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0. Introduction.

0.1. By a "surface" we mean a connected 2-dimensional complex
manifold. By a 'compact structure' on a surface V we mean an equiva-
lence class of pairs (S, C) where S is a compact surface with S — C as
a Zariski-open subset biholomorphic to F; two such pairs (S, C) and (S', C")
being 'equivalent' if there is a chain (S, C) = (So, Co), •••,(£<, Q , •••,
(Sn, Cn) = (S, C") where each pair (S<+1, C<+1) is obtained from (S<, C«) by
blowing down an exceptional curve of the first kind or by blowing up a
point, in Ci# For a given F if (S, C) exists then F is said to be 'com-
pactifiable'. We prove:

THEOREM A. Let V be proper homotopy equivalent to CxC*. Then
(P\ 2L) is the only compact structure on it, where 2L denotes the union
of two lines on P2.

THEOREM B. Let V be proper homotopy equivalent to C*xC*. Then
the compact structures on V are one of the following:

( i ) (P2; 3L) where 2>L denotes the union of any three lines in
general position.

(ii) (X, E), where X is the total space of a P1-bundle over an elliptic
curve and E is a section with (E2) = 0.

(iii) (if, E), where H is a Hopf surface and E an elliptic curve on
H.

0.2. If we replace "proper homotopy equivalent" by "biholomorphic",
then the above two theorems are contained in [Si], [U] and [Su]. The
problem of classifying compact structures on C*xC* was first considered
by Simha [Si] where he proved that if S is algebraic and C is irreducible,
S — C biholomorphic to C*xC*, then S is a Px-bundle over an elliptic
curve with a unique section C and (C2) = 0, i.e., a Serre structure. Note
that (ii) in Theorem B includes these along with ExP1. Ueda [U]
classified all irrational structures on C*xC* and then Suzuki [Su] com-
pleted the picture by classifying the rational ones. Suzuki heavily depends
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on the results of Nishino-Suzuki [N-S] on cluster sets of holomorphic
mappings. In our context these results are not applicable and this is
precisely the point where this paper differs from the earlier works. So
our main tool is the Mumford-Ramanujam method of studying the com-
binatorics of C with the help of the local fundamental group G of C.
As everybody else, we also make extensive use of Kodaira's classification
of surfaces.

0.3. By using Neumann's results [N], the method of this paper can
be employed to prove the following two results:

THEOREM C. Let V be proper homotopy equivalent to the total space
of an a fine C-bundle of degree n (2^0) over an elliptic curve. Then any
compact structure on V is one of the following:

(i) (X, E), where X is a Px-bundle over an elliptic curve and E is
a section with (E2) = ±n.

(ii) (Sn,α>ί, A*,*,*) where Sn>aft denote the Inoue surfaces of class VII
and Dnt(Xίt is the unique curve with (D2

}CCft) = 0 (see [El]).

THEOREM D. Let V be proper homotopy equivalent to the total space
of an affine C-bundle of degree n over a smooth curve of genus g ^ 2.
Then any compact structure on V is (X, Δ), where X is a P^bundle of
degree n over a smooth curve of genus g and Δ is a section with (Δ2) =
±n.

Of course one has to use the main theorem of Enoki [El] in proving
Theorem C. Here again if V is actually an affine C-bundle over an elliptic
curve, then Theorem C is due to Enoki [E2]. We shall not give any
proof of Theorems C and D here. Note, however, that the case when
g = 0 in Theorem D remains unsolved.

ADDENDUM. Recently, using Theorem 1.1 of Y. Miyaoka's paper,
"The maximal number of quotient singularities on surfaces with given
numerical invariant, Math. Ann. 268 (1984), p. 159-171", we have settled
the case g = 0 also in Theorem D, viz.,

"Let V be proper homotopy equivalent to the total space of an affine
C-bundle of degree n, neZ, over P1, and let (X, Δ) be a compact structure
on V. Then X is a Hirzebruch surface; if n Φ 0, then Δ is a smooth
section with Δ2 — —n".

