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1. Introduction. Leray, in his famous paper [6] of 1934, proved the
existence of weak solutions of the Navier-Stokes equations in the spatial
domain Ω = RB. Hopf, in his famous paper [4] of 1951, proved the
existence of weak solutions in arbitrary open subsets Ω of Rn, n^2.
Leray, however, proved for his solutions two important properties that
Hopf did not, namely the strong energy inequality (i.e., that the energy
inequality (4) below should hold for almost all sx > 0) and the epochs of
regularity property (Definition 3, below). Ladyzhenskaya, in her book
[5], reformulated Hopf s theorem so as to include the strong energy
inequality (slightly modified). She proved it for bounded domains, and
claimed that the proof carries over without change to unbounded domains.
This claim was evidently based on an oversight; one which has been
shared since by several other authors. In recent years, as it has become
realized that an oversight was made, there have been many efforts to
prove the strong energy inequality in unbounded domains other than the
whole space Rz, considered by Leray. But to date, these efforts have
failed.

The epochs of regularity property was proved in the case of bounded
three dimensional domains by Shinbrot and Kaniel, who included it in
their 1966 paper [11]. Their proof follows the same line of argument as
Leray's. It consists in pointing out that, for almost every time t ^ 0, a
weak solution has enough regularity to serve as the initial value for a
smooth solution, and that the two solutions can be identified over the
time interval during which the smooth solution remains smooth. That
the weak and smooth solutions are the same on this interval follows from
a uniqueness theorem of Leray, which has been generalized by others,
notably by Serrin in [10]. Its application in proving the epochs of
regularity property requires that the weak solution satisfy the strong
energy inequality. Thus, in [6] and [11], the epochs of regularity property
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is obtained as a consequence of the strong energy inequality. In my
paper [2], on the existence, regularity and decay of solutions, I constructed
smooth solutions in unbounded domains which, among other things, are
suitable for use as the smooth solutions in the argument of Leray and
of Shinbrot and Kaniel. As an application of the main results of [2], I
claimed in Theorem 8 of that paper, that the epochs of regularity
property holds for weak solutions in unbounded three-dimensional domains.
I claimed this believing that the strong energy inequality had been
established and was well known for arbitrary domains, unaware of the
error in [5J. That this is not true has been very kindly brought to
my attention by Professor K. Masuda. It is particularly unfortunate
that I did not realize this when writing [2], because the special manner
in which solutions were constructed there makes possible a direct proof
of the epochs of regularity property, in either bounded or unbounded
domains, without appealing to the strong energy inequality. Our purpose
here is to present this alternative argument, proving for the first time
the existence of weak solutions possessing the epochs of regularity
property in unbounded domains other than the whole space iί3, considered
by Leray.

Leray proved for his solutions that the Dirichlet norm tends to infinity
at the right end point of each epoch of regularity (except the last which
is a semi-infinite interval). Using this, he obtained a bound for the sum
of the square roots of the lengths of the epochs (excluding the last).
We have been unable to show for our solutions that the Dirichlet norm
must necessarily tend to infinity at singularities; it will be explained how
there might be other types of singularities. However, by carefully
examining our construction, we do prove a result like Leray's on the
lengths of the epochs. Also, what is closely related, we obtain a bound
for the one-half diipensional Hausdorff measure of the set of singular
points in time.

Hopfs original construction of solutions by Galerkin approximation
applies in a single step to any domain, bounded or unbounded. In
Ladyzhenskaya's modification of the argument, solutions in unbounded
domains are obtained from a sequence of solutions defined in an expanding
sequence of bounded subdomains. We adopted the latter procedure in
[2], in order to use the eigenfunctions of the Stokes operator as basis
functions. This permitted further estimates for the Galerkin approxima-
tions, ultimately yielding the local existence of a smooth classical solution.
Here, we use the same basic construction, but with two innovations. The
first is a new estimate for the Galerkin approximations, given as (30)
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below. The other is a new condition in the selection of a subsequence
of the Galerkin approximations, and subsequently of the weak solutions
defined in bounded subdomains, so as to preserve (30) in the final result,
i.e., for a globally existing weak solution. The experienced reader will
probably understand these main points by simply reading Theorems 3
and 4. However, to make the proof solid, we need to lay out, in just
the right form, the construction and selection procedure of Hopf/
Ladyzhenskaya. This is done in Theorems 1 and 2. The proofs of these
theorems are given somewhat briefly, though hopefully clarifying several
points which were not addressed in [4] and [5],

In the papers just mentioned, the solution u is obtained as the limit
of Galerkin approximations. But a choice is not made between introducing
it as a limit in L2 of space-time, or as a limit in U of space, at every
time. It is simply regarded as the limit in both senses simultaneously,
without any mention of justification. This identification of the two limits,
early in the proof, greatly facilitates matters, particularly in proving the
solution's weak continuity in L\Ω), as a function of time, and in proving
the strong energy inequality for bounded domains. These properties then
follow directly from corresponding properties of the Galerkin approxima-
tions. Here, in the appendix to this paper, we provide a lemma which
justifies the identification of the two limits. Although this lemma was
originally proven in my thesis [3], it has not appeared in my previous
papers because they have all dealt with stronger solutions possessing a
time derivative in L2 of space-time. In that context, I have regarded it
as preferable to take limits only in U of space-time, and to introduce
the values of u on time-cuts as traces. In the context of weak solutions,
some authors have treated the issue carefully by taking limits only in
space-time, and then late in the proof justified a redefinition of the
solution on a set of ^-measure zero, so as to make it weakly IΛcontinuous
in time; see [8] and [10]. The justifications given at that point are
essentially based on having established the existence of a weak distribu-
tional time derivative, something not needed for our argument. It seems
much easier to follow the line of proof given in [5], coupled with the
justification provided here, in the appendix.

