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Introduction. Let (M, ^") be a closed, transversely orientable, C2-
foliated manifold of codimension one. Let O(^~) denote the family of
open, ^-saturated subsets of M. Let UeO(^~), and let L be a leaf
of ^~\U. Smoothness of class C2 implies that there exists a compact,
transverse one-manifold RaU such that every leaf of LfΊ U meets intCR)
[C-C 1, (3.7)]. Consequently, L Π U contains a minimal set of &~\ U [C-C 1,
(3.0)].

DEFINITION. An ^-saturated subset i C J I ί i s a local minimal set
(LMS) of &~ if there exists UeO(J?~) such that X is a minimal set of

Every proper leaf is a LMS, with U= M\(L\L). If UeO(^r) and
each leaf of ^~\U is dense in U, then U itself is a LMS. Finally, an
exceptional LMS is one of neither of these types. If X is exceptional,
then the transverse manifold RczU can be chosen so that C = XΓiR is
a Cantor set and misses dR.

These LMS play a key role in the structure theory of compact, C2-
foliated manifolds of codimension one [C-C 1]. Our very incomplete un-
derstanding of the exceptional type constitutes a major gap in the
theory.

Let X be an exceptional LMS, with U, R, and C as above. The
holonomy of &~ \ JJ induces a C2 pseudogroup Γ on R for which C is a
Γ-minimal set. Let Γ\C denote the induced pseudogroup on C. It
frequently happens that the choice of R can be made so that Γ\C is
generated by the local restrictions of a single transformation τ:C-*G
which, in a sense to be made precise in §1, is essentially a one-sided
subshift of finite type (also known as a topological Markov chain [Wa,
p. 119]).

DEFINITION. If there exists τ: C-+C as above, then C is a Markov
1 Partially supported by N.S.F. Contract DMS-8420322
2 Partially supported by N.S.F. Contract DMS-8420956
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/"-minimal set and X is called a Markov LMS.

While there exist examples of exceptional LMS that are not Markov
LMS (see §7), it is likely that the Markov ones are the fundamental
"building blocks" for the general case (in a sense that we cannot presently
make precise). At any rate, examples of Markov minimal sets abound
in the literature (cf. [Sa 1], [Ra], [He], [G-S], [In], [Ma]).

We will settle, for Markov LMS, a number of questions that have
been open for the general exceptional LMS.

Let L c l b e a leaf, let x eLΠR, and let ΓxaΓ he the subpseudogroup
fixing x.

DEFINITION. The holonomy group of L relative to X is the group
HX(L, X) of germs at x of all yeΓx\C.

THEOREM 1. Let X be a Markov LMS and let LaX be a leaf. Then
HX(L, X) is either trivial or infinite cyclic and generated by the germ
of a contraction that is unique in a suitable neighborhood of x in C.
Exactly a countable infinity of leaves in X have HX(L, X) = Z and among
these are all of the semiproper leaves.

Recall that a leaf is semiproper if it is asymptotic to itself from at
most one side (hence proper leaves are also semiproper).

Dippolito [Di, §9] has asked whether, in an exceptional LMS, HX(L, X)
is always cyclic. For the Markov case, our result is stronger. Indeed,
whenever HX(L, X) is nontrivial, the generator is a unique contraction.

THEOREM 2. If X is a Markov LMS, then X contains only finitely
many semiproper leaves.

This theorem answers, for the Markov case, an open question of
Hector (proposed in [Sch, Problem 28.1]).

A special case of the following result was proven independently by
Matsumoto [Ma].

THEOREM 3. If X is a Markov LMS, then it has Lebesgue measure
\X\ = 0.

By Dummy's localization of the Godbillon-Vey class to an H\M)-
valued measure gv(*, ^) [Du], Theorem 3 implies that gv(X, ^~) = 0
whenever X is a Markov LMS. We expect this to generalize to general
exceptional LMS, although we are less confident that Theorem 3 itself
will generalize.

Remark that the Denjoy example [De] violates the conclusions of
Theorem 1 and Theorem 3, but is only of class C1. Also, there are C°
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Markov examples, probably C^smoothable, that violate the conclusions
of all three of our theorem.

2

1. Markov pseu do groups. Let Sf — ([Ilf , /w}, {hlf , hm}, P),
where each JΓyCJR is a compact, nondegenerate interval, each h3 is a C
diffeomorphism with range R(h3) and domain D{h3), both being open,
bounded intervals, and P = (pi3) i s a n m x m matrix with entries pί3 £ {0, 1}.
Assume that m ^ 2.

DEFINITION. If the following properties hold, then & is called a
Markov system and the pseudogroup Γ — /V, generated by {h3)f=lf is
called a Markov pseudogroup.

( 1 ) R(h%)Γ\R{h3) = 0 , iΦj.
( 2 ) IjdRihj), for all j . Set X3 = hj\I3).
( 3) pi3- = 1 implies that /,- £ X<β

( 4 ) p έ i = o implies that I3 Π Z?(fc4) = 0 .

EXAMPLE. Let ^ : ] - l / 2 , 3/2[ -> ]-l/6, l/2[ and Λ 2 :]-l/2 f 3/2[ ->
]l/2, 7/6[ be defined by Λx(α?) = xβ and Λ2(a?) = (x + 2)/3. Let /x = [0, 1/3],
I2 = [2/3, 1], hence XL = X2 - [0, 1] and pi3 = 1, 1 ^ i, j ^ 2.

Let y be a Markov system. Then w = hh° - - ohineΓ is defined at
a point of X ίn if and only if piJfeίA.+1 = 1, l ^ f c ^ t i — 1, in which case
XindD{w) and we denote w(Xίn) by /«, or by Ih...ίn. Set |w| = n and

z= n^u,,,^/.))
Zo = Z\int(Z) .

In the above example, Z= Zo is a Cantor set and a minimal set of
7\ It is not hard to modify the example so that iτιt(Z) Φ 0 and ZQ is
still a /^-minimal Cantor set. This property of ZQ is typical but is not
implied by the definitions. For example, if P is the identity matrix,
then ZQ is a finite point set.

DEFINITION. If ^ is a Markov system and xeR(hi), set T(x) =
hT\x)eD{h%). This well defines

T:
i

locally a C2 diffeomorphism, such that T(Z0)QZ0. Set τ =
a continuous map that is locally a homeomorphism.

DEFINITION. A sequence ( i j Γ-i such that jp<n<n+1 = 1, for all n ^ 1,
is called P-admissible. The set of all such sequences is denoted by
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Let (in)n=i e JίΓp. Let w0 — id e Γ and let wn = wn_x ° hin. Then /W n + 1£
IWn and the set Ihh...in... = fΊ~=i/Ww is either a singleton or a nondegenerate,
compact interval. Remark that Z is the disjoint union of all of these
sets Iili2...ίn....

The set-theoretic boundary Ihh... reduces to Ihh... whenever this set
is a singleton and, otherwise, is the pair of endpoints. It is clear that

( 6 Λ p

so denoting x e Zo by xe if x e /, leads to at most a countable infinity of
pairs of points with the same P-admissible index. We formalize this as
a surjection, h: Zo —• J^>, h(xc) = c, that is two to one on at most a
countable subset of Zo and, elsewhere, is one to one.

It is customary to topologize 3ίΓP as a closed subset of the Cartesian
product 3£~ = {1, 2, , m}N, where N denotes the natural numbers. Then
3fΓ is a Cantor set and, in the more interesting cases, so is 3ίΓP. In
any case, the surjection h:ZQ^>J!?ΓP is continuous.

