: $C_{0}, \cdots, C_{t}, x, y$.
relations: $\quad[x, y] C_{0}^{s_{0}, 0} \cdots C_{t}^{s_{0, t}}=1$,

$$
\left\{\begin{array}{l}
\prod_{j=0}^{t} C_{i}^{s_{i j}}=1 \text { for all } i=1, \cdots, t, \\
{\left[x, C_{0}\right]=\left[y, C_{0}\right]=\left[C_{i}, C_{j}\right]=1 \text { if } i \neq j \text { or } s_{i j} \neq 0 .}
\end{array}\right.
$$

1.7. Finally, the following group theoretic fact plays a key role in our situation. Let G_{i} be nontrivial groups and let $g_{i} \in G_{i}$. Let H be the quotient of the free product $G_{i} * \cdots * G_{n}$ by the single relation $g_{1} * \cdots * g_{n}=1$;

$$
H=\left(G * \cdots * G_{n}\right) /\left\langle g_{1} * \cdots * g_{n}\right\rangle .
$$

Then H is nonabelian for $n \geqq 3$. Indeed, for $n \geqq 4$ we can express H as an appropriate amalgamated free product and check the nonabelianness of H. For $n=3$, if $H_{i}=\left(g_{i}\right)$ is the cyclic subgroup of G_{i}, we may first assume that $H_{i} \neq(1)$. Then the group $H_{0}=\left(H_{1} * H_{2} * H_{3}\right) /\left\langle g_{1} * g_{2} * g_{3}\right\rangle$ becomes a subgroup of H. This group H_{0} is well known to be nonabelian.

2. Combinatorics of C.

2.1. In this section S always denotes a (smooth) compact surface and C denotes a (connected) curve with (SNC) on S. We shall need the following easily proved geometric lemmas, before we proceed with the study of the combinatorics of C.

Lemma 1. Let L_{1} be a line on S with $\left(L_{1}^{2}\right)=0$. Then S is algebraic and we have a holomorphic mapping $\psi: S \rightarrow \Delta$, where Δ is some nonsingular curve; L_{1} is a fibre of ψ. Further, if L_{2} is a line on S such that $\left(L_{1} . L_{2}\right) \neq 0$ then $\Delta=P^{1}$ and L_{2} is a section of ψ, i.e., S is a rational ruled surface with L_{1} as a good fibre and L_{2} as a section. In particular, if D is any (connected) curve on S with $\left(D . L_{1}\right)=0$, then all components of D_{i} are rational and Γ_{D} is a tree, and $\left(D . L_{2}\right) \leqq 1$.

Proof. The existence of $\psi: S \rightarrow \Delta$ follows from Kodaira and Spencer [K-S] (see 3° of [Su]). The rest of the lemma is common knowledge about rational ruled surfaces.

Lemma 2. Suppose Γ_{c} is as in Figure 3.

Figure 3
where L_{i} are lines and $\left(L_{0}^{2}\right)=-1, k \geqq 1$. Then the linear subtree T consisting of $\left\{L_{i}\right\}_{i \geqq 2}$ is negative definite or empty.

Proof. Assume on the contrary, that T is not negative definite. By blowing down (inside T) we may assume that T is minimal. Now it follows that $\left(L_{i}^{2}\right) \geqq 0$ for some $i \geqq 2$. By blowing up and blowing down, if necessary, (and of course not requiring minimality any more) we may assume $\left(L_{2}^{2}\right)=0$. Now by the above lemma S is a rational ruled surface with L_{2} as a fibre and L_{1} as a section. The curves C_{1}, L_{0} and C_{2} are contained in a singular fibre F. By blowing down L_{0} we obtain a singular fibre F_{0} with $\left(F_{0} . L_{1}\right) \geqq 2$ which is absurd.

Lemma 3. Consider a subtree of lines in Γ_{c} and its subtree T as in Figure 4.

Figure 4
Suppose T is not negative definite. Let Γ_{0} be any connected subgraph of Γ_{c} such that no component of Γ_{0} meets any component of T. Then $\left(\Gamma_{0} \cdot L_{0}\right) \leqq 1$ and Γ_{0} is a tree of lines. In particular, $\Gamma_{0} \cup\left\{L_{0}\right\}$ is also a tree.