2. Definitions. Let ΩcRn, n ^ 2, be open.

Let D{Ω) = {φ e C?(Ω): V-φ = 0},

J(Ω) = Completion of D(Ω) in L\Ω),

Jλ(Ω) = Completion of D(Ω) in W&Ω).
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P: L\Ω) -> J(Ω) be defined by orthogonal projection in L\Ω),

Δ = PΔ be the Stokes operator.

Let aeJ(Ω), and let feL\0, T; L\Ω))y for every T> 0.

We distinguish between two types of weak solutions of the Navier-
Stokes problem

ut + u Vu = — Vp + Au +f and V w = 0 , in ώx(0, oo) ,

== 0 , u(t) e TiCf?) for t > 0 .

The first definition below is Leray's original definition, adopted also by
Ladyzhenskaya, making the strong energy inequality one of the basic
properties of a weak solution. When a Leray solution exists in a three-
dimensional domain with smooth boundary, it possesses the epochs of
regularity property. But its existence is not yet known in unbounded
three-dimensional domains other than the whole space RK Dropping the
strong energy inequality from the other conditions, we have what is
essentially Hopf's definition. The existence of a Hopf solution is known
in any open set ΩcR71, n^2. We shall modify Hopf's construction so
as to obtain the epochs of regularity property in any three-dimensional
domain whose boundary, if nonempty, is uniformly twice continuously
differentiate.

DEFINITION 1. We call u a Leray solution of (1) if and only if it

(2) is defined (pointwise) and measurable on Ω x [0, oo); is also measurable
in Ω and belongs to J{Ω) for every £e[0, oo); has L2(i2)-norm ||u( , t)\\
uniformly bounded over every finite time interval t e [0, ΓJ; has gener-
alized first order spatial derivatives Vu e L\Ω x (0, T)) for every T > 0;
belongs to Jλ{Ω) for almost all t > 0; satisfies

(3) \° [(u, φt) - (Vu, Vφ) - (u-Vu, φ) + (/, φ)]dt = (u(8), φ(s)) - (α, 0(0)) ,
Jo

for all smooth solenoidal functions φ(x, t) with compact supports in β x
[0, oo), and for all s ^ 0; and satisfies

( 4 )

for almost all values of sx ^ 0 including sx = 0, and for all values of
s > 8X.

DEFINITION 2. We call u a Hopf solution of (1) if it satisfies the
conditions (2), (3), and (4), except that the energy inequality (4) is re-
quired to hold only for st — 0.
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DEFINITION 3. We say that a weak solution u of (1) possesses the
epochs of regularity property if and only if there exists an open subset
Ra[0, oo), such that the measure of [0, oo) — R is zero, and such that
for every compact interval IczR there holds

(5) suplMIV^ + (̂IMIVjca, + \\utf)dt <

REMARK 1. The condition that u(t)eJ^)f for a.a. t > 0, is in
general necessary for the well posing of problem (1) in unbounded
domains. Indeed, without it, and even if it is replaced by the weaker
condition that u(t) e J?(Ω) for a.a. t > 0, there exist domains for which
problem (1) possesses fully classical nontrivial solutions corresponding to
the data a = 0 and f=0. This was shown and the matter investigated
in [1].

REMARK 2. Since u{t) is bounded in J(Ω) over any finite interval of
time, it follows from (3) that u(t) is weakly continuous in L\Ω) for all
t ^ 0. Therefore, (4) ensures that u{t) is strongly right continuous in
L\Ω) for almost all t ^ 0, including t = 0. In particular, \\u(t) — <x|| —> 0
as t -> 0+.

3. The preliminary construction. In this section we give Ladyzhen-
skaya's version of Hopf s theorem. Where we are sketchy with the
details, most can be found in [5]. The principal thing which may be
new here is our suggestion for clarifying the limits to be taken in in-
troducing the solution u.

THEOREM 1. If Ω is a bounded open subset of Rn, n ^ 2, then there
exists a her ay solution of the Navier-Stokes problem (1).

PROOF. There exists a system of functions {aι{x)} belonging to
Jλ{Ω){Λ Wξ(Ω)f)C(Ω), which is orthonormal in J(Ω), whose finite linear
combinations can approximate any function from D(Ω) arbitrarily well in
the norm sup f l | ' | + ||V |]L2(i2). Let {a\x)} be such a system. Let

un(x, t) = Σ ckn{t)a\x) , n = 1, 2, ,

satisfy, for 1 = 1, •--, n, the conditions

(uϊ + un Vun - Aun - f a1) = 0 , for a.a. ί ^ 0 ,

(un(0) — α, a1) = 0 .

From (6) one obtains (l/2)(d/dt)\\un\\2 + ||V^||2 = (/, un), and so
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(7 ) -ί|N"(s)||2 + (' \\Vu»\\>dt = h\W(Sl)ψ + \' (/, W)dt ,

for all 0 ^ st < s < oo. Since (d/dt)\\un\\ ^ | |/ | |, one has

(8) ||tt"(β)|| ύ \\a\\ + [' 11/11 dt, for all s ^ 0 ,
Jo

and

(9 ) sup \\un\\2 + Γ||Vu*\\2dt ^ C r , for all T ^ 0 .
[0,Γ] JO

It follows that the coefficients {ckn(t)} are all uniformly bounded on
any finite interval Ot^t^T. For fixed k, the sequence {ckn(t)}, n — l92, ,
is also equicontinuous over [0, T], Indeed, one finds using (6) and (9),
that for any 0 <I s < &' <; T, there holds

