FOLIATIONS AND SUBSHIFTS

Dedicated to Ky Fan on his retirement
John Cantwell ${ }^{1}$ and Lawrence Conlon ${ }^{2}$

(Received November 4, 1986)

Introduction. Let (M, \mathscr{F}) be a closed, transversely orientable, C^{2} foliated manifold of codimension one. Let $O(\mathscr{F})$ denote the family of open, \mathscr{F}-saturated subsets of M. Let $U \in O(\mathscr{F})$, and let L be a leaf of $\mathscr{F} \mid U$. Smoothness of class C^{2} implies that there exists a compact, transverse one-manifold $R \subset U$ such that every leaf of $\bar{L} \cap U$ meets $\operatorname{int}(R)$ [C-C 1, (3.7)]. Consequently, $\bar{L} \cap U$ contains a minimal set of $\mathscr{F} \mid U$ [C-C 1, (3.0)].

Definition. An \mathscr{F}-saturated subset $X \subseteq M$ is a local minimal set (LMS) of \mathscr{F} if there exists $U \in O(\mathscr{F})$ such that X is a minimal set of $\mathscr{F} \mid U$.

Every proper leaf is a LMS, with $U=M \backslash(\bar{L} \backslash L)$. If $U \in O(\mathscr{F})$ and each leaf of $\mathscr{F} \mid U$ is dense in U, then U itself is a LMS. Finally, an exceptional LMS is one of neither of these types. If X is exceptional, then the transverse manifold $R \subset U$ can be chosen so that $C=X \cap R$ is a Cantor set and misses ∂R.

These LMS play a key role in the structure theory of compact, C^{2} foliated manifolds of codimension one [C-C 1]. Our very incomplete understanding of the exceptional type constitutes a major gap in the theory.

Let X be an exceptional LMS, with U, R, and C as above. The holonomy of $\mathscr{F} \mid U$ induces a C^{2} pseudogroup Γ on R for which C is a Γ-minimal set. Let $\Gamma \mid C$ denote the induced pseudogroup on C. It frequently happens that the choice of R can be made so that $\Gamma \mid C$ is generated by the local restrictions of a single transformation $\tau: C \rightarrow C$ which, in a sense to be made precise in $\S 1$, is essentially a one-sided subshift of finite type (also known as a topological Markov chain [Wa, p. 119]).

Definition. If there exists $\tau: C \rightarrow C$ as above, then C is a Markov

[^0]Γ-minimal set and X is called a Markov LMS.
While there exist examples of exceptional LMS that are not Markov LMS (see §7), it is likely that the Markov ones are the fundamental "building blocks" for the general case (in a sense that we cannot presently make precise). At any rate, examples of Markov minimal sets abound in the literature (cf. [Sa 1], [Ra], [He], [G-S], [In], [Ma]).

We will settle, for Markov LMS, a number of questions that have been open for the general exceptional LMS.

Let $L \subset X$ be a leaf, let $x \in L \cap R$, and let $\Gamma_{x} \subset \Gamma$ be the subpseudogroup fixing x.

Definition. The holonomy group of L relative to X is the group $H_{x}(L, X)$ of germs at x of all $\gamma \in \Gamma_{x} \mid C$.

Theorem 1. Let X be a Markov LMS and let L $\subset X$ be a leaf. Then $H_{x}(L, X)$ is either trivial or infinite cyclic and generated by the germ of a contraction that is unique in a suitable neighborhood of x in C. Exactly a countable infinity of leaves in X have $H_{x}(L, X) \cong Z$ and among these are all of the semiproper leaves.

Recall that a leaf is semiproper if it is asymptotic to itself from at most one side (hence proper leaves are also semiproper).

Dippolito [$\mathrm{Di}, \S 9]$ has asked whether, in an exceptional LMS, $H_{x}(L, X)$ is always cyclic. For the Markov case, our result is stronger. Indeed, whenever $H_{x}(L, X)$ is nontrivial, the generator is a unique contraction.

Theorem 2. If X is a Markov LMS, then X contains only finitely many semiproper leaves.

This theorem answers, for the Markov case, an open question of Hector (proposed in [Sch, Problem 28.1]).

A special case of the following result was proven independently by Matsumoto [Ma].

Theorem 3. If X is a Markov LMS, then it has Lebesgue measure $|X|=0$.

By Duminy's localization of the Godbillon-Vey class to an $H^{3}(M)$ valued measure $\operatorname{gv}(*, \mathscr{F})$ [Du], Theorem 3 implies that $\operatorname{gv}(X, \mathscr{F})=0$ whenever X is a Markov LMS. We expect this to generalize to general exceptional LMS, although we are less confident that Theorem 3 itself will generalize.

Remark that the Denjoy example [De] violates the conclusions of Theorem 1 and Theorem 3, but is only of class C^{1}. Also, there are C^{0}

Markov examples, probably C^{1}-smoothable, that violate the conclusions of all three of our theorem.

1. Markov pseudogroups. Let $\mathscr{S}=\left(\left\{I_{1}, \cdots, I_{m}\right\},\left\{h_{1}, \cdots, h_{m}\right\}, P\right)$, where each $I_{j} \subset \boldsymbol{R}$ is a compact, nondegenerate interval, each h_{j} is a C^{2} diffeomorphism with range $R\left(h_{j}\right)$ and domain $D\left(h_{j}\right)$, both being open, bounded intervals, and $P=\left(p_{i j}\right)$ is an $m \times m$ matrix with entries $p_{i j} \in\{0,1\}$. Assume that $m \geqq 2$.

Definition. If the following properties hold, then \mathscr{S} is called a Markov system and the pseudogroup $\Gamma=\Gamma_{\mathscr{S}}$, generated by $\left(h_{j}\right)_{j=1}^{m}$, is called a Markov pseudogroup.
(1) $R\left(h_{i}\right) \cap R\left(h_{j}\right)=\varnothing, i \neq j$.
(2) $I_{j} \subset R\left(h_{j}\right)$, for all j. Set $X_{j}=h_{j}^{-1}\left(I_{j}\right)$.
(3) $\quad p_{i j}=1$ implies that $I_{j} \subseteq X_{i}$.
(4) $\quad p_{i j}=0$ implies that $I_{j} \cap D\left(h_{i}\right)=\varnothing$.

Example. Let $\left.h_{1}:\right]-1 / 2,3 / 2[\rightarrow]-1 / 6,1 / 2\left[\right.$ and $\left.h_{2}:\right]-1 / 2,3 / 2[\rightarrow$] $1 / 2,7 / 6\left[\right.$ be defined by $h_{1}(x)=x / 3$ and $h_{2}(x)=(x+2) / 3$. Let $I_{1}=[0,1 / 3]$, $I_{2}=[2 / 3,1]$, hence $X_{1}=X_{2}=[0,1]$ and $p_{i j}=1,1 \leqq i, j \leqq 2$.