0.4. The above theorems can also be read as a Ramanujam-type
topological characterization of certain compactifiable surfaces, e.g., Theo-
rem A can be read as:

THEOREM A'. Let V be a compactifiable surface which is proper
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homotopy equivalent to CxC*. Then V is biholomorphic to CxC*, and
carries a unique algebraic structure.

Indeed we begin by observing that Ramanujam's theorem can be
restated as follows:

THEOREM 1 (Ramanujam). Let V be a compactifiable, topologically
contractible smooth surface which is simply connected at infinity. Then
V is biholomorphic to C2 and carries a unique algebraic structure.

Similarly, the result in [G-S] can be restated as:

THEOREM 2 (Gurjar-Shastri). Let V be a two-dimensional normal
variety over C. Suppose V is contractible and has finite fundamental
group G at infinity. If V is compactifiable f then V is biholomorphic to
C2/G, where GcGL(2, C) is a small subgroup. In particular, V has at
most one singular point.

0.5. In § 1 we set up the notation and recall the relevant materials
from [M], [R] and [W]. In §2, we state and prove some propositions
which describe the combinatorics of C in terms of its associated graph
Γc. In §3 the proofs of Theorems A and B are completed.

This paper arose out of a coffee-table conversation the author had
with R. R. Simha. It was felt that instead of using the results of
Nishino-Suzuki, one should be able to stick to the Mumford-Ramanujam
method throughout. The author is thankful to Simha for showing and
explaining him the materials in [Si], [Su] and [U], and also for many
other helpful discussions.

1. Mumford-Ramanujam ingredients. In this section we recall the
basic facts about the Mumford-Ramanujam method.

1.1. As in the introduction we consider an equivalence class of pairs
(S, C), where S is a surface and C is a connected Zariski-closed subset
of codimension one (i.e. a curve). C is said to be with simple normal
crossings, (SNC) for short, if

( i ) each irreducible component C* of C is smooth, say C = U*=o C*
(ii) (Ci.Cj) ^ 1, for distinct Ct and Cjf and
(iii) CiΠCjΓ\Ck= 0 , for distinct Cif Cίf Ck.

1.2. Associated to such a pair (S, C) is its dual weighted graph Γc

defined as follows: The vertex set of Γc is the set of irreducible com-
ponents {CJ of C. Two vertices C£ and Cd are joined by an edge if and
only if (C .̂Q) = 1. Each vertex Ct carries two weights i2* and gi where
ί)t = (Ct.Ct) and gi is the genus of Ct. (see for instance [W]). Schema-
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tically, at the vertex Ct the graph Γc may appear as in Figure 1.

FIGURE 1

Whenever, the genus of a curve is zero this will not be indicated
in the schematic presentation (see Figure 2, for instance). We shall
denote by A(nlf , nk) the tree dual to a linear chain of rational curves
C19 , Ck with Cl = nίf i = 1, , k, (Ct.Ci+ί) = 1 and (C^Cj) = 0 if
\i — j \ Φ 1, 0, as in Figure 2.

rii n2 nκ-\ nk n
O

FIGURE 2

The operation of blowing-up and blowing-down on C with the restriction
that C always remains (SNC), carry onto the associated graph Γc also in
an obvious manner. More generally one can take an abstract weighted
graph Γ and then define these blowing-up and blowing-down operations
of Γ. A graph Γ is said to be minimal if we cannot perform any
blowing down operation on it, i.e., Γ has no vertex v which is linear in
Γ and has weights Ωυ — —1, and gv = 0.

1.3. Given a weighted graph Γ, the intersection matrix IΓ is defined
by

(1 if u Φ v, and u and v are joined in Γ
(Ir)u,v — ϊr. .«

[Ωv if u = v .

IΓ is symmetric and so defines a symmetric bilinear form over R, which
will also be denoted by IΓ. For a curve C with (SNC) we write Ic for
IΓ(J. Γ is said to be negative definite, unimodular etc. according as IΓ

is negative definite, unimodular etc. We will often use Γc and C inter-
changeably.