Proof. As in the proof of Lemma 2, we first reduce to the case when $\left(L_{1}^{2}\right)=0$. Then Lemma 3 follows from Lemma 1.
2.2. We say a graph Γ satisfies the eigen-value condition (E), if any subspace on which I_{Γ} is positive semidefinite is of real dimension at most one. We say Γ satisfies (R) if no graph equivalent to Γ has a subtree of the form shown in figure 3 , with $k \geqq 2$, where L_{0}, L_{1}, L_{2} are lines, $\left(L_{0}^{2}\right)=-1$, and $\left(L_{2}^{2}\right) \geqq 0$. Lemma 2 implies that if $\Gamma=\Gamma_{C}$ for a curve C on a compact surface then Γ satisfies (R). The proposition on page 80 of $[R]$ can now be restated as follows:

Proposition 1. Let Γ be a minimal graph satisfying (E) and (R). If $\pi_{1}\left(M_{\Gamma}\right)=(1)$, then Γ is linear.

For a curve C with (SNC), on a compact surface S, such that I_{C} is nondegenerate, condition (E) is always satisfied. For, the nondegeneracy of I_{C} implies that $H_{2}(C) \rightarrow H_{2}(S)$ is injective and then (E) is an easy consequence of the Hodge Index Theorem. If $H_{1}\left(M_{C}\right)$ is finite, it follows that I_{C} is nondegenerate (see 1.4). In the above proposition, once Γ is linear it is easily seen that Γ is equivalent to $A(1)$ or to the empty tree. Thus we have:

Proposition 1'. Let C be a curve with (SNC) on a compact surface S. Suppose $\pi_{1}\left(M_{c}\right)=(1)$. Then Γ_{c} is equivalent to $A(1)$ or to the empty tree.

2.3. In [Sh] we have proved:

Proposition 2. Let T be a minimal tree satisfying (E) and (R) with more than one branch points. If all simple branches of T are negative definite, then $\pi_{1}\left(M_{T}\right)$ is noncyclic and infinite.

Remark. Indeed, it suffices to assume that for some free vertex $v \in T, T-\{v\}$ satisfies (E), instead of assuming that T itself satisfies (E), since in the proof of this proposition, (E) is used only to say that T does not have two disjoint subtrees isomorphic to $A(-1,-1)$. In order to avoid repetition, we shall use this stronger form of Proposition 2 and prove:

Proposition 2'. Let C be a curve with (SNC), on a compact surface S, such that $T=\Gamma_{C}$ is a tree. If $\pi_{1}\left(M_{T}\right) \simeq \boldsymbol{Z}$, then T is equivalent to $A(0)$ or $A(1,1)$.

We first prove three more lemmas:
Lemma 4. Suppose T is as in the above proposition, except that $\pi_{1}\left(M_{T}\right)$ is any cyclic group. Suppose T is minimal and not linear. If T_{1} is any simple branch of T, then $T_{1} \neq A(0)$.

Proof. Let T_{1} be a simple branch of T at an extremal branch point $u \in T$. Write $T-\{u\}$ as a disjoint union of subtrees, $T-\{u\}=T_{1} \Perp \cdots \Perp T_{k}$, $k \geqq 3$. Then we have

$$
\pi_{1}\left(M_{T}\right) /\langle u\rangle \simeq\left(\pi_{1}\left(M_{T_{1}}\right) * \cdots * \pi_{1}\left(M_{T_{k}}\right)\right) /\left\langle v_{1} * \cdots * v_{k}\right\rangle,
$$

where $v_{i} \in T_{i}$ are the vertices joined to u in T. By 1.7, we must have $\pi_{1}\left(M_{T_{i}}\right)=(1)$ for some i. Thus if $T_{1}=A(0)$, we have $\pi_{1}\left(M_{T_{1}}\right) \simeq Z$. Hence we may assume $\pi_{1}\left(M_{T_{2}}\right)=(1)$, say. It follows that $I_{T_{2}}$ is nondegenerate. If $I_{T_{2}}$ is not negative definite, then T_{2} will support a divisor D, with $\left(D^{2}\right)>0$. On the other hand, if C_{1} is the curve in T_{1}, then $\left(C_{1}\right)^{2}=0$ and
$\left(C_{1} . D\right)=0$, contradicting the Hodge Index theorem. Hence $I_{T_{2}}$ is negative definite. By Proposition 1, it follows that T_{2} is not minimal. This means (since T is minimal), that $\Omega_{v_{2}}=-1$ and v_{2} is linear in T_{2}. Since T is minimal, v_{2} is a branch point of T. This implies that T does not satisfy (R), contradicting 2.2. So the proof of Lemma 4 is completed.