Let \mathscr{S} be a Markov system. Then $w=h_{i_{1}} \circ \cdots \circ h_{i_{n}} \in \Gamma$ is defined at a point of $X_{i_{n}}$ if and only if $p_{i_{k} i_{k+1}}=1,1 \leqq k \leqq n-1$, in which case $X_{i_{n}} \subset D(w)$ and we denote $w\left(X_{i_{n}}\right)$ by I_{w} or by $I_{i_{1} \cdots i_{n}}$. Set $|w|=n$ and

$$
\begin{aligned}
& Z=\cap_{n=1}^{\infty}\left(\cup_{|w|=n}\left(I_{w}\right)\right) \\
& Z_{0}=Z \backslash \operatorname{int}(Z) .
\end{aligned}
$$

In the above example, $Z=Z_{0}$ is a Cantor set and a minimal set of Γ. It is not hard to modify the example so that $\operatorname{int}(Z) \neq \varnothing$ and Z_{0} is still a Γ-minimal Cantor set. This property of Z_{0} is typical but is not implied by the definitions. For example, if P is the identity matrix, then Z_{0} is a finite point set.

Definition. If \mathscr{S} is a Markov system and $x \in R\left(h_{i}\right)$, set $T(x)=$ $h_{i}^{-1}(x) \in D\left(h_{i}\right)$. This well defines

$$
T: \bigcup_{i=1}^{m} R\left(h_{i}\right) \rightarrow \bigcup_{i=1}^{m} D\left(h_{i}\right),
$$

locally a C^{2} diffeomorphism, such that $T\left(Z_{0}\right) \cong Z_{0}$. Set $\tau=T \mid Z_{0}: Z_{0} \rightarrow Z_{0}$, a continuous map that is locally a homeomorphism.

Definition. A sequence $\left(i_{n}\right)_{n=1}^{\infty}$ such that $p_{i_{n} i_{n+1}}=1$, for all $n \geqq 1$, is called P-admissible. The set of all such sequences is denoted by \mathscr{K}_{P}.

Let $\left(i_{n}\right)_{n=1}^{\infty} \in \mathscr{K}_{P}$. Let $w_{0}=\mathrm{id} \in \Gamma$ and let $w_{n}=w_{n-1} \circ h_{i_{n}}$. Then $I_{w_{n+1}} \subseteq$ $I_{w_{n}}$ and the set $I_{i_{1} i_{2} \cdots i_{n} \ldots}=\bigcap_{n=1}^{\infty} I_{w_{n}}$ is either a singleton or a nondegenerate, compact interval. Remark that Z is the disjoint union of all of these sets $I_{i_{1} i_{2} \cdots i_{n} \cdots} \ldots$

The set-theoretic boundary $\dot{I}_{i_{1} i_{2} \ldots}$ reduces to $I_{i_{1} i_{2} \ldots}$ whenever this set is a singleton and, otherwise, is the pair of endpoints. It is clear that

$$
Z_{0}=\bigcup_{c \in \wedge_{P}} \dot{I}_{c},
$$

so denoting $x \in Z_{0}$ by x_{c} if $x \in \dot{I}_{c}$ leads to at most a countable infinity of pairs of points with the same P-admissible index. We formalize this as a surjection, $h: Z_{0} \rightarrow \mathscr{K}_{P}, h\left(x_{t}\right)=\iota$, that is two to one on at most a countable subset of Z_{0} and, elsewhere, is one to one.

It is customary to topologize \mathscr{K}_{P} as a closed subset of the Cartesian product $\mathscr{K}=\{1,2, \cdots, m\}^{N}$, where N denotes the natural numbers. Then \mathscr{K} is a Cantor set and, in the more interesting cases, so is \mathscr{K}_{p}. In any case, the surjection $h: Z_{0} \rightarrow \mathscr{K}_{P}$ is continuous.

Definition. The (one-sided) shift $\sigma: \mathscr{K} \rightarrow \mathscr{K}$ is defined by $\sigma\left(j_{1}, j_{2}\right.$, $\left.j_{3}, \cdots\right)=\left(j_{2}, j_{3}, \cdots\right)$ and $\sigma=\sigma \mid \mathscr{K}_{P}: \mathscr{K}_{P} \rightarrow \mathscr{K}_{P}$ is called a subshift of finite type or a topological Markov chain.

Evidently, $\sigma \circ h=h \circ \tau$, so τ is semiconjugate to σ. It is also evident that τ belongs locally to $\Gamma \mid Z_{0}$ and that the one-one restrictions of τ to suitable open subsets of Z_{0} generate $\Gamma \mid Z_{0}$. Let Γ_{σ} denote the pseudogroup on \mathscr{K}_{P} that is similarly generated by σ.
(1.1) Lemma. The set \mathscr{K}_{P} is a Cantor set and Γ_{σ}-minimal if and only if there exists an exceptional Γ-minimal set $C \subseteq Z_{0}$ such that $h(C)=\mathscr{K}_{P}$. In this case, $Z_{0} \backslash C$ is a union of at most countably many Γ-orbits, each of which accumulates exactly on C.

Proof. Assume that \mathscr{K}_{P} is a Γ_{σ}-minimal Cantor set. Let $x=$ $\left(i_{1}, i_{2}, \cdots\right) \in \mathscr{K}_{P}$ and let $y \in \mathscr{K}_{P}$. Then $\Gamma_{\sigma}(y)$ clusters at x. This implies that, for all $n \geqq 1$, there exists $g_{n} \in \Gamma$ such that $I_{y} \subset D\left(g_{n}\right), g_{n}\left(I_{y}\right) \subset I_{i_{1} \cdots i_{n}} \supset I_{x}$, and $I_{x} \cap g_{n}\left(I_{y}\right)=\varnothing$. Therefore, at least one point of \dot{I}_{x} is a cluster point of $\Gamma(a)$, for all $a \in I_{y}$. It follows that, if $b \in Z_{0}$ is not a cluster point of some $\Gamma \mid Z_{0}$-orbit, then there exists $z \in \mathscr{K}_{P}$ such that I_{z} is nondegenerate, $b \in \dot{I}_{z}$, and no $\Gamma \mid Z_{0}$-orbit clusters on b. The set B of such $b \in Z_{0}$ is Γ invariant and either empty or countable. The set $C=Z_{0} \backslash B$ is an exceptional Γ-minimal set and $h(C)=\mathscr{K}_{P}$. If $b \in B$, the above observations imply that $\Gamma(b)$ clusters exactly on C.

The converse is trivial.

Remark. A condition that guarantees the hypotheses in (1.1) is that, for all $(i, j) \in\{1, \cdots, m\}^{2}$, there exists $k \geqq 1$ such that the (i, j)-th entry of P^{k} (the k-th power of the matrix) is $\geqq 2$.

Definition. Let Γ be a pseudogroup on an open subset of $\boldsymbol{R}, Y \subset \boldsymbol{R}$ a compact, totally disconnected, Γ-invariant set. Let $\tau: Y \rightarrow Y$ be a transformation belonging locally to $\Gamma \mid Y$ and generating that pseudogroup. Let $\sigma: \mathscr{K}_{P} \rightarrow \mathscr{K}_{P}$ be a subshift of finite type and $h: Y \rightarrow \mathscr{K}_{P}$ a continuous surjection such that $h \circ \tau=\sigma \circ h$. Suppose that, for all $y \in Y, h^{-1}(h(y))$ is either a singleton or is the pair of endpoints of the closure of a bounded component of $R \backslash Y$. Then τ is said to be essentially conjugate to the subshift σ (and, less precisely, τ is said to be an essential subshift). If there exists an exceptional Γ-minimal set $C \subseteq Y$ such that $h(C)=\mathscr{K}_{P}$, then C is called a Markov Γ-minimal set.

