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Introduction. In this paper we will consider the parameter spaces
of eigenmaps and isometric minimal immersions of projective spaces into
spheres.

A map f: (M, g) > S"C R™*"* is harmonic if f satisfies A™?f = 2e(f)f,
where A9 is the Laplacian of (M, g) and e(f) is the energy density of
f (cf. [5]). In particular, if 2e(f) = A is a constant, then \ € Spec(H, g).
Such a harmonic map is called an eigenmap [6]. By a theorem of Taka-
hashi in [9], an eigenmap is an isometric minimal immersion if and only
if it is an isometric immersion. An eigenmap ¢: M — S™ is said to be
full if its image ¢(M) is not contained in any great sphere in S™. Let
oy, ¢o: M — S™ be full eigenmaps. Then they are said to be equivalent
if there exists an isometry o of S™ such that pog, = 4,.

It is a fundamental problem on isometric minimal immersions to study
to what extent they exist. In [3], do Carmo and Wallach showed that the
set of equivalence classes of all full isometric minimal immersions of
compact symmetric spaces into spheres are parametrized by a compact
convex body in some vector space. It is also natural to consider a similar
problem for eigenmaps. In fact in [12], Toth and d’Ambra showed that
the set of equivalence classes of all full eigenmaps are also parametrized
by a compact convex body in some vector space.

Before showing further results on specific spaces, we explain the
standard construction of isometric minimal immersions of a compact ir-
reducible symmetric space (M, g) into spheres. Let A*9 be the Laplacian
of (M, g) with such sign that all eigenvalues are non-negative. We denote
by 0 = n < M < N < -+, the set of all distinct eigenvalues of A“?, and
by V* the eigenspace of A“? corresponding to \,. Put dimV* = m(k) + 1
and dim M = d. For each k =1, define a canonical measure dg on M

normalized by S dp = m(k) +1. Take an orthonormal base {f,, fi, ***, fum}
M
and define a mapping
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Dyt M— Rmm)+1; b= (.ﬁ)(p): .fx(p)’ ) fm(k)(p)) .

Then z, realizes an isometric minimal immersion of (M, (\,/d)g) into the
unit sphere in R™"®*!, which we call the standard isometric minimal
tmmersion.

The following theorem of do Carmo and Wallach [3] gives a descrip-
tion of the set of equivalence classes of all full isometric minimal im-
mersions of compact irreducible symmetric spaces into spheres.

THEOREM 0.1. (i) Assume that there exists a full isometric minimal
immersion ¢ of (M, c*9) with a constant ¢ + 0 into a unit sphere SI.
Then there exists k = 1 such that ¢t = \,/d and g < m(k).

(ii) The set of equivalence classes of full isometric minimal immer-
stons of (M, (\,/d)g) into S?, q¢ < m(k), is parametrized by a convex body
Wy in some vector space L, in such a way that the interior points of
Wy correspond to those [¢] with ¢ = m(k) and that the boundary points
of Wy correspond to those [¢] with q < m(k).

We will give the description of W, and explain how it parametrizes
the set of equivalence classes of full isometric minimal immersions in § 2.
A similar theorem holds for eigenmaps.

THEOREM 0.2 (Toth and d’Ambra [12]). Let x\ €Spec(M, g9). Then the
set of equivalence classes of full eigenmaps ¢ of (M, g) into Sf with
2¢(g) = n can be parametrized by a convex body Wy in some vector space
Lz. The interior points of Wy correspond to those [¢] with g = m(k)
while the boundary points correspond to those [¢] with q < m(k).

For specific spaces the dimensions of L, and L, are studied, since
it is closely related to the following rigidity problem: Let ¢ be another
full isometric minimal immersion (resp. eigenmap), then is it equivalent
to x,?

By Theorems 1 or 2, the rigidity problem is reduced to studying
whether dim L, or dim L, is equal to zero or not. In fact, do Carmo
and Wallach showed:

THEOREM 0.3 (do Carmo and Wallach [3]). Le (M, g) be the d-dimen-
sional sphere with constant sectional curvature. Then

(i) dmL, =18 i d =38 and k= 4,

(i) dimL,=0 4 d=2o0r k<3.

Thus the standard isometric minimal immersion x, of the d-dimensional
sphere is rigid in the category of isometric minimal immersions if d = 2
or k <£3. Toth and d’Ambra studied the parameter space W, when M
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is also a d-dimensional sphere.

THEOREM 0.4 (Toth and d’Ambra [12]). Let (M, g) be the d-dimen-
stonal sphere with constant sectional curvature. Then

(i) dimL,=104d =38 and k =2,

(i) dimL;=0 4 d=2o0r k=1.

Recently Urakawa obtained results on dim L, for complex projective
spaces and the quaternion projective plane. From his proof we can get
information on dim L, for complex projective spaces if k£ = 2. We state
it together with his original results on dim L,.

THEOREM 0.5 (Urakawa [14]). Let (M, g) be the complex projective
space PYC) = SUn + 1)/S(UQ)x Un)) with an SUm + 1)-invariant
Riemannian metric g. Then

(i) dimL, =914 n=2 and k =4,

(i) dimL,=28 4 n=2and k= 2.

THEOREM 0.6 (Urakawa [14]). Let (M, g) be the quaternion projective
plane P*H) = Sp(3)/Sp(1) x Sn(2) with an Sp(3)-invariant Riemannian
metric g. Then dim L, = 29007 if k = 4.

In this paper we prove the above theorem generally for quaternion
projective spaces. Namely we prove the following:

THEOREM 0.7. Let (M, g) be the quaternion projective space P*(H) =
Sp(n + 1)/Sp(1) x Sp(n) with an Sp(n + 1)-invariant Riemannian metric.
Then

(i) dimL, =1386 if n =2 and k = 3,

dimL, =0 ifn=2 and k=1.

(i) dmL;,=10718 if n =2 and k = 2,

dimL,=42 i n=3and k=1,
dimL; =0 fn=2and k=1.