1,4. Given a weighted graph Γ, let P(Γ) denote the compact 4-
dimensional plumbed manifold with boundary, and let MΓ = dP(Γ). For
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a curve C with (SNC) on a surface we can construct a system of tubular
neighbourhoods Uc of C so that the boundaries 3 Uc are smooth and have
the same homotopy type and a retraction map φ\ UC—*C inducing a
surjection π^U^-^π^C). Uc can be idnentified with P(ΓC) (See [M] or [R]).
If e< denotes the homology class represented by a loop that goes around
a component C* exactly once in the positive direction, then the kernel K
of φ*\ H^Mc)—*fli(C) is generated by {βj with the relations

y=o

In particular we have

rank Ic = ί + 1 — rank H^Mc) + rank

1.5. For a compactifiable surface F which is connected at infinity,
we have (S, C), with S — C biholomorphic to V, such that C is connected.
By blowing up if necessary, we may assume that C has (SNC). Then
G = π^Mc) is the same as the fundamental group at infinity, πΓ(V). On
the other hand, π^C) is a free product

of πx{Γc) and the group π^C^, and TΓ^ΓC) is a free group of rank r where
r is the number of 'essential' cycles in Γc. In this paper we deal with
situations where G ~ πι(Mc) is finite or abelian. So, by the surjection
π^Mc) —• πx(C), we need to consider only the following three cases.

(a) Γc is a tree of lines (i.e. each C< is rational)
(b) Γ c has only one essential cycle and all Ct are rational
(c) Γc is a tree, all C< are rational except Co, say, which is an

elliptic curve.

1.6. In each of the above cases we have a presentation of G as
follows (see [W] for instance): Let siS = (C<eCy).

(a) generators: Co, C^ , Ct

relations: [Cif Cj] = 1 whenever s^ ^ 0 or i = j ,

ΠCJ« = 1 , for all ΐ = 0, •••,« .

(b) In this case let Co, , Cr be the vertices on the essential cycle
(r ^ 2 by (SNC)). Then

generators: Co, , Ct, u

relations: ICyC[«>1. . C^l^vr^uCl^1' • C^0^ = 1 ,

^ . . C ^ = 1, for i ^ O , r ,
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C'S'1 Cp 1 = 1 ,

[Ci9 Cj] = 1 if sid Φ 0 and (i, i) =* (0, r) or (r, 0) ,

(c) In this case let Co denote the elliptic curve in C.

generators: COf , Ct, x, y.

relations: [x, y] c;β ° cy =

γij -_ i for all i = 1, , t ,

[a, Co] = [», Co] = [C<f Cy] = 1 if i Φ j or 8<i ^ 0 .

1.7. Finally, the following group theoretic fact plays a key role in
our situation. Let Gt be nontrivial groups and let ft6G4. Let i ϊ be
the quotient of the free product Gt * * Gn by the single relation

Then H is nonabelian for w ^ 3. Indeed, for n ^ 4 we can express H as
an appropriate amalgamated free product and check the nonabelianness of
H. For n = 3, if JET, = (&) is the cyclic subgroup of G<f we may first
assume that Hi Φ (1). Then the group HQ = (H^H^H^Kg^ g2*gs) becomes
a subgroup of H. This group Ho is well known to be nonabelian.

2. Combinatorics of C.

2.1. In this section S always denotes a (smooth) compact surface and
C denotes a (connected) curve with (SNC) on S. We shall need the
following easily proved geometric lemmas, before we proceed with the
study of the combinatorics of C.

LEMMA 1. Let Lλ be a line on S with (LI) = 0. Then S is algebraic
and we have a holomorphic mapping ψ:S-^>d, where Δ is some non-
singular curve; Lγ is a fibre of ψ. Further, if L2 is a line on S such
that (LimL2) Φ 0 then Δ — P1 and L2 is a section ofψ, i.e., S is a rational
ruled surface with Lx as a good fibre and L2 as a section. In particular,
if D is any (connected) curve on S with (D.Lj) = 0, then all components
of Dt are rational and ΓD is a tree, and (D.L2) 5̂  1.