For example, if Γ is a Markov pseudogroup, then $\tau: Z_{0} \rightarrow Z_{0}$ is essentially conjugate to $\sigma: \mathscr{K}_{P} \rightarrow \mathscr{K}_{P}$. For $\tau: C \rightarrow C$ as in (1.1), C is a Markov Γ-minimal set. The following lemma is essentially the converse.
(1.2) Lemma. Let $\tilde{\Gamma}$ be $a C^{2}$ pseudogroup on an open subset of \boldsymbol{R}, \widetilde{C} a Markov $\widetilde{\Gamma}$-minimal set. Then there exists an open neighborhood W of \widetilde{C}, a smooth imbedding $c: W \rightarrow \boldsymbol{R}$, and a C^{2} Markov pseudogroup Γ on a neighborhood of $C=\iota(\widetilde{C})$ in \boldsymbol{R}, such that $\iota(\widetilde{\Gamma} \mid \widetilde{C}) \circ \iota^{-1}=\Gamma \mid C, \Gamma$ defines the essential subshift $\tau: Z_{0} \rightarrow Z_{0}$, and $C \subseteq Z_{0}$ is a Markov Γ-minimal set.

Proof. By a segment $Q \subseteq \widetilde{C}$, we mean a set of the form $Q=$ $\widetilde{C} \cap[a, b]=\widetilde{C} \cap] a-\varepsilon, b+\varepsilon[, \varepsilon>0$ and $a<b$. Clearly \widetilde{C} decomposes in many ways into disjoint segments $\widetilde{C}_{1}, \cdots, \widetilde{C}_{r}$ and, for $i \neq j$, either every point of \widetilde{C}_{i} precedes every point of \widetilde{C}_{j} (and we write $\widetilde{C}_{i}<\widetilde{C}_{j}$) or vice versa. There is an open neighborhood W of \widetilde{C} in \boldsymbol{R} and a smooth imbedding $\iota: W \rightarrow \boldsymbol{R}$ such that $\iota\left(\widetilde{C}_{i}\right)<\iota\left(\widetilde{C}_{j}\right)$ whenever $i<j$.

Let $\sigma: \mathscr{K}_{\widetilde{P}} \rightarrow \mathscr{K}_{\overparen{P}}$ be a subshift to which $\widetilde{\tau}$ is essentially conjugate, $\widetilde{P}=\left(\widetilde{p}_{\lambda \mu}\right), 1 \leqq \lambda, \mu \leqq \widetilde{m}$. For $1 \leqq \lambda \leqq \widetilde{m}$, let φ_{λ} be the branch of σ^{-1} that is defined by

$$
\varphi_{\lambda}\left(i_{1}, i_{2}, \cdots\right)=\left(\lambda, i_{1}, i_{2}, \cdots\right)
$$

whenever $\widetilde{p}_{i_{1}}=1$. Choose the numbering so that there is an integer $q \leqq \widetilde{m}$ with the property that $1 \leqq \lambda \leqq q$ is the necessary and sufficient condition that there exists μ with $\widetilde{p}_{\lambda \mu}=1$. Set $\mathscr{K}_{\lambda}=R\left(\varphi_{\lambda}\right), 1 \leqq \lambda \leqq q$. Then $\mathscr{K}_{\widetilde{P}}=\cup_{1 \leq \lambda \leq q} \mathscr{K}_{\lambda}$ is a disjoint union of open, compact subsets, and $D\left(\varphi_{\lambda}\right)=\cup_{\tilde{p}_{\lambda \mu}=1} \mathscr{K}_{\mu}$. Set $\mathscr{K}_{\lambda \mu}=\varphi_{\lambda}\left(\mathscr{K}_{\mu}\right)$ whenever $\tilde{p}_{\lambda \mu}=1$, so $\mathscr{K}_{\lambda}=\cup_{\tilde{p}_{\lambda \mu}=1} \mathscr{K}_{\lambda \mu}$ is a union of disjoint, open, compact subsets.

Via the essential conjugacy map h, transfer the above definitions to
give $\widetilde{\varphi}_{\lambda} \in \widetilde{\Gamma} \mid \widetilde{C}$ and \widetilde{C}_{λ} and $\widetilde{C}_{\lambda \mu}$. Let

$$
\Lambda=\left\{(\lambda, \mu) \mid 1 \leqq \lambda \leqq q, 1 \leqq \mu \leqq \widetilde{m}, \tilde{p}_{\lambda \mu}=1\right\}
$$

Under lexicographic order, Λ is order-isomorphic to $\{1, \cdots, m\}$, where $m=\operatorname{card}(\Lambda)$.

By decomposing each $\widetilde{C}_{\lambda_{\mu}}$ into disjoint segments and proceeding as in the first paragraph, one obtains an open neighborhood W of \widetilde{C} and an imbedding $c: W \rightarrow \boldsymbol{R}$ such that, whenever $\left(\lambda_{1}, \mu_{1}\right)<\left(\lambda_{2}, \mu_{2}\right)$ in Λ, then $\iota\left(\widetilde{C}_{\lambda_{1} \mu_{1}}\right)<\iota\left(\widetilde{C}_{\lambda_{2} \mu_{2}}\right)$. After conjugating $\widetilde{\Gamma} \mid W$ by ι, we can let $\widetilde{C}_{\lambda_{\mu}}$ denote $\ell\left(\widetilde{C}_{\lambda_{\mu}}\right)$, etc., for notational simplicity.

Thus, $\widetilde{C}_{\lambda \mu}$ and \widetilde{C}_{λ} are segments and we let $I_{\lambda \mu}$ and X_{λ} denote the minimal compact intervals such that $\widetilde{C}_{\lambda \mu}=\widetilde{C} \cap I_{\lambda \mu}$ and $\widetilde{C}_{\lambda}=\widetilde{C} \cap X_{\lambda}$. Also write $X_{\lambda \mu}=X_{\mu}$ for $(\lambda, \mu) \in \Lambda$. Let $h_{\lambda \mu}$ be a local C^{2} diffeomorphism in R which extends the map $\widetilde{\Phi}_{\lambda}\left|\widetilde{\Phi}_{\lambda}^{-1}\left(\widetilde{C}_{\lambda \mu}\right)=\widetilde{\Phi}_{\lambda}\right| \widetilde{C}_{\mu}$ so that $R\left(h_{\lambda \mu}\right)$ is an open interval containing $I_{\lambda \mu}$. Make sure that the intervals $R\left(h_{\lambda_{\mu}}\right)$ are disjoint. Clearly,

$$
D\left(h_{\lambda \mu}\right) \supset X_{\lambda \mu}=h_{\lambda \mu}^{-1}\left(I_{\lambda \mu}\right) \supset \bigcup_{(\mu, \gamma) \in \Lambda}\left(I_{\mu r}\right) .
$$

Also, by choosing each $R\left(h_{\lambda_{\mu}}\right)$ slightly smaller, we assume that $D\left(h_{\lambda \mu}\right) \cap$ $I_{\nu r}=\varnothing$ whenever $\nu \neq \mu$. Finally, $P=\left(P_{\lambda \mu, \nu r}\right)$ is the $m \times m$ matrix with $p_{\lambda \mu, \mu \tau}=1$ and $p_{\lambda \mu, \nu r}=0$ if $\nu \neq \mu$, where all $(\lambda, \mu),(\nu, \gamma) \in \Lambda$.