Lemma 5. Let T be as in Proposition 2^{\prime} and T_{1} be any simple branch of T. Suppose T is minimal and not linear. Then all weights on T_{1} are $\leqq-2$.

Proof. Suppose T_{1} has some nonnegative weights. By the above lemma, $T_{1} \neq A(0)$. So, as in Lemma 1, by blowing-up and blowing-down, if necessary, within T_{1}, so as not to disturb the nonlinearity of T, we can assume that T_{1} contains $A(0,0)$ in such a way that $T_{1}-A(0,0)$ is either empty or a simple branch of $T^{\prime}=T-A(0,0)$. As in Lemma 1, we now obtain a \boldsymbol{P}^{1}-fibration $\psi: S \rightarrow \boldsymbol{P}^{1}$ such that $T^{\prime}=T-A(0,0)$ is contained in a single fibre of ψ. In particular, T^{\prime} is linear. Moreover, $\pi_{1}\left(M_{T}\right) \simeq \pi_{1}\left(M_{T^{\prime}}\right) \simeq \boldsymbol{Z}$. Hence it easily follows that T^{\prime} is the full fibre. By (R), it follows that T^{\prime} is minimal, and hence $T^{\prime}=A(0)$. Thus T is linear which is a contradiction. This proves Lemma 5.

Lemma 6. Let T be as in Proposition $2^{\prime}, T^{\prime}$ be any proper subtree (i.e., $T^{\prime} \varsubsetneqq T$). Then T^{\prime} satisfies (E).

Proof. Since $\pi_{1}\left(M_{T}\right) \cong \boldsymbol{Z}$, rank $H_{1}\left(M_{T}\right)=1$. Thus, if $K=\operatorname{Ker}\left(i_{*}: H_{2}(C) \rightarrow\right.$ $H_{2}(S)$), then $K \cong \boldsymbol{Z}$. Let $D=\sum_{i=0}^{t} \lambda_{i} C_{i}$ be the divisor such that the homology class (D) generates K. We claim that $\lambda_{i} \neq 0$, for all i. Assuming on the contrary, let us say, $\lambda_{0}=0$. Write $T-\left\{C_{0}\right\}$ as a disjoint union of trees, $T-\left\{C_{0}\right\}=T_{1} \Perp \cdots \Perp T_{k}, k \geqq 1$, and let $D=\sum D_{i}$ with $\operatorname{supp}\left(D_{i}\right) \subset T_{i}$. We claim first that $D_{i}=0$ except for one i. If not, suppose $D_{1} \neq 0$ and $D_{2} \neq 0$. It follows that $I_{T_{1}}$ and $I_{T_{2}}$ are nondegenerate. Also since $(D)^{2}=0$, one easily sees that $\left(D_{1}\right)^{2}=\left(D_{2}\right)^{2}=0$. Hence both $I_{T_{1}}$ and $I_{T_{2}}$ have positive eigenvalues which contradicts the Hodge Index theorem. Thus we may assume that $D=D_{1}$ say. Now suppose C_{1} is the vertex in T_{1} joined to C_{0} in T. Then $0=\left(C_{1} \cdot D\right)=\lambda_{1}$. Repeating the above argument we finally arrive at the conclusion that $\lambda_{i}=0$ for all i which is absurd. Thus $\lambda_{i} \neq 0$ for any i. Hence it follows that if T^{\prime} is any proper subtree of T then $I_{T^{\prime}}$ is nondegenerate, and hence T^{\prime} satisfies (E).

Proof of Proposition 2'. We shall assume that T is minimal, and show that it is linear, and then the conclusion of the Proposition 2^{\prime} follows easily.