PROOF. The existence of ψ: S -> Δ follows from Kodaira and Spencer
[K-S] (see 3° of [Su]). The rest of the lemma is common knowledge about
rational ruled surfaces.

LEMMA 2. Suppose Γc is as in Figure 3.
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FIGURE 3

where Li are lines and (LI) = — 1, k ^ 1. T%ew ί/̂ e linear subtree T
consisting of {LJ^2 is negative definite or empty.

PROOF. Assume on the contrary, that T is not negative definite.
By blowing down (inside T) we may assume that T is minimal. Now
it follows that (L<) ̂  0 for some i ^ 2. By blowing up and blowing down,
if necessary, (and of course not requiring minimality any more) we may
assume (Li) — 0. Now by the above lemma S is a rational ruled surface
with L2 as a fibre and L1 as a section. The curves C19 LQ and C2 are
contained in a singular fibre F. By blowing down Lo we obtain a singular
fibre FQ with (FQ.L^) ^ 2 which is absurd.

LEMMA 3. Consider a subtree of lines in Γc and its subtree T as
in Figure 4.

FIGURE 4

Suppose T is not negative definite. Let Γo be any connected subgraph
of Γc such that no component of ΓQ meets any component of T. Then
(Γ0.L0) ^ 1 and Γo is a tree of lines. In particular, Γ0[J{L0} is also a
tree.

PROOF. AS in the proof of Lemma 2, we first reduce to the case
when (L\) = 0. Then Lemma 3 follows from Lemma 1.

2.2. We say a graph Γ satisfies the eigen-value condition (E), if any
subspace on which IΓ is positive semidefinite is of real dimension at most
one. We say Γ satisfies (R) if no graph equivalent to Γ has a subtree
of the form shown in figure 3, with k ^ 2, where Lo, Llf L2 are lines,
(LI) = — 1, and (LI) ̂  0. Lemma 2 implies that if Γ = Γc for a curve C
on a compact surface then Γ satisfies (R). The proposition on page 80
of [R] can now be restated as follows:

PROPOSITION 1. Let Γ be a minimal graph satisfying (E) and (R).
If πx(MΓ) = (1), then Γ is linear.
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For a curve C with (SNC), on a compact surface S, such that Ic is
nondegenerate, condition (E) is always satisfied. For, the nondegeneracy
of Ic implies that H2(C) -•» H2(S) is injective and then (E) is an easy
consequence of the Hodge Index Theorem. If H^Mc) is finite, it follows
that Ic is nondegenerate (see 1.4). In the above proposition, once Γ is
linear it is easily seen that Γ is equivalent to A(l) or to the empty tree.
Thus we have:

PROPOSITION 1'. Let C be a curve with (SNC) on a compact surface
S. Suppose 7Γi(Λfσ) — (1) Then Γc is equivalent to A(l) or to the empty
tree.

2.3. In [Sh] we have proved:

PROPOSITION 2. Let T be a minimal tree satisfying (E) and (R) with
more than one branch points. If all simple branches of T are negative
definite, then πγ{Mτ) is noncyclic and infinite.

REMARK. Indeed, it suffices to assume that for some free vertex
veT, T — {v} satisfies (E), instead of assuming that T itself satisfies
(E), since in the proof of this proposition, (E) is used only to say that
Γdoes not have two disjoint subtrees isomorphic to A( — 1, —1). In order
to avoid repetition, we shall use this stronger form of Proposition 2 and
prove:

PROPOSITION 2'. Let C be a curve with (SNC), on a compact surface
S9 such that T = Γc is a tree. If π^M^ ~ Z, then T is equivalent to
A(0) or A(l, 1).

We first prove three more lemmas:

LEMMA 4. Suppose T is as in the above proposition, except that
nt(MT) is any cyclic group. Suppose T is minimal and not linear. If
Tλ is any simple branch of T, then TΊ Φ A(0).