It is clear that the pseudogroup Γ, generated by $\left\{h_{\lambda_{\mu}}\right\}_{(\lambda, \mu) \in \Lambda}$, is as required.

The precise meaning of the definition of Markov LMS for a foliated manifold, as indicated in the introduction, should now be clear. By (1.2), it will be sufficient to prove our theorems under the assumption that the holonomy pseudogroup Γ on a neighborhood of C in $\operatorname{int}(R)$ is a Markov pseudogroup and that $C \subseteq Z_{0}$ is a Markov Γ-minimal set.

Remarks. (1) Given a Markov pseudogroup Γ as in (1.1), one can realize Γ as the holonomy in a neighborhood of an exceptional minimal set X in a suitable C^{2}-foliated manifold. One method, that of "branched staircases", is due to Takamura [Ta] and Inaba [In]. Another produces X in the nonsingular part of a singular foliation and then removes the singularities. Sometime Γ can be "completed" to a subgroup of $\operatorname{Diff}^{2}\left(S^{1}\right)$ [Sa 1], [G-S] and X can then be realized in a suitable foliated S^{1}-bundle.
(2) Having realized Γ as the holonomy of a Markov minimal set X, one can turbulize along a closed transversal meeting X to produce a Markov LMS at level one. Indeed, it is possible to realize Γ as the holonomy of a Markov LMS at any desired finite level.
2. Some estimates on derivatives. Let Γ be a C^{2} pseudogroup in \boldsymbol{R}, with generating set $\left\{h_{1}, \cdots, h_{m}\right\}$. Let

$$
g=h_{i(p)}^{s(p)} \circ h_{i(p-1)}^{\varepsilon(p-1)} \circ \cdots \circ h_{i(1)}^{\varepsilon(1)},
$$

with all $\varepsilon(k)= \pm 1$ and $D(g)$ maximal possible. Set

$$
g_{k}=h_{i(k)}^{\varepsilon}(k) \circ \cdots \circ h_{i(1)}^{\varepsilon}
$$

and, for $u_{0} \in D(g)$, set $u_{k}=g_{k}\left(u_{0}\right), 1 \leqq k \leqq p$.
Definition. If g as above is a reduced word in the generators $\left\{h_{i}^{ \pm 1}\right\}_{1 \leq i \leq m}$, then g is called a chain of length $|g|=p$. If also $u_{0}, u_{1}, \cdots, u_{p}$ are all distinct, then g is a simple chain at u_{0}. If u_{1}, \cdots, u_{p} are distinct and $u_{p}=u_{0}$, then g is a simple loop at u_{0}. If $g=q^{-1} \circ f \circ q$, where q is a simple chain at u_{0} and f is a simple loop at $q\left(u_{0}\right)$, then g is a basic loop at u_{0}.

Let $Y \subset \cup_{i=1}^{m} D\left(h_{i}\right)$ be a compact, Γ-invariant set. By passing to $\Gamma \mid W$, where W is a suitable bounded, open neighborhood of Y in \boldsymbol{R}, we can assume that there are positive constants c and b such that $\left(h_{i}^{+1}\right)^{\prime}>c$ and $\left|\left(h_{i}^{ \pm 1}\right)^{\prime \prime}\right| \leqq b$ everywhere, $1 \leqq i \leqq m$. Set $\theta=b / c$ and $\lambda=\exp (6 \theta|W|)$. Here, $|W|$ denotes the sum of the lengths of the components of W.

The following estimate will be found in [Sa 2].
(2.1) Lemma. Let $g \in \Gamma$ be a chain of length p and let $u_{0}, v_{0} \in D(g)$. Then

$$
g^{\prime}\left(u_{0}\right) / g^{\prime}\left(v_{0}\right) \leqq \exp \left(\theta \cdot \sum_{i=0}^{p-1}\left|u_{i}-v_{i}\right|\right)
$$

Definition. A gap J of Y is a compact, nondegenerate interval such that $\partial J=J \cap Y$.

If $g \in \Gamma$ is a chain of length p and $K_{0} \subset D(g)$ is a compact interval, we set $K_{j}=g_{j}\left(K_{0}\right), 1 \leqq j \leqq p$. If J_{0} is a gap of $Y, u_{0} \in \partial J_{0}$, and if g is a simple chain at u_{0} with $D(g) \supset J_{0}$, then $J_{0}, J_{1}, \cdots, J_{p}$ have disjoint interiors. If g is a simple or basic loop at u_{0} with $D(g) \supset J_{0}$, then each of the intervals $J_{0}, J_{1}, \cdots, J_{p}$ appears at most three times in this list and $\operatorname{int}\left(J_{k}\right) \cap \operatorname{int}\left(J_{i}\right) \neq \varnothing$ if and only if $J_{k}=J_{i}$.
(2.2) Lemma. Let J_{0} be a gap of Y and let K_{0} be a compact interval such that $J_{0} \cap K_{0}$ is a singleton $\left\{u_{0}\right\}$ and $\left|K_{0}\right| /\left|J_{0}\right| \leqq 1 / \lambda$. If $g \in \Gamma$ is either a simple chain, a simple loop, or a basic loop at u_{0} and if $J_{0} \cup K_{0} \subset D(g)$, then $\left|g\left(K_{0}\right)\right|<\left|g\left(J_{0}\right)\right|$ and $g^{\prime}(u) / g^{\prime}(v)<\lambda$, for all $u, v \in J_{0} \cup K_{0}$.

Proof. Evidently $\left|K_{0}\right|<\left|J_{0}\right|$. Inductively, assume that $\left|K_{i}\right|<\left|J_{i}\right|$, $0 \leqq i<s$. Then, by the definition of λ, together with the above remarks
and (2.1), we have $g_{s}^{\prime}(u) / g_{s}^{\prime}(v)<\lambda$, for all $u, v \in J_{0} \cup K_{0}$. Furthermore, there exists $u \in K_{0}$ and $v \in J_{0}$ such that

$$
\left|K_{s}\right| /\left|J_{s}\right|=g_{s}^{\prime}(u)\left|K_{0}\right| / g_{s}^{\prime}(v)\left|J_{0}\right|<1
$$

Remark. In this paper, we will only need (2.2) for the case in which g is a simple chain. In this case, the factor 6 in the definition of λ can be reduced to 2 . But the general version of (2.2) will be useful elsewhere.
3. The relative holonomy groups. Let $\mathscr{S}=\left(\left\{I_{1}, \cdots, I_{m}\right\},\left\{h_{1}, \cdots, h_{m}\right\}\right.$, $P)$ and $\Gamma=\Gamma_{\mathscr{S}}$ be Markovian and assume that $C \subseteq Z_{0}$ is a Markov Γ minimal set.

Remark that chains must reduce to the form

$$
g=h_{i_{p}} \circ \cdots \circ h_{i_{k}} \circ h_{i_{k-1}}^{-1} \circ \cdots \circ h_{i_{1}}^{-1}=h_{i_{p}} \circ \cdots \circ T^{k-1} \mid D(g)
$$

This is because the generators have disjoint images.
Definition. If $x \in C$, then Γ_{x} is the pseudogroup of all $g \mid U$, where g is a chain as above, $g(x)=x$, and U is an open, connected neighborhood of x in $D(g)$.