DEFINITION. The (one-sided) shift ^ J Γ - ^ X is defined by σ(j\, j 2 ,
3*> •) = 0*2> is> # •) and σ = σ\3ίΓP\ J^S —>3ίΓP is called a subshift of finite
type or a topological Markov chain.

Evidently, σ°h — h°τ, so τ is semiconjugate to σ. It is also evident
that τ belongs locally to Γ\Z0 and that the one-one restrictions of τ to
suitable open subsets of ZQ generate Γ\Z0. Let Γa denote the pseudogroup
on Stp that is similarly generated by σ.

(1.1) LEMMA. The set 31ΓP is a Cantor set and Γa-minimal if and
only if there exists an exceptional Γ-minimal set C £ Zo such that
h(C) — J%p. In this case, Z0\C is a union of at most countably many
Γ-orbits, each of which accumulates exactly on C.

PROOF. Assume that 3ίΓP is a /Vminimal Cantor set. Let x —
(ίi, iv ••-)£J%rp and let yeJ?ΓP. Then Γσ(y) clusters at x. This implies
that, for all n ^ 1, there exists gneΓ such that IydD(gn)9 gn(Iy)c:Ih...in^>Ix,
and IxΓ\gn(Iy) = 0 . Therefore, at least one point of ϊ9 is a cluster point
of Γ(a), for all aely. It follows that, if beZ0 is not a cluster point of
some Γ|Z0-orbit, then there exists zeJTP such that Iz is nondegenerate,
beίz, and no Γ|Z0-orbit clusters on b. The set B of such beZ0 is Γ-
invariant and either empty or countable. The set C = Z0\B is an ex-
ceptional Γ-minimal set and h{C) — J%ΓP. If b 6 B, the above observations
imply that Γ(b) clusters exactly on C.

The converse is trivial. Π
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REMARK. A condition that guarantees the hypotheses in (1.1) is that,
for all (i, j) e {1, , m}2, there exists k ^ 1 such that the (i, i)-th entry
of Pk (the λ -th power of the matrix) is ^ 2 .

DEFINITION. Let Γ be a pseudogroup on an open subset of R, YaR
a compact, totally disconnected, /"-invariant set. Let τ : 7 - > 7 be a trans-
formation belonging locally to Γ\Y and generating that pseudogroup.
Let σ: 3ΓP-* 3tΓP be a subshift of finite type and h: Y -*J3ΓP a continuous
surjection such that h°τ = σ°h. Suppose that, for all yeY, h~\h(y)) is
either a singleton or is the pair of endpoints of the closure of a bounded
component of R\Y. Then τ is said to be essentially conjugate to the
subshift σ (and, less precisely, τ is said to be an essential subshift). If
there exists an exceptional Γ-minimal set CQ Y such that h(C) = J%ΓPi

then C is called a Markov .Γ-minimal set.

For example, if Γ is a Markov pseudogroup, then τ:Z0-+Z0 is es-
sentially conjugate to σ\J%ΓP-

j>JίfΓp. For τ:C-+C as in (1.1), C is a
Markov Γ-minimal set. The following lemma is essentially the converse.

(1.2) LEMMA. Let Γ be a C2 pseudogroup on an open subset of R,
C a Markov Γ-minimal set. Then there exists an open neighborhood W
of C, a smooth imbedding c:W^>R, and a C2 Markov pseudogroup Γ on
a neighborhood of C = c(C) in R, such that c°{Γ\C)oCι = Γ\C, Γ defines
the essential subshift τ: Zo —> Zo, and C £ Zo is a Markov Γ-minimal set.

PROOF. By a segment Q EC, we mean a set of the form Q =
Cf] [α, 6] = C Π ]a — ε, b + ε[, ε > 0 and a < b. Clearly C decomposes in
many ways into disjoint segments Q19 , Cr and, for i Φ j , either every
point of Ct precedes every point of Gs (and we write Ct < Cs) or vice
versa. There is an open neighborhood W of C in R and a smooth im-
bedding c: W-+R such that c(Gt) < t(Cβ) whenever i < j .

Let σ: J Γ > - > ^ > be a subshift to which τ is essentially conjugate,
P = (!Pλμ)f 1 ^ λ, μ ^ m. For l ^ λ ^ m, let <pλ be the branch of σ'1 that
is defined by

Ψxiiif 4 •••) = (λ, ii, i2» ••)

whenever pHl = 1. Choose the numbering so that there is an integer
q <; m with the property that 1 ^ λ ^ g is the necessary and sufficient
condition that there exists μ with pλμ = 1. Set ^ = JZ(^), 1 ^ λ ^ ^.
Then JΓ> = Ό^x^g^Γx is a disjoint union of open, compact subsets, and
D(<Pχ) = Uj^=1jr;. Set J ^ ^ = 9>i(^,) whenever pλμ = 1, so 3TX = U^^^fi^
is a union of disjoint, open, compact subsets.

Via the essential conjugacy map h, transfer the above definitions to
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give φλ 6 ΓIC and Cλ and Cλμ. Let

Λ = {(λ, μ)\l £χ £ q, 1 £ μ ^, m, pλμ = 1} .

Under lexicographic order, A is order-isomorphic to {1, « ,m}, where
m = card(Λί).

By decomposing each Cλμ into disjoint segments and proceeding as in
the first paragraph, one obtains an open neighborhood W of C and an
imbedding c: W-+R such that, whenever (xίy μλ) < (λ2, μ2) in Λ, then
c(CXiμi) < c(Cλ2μ2). After conjugating Γ\Whγ c, we can let Cλμ denote
t(Cχμ), etc., for notational simplicity.

Thus, Cλμ and Cλ are segments and we let Iλμ and Xλ denote the
minimal compact intervals such that Cλμ = Cf]Iλμ and Cλ — Cf)Xx. Also
write Xλμ = X^ for (λ, ju) 6 Λ. Let hλμ be a local C2 diffeomorphism in R
which extends the map φλ\φTι(CXμ) = φλ\Cμ so that R(hλμ) is an open in-
terval containing Iλμ. Make sure that the intervals R(hλμ) are disjoint.
Clearly,

D{hλμ)z>Xλμ = h-λl{Iλμ)Z) U (Iμΐ).
lμ,r)eΛ

Also, by choosing each R(hλμ) slightly smaller, we assume that D(hλμ)Π
Iv7 — 0 whenever v Φ μ. Finally, P — (Pχμt1tT) is the mxm matrix with
Pxμ,μr = 1 and pλμtVT = 0 if v Φ μ, where all (λ, μ), (ι>, J)eΛ.

It is clear that the pseudogroup Γ, generated by {hλμ}atμ)eΛ, is as
required. •

The precise meaning of the definition of Markov LMS for a foliated
manifold, as indicated in the introduction, should now be clear. By (1.2),
it will be sufficient to prove our theorems under the assumption that
the holonomy pseudogroup Γ on a neighborhood of C in int(JS) is a
Markov pseudogroup and that C £ Zo is a Markov Γ-minimal set.

REMARKS. (1) Given a Markov pseudogroup Γ as in (1.1), one can
realize Γ as the holonomy in a neighborhood of an exceptional minimal
set X in a suitable C2-foliated manifold. One method, that of "branched
staircases", is due to Takamura [Ta] and Inaba [In]. Another produces
X in the nonsingular part of a singular foliation and then removes the
singularities. Sometime Γ can be "completed" to a subgroup of Diff^S1)
[Sa 1], [G-S] and X can then be realized in a suitable foliated S^-bundle.