PROOF. Let TΊ be a simple branch of T at an extremal branch point
u e T. Write T—{u) as a disjoint union of subtrees, T— {u}= Tλ il_ _1L Tkt

k ^ 3. Then we have

z faCM^)* *7T1(Mrfc))/<>1* •••**>*> ,

where vte Tt are the vertices joined to u in T. By 1.7, we must have
nx{MT%) = (1) for some i. Thus if T, = A(0), we have π^M^) ^ Z. Hence
we may assume πy(MT2) — (1), say. It follows that IT2 is nondegenerate.
If ITl is not negative definite, then Γ2 will support a divisor D, with
(D2) > 0. On the other hand, if Cx is the curve in Tlf then (Cx)

2 = 0 and
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(Cί..D) = 0, contradicting the Hodge Index theorem. Hence Iτ% is negative
definite. By Proposition 1, it follows that T2 is not minimal. This means
(since T is minimal), that ΩV2 — — 1 and v2 is linear in T2. Since T is
minimal, v2 is a branch point of T. This implies that T does not satisfy
(R), contradicting 2.2. So the proof of Lemma 4 is completed.

LEMMA 5. Let T be as in Proposition 2' and 7\ be any simple branch
of T. Suppose T is minimal and not linear. Then all weights on Tx

are ^ —2.

PROOF. Suppose T1 has some nonnegative weights. By the above
lemma, TΊ Φ A(0). So, as in Lemma 1, by blowing-up and blowing-down, if
necessary, within Tlf so as not to disturb the nonlinearity of T, we can
assume that Tt contains A(0, 0) in such a way that Tγ — A(0, 0) is either
empty or a simple branch of T'= T— A(0, 0). As in Lemma 1, we now obtain
a PMibration ψ:S->Pλ such that T = T- A(0, 0) is contained in a single
fibre of ψ. In particular, T is linear. Moreover, πλ{Mτ) ~ πγ{Mτΐ) ~ Z.
Hence it easily follows that T" is the full fibre. By (R), it follows that
T' is minimal, and hence T" = A(0). Thus T is linear which is a con-
tradiction. This proves Lemma 5.

LEMMA 6. Let T be as in Proposition 2', T" be any proper subtree
(i.e., T'ξ^T). Then T satisfies (E).

PROOF. Since πάM^Z, rank H1(MT) = 1. Thus, if K=Keγ(i*: ϋ2(C)->
H2(S)), then K = Z. Let ϋ = Σί=oλ,Ci be the divisor such that the
homology class (D) generates K. We claim that λ* Φ 0, for all i. As-
suming on the contrary, let us say, λ0 = 0. Write T — {Co} as a disjoint
union of trees, T - {Co} = Tί _U_ JL TkJ k ^ 1, and let D = Σ A with
suppίDJcΓ^ We claim first that A = 0 except for one i. If not,
suppose A ^ 0 and D2Φθ. It follows that ITι and /Γ2 are nondegenerate.
Also since (Df — 0, one easily sees that (A)2 = (J92)

2 = 0. Hence both
ITl and 7Γ2 have positive eigenvalues which contradicts the Hodge Index
theorem. Thus we may assume that Ό — Όx say. Now suppose CΊ is
the vertex in 2\ joined to Co in T. Then 0 = (C^.D) = λx. Repeating
the above argument we finally arrive at the conclusion that λ* = 0 for
all i which is absurd. Thus λ* Φ 0 for any i. Hence it follows that if
Tf is any proper subtree of T then Iτ, is nondegenerate, and hence T"
satisfies (E).

PROOF OF PROPOSITION 2'. We shall assume that T is minimal, and
show that it is linear, and then the conclusion of the Proposition 2'
follows easily.
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So, suppose T is not linear. By Lemma 5, all simple branches of T
have weights ^ — 2. In particular, for any simple branch Γ of T, we
have πx(MΓ) is nontrivial finite cyclic group. By 1.7, it follows that T
has more than one branch points. By Lemma 6, it follows that T cannot
have two disjoint subtrees isomorphic A(—1, —1). Hence by Proposition
2 and the remark below that, n^M?) is noncyclic. This contradiction
completes the proof of Proposition 2\

2.4. Finally we come to the central result of this paper.

PROPOSITION 3. Let C be a curve with (SNC) on a compact surface S.
Suppose S — C = V is proper homotopy equivalent to C*xC*. Then Γc

is equivalent to one of the trees shown in Figure 5.

o
o

Γi]

FIGURE 5

PROOF. Note that G = π?(V) ^ πϊ°(C* xC*) ^ Zz cz π&Mo). Thus as
observed in 1.5, Γc may have three distinct features. In the first two
cases below we closely follow [U].