Definition. Let $x \in C$. Then the group of germs at x of all $\gamma=g \mid C$, where $g \in \Gamma_{x}$, is denoted $H_{x}(\Gamma(x), C)$ and is called the holonomy group at x relative to C or, more simply, the relative holonomy group at x.

Evidently, $H_{x}(\Gamma(x), C)$ depends, as an abstract group, only on the orbit $\Gamma(x)$ and not on the basepoint x.

Definition. A point $y \in C$ is said to be τ-cyclic if $\tau^{k}(y)=y$, some $k \geqq 1$. If the integer k is minimal, then $\left\{\tau^{k-1}(y), \tau^{k-2}(y), \cdots, \tau(y), y\right\}$ is called a τ-cycle.
(3.1) Lemma. Exactly a countable infinity of Γ-orbits in C contain τ-cycles and there is exactly one τ-cycle in each such orbit.

Proof. It is enough to prove the corresponding assertions for the subshift $\sigma: \mathscr{K}_{P} \rightarrow \mathscr{K}_{P}$ to which τ is essentially conjugate. Since \mathscr{K}_{P} is uncountable, this is an easy exercise in symbolic dynamics.
(3.2) Lemma. Let $x \in C$. If $\Gamma(x)$ does not contain a τ-cycle, then $H_{x}(\Gamma(x), C)=0$. If $\Gamma(x)$ contains a τ-cycle, then there is a neighborhood V_{x} of x in C such that $\Gamma_{x} \mid V_{x}$ contains a contraction $f: V_{x} \rightarrow V_{x}$ and each element of $\Gamma_{x} \mid V_{x}$ is the restriction of f^{k} to a suitable neighborhood of x in V_{x}, some $k \in \boldsymbol{Z}$.

Proof. Since τ generates $\Gamma \mid C$, the first assertion is immediate. If
$\Gamma(x)$ contains a τ-cyclic point x_{0}, we lose no generality in assuming that $x=x_{0}$. Since each h_{i} is a single-valued branch of τ^{-1}, there is a simple loop at x_{0} of the form $g=h_{i_{1}} \circ \cdots \circ h_{i_{p}}$. Thus, $h\left(x_{0}\right)$ is the σ-cyclic point $\left(i_{1}, \cdots, i_{p}, i_{1}, \cdots, i_{p}, \cdots\right) \in \mathscr{K}_{P}$, the neighborhood $V_{x_{0}}$ can be defined by $h\left(V_{x_{0}}\right)=\left\{\left(j_{k}\right)_{k=1}^{\infty} \in \mathscr{K}_{P} \mid j_{1}=i_{1}\right\}$, and $h \circ g=\bar{g} \circ h$ where $\bar{g}\left(i_{1}, j_{2}, j_{3}, \cdots\right)=$ $\left(i_{1}, \cdots, i_{p}, i_{1}, j_{2}, j_{3}, \cdots\right)$. From this it is evident that $f=g \mid V_{x_{0}}$ is a contraction to x_{0}. It is also evident that the only chains that fix x_{0} restrict, in $V_{x_{0}}$, to the powers of f.
(3.3) Corollary. For each $x \in C, H_{x}(\Gamma(x), C)$ is either trivial or infinite cyclic, generated by a contraction that is unique in a suitable neighborhood of x in C. Those $x \in C$ such that $H_{x}(\Gamma(x), C) \cong \boldsymbol{Z}$ lie on a countable infinity of distinct orbits.

So far, nothing in this section has required smoothness of class C^{2}. The following does.
(3.4) Lemma. If C clusters at x from only one side, then $\Gamma(x)$ contains a τ-cycle, hence $H_{x}(\Gamma(x), C) \cong \boldsymbol{Z}$.

Proof. First suppose that $\Gamma(x)$ has an element $x_{0} \in I_{j}=[a, b]$ such that either $C \cap[a, b]=C \cap\left[x_{0}, b\right]$ or $C \cap[a, b]=C \cap\left[a, x_{0}\right]$. For definiteness, assume that the first is the case. Then $X_{j}=h_{j}^{-1}[a, b]=[T(a), T(b)]$ and $C \cap X_{j}=C \cap\left[\tau\left(x_{0}\right), T(b)\right]$. Since $\tau\left(x_{0}\right) \in C \cap I_{k}$, some $I_{k}=[c, d]$, it follows that $\left\{\tau^{r}\left(x_{0}\right) \mid r \geqq 0\right\}$ is a finite set, and we are done.

Alternatively, each $y \in \Gamma(x)$ is an endpoint of a gap J_{y} of C and $J_{y} \subset \operatorname{int}\left(I_{j}\right)$, some j. In this case, every chain defined at y is defined on all of J_{y}. Fix $x_{0} \in \Gamma(x)$ and $J_{0}=J_{x_{0}}$ such that $\left|J_{0}\right| \geqq\left|J_{y}\right|$, for every $y \in \Gamma(x)$.

Assume that $\Gamma(x)$ contains no τ-cycle. It follows that every reduced chain g, defined at x_{0}, is a simple chain at x_{0} with $J_{0} \subset D(g)$. We will show that this leads to a contradiction.

Let K_{0} be a compact, nondegenerate interval such that $K_{0} \cap J_{0}=\left\{x_{0}\right\}$, $\partial K_{0}=\left\{x_{0}, y_{0}\right\} \subset \Gamma(x)$, and $\left|K_{0}\right| /\left|J_{0}\right| \leqq 1 / \lambda$, where λ is as in $\S 2$. By (2.2), whenever g is a chain such that $K_{0} \subset D(g)$ (hence g reduces to a simple chain at x_{0} and $\left.J_{0} \subset D(g)\right)$, then $\left|g\left(K_{0}\right)\right|<\left|g\left(J_{0}\right)\right|$.

Let $\delta>0$ be such that every point δ-close to I_{k} (respectively, to X_{k}) lies in $R\left(h_{k}\right)$ (respectively, in $D\left(h_{k}\right)$), $1 \leqq k \leqq m$. Let $r \geqq 1$ be an integer such that every chain g at x_{0} with $|g|>r$ satisfies $\left|g\left(J_{0}\right)\right|<\delta$. Let $\gamma_{1}, \cdots, \gamma_{p}$ be the chains at x_{0} with $\left|\gamma_{i}\right| \leqq r$ and, without prejudice to the properties of K_{0} listed above, choose that interval so small that $K_{0} \subset D\left(\gamma_{i}\right), 1 \leqq i \leqq p$. This guarantees, via (2.2), that $K_{0} \cup J_{0} \subset D(g)$, for each chain g defined at x_{0}. By induction on $|g|$, the same holds for every
chain defined at y_{0}.
For definiteness, let $K_{0}=\left[x_{0}, y_{0}\right]$. Since every chain defined at x_{0} is simple at x_{0}, we obtain a well defined map $\varphi: \Gamma(x) \rightarrow \Gamma(x)$ by setting $\varphi\left(g\left(x_{0}\right)\right)=g\left(y_{0}\right)$. Similarly, every chain at $y_{0} \in \Gamma(x)$ is simple and defined at x_{0}, so φ is bijective. Let $z_{0} \in \Gamma(x)$ be the point such that $\varphi\left(z_{0}\right)=x_{0}$. Then there is a chain g such that $\left[z_{0}, x_{0}\right]=g\left(K_{0}\right) \supset J_{0} . \quad$ By (2.2) and the maximality of $\left|J_{0}\right|$, we obtain $\left|J_{0}\right| \leqq\left|g\left(K_{0}\right)\right|<\left|g\left(J_{0}\right)\right| \leqq\left|J_{0}\right|$.