Furthermore we will consider a similar problem for the Cayley pro-

jective plane and prove the following:

THEOREM 0.8. Let (M, g) be the Cayley projective plane P*Ca) =
F,/Spin(9) with an Fyinvariant Riemannian metric. Then
(i) dim L, = 107406 if k = 3,

dim L, = 0 if k= 1.
(i) dim Ly = 19448 if k= 2,
dim Ly = 0 if k= 1.

From the above theorems, the standard isometric minimal immersions
%, of spheres S*, n =3, complex projective spaces P*(C), m» = 2, qua-
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ternion projective spaces P"(H), n = 2, or the Cayley projective plane
are rigid if k¥ = 1 while they are not rigid if k = 4.

After the author completed this work, Professor H. Urakawa informed
him of the result of Z. Yiming [16], which states the following:

THEOREM. Let (M, g) be the quaternion projective space P"(H) =
Sp(n + 1)/Sp(1) x Sp(n) with an Sp(n + 1)-invariant Riemanian metric.
Then %, is rigid iof k =1. If k> 1 then dim L, = 84.

But no proof of the key Lemma 4.2 in [16] is given. Lemma 4.2 in
[16] is proved as (4.6) in this paper. We cannot say anything about the
case k = 2 by using the theory of do Carmo and Wallach.

Thanks are due to Professor H. Urakawa for sending him a copy of
Yiming’s paper and to Professor G. Toth for pointing out some mistakes
in the first draft.

1. The standard isometric minimal immersions. In this section we
explain the construction of standard isometric minimal immersions.

Let M = G/K be a d-dimensional irreducible Riemannian symmetric
space of compact type and let g be a G-invariant Riemannian metric on
M. We denote by A“? the Laplacian on (M, g) and by

D= < <A< e
the set of all eigenvalues of A*?, We denote by V* the eigenspace of
A9 corresponding to the eigenvalue )\, and denote its dimension by
dim V* = m(k) + 1. Let dy¢ be the canonical measure on M normalized

by S dye = m(k) + 1 and let {f, fi, *+, fmw} be an orthonormal base of
M
V* with respect to the L*-inner product. Define a mapping z, by
a2 M — R™P*5 p o (fy(p), fi(D), -+ Fuir(D)) -
The action of G on M naturally induces an action of G on V* by

(o-f)p) = f(o7t-p) for 6€G, peM. Let v, =P fi(p)fie€ VE. Then
m (k) m (k)
g-v = 3 fup)o-f) = 2 flo-p)f..
Thus we may regard x, as
T M—S,cV*eK—0-v,.

Since G preserves the L*inner product, the image xz,(M) is contained in
a sphere centered at the origin. Furthermore by integrating {(z.(p),
x,(p)> on M, we have

(k) + D¢aek), w(eK)y = | (o), a(p)dp
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= | Sy
=m(k) +1.

Thus «, is 2 map of M into the unit sphere in R™*+' centered at the
origin. An irreducible representation V of G is said to be of class one
if it contains a non-zero K-fixed vector. We remark that V* is irreducible
when M is of rank one. The (0, 2)-tensor x}g, on M induced from the
standard Euclidean metric g, on R™®* ig G-invariant. Thus by the
irreducibility of M, z, must be an isometric immersion with respect to
cg for some constant ¢ # 0. Since A9y, = (\,/c*)x,, a theorem of
Takahashi [9] implies that x, realizes an isometric minimal immersion of
(M, ¢*g) into a sphere of radius (dc¢®/n,)”* Thus we have ¢* = \./d.

Let g and f be the Lie algebras of G and K, respectively. Let p be
the orthogonal complement of ¥ in g with respect to an Ad(G)-invariant
inner product in g. Then the tangent space xf(T,x(M)) is

1.1 2 (Tox(M)) = {o(X-v); X ep}.

2. Classification theorem. In this section, we give a brief summary
of the classification theorem of do Carmo and Wallach [3], and that of
Toth and d’Ambra [12] stated in the introduction.

Let ¢ = (¢oy 61 = *, 8g): (M, g) = SICR*™ be a full eigenmap of an
irreducible Riemannian symmetric space (M, g) into the unit sphere S?
with A¥?g = \,é, A, € Spec(M, g). Since ¢ is a full eigenmap, ¢, ¢, ***, dq
are linearly independent, i.e., ¢ < m(k). Thus there exists a matrix A
of size (m(k) + 1)x(m(k) + 1) such that (g, ¢, *++, 4 0, -+, 0) = (for Sus
coo, fuw)A. Taking the polar decomposition of A, we see that 404 is
equivalent to Sox,, where ¢ is the canonical inclusion S?CS™*® and S is
a symmetric positive semi-definite matrix of size (m(k) + 1)x (m(k) + 1).

We identify the symmetric tensor product S*(V*) with the space of
all symmetric linear endomorphisms on V* by

u-v(t) = (u, tH)v + (v, tHu)/2, wu, v, te VE,

The inner product (, ) on S*V*), induced from the inner product {, )
on V* under the above identification, is (4, B) = trace AB for A, Be S V*).
The induced action of G on S V*) is 6-A = cAc™* for € G, AcS¥V¥).
Furthermore, we have (A(u), v) = (4, u-v) for AeS¥V*), w,ve V.

Since ic¢ is a map of M into the unit sphere, we have {(S(x,(p)),
S(x,(p))) =1 for pe M, i.e.,

{(S(x,(0K)), S(x,(dK))) = (S, o:v) =1, 0€CG.
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Since (I, g-v%) = 1, we have
S:—ILo-v)=0.

Let W, = {{G-v%}} be the R-linear span of G-v; in S*V*) and let L; be
its orthogonal complement L, = {CeS*V*);C L 6:v;, 0 €G}. Then C=
S? — I is contained in L. Let W, ={Ce L, C+ I is positive semi-de-
finite}. Then the correspondence

WzsCr (C + I)'*x,

gives a parametrization of the set of equivalence classes of full eigen-

maps. This is an outline of the proof of Theorem 0.2 stated in the
introduction. ‘

LeMMA 2.1 (do Carmo and Wallach [3]). If each irreducible K-sub-
modules of V* has multiplicity one, then W, is the sum of all class one
submodules of (G, K) in S V*).