( i ) We first show that Γc is not a tree of lines or equivalently
H^C) Φ (0)

In the homology exact sequence

HS(S) -> £Γ,(Sf C) -> H2(C) ̂  H2(S) -> fl.CS, C) -> flί(C) - H^S) -> fl^S, C)

we have HX(S9 C) ~ H\V) = (0) and H9(S, C) ~ H\V) a Z@Z. Thus if
5^(0 = (0), then fl1(S)=0, H5(S)-H\S)=0. It follows that rankIm(H) =
rank H2(C) — 2 = ί — 1. But rank Im(i#) = rank Ic = t + 1 - rank H^Mo) +
rank fli(C) = ί - 2. Hence fl^C) ^ 0.

(ii) Now consider the case when Γc is a tree having one vertex,
say Co, with g0 = 1. Of course other vertices are of genus zero. We
may assume Γc is minimal and then we should show that Γc is a single
vertex v with ΩΌ = 0 and & = 1.

Assuming the contrary, suppose Γc — {Co} = U?=i 7̂ , where Γ, is a
nonempty tree of rational curves. Let Cf e T̂  be the vertex joined to
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Co. Ueda ([U] page 87) has shown that πλ(MTi) = (1) for each i ^ 1. His
proof of the fact that each Tt is negative definite holds here also. By-
virtue of Proposition 1, Tt are not minimal. Since Γc is minimal, this
means that (CJ) = — 1 and T{ has exactly two branches at Cif say 7α

and Ύi2. Using the presentation of G in (b) of 1.5 we have

where Γo is the branch of Γ — {CJ containing Co, and where jDί3 are the
vertices in Ί^ joined to Ct. Hence πx(MΓo) Φ (1). On the other hand,
G/(Ci) is abelian and hence one of the groups π^Mγ^) = (1), say j — 1.
Repeat this argument with ytl in place of T{ and conclude that (J5JJ =
— 1. Thus Ti has a subtree isomorphic to A( —1, —1) which is indefinite,
contradicting the observation that Γ* is negative define. Thus Γc — {Co}.
That (Cl) = 0 follows from the fact that if (Q) = ±n, then ^(MCQ) is
isomorphic to {x, y, z \ [x, y] = [x, y\ [y, z] = xn} which is abelian if and only
if n = 0.

(iii) Finally let Γc be a graph of lines with one essential cycle.
Let Co, •• ,C r , be the vertices on this cycle, (r ^ 2 by (SNC)). We
assume that Γc is minimal and then show that Γc has no other vertices
(t — r). Then by Proposition 3 of [U], it follows that Γc is one of the
trees shown in Figure 6.

or — n

FIGURE 6

Since the latter is easily seen to be equivalent to the former, this would
complete the proof of Proposition 3.

So let To = Co U U Cr be the cycle in Γc. First we show that there
are no branch points of Γc in Γc — To. If possible let DoeΓc — TQ be a
branch points of Γc. Write Γc - {DQ} = Γo U Γx U Γk, say, k ^ 2. Here
Γo denotes the component containing Γo. Let Et e Γ^ be the vertices of
Γi joined to Z)o. Then we have

where Gt = τr1(Λf/'<). Go ^ (1) since Γ o contains Γo. Since G is abelian,
we may assume that G2 = = Gfc = (1). By Lemma 3, Γ 2 is negative
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definite also. Proceed now exactly as in the paragraph (ii) to produce a
subtree of Γ2 isomorphic to A{ — 1, —1), and thereby a contradiction.
The branch points of Γ, if any, are on the cycle To.