Proof of Theorem 1. Let $X \subset U \in O(\mathscr{F})$ be a Markov LMS as defined in the introduction. Let Γ, R, and $C=X \cap \operatorname{int}(R)$ also be as in the introduction. If Γ is a Markov pseudogroup on a neighborhood of C in R and if C is a Markov Γ-minimal set, then Theorem 1 is a consequence of (3.2), (3.3), and (3.4). By (1.2), no generality is lost in making these assumptions.

Remarks. (1) The leaves $L \subset X$ such that $H_{x}(L, X) \cong Z$ must be resilient. That is, such a leaf L has an element of contracting holonomy on at least one side and L itself meets the interior of the support of this contraction. Resiliency figures in many important properties of foliated manifolds. For example, the nonvanishing of the exotic characteristic class $\operatorname{gv}(\mathscr{F})$ implies the presence of a resilient leaf [Du]. Another example is the entropy of (M, \mathscr{F}), defined in [G-L-W] and proven there to be nontrivial if and only if there is a resilient leaf.
(2) The exceptional minimal set constructed in [Sa 1] is a Markov minimal set. Consequently, the assertion in [H-H, 3.9, p. 114], that this set contains only two leaves with nontrivial holonomy, is erroneous.
4. Markov sub-pseudogroups. In the proofs of Theorem 2 and Theorem 3, the most delicate step will involve passing to a Markov sub-pseudogroup. It will be helpful to have discussed the salient features of this process before getting into the proofs of the theorems.

Let $\mathscr{S}=\left(\left\{I_{1}, \cdots, I_{m}\right\},\left\{h_{1}, \cdots, h_{m}\right\}, P\right)$ be a Markov system and let $\Gamma=\Gamma_{\mathscr{S}} . \quad$ Fix $n \geqq 2$ and let $W_{n}=\left\{w_{i}\right\}_{i=1}^{q}$ be the set of all words of length n in positive powers of the generators h_{1}, \cdots, h_{m}. For $w \in W_{n}$, write $w=h_{\lambda(w)} \circ v, 1 \leqq \lambda(w) \leqq m$, and let h_{w} be the restriction of $h_{\lambda(w)}$ to an open neighborhood $D\left(h_{w}\right)$ of I_{v}. Choosing all $D\left(h_{w}\right)$ small enough guarantees that $R\left(h_{w}\right) \cap R\left(h_{w^{\prime}}\right)=\varnothing$, whenever $w \neq w^{\prime}$. We denote the interval $I_{v}=$ $h_{w}^{-1}\left(I_{w}\right)$ by X_{w}. Let $Q=\left(q_{i j}\right)$ be the $q \times q$ matrix with entries $\{0,1\}$ such that $q_{i j}=0$ if and only if $I_{w_{j}} \cap D\left(h_{w_{i}}\right)=\varnothing$. Thus, $q_{i j}=1$ if and only if $I_{w_{j}} \subseteq X_{w_{i}}$. Then $\mathscr{S}_{n}=\left(\left\{I_{w_{1}}, \cdots, I_{w_{q}}\right\},\left\{h_{w_{1}}, \cdots, h_{w_{q}}\right\}, Q\right)$ is a Markov system. Let $\Gamma_{n}=\Gamma_{\mathscr{S}_{n}}$ and, for uniformity, let $\Gamma_{1}=\Gamma$.

In discussions where more than one Markov pseudogroup, say $\left\{\Gamma^{\prime}\right.$,
$\Gamma^{\prime \prime}, \cdots, \Gamma^{(l)}$, are involved, we use the notation $Z_{0}\left(\Gamma^{(k)}\right)$ to denote the set Z_{0} determined by the Markov pseudogroup $\Gamma^{(k)}$ as in $\S 1,1 \leqq k \leqq l$.
(4.1) Lemma. If Γ is a Markov pseudogroup and $n \geqq 1$, then $Z_{0}\left(\Gamma_{n}\right)=Z_{0}(\Gamma)=Z_{0}$ and $\Gamma_{n}\left|Z_{0}=\Gamma\right| Z_{0}$.

Let $1 \leqq i_{1}<\cdots<i_{r} \leqq m$. Then we can define a Markov system $\mathscr{S}\left(i_{1}, \cdots, i_{r}\right)=\left(\left\{I_{i_{j}}\right\}_{j=1}^{r},\left\{h_{i_{j}}\right\}_{j=1}^{r}, \quad\left(p_{i i_{i} k}\right)\right)$ and this gives rise to a subpseudogroup $\Gamma\left(i_{1}, \cdots, i_{r}\right) \subseteq \Gamma$.
(4.2) Lemma. $\quad Z_{0}\left(\Gamma\left(i_{1}, \cdots, i_{r}\right)\right) \subseteq Z_{0}(\Gamma)$.

We combine these two constructions. The elements of $W_{n}=\left\{w_{1}, \cdots, w_{q}\right\}$ serve as indices in \mathscr{S}_{n}, so we define $\Gamma^{*}=\Gamma_{n}\left(w_{i_{1}}, \cdots, w_{i_{p}}\right), 1 \leqq i_{1}<\cdots<i_{p} \leqq q$, obtaining a Markov sub-pseudogroup of Γ. By renumbering, we set $\Gamma^{*}=\Gamma_{n}\left(w_{1}, \cdots, w_{p}\right)$.

Let $Z_{0}=Z_{0}(\Gamma), Z_{0}^{*}=Z_{0}\left(\Gamma^{*}\right)$, and let $h_{j}^{*}=h_{w_{j}}, 1 \leqq j \leqq p . \quad$ By (4.1) and (4.2), we see that $Z_{0}^{*} \cong Z_{0}$. The typical chain $g^{*} \in \Gamma^{*}$ is of the form

$$
g^{*}=h_{j_{1}}^{*} \circ \cdots \circ h_{j_{s}}^{*} \circ\left(h_{j_{s+1}}^{*}\right)^{-1} \circ \cdots \circ\left(h_{j_{t}}^{*}\right)^{-1}
$$

and has canonical extension to a chain

$$
g=h_{\lambda\left(j_{1}\right)} \circ \cdots \circ h_{\lambda\left(j_{s}\right)} \circ h_{\lambda\left(j_{s+1}\right)}^{-1} \circ \cdots \circ h_{\lambda\left(j_{t}\right)}^{-1} \in \Gamma .
$$

Finally, the essential subshift is $\tau^{*}=\tau \mid Z_{0}^{* \cdot}$
(4.3) Lemma. Let $g^{*} \in \Gamma^{*}$ be a chain, $g \in \Gamma$ the canonical extension, and let $x \in\left(Z_{0} \backslash Z_{0}^{*}\right) \cap D(g)$. Then $g(x) \notin Z_{0}^{*}$.