For the proof of Lemma 2.1, we refer to do Carmo and Wallach [3]
or Toth [11]. Although do Carmo and Wallach [3] proved Lemma 2.1

only for the case M = S", their proof works well under the assumption
of Lemma 2.1.

REMARK 2.2. The assumption of Lemma 2.1 is satisfied if M is a
symmetric space of compact type and of rank one (cf. [8] and [11]).

Now we consider the case where an eigenmap Sox, is an isometric
immersion. In this case, Sox, is an isometric minimal immersion. By
(1.1), Sox, is an isometric immersion if and only if

S(o(X-vy), S(0(X-v,)) = (a(X-v,), 6(X-v,)) for oeG, Xep.

By an argument similar to that on eigenmaps, the equivalence classes of
full isometric minimal immersions of (M, (\,/d)g) into spheres are para-
metrized by the convex set W, = {C € Ly; C + I is positive semi-definite}
in L, ={CeS¥V*;C L o(X-v,)%, 0@, Xep}.

Let x,: M — S,C V* be the k-th standard isometric minimal immersion
and let V, = {X-v,; Xep}. Then S*V,) is contained in S*V*) in a natural
manner. Let L} be the sum of all G-submodules of S?(V*) which do not
contain any K-irreducible factors of S*(V,). Then we have:

LEMMA 2.3 (do Carmo and Wallach [3]). L} s contained in L,.
3. Irreducible characters of compact Lie groups. In this section

we explain the way to express irreducible characters of a compact Lie
group as polynomials of fundamental irreducible characters.
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Let G be a simple simply connected compact Lie group and T be a
maximal torus of G. We denote by g and t the Lie algebras of G and
T, respectively, and we denote by <{,) a G-invariant inner product on
g. Define and fix once for all a lexicographic order < in t. Let I*(G) be
the set of all positive roots of g° with respect to t¢ and {a, ---, a,} be
the set of all simple roots, where n is the rank of g. We put

D(G)={Het;{a, H) € Z for some acI*(®)}.

Take a component § of t-D(G) whose closure contains the origin oect.
Then the restriction of the exponential map exp on § is a diffeomorphism
of h onto exp())cG. Let {4, :---, 4,} be the system of fundamental
weights, i.e., 2{4,, a;>/{a;, a;) = 8,5, 1 £ 1, § = n. Then the equivalence
classes of all complex irreducible representations of G corresponds bijec-
tively to

D(G) = {23.,m;A;; m;'s are non-negative integers} .

We denote by V(4) the corresponding irreducible G-module with highest
weight 4 € D(G). For a complex G-module V, we denote by X, its charac-
ter. For brevity, we denote also by X, the character X,, of V(4). Put
z; = Xa;» Then it is easily seen that each character X, is a polynomial
in 2z, 2, -+, 2z, with integral coefficients.

Recall the following facts on characters:

(i) The characters are determined by their restriction on exp(}).

(ii) An irreducible character is an eigenfunction of the Laplacian A
of G with respect to a bi-invariant Riemannian metric.

Let g be the G-invariant metric on G induced from the Ad(G)-invariant
inner product (, > ong. Then the eigenvalue of A on X, is given by the
following:

LEMMA 8.1. The eigenvalue C, of A on X, is
Ci={Ud+25, 4, AeD@G),
where 20 = D3, A;
For the proof we refer, for instance, to [6].
A function % on G is called a class function if it satisfies h(oxo™) =
h(x) for x, 0€G. For example, characters are class functions. There

exists a differential operator 9(A) on exp(h), called the radial part of A,
such that

(Ah)lexp(n) = a(A)(hlexp(»)) ’

if h is a class function. An explicit expression for 9(A) is known (cf.
[1]). But we will employ another expression.
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Consider a polynomial in = variables 2,2, ++-, 2,. For any 4=
S mid; € D(G), we denote by 2! the monomial 2z - - - z7'». A polynomial
P(z, z, -+, 2, is said to be of degree A if

Pz, 2, -+, 2,) = xzhalz‘ with a,# 0.
Since V(4) is contained in V(4,)®™ ) --- Q V(4,)®™ exactly once and the

character of V(A)®™ ® --- QV(4,)®™ is 2%, the character X, of V(4) is
the following monic polynomial of degree A4

3.1 Xa=2 a2*, a,=1,
As4
Let {t, ---, t,} be a linear coordinate system on Y. Then it defines

a coordinate system on exp(f)). We take another coordinate system on
exp(h). In general, characters are complex-valued functions. But if 2,
is not real-valued, then there exists z; such that z, =%;, 7+ 7 (cf. [4]).
So we define z,, ,, -+, x, by

2, if 2, is real-valued ,
v, = {Rez, if 2,=%;, 1<7j,
Imz, if z=%;, j<t.
LEMMA 3.2 (Vretare [15]).
0(Xyy Ty » o0y X)[0(tsy Ty +++, t,) =0 on  exp(h) .

Thus = (x,, ,, **+, ©,) defines a local coordinate system on exp(})
and 0(A) is expressed as
(3.2) a(A) = 2 ai,-az/axtax,- + Z b,a/aaz, ’
1sisjsn iSjsn
where a,; and b; are C* functions.

LEMMA 3.3. Assume that 2, 2, - -+, 2, are real-valued. Then we have
the following:

(i) b;j=Cpyz; for 1=<j=mn.

(ii) For any Ae D(G), 0(A)z* is a polynomial of degree A with the
highest term C,z".