(10) \ckn(s') - cjfl)\ =
I Js

£ C / 7 ? i / β " Γ = l + j ' 11/11 dt,

where C* depends only on CΓ in (9), and Ck depends only on ak.
Hence there exists a subsequence of {n}9 again denoted by {n}, such

that for each fc and T, the sequence {ckn(t)} is uniformly convergent on
[0, T], as n-+ oo, to a continuous limit cfc(ί). To be as concrete as pos-
sible, we will introduce u as a limit of the series

oo

fc = l

There are several ways this can be done. One can define u as a limit
in L\Ω), for each fixed t, or as a limit in L\Ωx[0, T)), for every T ^ 0.
Convergence is assured in either sense because the partial sums of the
series all satisfy the estimate (8), and because the system {ak} is orthogonal
in L\Ω). In fact, we need u to be the limit in both senses. For each
fixed t ^ 0, let ΐδ(vί) be the limit of the series in U(Ω). More precisely,
since an element of L\Ω) is an equivalence class of measurable functions,
let ΰ('f t) be a particular measurable function representing the limit. Of
course, u(x, t) need not be measurable in Ωx[09 oo). Let u(x, t) be a
function, measurable in βχ[0, oo), which is representative of the limit
of the series in L2(i2x[0, T)), for every T. Of course, one can not expect
u(x, t) to be the limit of the series in L\Ω), for all values of t. How-
ever, in the appendix, we show that for almost all t ^ 0,

(11) ΰ(x, t) = u(x, t) , for almost all x e Ω .
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Therefore, setting

[u(x, t) , if t is such that (11) holds ,
Ίl(x t) — \

[ΰ(x, t) , if t is such that (11) does not hold ,

we obtain a function (defined pointwise) which is measurable in Ω, for
every t, as well as in Ωx[0, °°), and to which the series converges, both
in L\Ω) for every t, and in L2(βχ[0, Γ)), for every T.

In view of (9), and of the convergence ckn(t)-> ck(t), for all fc, the
subsequence of Galerkin approximations {u71} converges to u weakly in
L\Ω), for every t, as well as in L\Ωx[Q, T))9 for every T. We wish
to show that the convergence is strong in L%βχ[0, T)).

To that end, note first that the uniformity of the convergence ckn(t) ->
ck(t), on [0, T], for each fixed k, implies that the weak convergence of
un( , t) to u(-f t) in L\Ω), is uniform in t. That is, for every φeL2(Ω),
and every ε, T > 0, there exists an integer N such that

(12) \(un(t) - u(t), φ)\ < ε , f o r a l l t e [ 0 , Γ ] , a n d n ^ N .

Then recall Friedrich's lemma: For any bounded domain 42, and any
ε > 0, there exist functions {ω19 , ωN} such that

(13) IMI2 ^ Σι(u, ωk)
2 + ε \\Vu\\2 , for all u e W}(Ω) .

fc=l

Thus, for any two Galerkin approximations un and um, one has

(14) [T\\un - um\\2dt ^ Σ \\un - nm, ωk)
2dt + eΓ||V(wn - O| | 2(ft

Jo i = i Jo Jo

Using (9) and (12), this implies, for the chosen subsequence, that un —>u
strongly in L2(i2x[0, Γ)), for every T> 0.

In view of (9), u has derivatives VueL2(Ωx(0, T)), and Vun->Vu
weakly in L2(βχ(0, Γ)), for every T> 0.

Let us regard L2(0, T; JX(Ω)) as the completion, in the obvious norm,
of all smooth solenoidal functions with compact supports in flx[0, T].
Since {u71} is bounded in L2(0, T; J^Ω)), there exists a further subsequence
whose arithmetic means (u1 + ••• + un)/n converge strongly in L2(0, Γ;
Ji(β)), to some element ϋ of L2(0, T J^Ω)). However, these arithmetic
means also converge to u in L2(0, Γ; L\Ω))> permitting the identification
u-u almost everywhere. Thus u e L2(0, T; Jt(Ω)). Using mollifiers
with respect to time, we conclude that u(t)eJ1(Ω)9 for almost all
t > 0 .

To establish (3), note that, for n^m, and any s ^ 0, (6) implies
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(15) \'[(un, φT) - (Vit", Vφm) - (tt Vti", φm) + {f, φm)]dt
Jo

- (un(s), φm(s)) - (α,

where φm is an arbitrary function of the form φm(x, t) = ΣΓ=i dk(t)ak(x),
with continuously differentiate coefficients dk on [0, oo). Since un con-
verges to u in every time-cut, as well as in space-time, one can justify
letting n —> oo in (15). This implies (3), because any smooth solenoidal
function φ(x, t), with compact support in βχ[0, s], can be approximated
arbitrarily well by functions of the form φm in the norm

sup \φ\ + sup \φt\ + I
flX[0,ί] βX[0,8] Jo

For this, see Masuda [7, p. 630].
Finally, one can show that the strong energy inequality (4) follows

from (7). Indeed, we observe that

lim Γ (/, un)dt = [ (/, u)dt ,
71-+OO J 8 l J 8 l

by (8) and the Lebesgue convergence theorem. Hence (7) easily implies

(16) ^-|Ms)||2 + Γ \\Vu\\*dt ^ ± lim inf | | ^( S l ) | | 2 + Γ (/, u)dt ,

for all 0 ^ sx < s < oo. For sx = 0, one has

(17) \\u(Sl)\\ - l iminf\\u n ( S l )\\ ,
71—> OO

because un(0) —> a strongly in L\Ω). Another argument is needed for
sx > 0. The strong convergence of un to u in L\Ω x (0, T)) implies that
||wn(s)|| converges to \\u(β)\\ in L\0, T), and hence in measure over the
interval (0, T). It follows that there exists a subsequence of the func-
tions {||un(s)||}, which converges to I |tt(s) 11 for almost all ίe(0, T). Hence,
(17) holds for almost all sx > 0. This completes the proof of Theorem 1.