So, suppose T is not linear. By Lemma 5, all simple branches of T have weights $\leqq-2$. In particular, for any simple branch Γ of T, we have $\pi_{1}\left(M_{r}\right)$ is nontrivial finite cyclic group. By 1.7, it follows that T has more than one branch points. By Lemma 6, it follows that T cannot have two disjoint subtrees isomorphic $A(-1,-1)$. Hence by Proposition 2 and the remark below that, $\pi_{1}\left(M_{T}\right)$ is noncyclic. This contradiction completes the proof of Proposition 2^{\prime}.
2.4. Finally we come to the central result of this paper.

Proposition 3. Let C be a curve with (SNC) on a compact surface S. Suppose $S-C=V$ is proper homotopy equivalent to $C^{*} \times C^{*}$. Then Γ_{c} is equivalent to one of the trees shown in Figure 5.

Figure 5
Proof. Note that $G=\pi_{1}^{\infty}(V) \simeq \pi_{1}^{\infty}\left(C^{*} \times C^{*}\right) \simeq Z^{3} \simeq \pi_{1}\left(M_{C}\right)$. Thus as observed in 1.5, Γ_{c} may have three distinct features. In the first two cases below we closely follow [U].
(i) We first show that Γ_{C} is not a tree of lines or equivalently $H_{1}(C) \neq(0)$.

In the homology exact sequence

$$
H_{3}(S) \rightarrow H_{3}(S, C) \rightarrow H_{2}(C) \xrightarrow{i_{*}} H_{2}(S) \rightarrow H_{2}(S, C) \rightarrow H_{1}(C) \rightarrow H_{1}(S) \rightarrow H_{1}(S, C)
$$

we have $H_{1}(S, C) \simeq H^{3}(V)=(0)$ and $H_{3}(S, C) \simeq H^{1}(V) \simeq Z \oplus Z$. Thus if $H_{1}(C)=(0)$, then $H_{1}(S)=0, H_{3}(S) \simeq H^{1}(S)=0$. It follows that rank $\operatorname{Im}\left(i_{*}\right)=$ $\operatorname{rank} H_{2}(C)-2=t-1$. But $\operatorname{rank} \operatorname{Im}\left(i_{*}\right)=\operatorname{rank} I_{C}=t+1-\operatorname{rank} H_{1}\left(M_{C}\right)+$ rank $H_{1}(C)=t-2$. Hence $H_{1}(C) \neq 0$.
(ii) Now consider the case when Γ_{C} is a tree having one vertex, say C_{0}, with $g_{0}=1$. Of course other vertices are of genus zero. We may assume Γ_{C} is minimal and then we should show that Γ_{C} is a single vertex v with $\Omega_{v}=0$ and $g_{v}=1$.

Assuming the contrary, suppose $\Gamma_{c}-\left\{C_{0}\right\}=\bigcup_{i=1}^{k} T_{i}$, where T_{i} is a nonempty tree of rational curves. Let $C_{i} \in T_{i}$ be the vertex joined to
C_{0}. Ueda ([U] page 87) has shown that $\pi_{1}\left(M_{T_{i}}\right)=(1)$ for each $i \geqq 1$. His proof of the fact that each T_{i} is negative definite holds here also. By virtue of Proposition 1, T_{i} are not minimal. Since Γ_{c} is minimal, this means that $\left(C_{i}^{2}\right)=-1$ and T_{i} has exactly two branches at C_{i}, say $\gamma_{i 1}$ and $\gamma_{i 2}$. Using the presentation of G in (b) of 1.5 we have

$$
G /\left\langle C_{i}\right\rangle \simeq\left(\pi_{1}\left(M_{\Gamma_{0}}\right) * \pi_{1}\left(M_{r_{i 1}}\right) * \pi_{1}\left(M_{r_{i 2}}\right)\right) /\left\langle C_{0} * D_{i 1} * D_{i 2}\right\rangle
$$