Write now ΓG = TQ U T[ U U T'm where each Ύ\ is linear. Again by
Lemma 3 each T\ is negative definite, % ^ 1. Now if Γσ =£ Γo then at
least one of the Co, •••, Cr is a branch point, say Co. Write Γc — {Co} =
70U ΓiU U Tu where 70 is the branch that contains Clf C2, , Cr and
I ^ 1. Let A e Γ, be the vertex that is joined to Co. Let Go = 7Γi(Afro),
Ĝ  = τri(MΓ<). Since there are no branch points of Γσ on 7̂  and Γ c is
minimal, it follows that Tt are also minimal. Hence Gt are finite non-
trivial cyclic groups of order mif i ^ 1. Using the presentation (c) of
1.6 for G, we have

G/<C0> - (G0*Z(%)*G1* KGύKCjuCrU-^D!* *A> .

First of all it follows that i <£ 1. If Cx and Cr are nontrivial elements of Go

then x = CjuCrU'1 eG0* Z(^) is an element of infinite order and hence we
have G/(CQ) ^ C0*Z(u)/(xmi). Since m1Φl, this latter group is not abelian
and so we conclude that CΊ = 1 or Cr = 1 in Co. But then it is easily
seen that Z(u) is a free factor of G/(C0) and hence G/(C0), being abelian,
is isomorphic to Z(u). This is absurd, since G ~ Z3. This completes the
proof of Proposition 3.

2.5. We remark that in Proposition 3, the assumption on V= S — C
is unnecessarily strong. It suffices to assume that π^Mc).'±. Z3. Then
except for (i) the rest of the argument still holds, and (i) can be proved
in a different way.

3. Proofs of Theorems A and B.

3.1. Let S — C = V be proper homotopy equivalent to CxC*. Then
G = π?(S — C) ^ π?(CxC*) — Z. As observed in 1.5 all components of C
are rational and Γc has at most one essential cycle (case (c) cannot occur).
We shall first show that Γc has no cycles. If not, we then have HX(C)^Z.
So K=Kev 9>* = (0). Hence Ic is unimodular. If Ic has positive eigenvalues
then we get an effective divisor D on S with (D2) > 0. This implies S
is algebraic. On the other hand, in the homology exact sequence

Ht(S, C) -> H^C) -> fli(S) -> ΉOST, C)

we have Jϊa(S, C) - iϊ2(S - C) - 0 and H&S, C) ~ H\S - C) = 0. So the
Betti number &(S) = 1. Since algebraic surfaces have even first Betti
numbers this proves that IG has no positive eigen values. Hence Ic is
negative definite. Now by 2.5 and 2.3 of [W] it follows that
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cannot be infinite cyclic which is a contradiction.

3.2. Thus Γc is a tree of lines. By Proposition 2' we can assume
that it is A(0) or A(l, 1). In the former case by Lemma 1 we have a
surjective holomorphic mapping ψ\S-*Δ with C as a good fibre. It
follows that πχ(S — C) ~ πλ(A — ψ(C)) which is a free group of rank Φ 1.
This contradiction shows that Γc is equivalent to A(l, 1). Thus we have
shown that any compactification of V is equivalent to (S, C) where Γc =
A(l, 1). It is not difficult to see that S ~ P2 as required, in Theorem A.

3.3. We now consider Theorem B. So let S — C = V be proper
homotopy equivalent C*xC*. By Proposition 3 we may assume that Γc

is a cycle of three lines as described, or consists of a single elliptic curve
E with (E2) = 0. In the former case it is easily seen that S ~ P2 as
required. The latter case is essentially contained in [Si] (S, algebraic)
and [U] (S, nonalgebraic) except that these authors work under somewhat
stronger hypothesis. Below we shall prove a lemma which along with
completing the proof of Theorem B will also give the proof of the
corresponding (easier) portion of Theorems C and D.

3.4. LEMMA. Let S be a compact surface, CczS be an irreducible
smooth curve of genus g ^ 1 with S — C — V having the proper homotopy
type of the total space of an affine C-bundle over a smooth curve of genus
g. Then either S is a smooth Pι-bundle with C as a section or S is a
Hopf surface, with (C)2 = 0 and g = 1.