( 2 ) Having realized Γ as the holonomy of a Markov minimal set
Xf one can turbulize along a closed transversal meeting X to produce a
Markov LMS at level one. Indeed, it is possible to realize Γ as the
holonomy of a Markov LMS at any desired finite level.
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2. Some estimates on derivatives. Let Γ be a C2 pseudogroup in
R, with generating set {h19 •••, hm}. Let

with all ε(k) = ± 1 and D(g) maximal possible. Set

gic ~ "'ϊ(jfc) ° # * * ° " ' ί d )

and, for u0 e D(g), set uk = gk(Uo)> 1 ^ k ^ p .

DEFINITION. If # as above is a reduced word in the generators
{ht^x^i^m, then g is called a chain of length | # | = p. If also M0, ulf ,up

are all distinct, then g is a simple chain at uQ. If u19 ', up are distinct
and up = u0, then g is a simple loop at u0. If g = q~lof°q, where q is
a simple chain at uQ and / is a simple loop at q(u0), then g is a basic
loop at uQ.

Let 7 c UJLi.D(Λ<) be a compact, Γ-invariant set. By passing to Γ\ W,
where W is a suitable bounded, open neighborhood of Y in R, we can
assume that there are positive constants c and 6 such that (h?1)' > c and
KWTI ^ 6 everywhere, 1 ^ i ^ m. Set 0 = b/c and λ = exp(601 W\). Here,
|W| denotes the sum of the lengths of the components of W.

The following estimate will be found in [Sa 2].

(2.1) LEMMA. Let geΓ be a chain of length p and let u0, voeD(g).
Then

g'(uo)lg\vo) ^

DEFINITION. A gap J of Y is a compact, nondegenerate interval such
that dJ = J n Y.

If geΓ is a chain of length p and KoczD(g) is a compact interval,
we set Kj = flfi(JBΓ0), 1 ^ i ^ p. If J o is a gap of Y, uoedJo, and if g is
a simple chain at u0 with D(g)nJ0, then Jo, Jx, -—, Jp have disjoint in-
teriors. If gr is a simple or basic loop at u0 with D(g)i)JQ, then each of
the intervals Jo, Jlf , Jp appears at most three times in this list and
int(Jfc) Π int(«/,) Φ 0 if and only if JA = Jt.

(2.2) LEMMA. Lei J o be a gap of Y and let Ko be a compact interval
such that J0ΠK0 is a singleton {u0} and liΓol/l Jol ^ 1/λ. If geΓ is either
a simple chain, a simple loop, or a basic loop at u0 and ifJo{jKoc:D(g),
then \g(K0)\ < \g(J0)\ and g'(u)/g'(v) < λ, for all u, veJol)Ko.

PROOF. Evidently |iΓ0| < |J 0 | . Inductively, assume that \Ki\ < | JJ,
0 ^ i < s. Then, by the definition of λ, together with the above remarks
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and (2.1), we have g,(u)/g'8(v) < λ, for all u, veJ0[jK0. Furthermore,
there exists ueKQ and v e JQ such that

\K8\/\J8\ = 9'8(u)\K0\/g's(v)\J0\ <1 . •

REMARK. In this paper, we will only need (2.2) for the case in
which g is a simple chain. In this case, the factor 6 in the definition
of λ can be reduced to 2. But the general version of (2.2) will be useful
elsewhere.

3. The relative holonomy groups. Let S^ = ({Ilf , Im}, {hlf , hm},
P) and Γ = TV be Markovian and assume that C £ 2 0 is a Markov Γ-
minimal set.

Remark that chains must reduce to the form

g = V QK°h7U° °K = K° • * °T
This is because the generators have disjoint images.

DEFINITION. If xeC, then Γx is the pseudogroup of all g \ U, where g
is a chain as above, g(x) = x, and U is an open, connected neighborhood
of x in D(g).

DEFINITION. Let xeC. Then the group of germs at x of all 7 = g\C,
where g e Γx, is denoted Hx(Γ(x), C) and is called the holonomy group at
x relative to C or, more simply, the relative holonomy group at x.

Evidently, Hx(Γ(x), C) depends, as an abstract group, only on the
orbit Γ(x) and not on the basepoint x.

DEFINITION. A point y e C is said to be τ-cyclic if τk(y) = y, some
k ^ 1. If the integer k is minimal, then {τk~\y), τk~\y), "'9τ(y)9y} is
called a τ-cycle.

(3.1) LEMMA. Exactly a countable infinity of Γ-orbits in C contain
τ-cycles and there is exactly one τ-cycle in each such orbit.

PROOF. It is enough to prove the corresponding assertions for the
subshift σ\3ίΓp-*3ίΓp to which τ is essentially conjugate. Since 3ΓP is
uncountable, this is an easy exercise in symbolic dynamics. •

(3.2) LEMMA. Let xeC. If Γ(x) does not contain a τ-cycle, then
Hx(Γ(x), C) = 0. If Γ(x) contains a τ-cycle, then there is a neighborhood
Vx of x in C such that Γx \ Vx contains a contraction f: Vx —> Vx and each
element of Γx \ Vx is the restriction of fk to a suitable neighborhood of x
in Vx, some keZ.

PROOF. Since τ generates Γ\C, the first assertion is immediate. If
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Γ(x) contains a τ-cyclic point x0, we lose no generality in assuming that
x = x0. Since each ht is a single-valued branch of τ" 1 , there is a simple
loop at x0 of the form g = hh° <>/&v Thus, Λ,(#o) is the σ-cyclic point
ttit m fiPfii, •••, ipi •• )^-%/p> the neighborhood Vβ0 can be defined by
h(VXQ) = {(ifc)?=1 eJΓpI j \ = i j , and hog = goh where J(ί l f i2, j 3 , - ) =
(ίi» •> ip> ίi» i2» Js> ' •)• From this it is evident that / = g\VXQ is a con-
traction to x0. It is also evident that the only chains that fix x0 restrict,
in VXQ, to the powers of /. •

(3.3) COROLLARY. For each xeC, Hx(Γ{x), C) is either trivial or
infinite cyclic, generated by a contraction that is unique in a suitable
neighborhood of x in C. Those xeC such that Hx(Γ(x), C) = Z lie on a
countable infinity of distinct orbits.

So far, nothing in this section has required smoothness of class C2.
The following does.

(3.4) LEMMA. If C clusters at x from only one side, then Γ(x)
contains a τ-cycle, hence Hx(Γ(x), C) = Z.

PROOF. First suppose that Γ(x) has an element x0 e Iό = [α, 6] such
that either Cn [a, b] = Cn[xOf b] or Cn [α, b] = Cn [α, x0]. For definiteness,
assume that the first is the case. Then Xs — hjι[a, b] = [T(a), T(b)] and
CΓ\Xj = Cfl[rW, Γ(6)]. Since τ(xQ)eCnIk, some Ik = [c, d], it follows
that {τr(x0)\r ^ 0} is a finite set, and we are done.

Alternatively, each y e Γ(x) is an endpoint of a gap Jy of C and
Jyc:πίt(Ij)f some j . In this case, every chain defined at y is defined on
all of Jy. Fix xoeΓ(x) and Jo = JXQ such that \J0\ ^ \Jy\, for every
yeΓ(x).