where Γ_{0} is the branch of $\Gamma-\left\{C_{i}\right\}$ containing C_{0}, and where $D_{i j}$ are the vertices in $\gamma_{i j}$ joined to C_{i}. Hence $\pi_{1}\left(M_{\Gamma_{0}}\right) \neq(1)$. On the other hand, $G /\left\langle C_{i}\right\rangle$ is abelian and hence one of the groups $\pi_{1}\left(M_{\gamma_{i j}}\right)=(1)$, say $j=1$. Repeat this argument with $\gamma_{i 1}$ in place of T_{i} and conclude that $\left(D_{i 1}^{2}\right)=$ -1 . Thus T_{i} has a subtree isomorphic to $A(-1,-1)$ which is indefinite, contradicting the observation that T_{i} is negative define. Thus $\Gamma_{c}=\left\{C_{0}\right\}$. That $\left(C_{0}^{2}\right)=0$ follows from the fact that if $\left(C_{0}^{2}\right)= \pm n$, then $\pi_{1}\left(M_{C_{0}}\right)$ is isomorphic to $\left\{x, y, z \mid[x, y]=[x, y],[y, z]=x^{n}\right\}$ which is abelian if and only if $n=0$.
(iii) Finally let Γ_{c} be a graph of lines with one essential cycle. Let C_{0}, \cdots, C_{r}, be the vertices on this cycle. ($r \geqq 2$ by (SNC)). We assume that Γ_{C} is minimal and then show that Γ_{C} has no other vertices $(t=r)$. Then by Proposition 3 of [U], it follows that Γ_{C} is one of the trees shown in Figure 6.

Figure 6
Since the latter is easily seen to be equivalent to the former, this would complete the proof of Proposition 3.

So let $T_{0}=C_{0} \cup \cdots \cup C_{r}$ be the cycle in Γ_{C}. First we show that there are no branch points of Γ_{C} in $\Gamma_{C}-T_{0}$. If possible let $D_{0} \in \Gamma_{C}-T_{0}$ be a branch points of Γ_{c}. Write $\Gamma_{c}-\left\{D_{0}\right\}=\Gamma_{0} \cup \Gamma_{1} \cdots \cup \Gamma_{k}$, say, $k \geqq 2$. Here Γ_{0} denotes the component containing T_{0}. Let $E_{i} \in \Gamma_{i}$ be the vertices of Γ_{i} joined to D_{0}. Then we have

$$
G /\left\langle D_{0}\right\rangle \simeq\left(G_{0} * G_{1} * \cdots * G_{k}\right) /\left\langle E_{0} * \cdots * E_{k}\right\rangle
$$

where $G_{i}=\pi_{1}\left(M_{\Gamma_{i}}\right) . \quad G_{0} \neq(1)$ since Γ_{0} contains T_{0}. Since G is abelian, we may assume that $G_{2}=\cdots=G_{k}=(1)$. By Lemma $3, \Gamma_{2}$ is negative
definite also. Proceed now exactly as in the paragraph (ii) to produce a subtree of Γ_{2} isomorphic to $A(-1,-1)$, and thereby a contradiction. The branch points of Γ, if any, are on the cycle T_{0}.

Write now $\Gamma_{C}=T_{0} \cup T_{1}^{\prime} \cup \cdots \cup T_{m}^{\prime}$ where each T_{i}^{\prime} is linear. Again by Lemma 3 each T_{i}^{\prime} is negative definite, $i \geqq 1$. Now if $\Gamma_{C} \neq T_{0}$ then at least one of the C_{0}, \cdots, C_{r} is a branch point, say C_{0}. Write $\Gamma_{C}-\left\{C_{0}\right\}=$ $\gamma_{0} \cup T_{1} \cup \cdots \cup T_{l}$, where γ_{0} is the branch that contains $C_{1}, C_{2}, \cdots, C_{r}$ and $l \geqq 1$. Let $D_{i} \in T_{i}$ be the vertex that is joined to C_{0}. Let $G_{0}=\pi_{1}\left(M_{r_{0}}\right)$, $G_{i}=\pi_{1}\left(M_{T_{i}}\right)$. Since there are no branch points of Γ_{C} on T_{i} and Γ_{C} is minimal, it follows that T_{i} are also minimal. Hence G_{i} are finite nontrivial cyclic groups of order $m_{i}, i \geqq 1$. Using the presentation (c) of 1.6 for G, we have

$$
G /\left\langle C_{0}\right\rangle \simeq\left(G_{0} * \boldsymbol{Z}(u) * G_{1} * \cdots * G_{l}\right) /\left\langle C_{1} u C_{r} u^{-1} * D_{1} * \cdots * D_{l}\right\rangle .
$$