THEOREM 2. For any open ΩcRn, n^>2, there exists a Hopf solu-
tion of the Navier-Stokes problem (1).

PROOF. Let Ω = U"=1fln, where ^ c ^ c , and each Ωn is open
and bounded. Let aneD(Ωn) satisfy | |αj | <; ||α||, and \\an — a\\-*0 as n-+0.
Let un be a weak solution, obtained by the construction of Theorem 1,
of the Navier-Stokes problem in Ωnx[0, oo), with initial velocity αn, and
with external force taken to be the restriction of / t o Ωnx[0, oo).

The solutions ΰn inherit the estimates (8) and (9) from the original
Galerkin approximations, i.e.,
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(18) ||ffi (8)|| ^ ||α|| + [\\f\\dt , for all a ^ 0 ,
Jo

and

(19) sup||β"||2 + Γ||Vδ ||2dί ^ Cτ , for all T ^ 0 .
[0,Γ] JO

Let {α\x)} be a system of functions belonging to D(Ω), orthonormal
in J(Ω), whose finite linear combinations can approximate any function
from D(Ω) arbitrarily well in the norm supβ | | + || ||irίtf» Such systems
exist.

We extend the domain of definition of each ΰn to all Ωx[0, °°), by
setting it equal to zero outside Ωn. Clearly ΰn e J(Ω), for every t. Let

fc=l

be the Fourier series of ΰn with respect to the {ak}. The coefficients
{ckn(t)} are all uniformly bounded on any finite interval [0, T], in view
of (18). For fixed k, the sequence {ckn(t)} is equicontinuous in n, at least
for all n large enough that the support of ak lies in Ωn. This is proved
using (3), in which we can set u = ΰn and <j> = ak. Then exactly as in
(10), although now only for n large enough that supp(αfc)ci2n, one obtains

(20) \ckn{8') - ckn(s)\ ^

for all 0 ^ s < s' ^ T, and every Γ > 0.
Therefore, as before, we can select a subsequence of {n}, again

denoted by {n}, such that for each k and T, the sequence {c *.„(£)} is uni-
formly convergent on [0, Γ], as n —> oo, to a continuous limit d"fc(ί) As
before, the partial sums of the series

oo

converge weakly in L2(Ω) for every t ^ 0, as well as in L2(i2x[0, T]) for
every T > 0. And again, by the lemma in the appendix, there is a
function u defined pointwise in i2x[0, oo), which is the limit of the series
in both senses, for every t ^ 0, and every T > 0.

In view of (19), and of the convergence ckn(t) —>ck{t), for all k, the
subsequence of solutions {ΰn} converges to u weakly in L\Ω), for every
ί, as well as weakly in L2(βχ[0, Γ]), for every T. We have not found
a way to show that the convergence is strong in L2(i2x[0, ϊ7]), because
Ω is unbounded, and this, of course, is why we fail to obtain the in-
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equality (4), for values of s1 > 0. But to prove that u satisfies (3), it
suffices to show that ΰn converges to u strongly in L2(i2'x[0, Γ]), for
every bounded fl'cβ.

The analogue of (12) is proved exactly as before. Thus, for every
φeL\Ω), and every ε, T> 0, there exists an integer N such that

(22) \{n\t) - u(t), φ)\<ε, for all t e [0, T], and n ^ N .

Again we have a version of Friedrich's lemma: For any bounded
subset Ω' of Ω, and any ε > 0, there exist functions \ωlf , ωN) defined
in Ω, such that

(23) \\u\\l> ^ Σ(w, ωk)l + ell̂ HV;̂ , , for all u e Wl{Ω) .
fc=l 2

Hence, for any two of our solutions, ΰn and ΰm, we have

(24) \T\\ΰn - ΰm\\ldt ^ Σ \\ϋn - ΰm, ωk)ldt + e[T\\ΰn - ΰm\\2

wι{Ω)dt .
Jo k=i Jo Jo 2

Using (19) and (22), this implies, for the chosen subsequence, that ΰn —>u
strongly in L2(i2'x[0, T]), for every bounded ώ'ci2, and every T > 0.

In view of (19), u has derivatives VueL\Ωx[0, T]), and VϊΓ^Vu
weakly in L2(i2x[0, Γ]), for every T > 0 . One shows as before that
u(', fyeJ^Ω), for almost every t > 0.

To establish (3), let s and φ be a given. Then for all n sufficiently
large that supp(9)ci2wx[0, s], we have

(25) Γ[(^, φt) - (yπn, Vφ) - (ΰn vun, φ) + (/, ψ)]dt
Jo

since each Un is a solution. Thus, one obtains (3) by taking the limit as
n —> °o .

The proof of the energy inequality (4), for s, = 0, is proved exactly
as in Theorem 1. But the argument given in Theorem 1 for sλ > 0 fails,
because we have not shown that ΰn->u strongly in L2(βχ[0, T]). This
completes the proof of Theorem 2.

4. The main result. Below, we refer to the boundary dΩ of Ω as
uniformly C2 if and only if Ω = \Jn=iΩn9 where i ^ c ^ c , and3£ n eC 2

for every n, with the C2-regularity of dΩn bounded independently of n.