Proof. Write g^{*} and g in the above forms and assume that $g(x) \in Z_{0}^{*}$. By a finite induction, we readily obtain that $y=\tau^{s}(g(x))=\left(\tau^{*}\right)^{s}(g(x))$ is an element of Z_{0}^{*}. But $y=h_{\lambda\left(j_{s+1}\right)}^{-1} \circ \cdots \circ h_{\lambda\left(j_{t}\right)}^{-1}(x)$, so another finite induction shows that

$$
x=h_{\lambda\left(j_{t}\right)} \circ \cdots \circ h_{\lambda\left(j_{s+1}\right)}(y)=h_{j_{t}}^{*} \circ \cdots \circ h_{j_{s+1}}^{*}(y)
$$

which is also an element of Z_{0}^{*}, a contradiction.
(4.4) Lemma. Let g and g^{*} be as in (4.3). Let $\operatorname{int}\left(J_{0}^{*}\right) \subset \boldsymbol{R} \backslash Z_{0}^{*}$ and let K_{0}^{*} be a compact, nondegenerate interval such that $J_{0}^{*} \cap K_{0}^{*}=\left\{u_{0}\right\}$, $u_{0} \in Z_{0}^{*}$, and $\left|K_{0}^{*}\right| /\left|J_{0}^{*}\right| \leqq 1 / \lambda$. Let g^{*} be a simple chain, a simple loop, or a basic loop at u_{0} such that $J_{0}^{*} \cup K_{0}^{*} \subset D(g)$. Then $\left|g\left(K_{0}^{*}\right)\right|<\left|g\left(J_{0}^{*}\right)\right|$ and $g^{\prime}(u) / g^{\prime}(v)<\lambda$, for all points $u, v \in J_{0}^{*} \cup K_{0}^{*}$.

Proof. By (4.3), each of the intervals $J_{0}^{*}, \cdots, J_{t}^{*}$ (we are using notation from §2) has interior missing Z_{0}^{*}, while $u_{k} \in Z_{0}^{*}, 0 \leqq k \leqq t$. Therefore, if $u_{i} \neq u_{k}$, then $\operatorname{int}\left(J_{i}^{*}\right)$ and $\operatorname{int}\left(J_{k}^{*}\right)$ lie in distinct components
of $R \backslash Z_{0}^{*}$. The fact that these open intervals are disjoint is all that is needed in order to mimic the proof of (2.2).
5. The measure of a Markov set. As usual, let $\mathscr{S}=\left(\left\{I_{j}\right\}_{j=1}^{m},\left\{h_{j}\right\}_{j=1}^{m}, P\right)$ be a Markov system and set $\Gamma=\Gamma_{\mathscr{S}}$. We do not assume that Z_{0} contains a Cantor set since that property can be lost by passing to a subpseudogroup.

For $Y \subseteq \boldsymbol{R}$ a measurable set, we denote by $|Y|$ its Lebesgue measure.
(5.1) Theorem. $\left|Z_{0}\right|=0$.

By (1.2), this result generalizes Theorem 3. The proof of (5.1) will consist of a series of definitions and lemmas.

Definition. If $A \subseteq Z_{0}$ and N is a nonnegative integer, then $A_{N}=$ $\cup_{n \geqq N} \tau^{-n}(A)$ and $A_{\infty}=\cap_{N=0}^{\infty} A_{N}$.
(5.2) Lemma. $\left(A \cup A^{\prime}\right)_{\infty}=A_{\infty} \cup A_{\infty}^{\prime}$.
(5.3) Lemma. $\left(\tau^{-1} A\right)_{\infty}=A_{\infty}$.

If $g \in \Gamma$, we adopt the notation $g A$ for $g(A \cap D(g))$. We also set $\Gamma_{+}=\cup_{n=1}^{\infty} W_{n}$, the set of nontrivial words in nonnegative powers of h_{1}, \cdots, h_{m}.
(5.4) Lemma. $\quad(\gamma A)_{\infty} \subseteq A_{\infty}$, for each $\gamma \in \Gamma_{+}$.
(5.5) Lemma. $A_{\infty}=\left(h_{1} A\right)_{\infty} \cup \cdots \cup\left(h_{m} A\right)_{\infty}$.

Proof. Use the fact that $\tau^{-1}(A)=h_{1} A \cup \cdots \cup h_{m} A$, together with (5.2) and (5.3).
(5.6) Lemma. $\left(Z_{0}\right)_{\infty}=Z_{0}$.
(5.7) Lemma. Let $x \in Z_{0}$. If x is not τ-cyclic, then $\{x\}_{\infty}=\varnothing$. Otherwise, $\{x\}_{\infty}=\Gamma(x)$.
(5.8) Lemma. Let $X=\left\{x_{0}, \cdots, x_{p}\right\}$ be a τ-cycle. Let y_{1}, \cdots, y_{t} be the elements of $\Gamma\left(x_{0}\right) \backslash X$ such that $\tau\left(y_{\alpha}\right) \in X, 1 \leqq \alpha \leqq t$. Let $\gamma_{\alpha} \in \Gamma_{+}$be of minimal length such that $\gamma_{\alpha}\left(x_{0}\right)=y_{\alpha}, 1 \leqq \alpha \leqq t$. Let J be an interval, let $j \in\{1, \cdots, m\}$, and let $x_{0} \in V=J \cap I_{j} \cap Z_{0}$. Then $V_{\infty}=F \cup\left(\cup_{\alpha=1}^{t}\left(\gamma_{\alpha} V\right)_{\infty}\right)$, where the set F is at most countable.

Proof. (1) Let $h_{j_{i}}\left(x_{i}\right)=x_{i+1}, 0 \leqq i \leqq p$, let $x_{p+1}=x_{0}$, and let $\gamma_{0}=$ $h_{j_{p}} \circ \cdots \circ h_{j_{0}}$. By the dynamics of the subshift $\sigma: \mathscr{K}_{P} \rightarrow \mathscr{K}_{P}$, it is clear that

$$
\gamma_{0}: I_{j} \cap Z_{0} \rightarrow I_{j} \cap Z_{0}
$$

has either one fixed point x_{0} or two such, x_{0} and \bar{x}_{0}. In the second case,
\bar{x}_{0} lies in a τ-cycle $\left\{\bar{x}_{0}, \cdots, \bar{x}_{p}\right\}$. Consider both cases at once by allowing $x_{i}=\bar{x}_{i}$. Then the set $\left\{x_{0}, \bar{x}_{0}\right\}$ is exactly $\lim _{n \rightarrow \infty} \gamma_{0}^{n}\left(Z_{0} \cap I_{j}\right)$, and we let F denote the set $\Gamma\left(x_{0}\right) \cup \Gamma\left(\bar{x}_{0}\right)$.
(2) By (5.4) and (5.7), $V_{\infty} \supseteq F \cup\left(\gamma_{1} V\right)_{\infty} \cup \cdots \cup\left(\gamma_{t} V\right)_{\infty}$.
(3) Let $y \in V_{\infty}$ and let $\{n(k)\}_{k=1}^{\infty}$ be the strictly increasing sequence of positive integers such that $\tau^{n(k)}(y) \in V$, for all $k \geqq 1$. Set $V_{i}=$ $h_{j_{i-1}} \circ \cdots \circ h_{j_{0}}(V)$, for each $i \geqq 1$, and set $V_{0}=V$. Since $V=J \cap I_{j} \cap Z_{0}$ and J is an interval, we see that $V_{p+1} \cong V_{0}$. For a given $k \geqq 1$, $\tau^{n(k)-1}(y) \in \tau^{-1}\left(\tau^{n(k)}(y)\right) \subseteq \tau^{-1}\left(V_{0}\right)$ and this latter set is exactly $V_{1} \cup \gamma_{\alpha_{1}}(V) \cup$ $\cdots \cup \gamma_{\alpha_{r}}(V)$, for suitable indices $1 \leqq \alpha_{1}<\cdots<\alpha_{r} \leqq t$. If $\tau^{n(k)-1}(y) \in V_{1}$, repeat this procedure to get $\tau^{n(k)-2}(y) \in V_{2} \cup \gamma_{\beta_{1}}(V) \cup \cdots \cup \gamma_{\beta_{q}}(V)$, for suitable $1 \leqq \beta_{1}<\cdots<\beta_{q} \leqq t$, etc. There are two cases.