First of all it follows that $l \leqq 1$. If C_{1} and C_{r} are nontrivial elements of G_{0} then $x=C_{1} u C_{r} u^{-1} \in G_{0} * \boldsymbol{Z}(u)$ is an element of infinite order and hence we have $G /\left\langle C_{0}\right\rangle \simeq C_{0} * \boldsymbol{Z}(u) /\left\langle x^{m_{1}}\right\rangle$. Since $m_{1} \neq 1$, this latter group is not abelian and so we conclude that $C_{1}=1$ or $C_{r}=1$ in C_{0}. But then it is easily seen that $\boldsymbol{Z}(u)$ is a free factor of $G /\left\langle C_{0}\right\rangle$ and hence $G /\left\langle C_{0}\right\rangle$, being abelian, is isomorphic to $\boldsymbol{Z}(u)$. This is absurd, since $G \simeq \boldsymbol{Z}^{3}$. This completes the proof of Proposition 3.
2.5. We remark that in Proposition 3, the assumption on $V=S-C$ is unnecessarily strong. It suffices to assume that $\pi_{1}\left(M_{C}\right) \simeq \boldsymbol{Z}^{3}$. Then except for (i) the rest of the argument still holds, and (i) can be proved in a different way.

3. Proofs of Theorems A and B.

3.1. Let $S-C=V$ be proper homotopy equivalent to $\boldsymbol{C} \times \boldsymbol{C}^{*}$. Then $G=\pi_{1}^{\infty}(S-C) \simeq \pi_{1}^{\infty}\left(\boldsymbol{C} \times \boldsymbol{C}^{*}\right) \simeq \boldsymbol{Z}$. As observed in 1.5 all components of C are rational and Γ_{C} has at most one essential cycle (case (c) cannot occur). We shall first show that Γ_{C} has no cycles. If not, we then have $H_{1}(C) \simeq Z$. So $K=\operatorname{Ker} \varphi_{*}=(0)$. Hence I_{C} is unimodular. If I_{C} has positive eigenvalues then we get an effective divisor D on S with $\left(D^{2}\right)>0$. This implies S is algebraic. On the other hand, in the homology exact sequence

$$
H_{2}(S, C) \rightarrow H_{1}(C) \rightarrow H_{1}(S) \rightarrow H_{1}(S, C)
$$

we have $H_{2}(S, C) \simeq H^{2}(S-C)=0$ and $H_{1}(S, C) \simeq H^{3}(S-C)=0$. So the Betti number $\beta_{1}(S)=1$. Since algebraic surfaces have even first Betti numbers this proves that I_{C} has no positive eigen values. Hence I_{C} is negative definite. Now by 2.5 and 2.3 of [W] it follows that $\pi_{1}\left(M_{c}\right)$
cannot be infinite cyclic which is a contradiction.
3.2. Thus Γ_{C} is a tree of lines. By Proposition 2^{\prime} we can assume that it is $A(0)$ or $A(1,1)$. In the former case by Lemma 1 we have a surjective holomorphic mapping $\psi: S \rightarrow \Delta$ with C as a good fibre. It follows that $\pi_{1}(S-C) \simeq \pi_{1}(\Delta-\psi(C))$ which is a free group of rank $\neq 1$. This contradiction shows that Γ_{C} is equivalent to $A(1,1)$. Thus we have shown that any compactification of V is equivalent to (S, C) where $\Gamma_{c}=$ $A(1,1)$. It is not difficult to see that $S \simeq \boldsymbol{P}^{2}$ as required, in Theorem A.
3.3. We now consider Theorem B. So let $S-C=V$ be proper homotopy equivalent $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$. By Proposition 3 we may assume that Γ_{C} is a cycle of three lines as described, or consists of a single elliptic curve E with $\left(E^{2}\right)=0$. In the former case it is easily seen that $S \simeq P^{2}$ as required. The latter case is essentially contained in [Si] (S, algebraic) and [U] (S, nonalgebraic) except that these authors work under somewhat stronger hypothesis. Below we shall prove a lemma which along with completing the proof of Theorem B will also give the proof of the corresponding (easier) portion of Theorems C and D.
3.4. Lemma. Let S be a compact surface, $C \subset S$ be an irreducible smooth curve of genus $g \geqq 1$ with $S-C=V$ having the proper homotopy type of the total space of an affine C-bundle over a smooth curve of genus g. Then either S is a smooth P^{1}-bundle with C as a section or S is a Hopf surface, with $(C)^{2}=0$ and $g=1$.