Assume that Γ(x) contains no τ-cycle. It follows that every reduced
chain g, defined at xQ9 is a simple chain at xQ with JoczD(g). We will
show that this leads to a contradiction.

Let Ko be a compact, nondegenerate interval such that Ko Π Jo = {xo}>
dK0 = {x0, yo}aΓ(x), and | JKΓ0|/|«7"0| ^ 1/λ, where λ is as in §2. By (2.2),
whenever flf is a chain such that KoaD(g) (hence g reduces to a simple
chain at xQ and JQczD(g)), then |#(#<>)| < |flr(«7o)|.

Let δ > 0 be such that every point δ-close to Ik (respectively, to Xk)
lies in R(hk) (respectively, in D(hk))f 1 ^ k ^ m. Let r ^ 1 be an integer
such that every chain g at #0 with | f f | > r satisfies \g(J0)\<δ. Let
î> # ^3> be the chains at x0 with | 7 j ^ r and, without prejudice to

the properties of Ko listed above, choose that interval so small that
KodDiJi), l ^ i ^ p . This guarantees, via (2.2), that KoUJoc:D(g), for
each chain g defined at x0. By induction on \g\, the same holds for every
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chain defined at yQ.
For deίiniteness, let Ko = [xQ, y0]. Since every chain defined at x{

is simple at x0, we obtain a well defined map φ: Γ(x) —> Γ(x) by setting
<P(Q(%O)) — 9(Vo) Similarly, every chain at yo£Γ(x) is simple and defined
at x0, so φ is bijective. Let zQeΓ(x) be the point such that φ(z0) = x0.
Then there is a chain g such that [z0, x0] — g(K0)i)J0. By (2.2) and the
maximality of \J0\, we obtain \J0\S \g(KQ)\ < \g(J0)\ ^ I«7"01. Π

PROOF OF THEOREM 1. Let I c Ue O{^) be a Markov LMS as defined
in the introduction. Let Γ, R, and C = Xf]int(R) also be as in the in-
troduction. If Γ is a Markov pseudogroup on a neighborhood of C in R
and if C is a Markov Γ-minimal set, then Theorem 1 is a consequence
of (3.2), (3.3), and (3.4). By (1.2), no generality is lost in making these
assumptions. •

REMARKS. (1) The leaves LczX such that HX(L, X) = Z must be
resilient. That is, such a leaf L has an element of contracting holonomy
on at least one side and L itself meets the interior of the support of this
contraction. Resiliency figures in many important properties of foliated
manifolds. For example, the nonvanishing of the exotic characteristic
class gv(_^) implies the presence of a resilient leaf [Du]. Another example
is the entropy of (M, ^ ~ ) , defined in [G-L-W] and proven there to be
nontrivial if and only if there is a resilient leaf.

(2) The exceptional minimal set constructed in [Sa 1] is a Markov
minimal set. Consequently, the assertion in [H-H, 3.9, p. 114], that this
set contains only two leaves with nontrivial holonomy, is erroneous.

4. Markov sub-pseudogroups. In the proofs of Theorem 2 and
Theorem 3, the most delicate step will involve passing to a Markov
sub-pseudogroup. It will be helpful to have discussed the salient features
of this process before getting into the proofs of the theorems.

Let &* = ({/i, , Jm}, {h19 , hm}, P) be a Markov system and let
Γ = TV. Fix n ^ 2 and let Wn = {wj?=1 be the set of all words of length
n in positive powers of the generators hlf —-,hm. For weWn, write
w = hX{w)°v, 1 ^ x(w) ^ m , and let hw be the restriction of hλiw) to an open
neighborhood D(hw) of Iv. Choosing all D{hw) small enough guarantees
that R{hw)(λR(hw>) = 0 , whenever w Φ w'. We denote the interval Iυ =
hzKIJ) by Xw. Let Q = (qtj) be the qxq matrix with entries {0, 1} such
that qtj = 0 if and only if IwjΠD(hw.) = 0 . Thus, qiβ = 1 if and only if
Iwj S Xw.. Then S^n = ({JWl, , IWq}, {hWl, , hWq}, Q) is a Markov system.
Let Γn = /VΛ and, for uniformity, let Γ1 = Γ.

In discussions where more than one Markov pseudogroup, say {Γ\
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Γ", , Γa)), are involved, we use the notation Z0(Γ{k)) to denote the set
ZQ determined by the Markov pseudogroup Γ{k) as in §1, 1 ̂  k ̂  I.

(4.1) LEMMA. If Γ is a Markov pseudogroup and n^l, then
Z0(Γn) = Z0(Γ) = Zo and Γn\Z0 = Γ\Zo.

Let 1 ̂  ix < < ir ^ m. Then we can define a Markov system

^ ( ί i , •••» %) = ({IiSYi=ι> {his}Ui> (Pi/i*)) a n d t h i s g i v e s r i s e t o a sub-
pseudogroup Γ ^ , , ir) £ Γ.

(4.2) LEMMA. Z0(Γ(ίlf , ir)) S

We combine these two constructions. The elements of Wn={wlf , wq}
serve as indices in ^ , so we define Γ* = Γn(wh, , wtp), l ^ i x < <ip^kq,
obtaining a Markov sub-pseudogroup of Γ. By renumbering, we set
Γ* = Γn(wlf -~,w9).

Let ZQ - Z0(Γ), Zo* - ZQ(Γ*), and let Λ; = hwj, 1 £ j £ p. By (4.1)
and (4.2), we see that Zo* Q Zo. The typical chain g*eΓ* is of the
form

g* = hfιo...ohfao(hfMΓo...o(hϊtr*

and has canonical extension to a chain

Q = λ2(il) o . . . o fc;(is) o ^ . g + i ) o . . . o hJlh) 6 Γ .

Finally, the essential subshift is τ* = τ\Z*'

(4.3) LEMMA. Lβί g*eΓ* be α chain, gsΓ the canonical extension,
and let x e (Z0\Z0*) nD(g). Then g(x) $ Zo*.

PROOF. Write g* and g in the above forms and assume that g{x) e Zo*.
By a finite induction, we readily obtain that y = r8(0(#)) = (r*)8(0(#)) is
an element of Zo*. But y = Λr(is+l)° ••• o^Γάί)(^)> so another finite induc-
tion shows that

* = huot) ° ' ° KJS+1)(V) = K ° * * * ° K+SV)

which is also an element of Zf, a contradiction. •

(4.4) LEMMA. Let g and g* be as in (4.3). Let int(Jo*)ci2\Zo* and
let K* be a compact, nondegenerate interval such that Jo* Π K* = {u0},
uoeZ*f and \K*\/\J*\ ^ 1/λ. Let g* be a simple chain, a simple loop,
or a basic loop at u0 such that J?lJK?c:D(g). Then \g(Kf)\ < \g(J?)\
and g'(u)lg'(v) < λ, for all points u, veJ?ΌK0*.

P R O O F . By (4.3), each of the intervals Jo*, — ,J* (we are using
notation from §2) has interior missing Zf, while ukeZf, O^k^t.
Therefore, if ut Φ uk, then i n t ( J f ) and int(Jfc*) lie in distinct components
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of R\Zf. The fact that these open intervals are disjoint is all that is
needed in order to mimic the proof of (2.2). •

5. The measure of a Markov set. As usual, let &' = ({IJ}JL1, {hj}]Llf P)
be a Markov system and set Γ = Γ&. We do not assume that ZQ contains
a Cantor set since that property can be lost by passing to a subpseudo-
group.