THEOREM 3. Let ΩaR* be open, with uniformly C2 boundary 8Ω.
Let fe L2(0, T; L\Ω))f for every T > 0. Then there exists a Hopf solution
of problem (1), possessing the epochs of regularity property.
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PROOF. We construct the solution u exactly as in Theorem 2, except
that we are more specific about two things. First, in writing the union
Q = Uπ=i<£?π, we assume that the subdomains Ωn are of class C2, with the
C2-regularity of dΩn bounded independently of n. Second, in the con-
struction of the solution ΰn, in Ωnx[0, oo), we use as basis functions the
eigenf unctions of the Stokes operator Άn: J^ΩjΓϊ Wϊ(Ωn) -> J(Ωn). This
will allow us to obtain a further a priori estimate for the Galerkin ap-
proximations, the solutions {fln},a nd ultimately u.

It was proven in [2, p. 646] that any function v e J^flJ Π Wϊ(ΩJ
satisfies the estimate

(26) \\D*v\\on ^ c[\\λnv\\on +

with a constant c which depends only on the C2-regularity of dΩn, and
not the size of Ωn. Here D2v represents all the second order spatial
derivatives of v. Therefore, using also the Sobolev inequalities \\v\\6 <;
c||Vv||, valid for veW}(R*), and \\φ\\^ c(\\Vφ\\ί/2\\φ\\1/2 + \\φ\\), valid for
φe W}(Ω) with a constant that depends only on the C2-regularity of dΩ,
we have

(27) Kv V ^ Δ ^ I ^ I H U l V i IUlΔ^II

Δ Δ Δ

with constants independent of the size of Ωn.
Without loss of generality, it will be enough to establish the epochs

of regularity property on the time interval [0, 1]. According to (9), we

know there is a constant D, depending only on ||α|| and \ ||/||(Zί, such that
Jo

(28) [\\Vu\\
Jo

dt S D

for any of the Galerkin approximations u used in constructing any of
the solutions ΰn in the subdomains Ωn. Henceforth, u will denote any
such Galerkin approximation. Since we are now using eigenf unctions of
the Stokes operator as basis functions, an appropriate linear combination
of the differential equations (6) yields

i- ft\m\\2 + \\κu\\2 = (« v«, KU) - (/, Άnu).

Therefore, using (27), we have
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( 2 9 ) ^ i i v e i i ^ c x i i v e i r + c i i v a i r + i i / i i 1 , f o r t ^ o ,
at

with constants cx and c2 independent of u; in particular, independent of
the size of Ωn.

We claim the following. For every k e N, there exists a correspond-
ing Nk e N, such that for every Galerkin approximation u, there exists
a subset Rk(u) of the intervals [0, JV Γ1], [Nk\ 2N?]f , [(Nk - ΐ)Nΐ\ 1],
such that (identifying Rk(u) with the union of its intervals)

(i) meas([0, 1] - Rk(u)) £ 1/fc ,

(ii) ||Vβ(ί)||2 ^ 4&D , for t e Rk(u) .

As a first step in proving this, consider a fixed value of k, and let
0fc(£; ίo) be the solution of the initial value problem

Φί = crfl + c2φl

continued both backwards and forwards in time, form an arbitrary initial
time toe[O, 1]. Due to the form of the differential equation, and the in-
tegrability of | |/(ί)| |2, it is possible to choose Nk, independently of t0 e [0, 1],
so that

φk ^ 4fcD on [tQ, t0 + Nϊ1] ,
( φk^2kD on [to-Nk\to].

Clearly, any solution ψ of the differential inequality

(32) ψ' Ik c^ + c2f
3 + ll/ll2 ,

satisfies

(33) ψ ^ AkD on [t0, t0 + Nk'[ , if ^(ί0) ^ 3kD ,

and

(34) ψ ^ 2kD on [t0 - Nk\ t0] , if f (t0) ^ 3fcD .

For a later purpose, we also require that Nk > 2k.
Having chosen Nk > 2k so that (31) holds, we now consider an

arbitrary Galerkin approximation n, and seek to find Rk{u) so that (30)
holds. Of course, (29) implies that ψ = ||Vί6||2 is a solution of (32).
Therefore (34) implies that

JVuW'dt ^ 2kDNk

1

 9 if ||V«(ϊiVr)||2 ^ SkD .
(l—l)Nk

Let v be the number of time points from the set {Nk\ 2ΛΓ*1, , (Nk
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at which ||Vffi||2 > 3kD. In view of (28) and (35), we must have
v2kDNk' ^ D, i.e., v ^ NJ2k. We choose Rk(u) to consist of those sub-
intervals [lNk\ (I + 1)N?] of [0, 1], such that WVuilN^ψ ^ 3kD. Clearly,
the number of subintervals not included in Rk(u) is at most v + 1. Thus

(36) meas([0, 1] - Rk(u)) ^ (v + DΛfr1 ^ 1/2/b + N,1 < 1/k .

This establishes (30, i). Clearly, (30, ii) follows from (33).
The numbers Nk are now determined, and henceforth regarded as

fixed. We claim next that for every k e N, and every solution ΰn (defined
in Ωn), there exists a subcollection Rk(ΰn) of the intervals [0, Nk

ι],
[Nk\ 2NΪ1], , [(Nk - l)Nk\ 1], such that

( i) meas([0, 1] - Rk(ΰn)) ^ 1/k ,

(ii) \\Vΰn(t)\\2 ^ 4kD , for teRk(ΰn) .