(i) Put Xpia; = 225 + Diacara; 02" Then we have

(3.3) (1 + 3“-)(1”- = (CAi'*'Aj —_ CAi - CA,.)ZiZj 4+ (C"i+"j - a(A))(R<l‘Z+A a;z“) .
iT45

ProOF. (i) is clear, since z; is an eigenfunction of 9(A) corresponding
to the eigenvalue Cy;e

(i) is proved by induction. Assume that (ii) holds for e D(G),
A < 4. Then, since X, is a monic polynomial of degree 4 by (8.1) and
is an eigenfunction of 9(A) corresponding to the eigenvalue C,, we have
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(A, = 0(A)z" + G(A)(ZZA a;2") = Cy(2" + 123 a2 .
< <

Comparing both sides and then by the induction hypothesis, we have
0(A)z* = C,z* + (polynomial of degree < 4) .

Namely, (ii) holds for 4 € D(G). Obviously (ii) holds for 4 = 0. Thus
(ii) is proved.

(iii) Since the character X,,.,; is an eigenfunction of 4(A) correspond-
ing to the eigenvalue C,,iHj, we have (3.3). q.e.d.

REMARK. (i) a; a polynomial of degree A, + 4;, 1135 =,
since the second term on the right hand side of (3.3) is a polynomial of
degree less than 4, + 4; by (ii) and (Cy4; — Cy, — Cyy) = 2{4,, 4;) # 0,
1si=7=n.

(ii) By Lemma 3.3, we can inductively determine the coefficients a,;
and b; in (3.2).

(iii) The assumption of Lemma 3.3 is not essential. But for our
purpose it is sufficient.

Now we explain the way of calculating the coefficients a,’s in the
expression (3.1) of X,. Let us number )\'s € D(G), which appear in (3.1),
as

A=X0>N1>XQ>‘.'>)JN'

Note that n, A, -+, Ay must be the weights of V(4). We know that
a;,=1. We go on inductively. Assume that we have first » coefficients
l=ay a, -+, a;,_, 1 =r=N. Put P,=37Z1a,7% and Q, = 3.1, a;;2%.
Since X, = P, + @, is an eigenfunction of 9(A) corresponding to the eigen-
value C,, we have

3.4) (AP, — C,P, = —3(A)Q, + C.Q, .

Let az”* be the highest term on the left hand side. Since 9(A)Q, is a
polynomial in 2, 2, ---, 2, of degree )\, and C, — C, =+ 0 [6, p. 191], the
highest term on the right hand side is (C, — C; )a,; 2*. Comparing the
highest terms of both sides of (3.4), we have ¢t =, and a; = a/(C, — C;).
Thus we have the following:

LEMMA 3.4. Let V(A) be the irreducible G-module with highest weight
A€ D(G). Assume that

r=1

X4 = 2 @24 + (terms of degree < \,_,) ,
i=o
Wy=1, A=r>N> e >, .
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Put P, = XiZia,2% and let az* be the highest term of 8(A)P, — C,P,.
Then we have

(i) =X\
(i) X4 = XjZba2Y + (@/(Cy — C,,))2* + (terms of degree < \,).

In order to decompose the symmetric tensor product S* V*), we need
the following:

LEMMA 3.5. Let XY be the character of S*(V(A)). Then
(3.5) XP(0) = Uulo) + Ai(o?))/2 for oeG.
For the proof of Lemma 8.5, we refer to [14].

4. Quaternion projective spaces. In this section, we use the follow-
ing notation:

G = Sop(n) ={ceU2n);%eJ,0=1J,}, n=3,

0 I
J, = "
" <—In 0)

and I, is the n xn identity matrix.

where

a 0 b O
0 A O Bl /la b A B

s xSpn =1 0,<c d)esm),(c D)e pn — 1)
0 C 0 D

g = 8p(n) = {Xeu@n);'XJ, + J,X = 0}
={(_§ ;);A,BGM,,(C), ‘Z+A=O,B=‘B},
f = 8p(1) x8p(n — 1)
x 0y 0
0 X 0 Y|; xre(—-1"R, yeC, X, YeM, (C),
-7 0% 0] X+X=0, Y=1Y
0 —-Y 0 X
B(X, Y) = —Trace(XY), X, Yeg
0 Z 0 W
ti7 t
p= _OZ _(I’/T/_ OW ;_);Z,WeM(l,n—l,C) :
—'W 0 —*Z 0
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the orthogonal complement of t in g with respect to B,
/ |0y
a, — .
T= " s a,eCaa,=1,151Z nt,
45}
\ a;l
t= {H(xn .

wx)sreR 1 <15 n):
the Cartan subalgebra of g and f, where

(21

Hz, -+, z,) = (=1 T

_xl

_—-x’n
We can identify P *(H) with G/K and introduce a G-invariant Rieman-

nian metric induced from the inner product B(X, Y), X, Yebp.
Define an element ¢, of t by

1
& = H(Or ) O’ 1,0, <o, 0)
and introduce a lexicographic order > in t by

§ > > e >g, >0,

Let 2*(G) (resp. 3*(K)) be the set of positive roots of the complexifica-
tion g° (resp. ¥¢) with respect to t°. Then we have

M@ ={e, el Si<j=njU{2e;1 <1< n},
IHK)={e, &2 1< JEnpU{2e;;1 210}

Then the dominant integral forms for G (resp. K) with respect to > are

1

D(G)= {gaisi; ateZ’ a12a2g e ;angol’

We put

f)=tia¢6i;1>al>az>--->a,,>0},
=1
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dg=mne+m—1Deg + +++ +¢,.

The complexification p® of p is the irreducible K-module with highest
weight ¢, + ¢,. Then the symmetric tensor product S*p°) is decomposed
as a K-module as (cf. [14])

S*(p°) = V(2e, + 2¢,) + V(e, + &) + V(0) .