For YQ R a measurable set, we denote by \Y\ its Lebesgue measure.

(5.1) THEOREM. \ZO\ = 0.

By (1.2), this result generalizes Theorem 3. The proof of (5.1) will
consist of a series of definitions and lemmas.

DEFINITION. If AQ Zo and AT is a nonnegative integer, then AN =

Όn^Nτ-n(A) and A* = Γι%=0AN.

(5.2) LEMMA. (A U A')*, = A* U AL

(5.3) LEMMA. (Γ^A)*, = A«,.

If geΓ, we adopt the notation gA for g(AΓ\D(g)). We also set
Γ+ = \Jn=iWn, the set of nontrivial words in nonnegative powers of

(5.4) LEMMA. (7A)*, C A*, for each 7 eΓ+.

(5.5) LEMMA. A*, = {^A)^ U U (JLA)*,.

PROOF. Use the fact that τ~\A) = ΛXA U U femA, together with
(5.2) and (5.3). •

(5.6) LEMMA. CZX = ZQ.

(5.7) LEMMA. Lei α; e Zo. If x is not τ-cyclic, then {x}^ = 0 . Other-
wise, {x}oo = Γ(x).

( 5 . 8 ) L E M M A . L e £ X = { a ? o , •• ,ίc 2 ,} &e a τ-cycle. L e t y v - - - , y t be
the elements of Γ(xo)\X such that τ(ya) e l , 1 ^ a ^ t. Let ΎaeΓ+ be
of minimal length such that Ύa(x0) = ya> 1 ^ a ^ t. Let J be an interval,
let je{l, « ,m}, andletxoe V=JnIjΓ\Z0. Then VM = F U ί U U ^ F U ,
where the set F is at most countable.

PROOF. (1) Let hSi{x^ = xi+1, 0 ^ i ^ p, let a;p+1 = x0, and let 70 =
hjp o o /&io. By the dynamics of the subshift ίj: JΓ]> —> ,_^, it is clear
that

has either one fixed point x0 or two such, xQ and «0. In the second case,
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x0 lies in a τ-cycle {x0, •••, xp}. Consider both cases at once by allowing
xt = xt. Then the set {x0, x0} is exactly limn_κβ7o(ίζ)Π/i), and we let F
denote the set Γ(xo)\jΓ(βo).

( 2 ) By (5.4) and (5.7), FTO 2 FUfaV^U 11(7,10-..
( 3 ) Let y eVoo and let {n(k)}%=1 be the strictly increasing sequence

of positive integers such that τn{k\y) e F, for all k^l. Set F* =
hh_x° ohJo(V), for each i ^ 1, and set F o = F. Since F = JπIjΓiZ0

and J is an interval, we see that Vp+1 Q F o. For a given k ^ 1,

i
• UT α r (F), for suitable indices 1 ^ a, < < ar ^ ί. If τn{k)-\y) e V19

repeat this procedure to get τn{k)~2(y) e F 2 U7^(F) U U7βq(V), for suitable
1 ^ βι < <βg ^tf etc. There are two cases.

Case 1. For all large values of n, τn(y)e Uf>=0Fi. Thus, find N^O
such that τN(y) e F and 7on(τN(y)) is defined and belongs to F, for each
w ^ 0. By the compactness of I3- and step (1), we conclude that τN(y)e
{xQ, x0}, hence y e F.

Case 2. There is a strictly increasing sequence of integers {m(k)}%=1

such that τm{k)(y)e71(V)[j ••• U7 t (7), for each A; ^ 1. Thus s / e ^ F ^ U

DEFINITION. A point as e ZQ is good if there is a neighborhood F of
x in Zo such that | F* | = 0. The set of good points is denoted G. The
bad set is B = Z 0 \ G .

Remark that J5 is compact.

(5.9) LEMMA. B = 0 if and only if\Z0\ = 0.

PROOF. If \Z0\ = 0 , it is evident that B = 0 . If B = 0 , the com-
pactness of Zo allows us to find a finite cover Fx, , Vr of Zo by relatively
open subsets, each with KFJod = 0. Then (5.2) and (5.6) imply that

\za\ = o. π
(5.10) LEMMA. Let VQZ0 be measurable. If Σ σ e r + \ffV\ converges,

then I Foo | = 0.

PROOF. Since τ~n(V) =ΌgewngV, we obtain, for each A Γ ^ l , the
inequalities

IFJ = Π U τ~n(V) U τ " n ( F ) ^ Σ Iff7| .

(5.11) LEMMA. Let N ^ 1 be an integer. Then xeZQis a good point
if and only if g(x) e G, for each g 6 WN.

PROOF. Use (5.5) and induction on N. •
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(5.12) LEMMA. Let xeI3'f\ZQ. If τ~n(x)=0, some n^l, then

(Ji Π £0)oo = 0 , hence xeG.

PROOF. Equivalents, xeD(g) for only finitely many geΓ+. That
is, for all but these finitely many geΓ+, IjΓϊD(g) = 0 . •

(5.13) LEMMA. Let Jo be a gap of Zo and assume that J0aI3, some
j . Let Kodlj be a compact, nondegenerate interval such the Jof]Ko =
{x0} and IKo\/\ JQ\ ^ 1/λ. Then \{Z0n (JoU lζ>))oo| = 0. In particular, x0 e G.

PROOF. There are two cases.
Case 1. Assume that xQ does not lie in a τ-cycle. By (5.12), we can

also assume that xoeD(g) for infinitely many geΓ+f each of which must
be a simple chain at x0 with J0{jKQaD(g). By (2.2), |flfjfiΓ0| <\gJ0\ for all
such g. The intervals {gJQ}geΓ+ have disjoint interiors, so

Σ
Γ

Take V= Zon(JQUKo) in (5.10).
Case 2. Assume that x0 is τ-cyclic. Then the neighborhood V =

Zof]{Jo{jKo) and the point xQ satisfy the hypotheses of (5.8). Since Ύa(x0)
does not lie in a τ-cycle, 1 ^ a ^ ί, we can apply the argument in Case
1 to all chains of the form g°Ύa> gsΓ+, to conclude that

Σ lfl(7β(JoUίΓo))l< -
r

Then (5.10) implies that |(^0n7α(J0Uifo))oo| = 0, l£a£t. By (5.8),

(5.14) LEMMA. Let xeZ0 and assume that Zo accumulates on x from
at most one side. Then xeG.

PROOF. By (5.12), we can assume that Jo and Ko are as in (5.13)
and that JoΠKo = {x}9 hence xeG. Π

In the following lemma, let Wn={w19 , wp+r} and Γ* = Γn(wlf , wp),
as in §4. As usual, Zo* = Z0(Γ*) and τ* = τ\Z£. We will also use the
notation

Ko* = Π U (τ*)-"(F) ,
iV=0 n^iV

for all F g Z , * .

(5.15) LEMMA. Lei Ai = IWp+i, 1 ^ ΐ ^ r, cmc£ ieί VS=Z0. Then

PROOF. Let a; e Vm and consider two cases.
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Case 1. Assume that τk(x)eZf, some k ^ 0. Then one can find in-
finitely many n ^ k such that {τ*)n~\τ\x)) = τn~k{τ\x)) = τn(x) e V. There-
fore, {τ*)n-\τk(x)) 6 Z* n F, so τ\x) e {Z* n 7 ) w # . That is, a; 6 τ-fc((Z0* Π F U ) .