To see this, we fix a value of kf and of the particular solution ΰn under
consideration. The solution ΰn is the limit of a subsequence of Galerkin
approximations, chosen in Theorem 1. Any estimate, which is satisfied
by an infinite subsequence of this subsequence, is inherited by ΰn. This
is because any such subsequence must converge to some weak solution,
which can only be ΰn. The Galerkin approximations which we used to
construct ΰn each satisfy (30), but with subcollections of intervals Rk(u)
which may vary from one approximation to another. However, there
are only a finite number of ways to choose all but v + 1 of the Nk sub-
intervals [lNk\ (I + lO-ΛΓfc"1]. Therefore, there exists an infinite subsequence
of the Galerkin approximations which all satisfy (30) with a common
choice of Rk(u). We take this common choice as Rk(ΰn). Clearly, ΰn

inherits the estimate (37, ii), from the corresponding estimate (30, ii),
for this particular subsequence of the Galerkin approximations. We are
justified in claiming (30, ii) for every teRk(ΰn), in virtue of the lemma
in the appendix.

Finally, we claim that for every k, there exists a subcollection Rk(u)
of the same intervals [0, iV*1], , [(Nk — l)Nk\ 1], such that

(i) meas([0, 1] - Rk(u)) ^ 1/k ,
( (ii) ||Vu(ί)||2 ^ ikD , for ί 6 Rk(u) .

To see this, we fix k and consider the solutions ΰn used to construct u.
Arguing exactly as before, (37) implies (38).

This essentially completes the proof of Theorem 3. One may now
set Rk equal to the interior of the union of the intervals Rk(u), and R
equal to the union of the Rk. We have focused only on obtaining an
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estimate for the Dirichlet norm ||Vw(ί)|| on R, but when this is possible
the rest of the estimate (5) follows easily. In fact, in writing (29), we
could have retained a term ||Δnίϊ||

2 on the left side, and thereby obtained

also an estimate for l||Δn#||2cZ£ over Rk(u). Then, (26) gives an estimate

for \||#||2r2(β)<fa over Rk(u). Finally, replacing a1 by un

t = ut, in (6), leads

to an estimate for \||ίϊt||
2<Zί over Rk(u); see [2]. These estimates are all

inherited by the final solution.

REMARK 3. One might think that the epochs of regularity property
obtained in Theorem 3 could be of use in proving the strong energy
inequality. If u is regular on some interval [t19 t2], then we have the
energy equality

(39) ±-\Mt2)\\z + \h\\Vufdt = hWtdW* + \H(f, u)dt ,
2 Jίi 2 J«i

obtained by multiplying the Navier-Stokes equations through by u,
integrating over Ωx[tlf t2], and using the inclusion u(t) eJ^Ω) to eliminate
the pressure term. Suppose now, for simplicity, that there is a singu-
larity at just one instant of time t*. Let 0 < tx < t* < ί2. Then, adding
the energy equality over [t19 t] for t 6 (t19 £*), to the energy equality over
[t, t2] for t e (t*, t2), one obtains

||Vtt||Λ (lim|
2 t^t+

2

Thus, to prove the energy inequality, we need merely show that

i.e., that there is no jump up in the energy at the instant t*. It seems
surprising that this eludes us when one considers that the major problem
with the Navier-Stokes equations is really to control the rate of energy
decay; i.e., a smooth solution can be continued so long as its rate of
energy decay remains bounded. Here, the difficulty is that some of the
energy present in the approximations might disappear for a while from
the solution, and then reappear. As far as we know, it could happen
that

(40) \\u(t)\\ <liminf| |ΰ"(ί)| | ,
n—»oo

for a whole interval of values of t. Indeed, one can imagine that some



NAVIER-STOKES EQUATIONS IN UNBOUNDED DOMAINS 307

portion of the energy in the various approximating solutions ΰn might
move out with time toward spatial infinity, and more rapidly so, as
n—>oom This could result in the disappearance of this energy from the
solution, since it is obtained only as a weak limit, with the result that
(40) would hold. If so, this energy in the approximations might come
back and reappear in the solution, causing a jump up in its energy.

REMARK 4. Suppose a Hopf solution u, such as we have constructed
in Theorem 3, is regular on some interval /, the right end point of
which, t*, is a singularity. It would be very useful to know that
||Vtt(ί)|| —> oo as t —> t*. To try to prove this, let us suppose not; suppose
that

(41) liminf \\Vu\\ = a < oo .

Then we can choose a point tx < t*, arbitrarily close to £*, at which
llV^ίJH < 2a. The local existence theorem we proved in [2] guarantees
the existence of a smooth solution uf on some interval [t19 £*), satisfy-
ing the initial condition ύ(Q = u(Q. This smooth solution can be con-
tinued beyond any point at which its Dirichlet norm ||Vfi|| is finite.
Moreover, the growth of its Dirichlet norm is restricted by the differential
inequality

(42) ^llVfill ^cJlVfiir + c.HVβll .
at

Thus, if tx is chosen close enough to t*, then certainly t* > t*. It is
clear that u(t) = u(t) for t e [t19 £*], but since u lacks the strong energy
inequality, we have no way to identify u with ύ, for t > t*. Of course,
if u is a Leray solution, or if I — [0, ί*), one can apply the Leray/Serrin
uniqueness theorem at this point of the argument, identifying u with the
smooth solution u on an interval extending beyond t*; a contradiction.

One might hope that by examining the construction of the solution,
one could show that a singularity cannot occur without ||Vt&(£)|| —> oo as
t—>t*. It is true that each Galerkin approximation u satisfies (42), and
that for so long as we have estimates for ||VS(t)||, we can obtain
estimates for all derivatives of the solution; this was shown in [2]. How-
ever, it might be, for a sequence of Galerkin approximations {u71} converging
to u, that limn-oβ||Vfϊn(ί+)|| = oo, so that these estimates for the deriva-
tives are lost, while yet the weak limit Vu(t) could remain bounded near
t*. The nature of the singularity at t# might be a right discontinuity
of u in JΊ(fl), with
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p | |Δ« | | (2ί = - , ['^Wu^dt =

for every ε > 0. If such a situation occurs, the restriction of u to the
left of t* could certainly be continued as a smooth solution beyond the
point ί*, but the continuation would differ from u.