LEMMA 4.1 (Urakawa [14]). (1) Let m =8. Then every G-module
over C which contains one of the K-irreducible factors of S*(p)¢ has the
highest weight >3_, a.e;, where the triple (a,, a, a,) is one of the following:

a, k+2 E+3 kE+1 k+4 k+2 k
@, k k k k k k
a, 2 1 1 0 0

0
k=2 k=1 k=1 k=0 k=1 k=0

(2) Let n=4. Ifa,=Z0a,= --- = a, =0 satisfy one of the condi-
tions

i) a;=8 (i) a, =2 or (1) a, =1 for some 5=i=mn,
then the G-module VO, ae,) contains none of the K-irreducible com-
ponents of S(p°).

Now we describe the radial part of the Laplacian A of Sp(n) with
respect to the fundamental irreducible characters. We put 4; = >} ¢, €
D(G@). Then {4, 4,, --+, 4,} is the fundamental weight system of 3p(n).
It is known that each character 2z, of V(4,) is real-valued. Thus we
denote by x, the character of V(4,). We also denote by z; the restriction
of x, to exp(h) and its pull back on § by exp: h— T.

Let g be the G-invariant Riemannian metric on G induced by B. We
denote by A'%? the Laplacian of (G, g). Then we have the following:

LEMMA 4.2. The character X, of V(A) for A€ D(G) is an eigenfunc-
tion of A with eigenvalue
Co=(@+2m +1—da), 4= ae.
i=1 i=1
The radial part 0(A“?) is a differential operator of second order
with polynomial coefficients. We have the first order term of 9(A) easily
by Lemma 3.3(i). But to get an explicit form of the second order terms

we need the following:

LEMMA 4.8 (Tsukamoto [13]). An Sp(n)-module V(4,)RV(4,), 1=
r = s = n, decomposes into irreducible modules as
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V(A'r)® V(As) = (igz)“es V(Ai + Aa) )

where the set S consists of pairs of non-negative integers (3, j) satisfying
s—r=j—t=2n—s—r,t+j<r+sand i+ Jj=r-+s (mod2).

Using the above lemma we can express the character Xara; 38 8

polynomial in x, «,, ---, 2, and by (8.3) we can obtain the coefficients of
the second order terms of 9(A®r®:2),

LEMMA 4.4. The radial part o(AS?™:9) 4s

a(A(Sp(n),g))
= (2n + l)x,0/ox, + dnw.0/ox, + (6n — 3)x,0/0x, + (8n — 8)x,0/0%x,
+ (10n — 15)x,0/0x; + (terms in 0/0%,, -+ -, 0/0x,)
+ %20 /0x? + 21,%,0%/0%,0%, + 22,2,0%/0%,0%,
+ 2x,2,0%/0%,0%, + 20,%:0%/02,0%;
+ (2% — 22,2, — 2n2x2)0*/0x: + (Axxs — 62,2, — (AN — 2)x,2,)0%/0%,0%,
+ (4xx, — 8wk — 4(n — 1)x,x,)0%/0%.0%,
+ (6,2, — 1022, — (dn — 6)x,2,)0°/0%,0%5
3w — 22,2, — 2(n — V)ai — dxxs — 2nat, n=4
0%/ox}
i — 4x3 + 4x.x, — 62, n =3
+ (6xx, — 1622, — (10n + 1)x,x, + 1022, — 2n + 3)x.2,
+ (4n — 2)x,2,)0%/0x,0%,
+ (terms i 0*/00,0%q, + *+, 0°/00,0%q *+*, 0%/02:0%y, <),
where the terms of degree <A, are omitted in the coefficients of the second
order terms.

Let V* be the k-th eigenspace of A% gnd (V*)¢ be its complexifica-
tion. Then (V*€ is an irreducible Sp(n)-module with highest weight
ke, + &) = k4,. Thus the restriction to §) of its character is a polynomial
of degree kA,.

We look for all irreducible Sp(n)-submodules of S2%(V(k4,) whose
highest weights are greater than or equal to 44, + (k — 8)4, + 44,. For
this purpose, we express X, as a polynomial in #,, ---, x, in the follow-
ing manner:

(i) We calculate the character ¥,,, as a polynomial in %, ---, z, by
using Lemmas 3.4 and 4.4.

(ii) We denote by y; the function on b defined by y,(H) = x;(2H)
for He) and find the expression for y; as a polynomial in %, ---, z, for
1=j=n.
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(iii) By Lemma 3.6, the character X, is the polynomial in,, ---, z,
given by
4.1) xl(czA)z = (1/2)((%;,,12(5171, Yy x”))z + Xk/lz(yu tty yn)) .

By Lemma 3.4 and 4.4, we calculate inductively the coefficients of
the character X,,, as a polynomial in x, ---, 2, up to wjws *x.

(4.2) Xea, = 5 — (b — Dzt~ x, + (b — 2)(k — 3)/2)xtx; w3

+ (b — )i "0, — whw™ '

— ((k — 8)(k — 4)(k — 5)/6)xlw;"x}

— (k — 3)(k — d)xiwtSw.x,
(k — 3)xata, , n>4
2k — 8)xxkw,, n =3

+ ((k — 4)(k — 5)(k — 6)(k — 7)/24)xiz; "3

+ (terms of degree < 44, + (kK — 8)4, + 44,) .
Since degree of the terms which appear in the expression for X,,, are
weights of V(k4,), we know that ¥, axaxt 2, ---, b %zt and the terms
of degree < 44, + (k — 8)4, + 44, appear in the expression for Xis,» When
we apply the terms of d(A®?™:2) which is not given explicitly in Lemma
4.4 to the monomials %, - - -, xixk%x}, the degree will be lower than 44, +
(k — 8)4, + 44,. Thus to obtain (4.2), the expression for G(AS?™9) in
Lemma 4.4 is sufficient.

Next we find the expression for y; as a polynomial in z, ---, x,.
For any M€t, we denote by by e¢* the function on t defined by eX(H) =
e for Het. Put w; = 3ewe’®, where W is the Weyl group of G.
Counting the multiplicity of the weights of V(4,) (cf. [6]), we have z, = w,.
Thus we have y,(H) = 2,(2H) = w,,(H). On the other hand, we have

()Y = (@, + 200, + 20)(H) ,
To(H) = (0an, + 2(n — 1))(H) .