Case 2. Assume that there is no k ^ 0 as in Case 1. Then there
are infinitely many integers n^O such that τn(x) g Uf=1/W.. For these
integers, τn(x) e Ax U U Ar, hence x e (A^ U U (A,)*,. D

(5.16) PROPOSITION. B=0.

PROOF. Let y e B and deduce a contradiction as follows.
( 1 ) By (5.14), y e intCZ,-), for some j , and there is a gapJ 0 = [α, 6]

of Zo, also in Iif such that b < y. Since I? is compact and, by (5.14),
b g Bf there is a point j / 0 e ]&, #] Π i? such that ]δ, 2/0[ Π β = 0 .

( 2 ) By (5.14), Zo clusters on y0 from both sides. Thus, for n suf-
ficiently large, there is w e Wn such that Iw = [c, d], b < c < yQ < d, and

( 3 ) Enumerate Wn = {̂ 1? , ^p+r} in such a way that Iw. Π ]α, c[=0
exactly for j = 1, , p. Set A< = ^ p + ί τ 1 ^ ί ^ T, and note that each
A^c [6, c[. By the choice of y0, KAJod = 0, 1 ^ i ^ r.

( 4 ) Let Γ* = Γn(wlf •••, wp), as in §4, and let 6* be the minimal
element of Z* Γ\[c, d]. Then 6* is maximal such that Z0*Π ]α, 6*[ = 0 .
Consider three cases.

Case 1. Let 6* = d, hence ]α, d[ ίΊ20* = 0 . Take F = ]α, d[ ΠZ, and
use (5.15) to conclude that F*, S Uί̂ CAJoo. By step (3), | FTO | = 0 and this
contradicts the fact that yoeB.

Case 2. Let 6* < d, and (τT n (δ*) = 0 , some n ^ l . For F, we
take any neighborhood of y0 in the set [c, d]f)Z0 = Iwf)Z0. By (5.12),
(FfΊZ0*)oo* = 0 , so the argument in Case 1 again yields a contradiction.

Case 3. Let 6* < d and 6* e Z>(ίr*) for infinitely many #* e Γ ? . Set
J* = [α, 6*], Zo* = [6*, d], and F = Zof)(Jo* UϋΓ0*). Then int(J 0 *)cΛ\Z 0 *,
but 6* eZ0*, and |ίΓ0Ί/IΛ*i ^ 14 I/I ΛI ^ 1/λ. We would like to use (5.13)
to conclude that |(FnZ0*)oo*l = 0. The difficulty is that Jo* g£ Iw, contrary
to what is required by the hypotheses of (5.13). This means that, if
g*eΓ% and 6*eZ)(^*), then J0*£D(g*). The solution to this difficulty
is to use the canonical extension geΓ+ of each such g*, to note that
JίϊczIjCiDig), and to appeal to (4.4) in place of (2.2) in the proof of (5.13).
Then |(FnZ0*)oo*| = 0 and we use (5.15) to conclude that |FT O | = 0, again
contradicting the fact that yoeB. •

The proof of (5.1), hence of Theorem 3, is complete.

6. Counting the semiproper leaves. Our present goal is to prove
Theorem 2. Let Sf and Γ = TV be as in the previous section.
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DEFINITION. Let AQR, xeA. Then x is semi-isolated in A if there
is an open interval JaR\A such that xedJ.

DEFINITION. The Γ-orbit of xeZ0 is semiproper if there is a non-
empty, open interval JaR\Γ(x) such that xedJ.

(6.1) THEOREM. Only finitely many τ-cyclic points are semi-isolated
in Zo.

(6.2) COROLLARY. Let CςzZ0 be a Markov Γ-minimal set. Then C
contains only finitely many semiproper Γ-orbits.

PROOF. Every Γ-orbit in C is dense in C, hence is semiproper if
and only if each of its points is semi-isolated in C. Apply (6.1) and
(3.4). •

In particular, (6.2) and (1.2) establish Theorem 2.
The proof of (6.1) will consist of a series of definitions and lemmas.

DEFINITION. A nondegenerate interval A is Γ+-uniform if there is
a number v — v(A) > 0 such that g'(u)/g'(v) ^ v, for all geΓ+ and u,
veAΠD(g).

(6.3) LEMMA. // Aι and A2 are Γ+-uniform intervals and A^A2Φ
0 , then A1\iA2 is Γ+-uniform.

(6.4) LEMMA. If geΓ+ and A is a Γ+-uniform interval, then gA
is also Γ+-uniform.

(6.5) LEMMA. Let N ̂  1 be an integer and let A be an interval.
If gA is Γ+-uniform, for all g e WN, then A is Γ+-uniform.

DEFINITION. The uniform set U+Q R is the union of all open, Γ+-
uniform intervals. The non-uniform set is B+ = R\U+.

Since intervals not meeting the bounded set \JJ^D{h3) are Γ+-uniform
by default, J5+ is compact. Also, if G and B are as in §5, one easily
shows that Zof]U+QG and that Zo n B+ 2 B.

(6.6) LEMMA. Let J be a gap of Zo with an endpoint that is not
τ-cyclic. Then, with at most finitely many exceptions, Ja U+.

PROOF. Let x e dJ be a point that is not τ-cyclic. Since the endpoints
of Xj = hjι(I3) are r-cyclic, l^j^m, provided they pertain to Zo, we see
that x 6 intCXy) and, with at most finitely many exceptions, JaXjf for
some j. It follows that JΓ\D(g)Φ 0 if and only if JczD(g), for each geΓ+.
Every such g is a simple chain at x, hence g is also a simple chain at
the other point xedJ and x is not τ-cyclic. Therefore, J rcint(X i). Let
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K and K be compact, nondegenerate subintervals of Xs such that KΠJ =
{x}, KnJ={x), and \K\j\J\ ^ 1/λ ^ \K\/\J\. By (2.2), KϋJ and J<zK
are Γ+-uniform, hence, by (6.3), so is KUJΌK. Π

(6.7) LEMMA. Let xeZQ be τ--cyclic and let 7 eΓ+ be the simple loop
at x. If y'(x) = 1 and 7 is not germinally the identity at x on at least
one side of x, then xeB+.

PROOF. In any neighborhood of x in R, there is a 7-fixed point y
(perhaps x itself) at which 7 is either a (one-side) expansion or contrac-
tion. Thus, find a sequence {yn}n^ near y such that either (yn)\yn) —> <*>
or (ynY(yn) —> 0 as n —> ©o. Since (yn)'(x) = 1, for each integer n, it is clear
that xeB+. Π

DEFINITION. A gap J of Zo is τ-cyclic if JQXjf for some j e {1, , m},
and 3J consists of τ-cyclic points.

Equivalently, there exists ΎeΓ+ (nontrivial, by the definition of Γ+)
such that ΊJ = J.

(6.8) LEMMA. Let J be a gap of Zo. Then, with at most finitely
many exceptions, J is τ-cyclic if and only if JdB+Φ 0 .

PROOF. (1) Assume that J(\B+Φ 0 . With at most finitely many
exceptions, this implies that dJ consists of τ-cyclic points (6.6) and JQXjf

for some j e {1, , m}.
(2) Suppose that J is τ-cyclic and let yJ = J, for some 7 6 Γ+. We

consider three cases.
Case 1. Ύ\Jφidj. Find sequences {y^n^ and {z^n^λ in J such that

(7n)'(yn)-* 0 and (7n)'0O —• oo as w->°o. Thus, / is not Γ+-uniform. By
(6.3) and compactness, J c U+ would imply that J is ΓVuniform.