5. Leray's corollary on the Hausdorff dimension of the singular set.
In this section, as in Theorem 3, we assume that Ω is a three-dimensional
domain whose boundary (if nonempty) is uniformly C2. In addition, for
simplicity, we assume that / = 0.

The construction of the regular set R, given in Theorem 3, does not
ensure that it is maximal. In what follows, let & denote the largest
open subset of (0, oo) on which u(t) is regular. Also, let Sf denote the
set of all nonzero singular points, S? — (0, oo) — ^?. One has ue
C°°(Ωx&), by our estimates in [2].

Being an open subset of real numbers, & can be written as a union
of disjoint open intervals,

& = U Ii .
i

Among these intervals there is one, we will denote it by Io, which is
semi-infinite. This can be proved, very briefly, as follows. Let φ be the
solution of

(43) φ' = cxφ
2 + c2φ

B ,

S o
φ(t)dt = oo, let 7 > 0 be chosen

S _ o o

ώ(t)dt = (l/2)||α||2. Then it is impossible for any of the
-r

Galerkin approximations u to satisfy ||Vί?(ί)||2 > 1, for any t ;> 7. For
if it did, a comparison based on (29) implies that

Γ \\Vu(τWdτ > Γ φ(τ - t)dτ = \\\aψ >
Jt-r Jt-r 2

which is impossible, by (7). It follows that (7, oo)c^?, which implies
the result. To introduce a notation for the end points of the intervals,
we set Io = (α0, oo), and 7* = (aif &), for i Φ 0.

For his solutions in the domain Ω = Rz, Leray proved that

(44)

where K is a certain suitable constant. To begin our considerations, we
shall first prove a similar inequality for a Leray solution defined in a
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more general domain.
As shown in the final remark of the last section, at each right end

point βif there holds ||Vw(t)|| -> ©o, as t-+βτ. Also, on any interval
where u is smooth, we know that

(45) ^J\Vu\\> ̂  cΛlVull* + c2\\Vu\\° .
at

Therefore, by a comparison argument, we conclude that

(46) \\Vu{t)ψ ^ φ{t) , for te(aifβt),

where φ is the solution of (43) which blows up at t = βt.
Clearly, βt — at <£ aQ ^ 7, where 7 is determined as above. Let φ0

be the solution of (43) which blows up at a0. Then, obviously, the
solution φ of (43) which blows up at βt must satisfy ^(ί) ^ φo(O), for
t e (aif βt). Hence, (43) implies that

(47) φ' ^ czφ
z, for t e (aif βt) , with c3 = cJφQ(O) + c2 .

Comparing φ with the solution ψ of ψ' = c3α^3 which blows up at &, we
conclude that

(48) \βίφ(t)dt ^ ΓV(*)dί = ΛI/A - α, ,

where /c = ι/2/c^ Combined with (46) and the energy inequality, this
implies the desired result (44). It should be mentioned that our constant
/c is not independent of ||α||, as it depends on φo(O), and hence on 7.
However, if the sum in (44) is taken over only those intervals with βt

less than some prescribed bound d (or with βt — at < δ), then K can be
chosen to depend on δ, rather than on |]α||

Continuing our consideration of Leray solutions, observe that for any
singularity ξe<9* (not only for right end points), there must hold

(49) essinf ||Vtt(t)|| = oo .

If not, there would be points to the left of ξ, arbitrarily close to ς,
where u is smooth, and from which u could be continued smoothly past
ξ. Further, if φ is the solution of (43) which blows up at ξ, there holds

(50) ess inf \\Vu(s)\\ ^ φ(t) , for all t e [0, ξ) .
t8-*t

For again, if not, there would be points to the left of ξ from which u
could be continued smoothly past ξ. Therefore, arguing as in the proof
of (48), we conclude that



310 J. G. HEYWOOD

(51) Γ \\Vu\\2dt ^

for any number δ ^ f. For numbers <5 ^ min{l, f}, the constant /c can be
chosen independently of | |α||. Henceforth we assume that δ ^ 1.

Now, for any given <5, 0 < δ < 1, we can cover the set ^ of all nonzero
singularities in the following way. Let ξ1 be the greatest singularity.
Then let ζi+1, for i = 1, 2, , be the greatest singularity less than or
equal to ξt — δ. This process terminates, of course, after a finite number
of steps; let us say that there are N(β) singularities so chosen. It is
evident that the set & is contained in the union of the closed intervals
[ξi - δ, ξi\, for i = 1, 2, , N(δ). Moreover, from (51) it follows that

(52) κ(N(δ) - l ) i / T ^ Γ'UVwyyί ^ —| |α| | 2 .
Jo 2

In other words, for any δ > 0, we are able to cover S? by some number
N(δ) of closed intervals, each of length <5, in such a way that

(53) Λl imΣ Vb ^ — ||α||2 .

This means that (l^ΛΓ^Iαll2 bounds the one-half dimensional Hausdorff
measure of the singular set S?. So far, we have assumed u is a Leray
solution.

THEOREM 4. T%e estimates (44) and (53) remain valid for the solu-
tion u obtained in Theorem 3.

PROOF. We will show that (44) and (53) hold for the regular set R
obtained in Theorem 3, and the corresponding quasi-singular set S =
(0, oo) — R. Once shown, this implies the result, since Ra& and y c S .