— (b — )k, +

Thus we have,
Y, =x:— 20, + 2.
Similarly we have,
Y, = % — 22,20, — 207 + (terms of degree < 4,),
2k — 22,2, — 223 + 2,25 + 42,2, + 222 + (terms of degree < 4,)

if n=5,
Y, = {03 — 20,2, — 20 + dox, + 222 + (terms of degree < 4,)
if n=4,

x; — 223 + 2x,.x, + 22} + (terms of degree < 4,) if n=3.
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Note that y; is a polynomial in xl, <o+, &, of degree 24;. When we
substitute y;’s into (4.2) instead of x;’s, the degree of ylyt%y, is 44, +
2(k — 3)4; + 24, = 2ke, + (2k — 4)e, + 2¢, + 2¢, which is less than 44, +
2k — M)A, + 44, = 2ke, + (2k — 4)e, + 4e,.  Thus, for our purpose, there
are no need to have expressions for ¥, ¥, --- as polynomials in
Xy oy =, &, by (4.2). Substitute y,’s into (4.2). Then, by (4.1), we
have
(4.8) 13, = w3* — 2k — Dwwi* 2, + (2K — 5k + 4)xias**a}

+ 2k — 3)xx iy, — 2032
— ((4k® — 24k* + 53k — 45)/3)xix*xs
— (4k* — 16k + 18)xixdSwuw, — (2k — 4)xixs* 4w,
+ (4k — 6)xx 1,
+ ((4k* — 44k° + 191K* — 397k + 342)/6)xtws*xt
+ (terms of degree < 44, + 2k — 8)4, + 44,) .
By (4.2) and (4.3), we have
(4.4) X, — Yo, = @il — @il 'w, — winl*
— 2k — B)xiwdtx} + (2k — 6)xiwd*x,x,
e 4 2k — 8)axtud*w,, m =4
@2k — e, , m =3
+ (2k* — 18k + 22)xtxz* %t
+ (terms of degree < 44, + (2k — 8)4, + 44,) .
Thus we have the following decomposition for & = 2;
SHV(kA,)) = V(2kA,) +V(24, + 2(k — 2)4, + 24,) + -+

Since V(24, + 2(k — 2)4, + 24;) is not a class one representation of
(Sp(n), Sp(1) x Sp(n — 1)), L% contains it by Lemma 2.1. By Weyl’s
dimension formula we have

dimc V(24, + 2(k — 2)4, + 24;) = dimcV (24, + 24;) = 1078,
if k=2 and n =3. On the other hand, we have
V(24,) + V(4,) + V(0) if n=38,
Ved4,) +V(4) +V(4) +V(0) if n=4.

Thus, when k = 1, we have LS = 0 for n = 3 and dim¢ = dim.V(4,) = 42
for n = 4. Summing up, we have:

SHV(4y) =

THEOREM A. Let M = Sp(n)/Sp(1) x Sp(n — 1) be the quaternion pro-
jective space P '(H) with an Sp(n)-invariant Riemannian metric. Then
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(i) dimL,=0 if k=1 and n =3,
dim L, = 42 if k=1 and n = 4,
(i) dimL,=1078 if k=2 and n = 3.

Furthermore, we calculate the character of V(24, + 2k — 4)4, + 24,)
as

— pe2pa2k—dp2 2,,2k—3 2,.2k—2
x2111+(2k—-4)112+2/13 = Lily” Xy — Bl Xy — X1

— (2k — B)xtxdt~xs + (2k — 6)awiwd*Swu,
@Qk — dxixdx,, n=4
3 e2k—4
O T ok — Bygutw,, mo=3
+ (k — 8)(2k — T)xta st
+ (terms of degree < 44, + 2k — 8)4, + 44,) .

Thus we have from (4.4)

(4.5) X,(f,,)z - sz/ig - x241+(2k—4)42+243 = xwd i, + awiwd el
+ (terms of degree < 44, + (2k — 8)4, + 44,) .

By a simple calculation, we have

O(A)w3 %y = Copys o a4 4,005 42,
+ (terms of degree < 44, + 2k — 8)4, + 44,) .

Thus by (4.5) we have

(2) —
xkA2 - x2k42 - x241+(2k—4)A2+243 X3111+(2k—4)112+/13

= wix %t + (terms of degree < 44, + (2k — 8)4, + 44,) .
Finally we have the following decomposition if k& = 4:

(4.6) SAV(kA,)) = V(2kd,) +V(24, + 2k — 4)4, + 24,)
+ V@4, + Qk — DA, + 4;) + V44, + 2k — 84, + 44;) + -+ .
By Lemma 4.1, V(44, + 2k — 8)4, + 44;) = V(2ke, + (2k — 4)e, + 4s,)

contains none of the K-irreducible components of S*p¢). By Weyl’s
dimension formula, we have

dimcV(44, + 2k — 8)4, + 44,) = dimcV(44, + 44;) = 41140,

if n =8 and k= 4. When k = 3, we have the following decomposition
if n = 4:
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V(64,) + V24, + 24, + 24;) + V(34, + 24, + 4,)

+ V{44, + 24;) + V(54;) + V(4, + 84, + 4s)

+ V@4, + 4, + 24) +V(BA, + A, + 4) + V{44, + 4,)
S} V(34,) = { +V@d) +V(4, +34) + -+, if =38,
V(64,) + V24, + 24, + 24;) + V(84 + 24, + 4,)

+ V{44, + 24,) + V{44, + A,) + (54,)

+ V24, + 24, + A) + -+ -.

By Lemma 4.1, V(4, + 84,) = V(4¢, + 3¢, + 3¢,) for n = 3 and V(24, +
24, + A,) = V(5e, + 8¢, + 8¢, + &,) for n = 4 contain none of the K-irreduc-
ible components of S*(p°). By Weyl's dimension formula, we have
dimc V{4, + 4;) = 1386 if n=38,
dimcV(24, + 24, + 4,) = 21344 if n=4.