Case 2. y\J = iάJf but at least one xedJ is not isolated in Zo. An
elementary use of symbolic dynamics shows that 7 is a one-sided contraction
to x. By (6.7), xeB+.

Case 3. y\J = idj and both elements of dJ are isolated in Zo. In
this case, it might be that JaU+. We must show that at most finitely
many such gaps exist. Suppose, on the contrary, that {e7JnΞ>i is an infinite
sequence of distinct such gaps, chosen so that Jn-^xeZQ as n-*oo.
Write x = xhh..., where (ik)ΐ=i = h(x)e3ΓP, as in § 1. The set V = {(jk) e
3fr\L = k) is a neighborhood of (ik) in JΓP and h(dJn)c:V, for all large
values of n. The points of dJn = {ff, n̂} are τ-cyclic, so one writes
h(xn) = Λ(a?n) = α α α (juxtaposition), where α = (ilf j2, , j8). In
particular, the entry pjgh = 1 in the matrix P. It follows that a-a--a- iik) e

for all r ^ 1. This translates to the statement that either xn or xn
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is not isolated in ZQ, contradicting the assumption. •

(6.9) LEMMA. Let xoeZof)B+ and assume that x0 lies in a τ-cycle
X = {x0, xv , xp}. Let 70 = hjp° ohJQ be the simple loop at x0 and
write Ύoi = hh° °hJQ, 0 ^ i ^ p — 1. If Γ+(xQ) Π 5 + C I , then there is
a neighborhood Vo of x0 in ZQ such that z e VQ Π B+ if and only if
Γ+(z)ΠB+ = {ΎoioΎn

0(z)\n ^ 0, 0^i^p-l}.

PROOF. Let ya and 7α be as in (5.8), l^a^t. In particular, ya$B+,
1 <; α <^ ί. Let C7α be an open, Γ+-uniform interval about ya and set
Fα = Z0Γ\ Ua. Choose the neighborhood VQ of x0 in Zo such that xoeD(Ύa)
implies that F o cΰ(τ α ) and 7αF0 £ Fα, 0 S a ^ ί. If z e V0Γ)B+, it follows
from this choice and from (6.4) that Γ+(z) Π B+ £ {τM ° 7J(2) | n ^ 0, 0 ^ i ^
p — 1}. By (6.5) and induction, one obtains the reverse inclusion. •

DEFINITION. The set ^ consists of all gaps J of Zo such that
JnB+Φ 0 . The set &+ is^U(Z 0 ΠJB + ).

It makes sense to consider, in R, the cluster points of ^ + , each
element of ^f+ being treated as a single "point". These cluster points
are honest points, necessarily being elements of Z0Γ)B+.

DEFINITION. The set Bo £ Zo n B+ consists of those points x with a
half-open neighborhood ]α, x] or [x, a[ meeting no element of &+ except
x.

We are going to prove, in (6.15), that every #ej?o is r-cyclic. For
the present we suppose that # is a counterexample.

(6.10) CLAIM. The non-r-cyclic point x e BQ is not semi-isolated in Zo.

PROOF. Suppose that x is semi-isolated in Zo and consider two cases.
Case 1. Γ+(x) is infinite. By (6.5), we assume, without loss of

generality, that x is an endpoint of a gap J of ZQ and that Jcint(J5Q,
χi — hT^It), for some ie{l, •••, m}. As in the proof of (6.6), it follows
that x e U+.

Case 2. Γ+(x) is finite. Then x has an open, connected neighborhood
that meets D(g) for only finitely many geΓ+. Such an interval is Γ+-
uniform, again contradicting the assumption that xeB+. •

For definiteness, assume that ]α, x] is as in the definition of the set
Bo. By (6.10), we can assume that [α, #]cint(JQ, for some i e {1, , m},
and that J = [α, 6] is a gap of ZQ and b < x.

Choose n large and weWn such that Iw = [c, d], 6 < c < a; < d, and
|/w|/|</| ^ 1/λ. Let Wn = {̂ x, , ^p+J, so ordered that Iw.a[b, c[ exactly
for j = p + i, 1 ^ i ^ r. Then /wyΠ]α, c[ = 0 , 1 ^ i ^ p. Set A, = JWp+<,
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1 ^ i ^ r.

(6.11) CLAIM. UΓ=IA ga 17+.

As in §4, let Γ* = Γn(wlf , wp) with generators h*9 •••,&*, and let
Zo* = Z0(Γ*)9 τ* = τ\Z0*. By means of Γ*, we define U% and £ * = R\ U%
in exact analogy with U+ and 5 + . Let D* = UJ=i-D(Λ*).

(6.12) CLAIM. tf*n£*£t/+.

PROOF. Let z e ϊ / ί n D * . Let I<zU% be a compact interval with
z6int(J). We choose 7 so small that zeD(hf) implies that IcD(hf),
1 ^ i ^ p. By the definition of a Markov system, it follows that g* e Γ\
and zeD(g*) implies that IaD(g*).

Let ΎβΓ+ be such that zeD(7) and write 7 | / = (v<>hk<>g*)\I9 where
g*eΓ$, AfcC^/Jcu ^A,, and v e Γ + . By (6.11) and the fact that / i s
Γ*-uniform, it follows easily that / is Γ+-uniform. •

(6.13) CLAIM. xeZ0*.

PROOF. Otherwise, τ\x) e Uί= 1int(A8)c U+ (6.11), for some k ^ 1.
Let geΓ+ be the branch of τ~k such that xeR(g). An application of
(6.4) to g gives the contradiction that x = g{τk(xj) e ?7+. •

By (6.13), there is a maximal element b* e [c, x] such that Zo* Π [c, δ*[
= 0.

(6.14) CLAIM. 6* is r*-cyclic and 6* < a.

PROOF. In (4.4), let Jo* = [α, 6*] and iΓ0* = [6*, d] be such that
\Ko*\l\Jo*\ ^ |/«l/|/| ^ 1/λ. If 6* is not τ-cyclic, (4.4) implies that [c, d]
is ΓJ-uniform, hence a e ]c, d[ aUXf)D*c: JJ+ (6.12), contradicting the
fact that xeB+. •

(6.15) LEMMA. Every element of Bo is τ-cyclic.

PROOF. Assume that x e Bo and that x is not τ-cyclic. Choose all
data as in the above discussion and deduce a contradiction as follows.

(1) By (6.14), let ΎoeΓX be the simple loop at 6*. Since [c, d] =
IwaD(ΎQ), and since x is not τ*-cyclic, elementary symbolic dynamics
shows that 7?(α?)—>δ* as w-^oo, In particular, Ίl(x)eU+, for each in-
teger n ^ l .

(2) By (6.5), choose gteΓ%, \gt\ = k, such that gi(x)eB+, for all
k ^ 1. By step (1) and (6.4), each gΐ is a simple chain at δ*.

(3) By step (2), we can take N so large that #$(&*) does not lie
in the τ*-cycle containing 6*, hence is not τ*-cyclic. That is, if g*eΓ$
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and β$(δ*) 6 J5(ί/*), then g* is a simple chain at g$(b*). By elementary
symbolic dynamics, this implies that </*°3$ is a simple chain at δ*.