In fact, the set R found in Theorem 3 is not quite satisfactory. We
will return to part of the proof of Theorem 3, and make a somewhat
more special choice of the sets Rk(u) and thus R. As we do this, we
shall select a special subsequence of the solutions {nn}, which we again
denote by {ΰ71}, with respect to which the set R is maximal. By this,
we mean that for every pair of numbers M, ε > 0, and every finite set
{£i> "•>£*} from S, there should exist at least one solution nn, for which
there is a corresponding set of points {ζlf , ζfc}, such that for each i =
1, , ky there holds

(54) ξt - ε < ζ, < ζ, and ess sup || VΐSn(ί)||2 > M .

Each ΰn is a Leray solution. Thus, it is easily seen that (54) implies
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what is claimed in Theorem 4. For if (44) is violated, it must be violated

by some finite sum of the terms ιc\/βt — at. But, by taking e small enough,

these terms can be arbitrarily closely approximated by terms of the

form Λ:i/ζ< — at- Then, by taking M large enough, the terms /cι/ζt — at

can be arbitrarily closely approximated by the integrals I %ψ{t)dt, where

ψ is the solution of ψ' = cΆψ* which satisfies α/r(ζ.) = M. Finally,

dt ^ I φ{t)dt ^

where φ is the solution of (43) which satisfies ^(ζj = M. Taken together
with the energy inequality, this implies that the amount by which the
finite sum of terms KVβt — aύ under consideration can exceed (l/2)||α||2 is
arbitrarily small, contrary to supposition. The proof that (54) implies
(53) is virtually the same. It remains to prove (54).

Unlike the proof of Theorem 3, we must now determine the sets
Rk(u) recursively, selecting at each stage a further subsequence {ΰl}, of
the solutions {ΰn} which were chosen to converge to u in Theorem 2.
Then the diagonal sequence {ΰl}, after relabelling as {ΰn} again, will be
the sequence referred to in (54).

At the &th stage, the set of intervals Rk{u) which is chosen must be
maximal, in that it should contain the greatest possible number of the
intervals Ik>j = [(j — l ) ^ 1 , jNk1] for which there exists an infinite sub-
sequence {ΰk} of {wLj satisfying

(55) ess sup ||Vΰ£(£)||2 ^ ^D , for IkJ e Rk(u) .

Of course, there may be more than one possible choice of the maximal
set Rk(u). Also, of course, the argument of Theorem 3 guarantees that
Rk, defined to be the interior of the union of the intervals belonging to
Rk(u), will be at least large enough that meas([0, 1] — Rk) ^ 1/k. But
now, since Rk(u) is maximal, there can be at most a finite number of
the {ΰk} which satisfy the estimate (55), for any Ik>j other than those in
Rk(u). We discard such elements from the sequence {ΰk}. Denoting the
set of those intervals Ik>j not contained in Rk(u) by Sk(u), we then have

(56) ess sup ||Vΰn

k(t)\\
2 > ikD , for Iktj e Sk(u) ,

for all members of the sequence {ΰk}. For the diagonal sequence {ΰn} =

{ΰl}, we have

(57) ess sup ||Vΰn(t)\\2 > AkD , for Ikiά 6 Sk(u) ,

for all n^k. Setting Sk equal to the union of the intervals belonging
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to Sk(u), we have S = Γ\kSk — {0}, and it is obvious that (54) holds.

6. Appendix,

LEMMA. Suppse {un} is a sequence of functions which are measurable
in Ω for each fixed t e [0, T], as well as in Ωx [0, T] with respect to the
product measure. Suppose there is an integrable function G(t) such that

\\un( , t)\\ ̂  G(ί) , for all n, and for all t e [0, T] .

Suppose u is a function defined in Ωx[0, T], such that un(-, ί)->w( , t)
weakly in L\Ω)f for each fixed t e [0, T], Suppose u is a function defined
in Ωx[0, T], such that un-+u weakly in L2(Ωx[0, T]). Then, for almost
all t e [0, T] there holds

(1) ΰ(x, t) — u(x, t) f for almost all x e Ω

Consequently the function

[u(x, t) , if t is such that (1) holds ,
u(oc t) == Ί

\ΰ(x, t) , if t is such that (1) does not hold ,
is measurable in Ωx[0, T], as well as in Ω for every fixed t, and un —>u
weakly in L2(βχ[0, Γ]), as well as in L\Ω) for each fixed t.

PROOF. Let {gt(x)} be a countable dense subset of L\Ω), and let
hit) be an arbitrary function in C°°[0, T]. For fixed gt(x) and h(t), the

integrals \ un(x, t)gι(x)h(t)dx are measurable functions of t, which, for

each t, converge to \ ΰ(x, t)gι(x)h(t)dx, as n -> oo. Thus I u(x, t)gι{x)h{t)dx
JΩ JΩ

is a measurable function of t. Since in addition

ww(#, t)gι(x)h(t)dx £ G(t)\\g,\Mt)\ ,

we can apply the Lebesgue convergence theorem to obtain

lim I \ un(x, t)gt{x)h{t)dxdt = 1 (\ U(x, t)gι(x)h(t)dx)dt .
n->co Jo JΩ Jθ \JΩ /

On the other hand, since un —> u weakly in L\Ω x [0, T]), we have

lim I I un(x, t)gi{x)h(t)dxdt = \ \ u(x, t)gι(x)h(t)dxdt .
A^oo Jo JΩ Jθ JΩ

It follows that

Jo \JΩ l /

The expression in brackets is measurable in ί, hence zero for almost all
t e [0, Γ], since h(t) e C°°[0, T) is arbitrary.

Let N be the set of all t e [0, T] such that ( (u - ΰ)gt(x)dx Φ 0, for
J Ω
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some I. Being a countable union of null sets, JV itself has measure zero.
For t e [0, T] — N, we have u == u as an element of L2(Ω), which implies
(1). This completes the proof.
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