Thus by Lemma 2.3, we have the following:

THEOREM B. Let M = P*'(H) be the quaternion projective space
with an Sp(n)-invariant Riemannian metric. Then

(i) dimL,=04k=1and n=3,

(i) dimL, = 1386 if k=3 and n = 3.

REMARK. When k£ =2 and n = 8, we have the decomposition

SAV(24,)) = V(44,) + V(24, + 24,) + V (84, + A5) + V(44,)
+ V(B84,) + VA, + A4, + 45) + V(24,) + V(4,) + V(0) .

Thus by Lemma 4.1, we have dim L, = 0. But we cannot say anything
about dim L,.

5. The Cayley projective plane. Let G = F,, K = Spin(9) and let
T be a maximal torus of Spin(9). We denote by g, ¥ and t the Lie
algebras of G, K and T, respectively. Let B be a G-invariant inner
product in g and p be the orthogonal complement of ¥ in g with respect
to B. Then we can identify the Cayley projective plane P*Ca) with
G/K and introduce a G-invariant Riemannian metric induced from the inner
product B(X, Y) for X, Yeb.

Under suitable choise of an orthogonal base {e, ¢, ¢, ¢} of t, the set
IH(@) (resp. IH(K)) of positive roots of G (resp. K) with respect to the
lexicographic order defined by & > ¢, > & > ¢, > 0 are

@) ={esl=i=4Ulei el =i < g =4}
U{(l/Z)Zi‘, acs; 0, =+1,1= 1= 4} ’
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ZHE)={este5l=i<j=4}
vfaSeeie = x115i<4 [T = -1} .
The set of dominant integral forms for G (resp. K) are
D(G) = {gaie,-; nw=a,20=2020,a0 =0, +a, + a,
2a, a, — a,, @, — a5 a; — meZ} )
D(K) = {353 b 2 by 2 by = b, b, 2 b, + by + b,

2b,, b, — by, b, — by, b, — b4eZ} .
We put
4
b: {‘Zat&'t;lgaq""azyazgaagaqgoyalgaz'l'aa“'aq} ’
=1

0¢ = (11e, + be, + 3¢, + ¢,)/2 .

Let p be the orthogonal complement of ¥ in g. Then p¢ is the ir-
reducible K-module with highest weight ¢, and the symmetric tensor
product S%*p¢) is decomposed as

S*(p°) = V(2e,) + V((e, + &, + & — €)/2) + V(0) .

LeEmMMA 5.1 (Mashimo [7]). Ewery G-module over C which contains
one of the K-irreducible component of S*(y°) has the highest weight
Sit-, a5, where the quadruple (a,, a, a, a,) is one of the following:

a, k/2 k/2 k k k k

a, 3/2 1/2 1 2 1 0

as 1/2 1/2 1 0 0 0

a, 1/2 1/2 1 0 0 0
k=5 k=3 k=3 k=2 k=2 k=0

Now we describe the radial part of the Laplacian A of F, with
respect to the fundamental irreducible characters. We put
4, =¢ +e¢,
4, =26+ 6+ ¢,
Ay = (Be, + 6, + & + 6)/2,
A, =c¢ .
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Then {4, 4,, 4;, 4,} is the fundamental weight system of g. It is known
that each character 2z, of V(4,) is real-valued. So we denote it by z;.
We denote also by x, the restriction of x;, to exp(§) and its pull back on
b by exp:p— T.

Let g be the G-invariant Riemannian metric on G induced by B. We
denote by A%? the Laplacian of (G, g). Then we have the following:

LEMMA 5.2. The character X, of V(A) for 4 =D}, a,,€D(G) is an
eigenfunction of A% with eigenvalue

C,=al+ a:+ a+ a; + 11a, + 5a, + 3a, + a, .
LEMMA 5.8. The radial part of d(AF+?) {s
(AT = 18%x,0/0%, + 36x,0/0x, + 24x,0/0x, + 12x,0/0x,

+ (222 — T — 4o, — 22, + Tx, + T, — 13)0%/0x2
+ (6x,2, — 627 + 62,2, — 6,2, + 6% + 622, — 2la 2, — 822 + 17w,
— xt — x, — 2, — 132, + 13)0*/0x,.0x,
+ (42, — T, — Toxw, — 1827 + 202, + T2, + 5z, — T2, + 13)0*/0x,0%,
+ x>, — 8x, — 20x,)0%/0%,0%,
+ (1222 — 8% + 62 — 30x% — 62f — 2022 + 1822 — 4xx: + 122,23
— 622 + 8x,xi + 62,27 + 40x,2% + 3022, + 622, + 8w,x; — 2622,
+ 162z, — 8xix, — 32x.2, + 4w.x.2, — 202,20, — 342,22, + 4222, — 222,
+ 2%, — 82x, + 202, — 26)0%/ox:
+ (8w, 2, — w22, — Tax: + bwx, — Toiw, — 222 + 1722, + 62,27 + T}
— 1522, — 2.2, + 87 — 202, — Tww, — T2 + 220, + 2, — T2,)0%/02,0%,
+ (4xx, — 62,2, — Twsx, — T2, + 1327
— 62, + Tx, — 212, + Tz, — 13)0%/0x.0%,
+ (Ba} — 22, — 3x,2; — 62 + do,w, — 4ot + 3w,
— x,%, — %3 + 20, + 4o, + 14z, — 13)0%/0x?
+ Bz, — Tx,x, — 132 — 8x, — 3w, + 5z, — Tx, + 18)0%/0x;0,
+ (2} — 4o, — x; — Tx, — 18)0%/0x}

PrOOF. The first order terms of 3(A) are easily obtained by Lemmas

3.3 and 5.2. The second order terms are also obtained by Lemma 3.3.
We omit the lengthy and tedious calculation. q.e.d.