( 4 ) By step (3) and (4.4), we proceed exactly as in the proof of
(6.14) to find (ff*og%)\u)l(g*°g%)'(v) ^ λ, for each u, ve[c, d]. Therefore
g%[c, d] is ΓJ-uniform. By (6.12), it follows that g%\c, d[ c£7+, contra-
dicting the fact that g%(x)eB+. Π

DEFINITION. The set B1QZ0Γ\ B+ consists of those points x having
a half-open neighborhood ]α, x] or [x, a[ that contains exactly a countable
infinity of elements of &+f this subset of &+ clustering exactly at x.

(6.16) LEMMA. Every element of B1 is τ-cyclίc.

PROOF. The idea is to mimic the proof of (6.15) exactly. However,
one needs (6.15) in order to set this up.

Let xeBj.. Exactly as in the proof of (6.10), x is not semi-isolated
in Zo.

Assume that ]α, x] is as in the above definition, that [α, a?]cint(X i),
for some i e {1, , m}, and that J = [α, δ] is a gap of ZQ, b < x.

Choose n large, w e Wn as before, Iw = [c, cί], δ < c < x < d, \IW\/\J\ ̂
1/λ, etc. The problem is that (6.11) does not necessarily hold this time.
It may be that UΓ=1AS contains finitely many elements of &+, say
yί9 - ,yteB0 and J19 > -,Ju e^f+.

Choose gkeΓ+, [α, d]aD(gk), \gk\ = fc, such t h a t gk(x) eB0{jB19 for all

k ^ 1. These exist by (6.4) and (6.5). Also, by (6.4), {gk(yι)}UU{gk{Jτ)\U
are the only possible elements of ^ + in gk(Ul=ιAβ).

By (6.6), yt is τ-cyclic, 1 ^ i ^ t. As in the proof of (6.15), k large
enough implies that gk(yt) is not τ-cyclic, hence gk(yt) £ Bo, hence gk(y^ $ &+,
1 ^ i ^ t. A similar use of (6.8) shows that gk(Jt) &&+, 1 ^ i ^ u and
all large values of k.

Take g = gNJ N large enough. Then g(\Jr

8=1A8)(zU+. Replace w by
w = goWeWn+N, Iw by h = [g(c)> 9(d)], J by J = [g(a)> g(b)l Wn by
Wn+N = {wlf , wq+r} (note that, generally, g > p), A8 by ff(A.) = /;;«,+,=
/-g + g, 1 ^ s ^ r, etc.

At this point, the proof of (6.15) can be carried out with no change.

D
(6.17) LEMMA. B, = 0 .

PROOF. Let xoeB1 and deduce a contradiction. By (6.4), g(xo)ε
BιUB0UU+f for each geΓ+. By (6.15) and (6.16), g(xo)eB1UBo implies
that g(x0) lies in the τ-cycle X = {#0, a?x, , xp}. Thus, f + (a; 0 )nS + £ X
Let Vo be the neighborhood of x0 in Zo given by (6.9) and let τ o e Γ + be
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the simple loop at x0. By the definition of B19 the set (V0\{x0})Γ\B+QBo

clusters at x0. Elementary symbolic dynamics implies that τ0 contracts
this set to xQ, provided Vo is small enough. If z e (V0\{x0})Γ)B+, then
(6.15) and (6.4) imply that Γ+(z)ΠB+ is contained in a τ-cycle and (6.9)
implies that Γ+(z)Γ\B+ is not contained in a τ-cycle. •

(6.18) COROLLARY. There is a finite, possibly empty set F such that
Z0Γ\B+ = F or FljC, where C is a Cantor set.

PROOF. By the structure theory of compact, totally disconnected
subsets of R [Pi], this is an easy consequence of (6.17). •

(6.19) LEMMA. The set^f+ is finite.

PROOF. It will be enough to prove that, in (6.18), the possibility
that Z0ΓiB+ = i^UCdoes not, in fact, occur. Indeed, if ZQΓϊB+ = F and
if JF+ were infinite, then some point of F would belong to B1 = 0 .

Suppose that ZQp\B+ = F[jC and obtain a contradiction as follows.
(1) Let A = [xQ, x0] be a gap of C. If A contains infinitely many

elements oi^.9 they must cluster in A, necessarily only at x0 and/or xQ.
But this cluster point would belong to B1 = 0 .

(2) By step (1), either A is an element of ^+, or some point of
dA, say x0, is an element of BQ.

If xoeBo, then x0 is τ-cyclic (6.15) and, by (6.4), Γ+(x0)f)B+c:B0, hence
Γ+(XQ)ΓΪB+ lies in the τ-cycle.

If A e ^ , then, with finitely many possible exceptions, A is a τ-
cyclic gap of Zo (6.8) and the τ-cycle of xQ also contains Γ+(xQ)f)B+, again
with the at most finitely many exceptions allowed by (6.8).

(3) By step (2), choose A and x0e3A so that {x0, xlf , xp} = X is
a τ-cycle and Γ+(x0)nΰ+£l.

Similarly, choose a sequence {Afc}̂ =1 of gaps of C clustering at x0 and
having τ-cyclic endpoint zk e dAk with exactly the same property as x0.

(4) Let T O G Γ + be the simple loop at x0. By symbolic dynamics,
7o(Ajfe)—> &o as n->°°, for k sufficiently large. An application of (6.9) to
z — zkeAh, k large enough, then contradicts the fact that Γ+(z)f]B+ lies
in the τ-cycle of z. •

PROOF OF (6.1). If infinitely many τ-cyclic points are semi-isolated
in Zo, then (6.8) implies that ^ + is an infinite set. •

As already observed, this completes the proof of Theorem 2.

7. Concluding remarks. It is not hard to produce exceptional mini-
mal sets (or, more generally, LMS) that are not Markovian. One way is



186 J. CANTWELL AND L. CONLON

to start with a Markov example in which one of the generators of Γ,
say h = hlf is a contraction to a point xeC that is not semi-isolated in
C, having the property that h is C°°-tangent to the identity at x. One
can replace the generator h with h, an element that agrees with h on
one side of x and with hrι on the other side. The new pseudogroup, call
it Γ, has the same orbits as Γ, but the generator of Hx(Γ(x), C) is not
represented by a contraction. By Theorem 1, the exceptional, Γ-minimal
set C cannot be Markovian. Again, one could replace h with two gener-
ators, h and h, one agreeing with h on one side of x and with the identity
on the other side, the other being similar, but with the sides of x re-
versed. In this case, HX(Γ, C) = Z φ Z, again contrary to the conclusion
of Theorem 1.

Another naturally occuring class of non-Markov examples has been
suggested by Inaba (private communication). They are finitely generated,
nonelementary Fuchsian groups of the second kind which have parabolic
elements. The limit set of such a group is an exceptional minimal set,
but it is not Markovian because a parabolic element is neither a contrac-
tion nor an expansion at its unique fixed point.

In an earlier version of this paper we proposed some conjectures that
now seem to us to have been overly optimistic. One of these was that
the general case might be orbit equivalent to the Markov case. In the
special case of a transversely protective foliation that is transverse to a
fibration by circles, Inaba has verified this conjecture (Ibid.). It would
be interesting to remove the hypothesis of transversality to an S1-
fibration.

It is not hard to show that the general exceptional LMS gives rise
to a multitude of Markov sub-pseudogroups that, in some sense, form a
"dense" subsystem. It should be possible to exploit this fact.
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