Proof. In the homology exact sequence

$$
\begin{aligned}
0 \rightarrow H_{3}(S) \rightarrow H_{3}(S, C) \rightarrow H_{2}(C) & \rightarrow H_{2}(S) \rightarrow H_{2}(S, C) \\
& \rightarrow H_{1}(C) \rightarrow H_{1}(S) \rightarrow H_{1}(S, C),
\end{aligned}
$$

we have $H_{i}(S, C) \simeq H^{4-i}(V)$ for each i. Since V is homotopy equivalent to a curve of genus g, we have $H_{1}(S, C)=0, H_{2}(S, C) \simeq Z$ and $H_{3}(S, C) \simeq Z^{2 g}$. It follows that $\beta_{1}(C)-1 \leqq \beta_{1}(S) \leqq \beta_{1}(C)=2 g$ and $\beta_{3}(S) \leqq 2$. Thus if $\beta_{1}(S)$ is even then $\beta_{1}(S)=\beta_{1}(C)=2 g$ and the topological Euler characteristic is $\chi(S)=2 \chi(C)$. On the other hand if $\beta_{1}(S)$ is odd then $\beta_{2}(S)=0$; hence $\left(C^{2}\right)=0$. Also in this case we have $\chi(S)=4-4 g=2 \chi(C)$. We shall now examine these two cases separately.

Case when $\beta_{1}(S)$ is even. By Theorem 3 of $[\mathrm{K} 4], h^{1,0}=q(S)=g$. Consider the Albanese map $\alpha: S \rightarrow \operatorname{Alb}(S)$. We claim that α cannot have two dimensional image. For if it does, then $\alpha^{*}: H^{4}(\operatorname{Alb}(S)) \rightarrow H^{4}(S)$ is nontrivial. It follows easily that $\alpha^{*}: H^{2}(\operatorname{Alb}(S)) \rightarrow H^{2}(S)$ will have an image of rank at least six. Since $\beta_{2}(S) \leqq 2$ we conclude $\operatorname{Im} \alpha$ has dimension $\leqq 1$. Since $g \geqq 1, \alpha$ cannot be a constant map and so $\operatorname{Im} \alpha$ is a curve Δ.

Then, it is well-known α is a surjective morphism with connected fibres and Δ is a smooth curve of genus g. Since the composite $C \rightarrow S \xrightarrow{\alpha} \Delta$ induces an isomorphism in homology it follows that C is a smooth section of α.

We claim that $\alpha: S \rightarrow \Delta$ is a P^{1}-bundle morphism with smooth fibres. If not let $F_{i}, 1 \leqq i \leqq r$, be the singular fibres of α. Since α has a section, none of these is a multiple fibre. Hence $\chi\left(F_{i}\right)>\chi(F)$ where F denotes a smooth fibre. Now we have

$$
\chi(S)=\chi(F) \chi(\Delta)+\sum_{i=1}^{r} \chi\left(F_{i}\right)=2 \chi(\Delta) \leqq 0 .
$$

This shows that $\chi(F)>0$ unless $\chi(\Delta)=0$ and in any case $r=0$. Hence α is smooth.

If $\chi(\Delta) \neq 0$ then $\chi(F)>0$, i.e., $F \simeq P^{1}$. Restriction of α to $S-C$ yields an exact sequence of fundamental groups

$$
1 \rightarrow \pi_{1}(F-\text { a point }) \rightarrow \pi_{1}(S-C) \rightarrow \pi_{1}(\Delta) \rightarrow 1
$$

Thus if $\chi(\Delta)=0$, i.e., $g=1$, then $\pi_{1}(S-C) \simeq Z+Z \simeq \pi_{1}(\Delta)$ and hence $\pi_{1}(F-$ a point $)=(1)$, i.e., $F \simeq P^{1}$. Thus in any case $\alpha: S \rightarrow \Delta$ is a smooth \boldsymbol{P}^{1}-fibration as required.