PROOF. In the homology exact sequence

0 - fl,(S) - H3(S, C) - H2(C) -* H2(S) - H2(S, C)

we have Ht(S, C) ~ H*~*(V) for each i. Since V is homotopy equivalent
to a curve of genus g, we have H^S, C) = 0, H2(S, C)~Z and HZ(S, C)~Z2g.
It follows that A(C) - 1 ^ β^S) ^ β^C) = 2g and βΛ(S) ^ 2. Thus if β^S)
is even then β^S) = &(C) = 2g and the topological Euler characteristic
is X(S) = 2Z(C). On the other hand if β^S) is odd then β2(S) = 0; hence
(C2) = 0. Also in this case we have X(S) = 4 - 4^ = 2Z(C). We shall now
examine these two cases separately.

Case when βλ(S) is even. By Theorem 3 of [K4], h1*0 = q(S) = flr.
Consider the Albanese map α: S—> Alb(S). We claim that a cannot have
two dimensional image. For if it does, then α*: iϊ4(Alb(S)) —> H\S) is
nontrivial. It follows easily that α*: iί2(Alb(S)) —> H\S) will have an image
of rank at least six. Since β2(S) <; 2 we conclude Imα has dimension 5^1.
Since g ^ 1, a cannot be a constant map and so Imα is a curve A.
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Then, it is well-known a is a surjective morphism with connected fibres
and Δ is a smooth curve of genus g. Since the composite C -> S-^> Δ
induces an isomorphism in homology it follows that C is a smooth section
of a.

We claim that a:S-*Δ is a P^bundle morphism with smooth fibres.
If not let Fif 1 ^ i S r, be the singular fibres of a. Since a has a
section, none of these is a multiple fibre. Hence Z(i^) > ZCP7) where F
denotes a smooth fibre. Now we have

T

y/Q\ y/ τπ\y/ A\ I "NΓ1 y/τp\ oy/ ΛN << Λ

This shows that Z(F) > 0 unless Z(z/) = 0 and in any case r = 0. Hence
α is smooth.

If X{Δ) Φ 0 then Z(F) > 0, i.e., F-P1. Restriction of a to fif - C
yields an exact sequence of fundamental groups

1 -* π,(F - a point) -> π,(S - C) -> ̂ (4) -> 1 .

Thus if Z(J) = 0, i.e., g = 1, then π^S — C) ci Z + Z ^ ^(4) and hence
TΓiίJF — a point) = (1), i.e., F ~ P 1 . Thus in any case a: S—> Δ is a smooth
PMϊbration as required.

Case when A(S) is odd. Clearly S is nonalgebraic and since β2(S) = 0
as observed above, we have pg = 0. Hence by Theorem 2.1 of Kadaira
[K2] S is a surface of class VΠ0. In particular, βx(S) = 1 and hence C
is an elliptic curve. Here again there are two subcases. If S has non-
constant meromorphic functions then, by Theorem 4.1 and Theorem 4.3
of [Kl], S is an elliptic surface, φ:S-*Δ, over a curve Δ with C as a
fibre. Since Z(S) = 2Z(C) = 0, singular fibres of φ, if any, will be of type
m/0. Let Fif i = 1, •••, k be the singular fibres of φ\V, of type mj.^
respetively. The local analysis of the fundamental group of a tubular
neighbourhood of these fibres as done in §5 of [K4], together with a
simple application of Van Kampen's theorem yield a surjection of the
fundamental group π&V) onto a free product (Zl(m$)* *(Z/(mk)).
On the other hand, since g = 1, it follows from the hypothesis that
^ ( 7 ) c ί Z φ Z . Hence k <; 1. Thus φ:S-^Δ is an elliptic fibre space
with at most two singular fibres, and these singular fibres are of type
mlo. By Lemma 8 of [K3] S is a Hopf surface. Finally if S has no
nonconstant meromorphic functions then we appeal to Theorem 34 of [K3]
to conclude that S is a Hopf surface.

This completes the proof of the lemma and thereby the proof of
Theorem B.
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