Let V* be the k-th eigen-space of A and (V*)¢ be its complexifica-
tion. Then (V*)¢ is an irreducible F,-module with highest weight k4, =
ke,. Thus the restriction to %) of its character is a polynomial of degree
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k4,. By Lemmas 3.4 and 5.3, we can calculate inductively its coefficients
up to atxkC.
(6.1) gy, = @i — (b — Dawi™ + (b — 2)(k — 8)/2)xix™
+ (b — 2)xat® — pak? — k!
— (B — 3)(k — 4)(k — 5)/6)xswi™® — (b — 3)(k — 4)w2™°
+ (b — 3)wawi™ + (b — 3™
+ ((k — 4)(k — B)(k — 6)(k — 7)/24)xixck®
+ (terms of degree < 44, + (k — 8)4,) .
We calculate the character of S*(V(4,)) as a polynomial in %, ---, «,

up to ¥ ® by a similar manner to that used in §4. We put y;(H) =
r;(2H) for Het. Then by Lemma 3.5, the character X}, of S*(V(k4,)) is

Xia, = 2)((Kea, (@01, oy T3y ) + Xiea,(Ysr Yoo Ysr Ys)) -

When we substitute ¥,’s into (5.1) instead of x,’s, the degree of w,y*
is less than that of ziz¥ 5. Thus we need only explicit expression for ¥,
and y, as polynomials in x,, «,, «; and x,, which can be obtained similarly
as in §4 as follows:
Ys = X — 2,2, — 20,22 + dowx, + 207 + 22, ,
Y, = x5 — 22, — 22, .
Multiplicities of weights, which we need in the calculation, are found in
[2]. Substituting ¥,’s, we have
(5.2) Xa, =« — 2k — D + (2k* — bk + 4)wiwi*®
+ 2k — 8)w,x?® — a2k — gt
— ((4k* — 24K* + 53k — 45)/3)x3x2k—°
— (4k* — 16k + 18)x,x 22~ + (dk — 6)x,x 22
+ 2k — 4)wx*?
+ ((4k* — 44F® + 191k* — 397k + 342)/6)xixi*®
+ (terms of degree < 44, + (2k — 8)4,) .

By (5.1) and (5.2), we have

(5.8) X, — Xopa, = 030 — w28 ° — owft?
— (2k — B)xix** + 2k — 6)w,wywit "
+ 2k — 3)x,waait — woa
+ (2k* — 13k + 22)xix?®
+ (terms of degree < 44, + (2k — 8)4,) .
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Thus we have the following decomposition for k& = 2:
S V(kA,)) =V(2kA,) + V24, + 2(k — 2)4,) + --- .

Since V(24, + 2(k — 2)4,) is not a class one representation of (F,, Spin(9)),
L% contains it by Lemma 2.1. On the other hand, we have L¢ = 0 for
k=1, Since S V(4)) =V(24,) +V(4,) +V(0). By Weyl’s dimension
formula we have
dimc V(24, + 2(k — 2)4,) = dim¢V(24,) = 19448
if k= 2. Thus we have the following:
THEOREM C. Let M = F,/Spin(9) be the Cayley projective plane P*Ca)
with an Fr~invariaont Riemannian metric. Then
(i) dimL;=0 if k=1,
(i) dim Ly = 19448 if k = 2.
Furthermore, we calculate the character of V(24, + 2k — 4)4,) as
x243+(2k—4)44 = gt — waft — wlxi"_z — !
— (2k — 5)xix~® + (2k — 6)x,wawit®
+ 2k — d)x,xxdt + 2k — 3)a k8
+ (k — 8)(2k — T)xix*?
+ (terms of degree < 44, + 2k — 8)4,) .
Thus we have from (5.3)
(5.4) X, — Xora, — Xotgr on-n4,
= g 4 pxatt — 2k + 4)wxP? + atat
+ (terms of degree < 44, + (2k — 8)4,) .
The character of V{4, + 4, + 2k — 4)4,) is
Xay+tgh ity = L5 — w23+
+ (terms of degree < 44; + 2k — 8)4,) .
Thus by (5.1) and (5.4), we have
XI(cZ/L - szA, - x2113+(2k—4)/l4 - X(zk—l)/q - X/11+/13+(21c-4)/14
= xix?*® + (terms of degree < 44, + (2k — 8)4,) .
Finally, we have the following decomposition if k& = 4:
(56.5) SYV(kA)) =V(2kA,) +V (24, + 2k — 4)4,) + V((2k — 1)4,)
+ V4, + 4+ 2k — HA) +V(4d, + Ck — 8)A) + « - .

By Lemma 5.1, V{44, + 2k — 8)4,) = V((2k — 2)¢, + 2¢, + 2¢, + 2¢,)
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contains none of the K-irreducible components of S*p°). By Weyl’s
dimension formula have

dim¢ V(44, + (2k — 8)4,) = dimV(44,) = 11955216

if k>4. When k =8, the symmetric tensor product S*(V(34,)) is de-
composed as

S V(34,)) =V(64,) + V24, + 24,) +V(54,) + V(4, + 45 + 24,)
+ V{4, + 84,) +V (24, + 24,) +V(24, + 4,) + V(44,)
+V(A2+A3) + .

By Lemma 5.1, V(4, + 4;) = V((Te, + 3¢, + 3¢, + ¢,)/2) contains none of the
K-irreducible components of S%*p¢). By Weyl’s dimension formula, we
have

dim¢ V{4, + 4;) = 107406 .
Thus by Lemma 2.3, we have the following:

THEOREM D. Let M = P*Ca) be the Cayley projective plane with an
Finvariant Riemannian metric. Then

(i) dimL, =0 if k=1,

(i) dim L, = 107406 +f k = 3.

REMARK. When k = 2, S*(V(24,)) is decomposed as

S} V(24,)) =V(44,) +V(24,) + V(84,) + V(4, + 4,)
+ V(4; + 4,) +V(24,) +V(24,) + V(4,) + V(0) .

By Lemma 5.1, we have L} = 0. But we cannot say anything about
dim L,,.
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