Case when $\beta_{1}(S)$ is odd. Clearly S is nonalgebraic and since $\beta_{2}(S)=0$ as observed above, we have $p_{g}=0$. Hence by Theorem 2.1 of Kadaira [K2] S is a surface of class VII_{0}. In particular, $\beta_{1}(S)=1$ and hence C is an elliptic curve. Here again there are two subcases. If S has nonconstant meromorphic functions then, by Theorem 4.1 and Theorem 4.3 of [K1], S is an elliptic surface, $\varphi: S \rightarrow \Delta$, over a curve Δ with C as a fibre. Since $\chi(S)=2 \chi(C)=0$, singular fibres of φ, if any, will be of type $m I_{0}$. Let $F_{i}, i=1, \cdots, k$ be the singular fibres of $\varphi \mid V$, of type $m_{i} I_{0}$, respetively. The local analysis of the fundamental group of a tubular neighbourhood of these fibres as done in §5 of [K4], together with a simple application of Van Kampen's theorem yield a surjection of the fundamental group $\pi_{1}(V)$ onto a free product $\left(\boldsymbol{Z} /\left(m_{1}\right)\right) * \cdots *\left(\boldsymbol{Z} /\left(m_{k}\right)\right)$. On the other hand, since $g=1$, it follows from the hypothesis that $\pi_{1}(V) \simeq \boldsymbol{Z} \oplus \boldsymbol{Z}$. Hence $k \leqq 1$. Thus $\varphi: S \rightarrow \Delta$ is an elliptic fibre space with at most two singular fibres, and these singular fibres are of type $m I_{0}$. By Lemma 8 of [K3] S is a Hopf surface. Finally if S has no nonconstant meromorphic functions then we appeal to Theorem 34 of [K3] to conclude that S is a Hopf surface.

This completes the proof of the lemma and thereby the proof of Theorem B.

Bibliography

[E1] I. Enoki, Surfaces of class VII $_{0}$ with curves, Tôhoku Math. J. 33 (1981), 453-492.
[E2] I. Enoki, On compactifiable complex analytic surfaces, Invent. Math. 67 (1982), 189-211.
[G-S] R. V. Gurjar and A. R. Shastri, A topological Characterization of C^{2} / G, J. Math. Kyoto Univ. 25 (1985), 767-773.
[K1] K. Kodaira, On compact complex analytic surfaces I, Ann. Math. 71 (1960), 111-152.
[K2] K. Kodaira, On the structure of compact complex analytic surfaces I, Amer. J. Math. 86 (1964), 751-798.
[K3] K. Kodaira, On the structure of compact complex analytic surfaces II, Amer. J. Math. 88 (1966), 682-721.
[K4] K. Kodaira, On homotopy K-3 surfaces, in Essays on Topology and Related topics, Memories dedies a Georges de Rham, Springer, 1970, 58-69.
[K-S] K. Kodaira and D. C. Spencer, A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math. 81 (1959), 447-500.
[M] D. MUMFORD, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 9 (1961), 5-22.
[N] W.D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-344.
[N-S] T. Nishino et M. Suzuki, Sur les singularites essentielles et isolées des applications holomorphes à valeurs dans une surface complexe, Publ. R.I.M.S. Kyoto Univ. 16 (1980), 461-497.
[R] C. P. RAMANUJAM, A topological characterization of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69-88.
[Sh] A. R. Shastri, Divisors with finite local fundamental group on a surface, to appear in Proc. of AMS Summer Institute on Algebraic Geometry, Bowdoin, 1985.
[Si] R. R. Simha, Algebraic varieties biholomorphic to $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$, Tôhoku Math. J. 30 (1978), 455-461.
[Su] M. Suzuki, Compactifications of $\boldsymbol{C} \times \boldsymbol{C}^{*}$ and $\left(\boldsymbol{C}^{*}\right)^{2}$, Tôhoku Math. J. 31 (1979), 453-468.
[U] T. Ueda, Compactifications of $\boldsymbol{C} \times \boldsymbol{C}^{*}$ and $\left(\boldsymbol{C}^{*}\right)^{2}$, Tôhoku Math. J. 31 (1979), 80-90.
[W] P. Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1972), 51-72.
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Colaba, Bombay 400005
India