Case 1. For all large values of $n, \tau^{n}(y) \in \bigcup_{i=0}^{p} V_{i}$. Thus, find $N \geqq 0$ such that $\tau^{N}(y) \in V$ and $\gamma_{0}^{-n}\left(\tau^{N}(y)\right)$ is defined and belongs to V, for each $n \geqq 0$. By the compactness of I_{j} and step (1), we conclude that $\tau^{N}(y) \in$ $\left\{x_{0}, \bar{x}_{0}\right\}$, hence $y \in F$.

Case 2. There is a strictly increasing sequence of integers $\{m(k)\}_{k=1}^{\infty}$ such that $\tau^{m(k)}(y) \in \gamma_{1}(V) \cup \cdots \cup \gamma_{t}(V)$, for each $k \geqq 1$. Thus $y \in\left(\gamma_{1} V\right)_{\infty} \cup$ $\cdots \cup\left(\gamma_{t} V\right)_{\infty}$.

Definition. A point $x \in Z_{0}$ is good if there is a neighborhood V of x in Z_{0} such that $\left|V_{\infty}\right|=0$. The set of good points is denoted G. The bad set is $B=Z_{0} \backslash G$.

Remark that B is compact.
(5.9) Lemma. $B=\varnothing$ if and only if $\left|Z_{0}\right|=0$.

Proof. If $\left|Z_{0}\right|=0$, it is evident that $B=\varnothing$. If $B=\varnothing$, the compactness of Z_{0} allows us to find a finite cover V_{1}, \cdots, V_{r} of Z_{0} by relatively open subsets, each with $\left|\left(V_{i}\right)_{\infty}\right|=0$. Then (5.2) and (5.6) imply that $\left|Z_{0}\right|=0$.
(5.10) Lemma. Let $V \subseteq Z_{0}$ be measurable. If $\sum_{g \in \Gamma_{+}}|g V|$ converges, then $\left|V_{\infty}\right|=0$.

Proof. Since $\tau^{-n}(V)=\cup_{g \in W_{n}} g V$, we obtain, for each $N \geqq 1$, the inequalities

$$
\left|V_{\infty}\right|=\left|\bigcap_{k=1}^{\infty} \cup \bigcup_{n \geqq k} \tau^{-n}(V)\right| \leqq\left|\bigcup_{n \geqq N} \tau^{-n}(V)\right| \leqq \sum_{|g| \geqq N}|g V|
$$

(5.11) Lemma. Let $N \geqq 1$ be an integer. Then $x \in Z_{0}$ is a good point if and only if $g(x) \in G$, for each $g \in W_{N}$.

Proof. Use (5.5) and induction on N.
(5.12) Lemma. Let $x \in I_{j} \cap Z_{0}$. If $\tau^{-n}(x)=\varnothing$, some $n \geqq 1$, then $\left(I_{j} \cap Z_{0}\right)_{\infty}=\varnothing$, hence $x \in G$.

Proof. Equivalently, $x \in D(g)$ for only finitely many $g \in \Gamma_{+}$. That is, for all but these finitely many $g \in \Gamma_{+}, I_{j} \cap D(g)=\varnothing$.
(5.13) Lemma. Let J_{0} be a gap of Z_{0} and assume that $J_{0} \subset I_{j}$, some j. Let $K_{0} \subset I_{j}$ be a compact, nondegenerate interval such the $J_{0} \cap K_{0}=$ $\left\{x_{0}\right\}$ and $\left|K_{0}\right| /\left|J_{0}\right| \leqq 1 / \lambda$. Then $\left|\left(Z_{0} \cap\left(J_{0} \cup K_{0}\right)\right)_{\infty}\right|=0$. In particular, $x_{0} \in G$.

Proof. There are two cases.
Case 1. Assume that x_{0} does not lie in a τ-cycle. By (5.12), we can also assume that $x_{0} \in D(g)$ for infinitely many $g \in \Gamma_{+}$, each of which must be a simple chain at x_{0} with $J_{0} \cup K_{0} \subset D(g)$. By (2.2), $\left|g K_{0}\right|<\left|g J_{0}\right|$ for all such g. The intervals $\left\{g J_{0}\right\}_{g \in \Gamma_{+}}$have disjoint interiors, so

$$
\sum_{g \in T_{+}}\left|g\left(J_{0} \cup K_{0}\right)\right| \leqq 2 \cdot \sum_{g \in \Gamma_{+}}\left|g J_{0}\right|<\infty
$$

Take $V=Z_{0} \cap\left(J_{0} \cup K_{0}\right)$ in (5.10).
Case 2. Assume that x_{0} is τ-cyclic. Then the neighborhood $V=$ $Z_{0} \cap\left(J_{0} \cup K_{0}\right)$ and the point x_{0} satisfy the hypotheses of (5.8). Since $\gamma_{\alpha}\left(x_{0}\right)$ does not lie in a τ-cycle, $1 \leqq \alpha \leqq t$, we can apply the argument in Case 1 to all chains of the form $g \circ \gamma_{\alpha}, g \in \Gamma_{+}$, to conclude that

$$
\sum_{g \in \Gamma_{+}}\left|g\left(\gamma_{\alpha}\left(J_{0} \cup K_{0}\right)\right)\right|<\infty
$$

Then (5.10) implies that $\left|\left(Z_{0} \cap \gamma_{\alpha}\left(J_{0} \cup K_{0}\right)\right)_{\infty}\right|=0,1 \leqq \alpha \leqq t$. By (5.8), $\left|\left(Z_{0} \cap\left(J_{0} \cup K_{0}\right)\right)_{\infty}\right|=0$.
(5.14) Lemma. Let $x \in Z_{0}$ and assume that Z_{0} accumulates on x from at most one side. Then $x \in G$.

Proof. By (5.12), we can assume that J_{0} and K_{0} are as in (5.13) and that $J_{0} \cap K_{0}=\{x\}$, hence $x \in G$.

In the following lemma, let $W_{n}=\left\{w_{1}, \cdots, w_{p+r}\right\}$ and $\Gamma^{*}=\Gamma_{n}\left(w_{1}, \cdots, w_{p}\right)$, as in $\S 4$. As usual, $Z_{0}^{*}=Z_{0}\left(\Gamma^{*}\right)$ and $\tau^{*}=\tau \mid Z_{0}^{*}$. We will also use the notation

$$
V_{\infty *}=\bigcap_{N=0}^{\infty} \cup\left(\tau_{n \geq N}^{*}\right)^{-n}(V),
$$

for all $V \subseteq Z_{0}^{*}$.
(5.15) Lemma. Let $A_{i}=I_{w_{p+i}}, 1 \leqq i \leqq r$, and let $V \leqq Z_{0}$. Then $V_{\infty} \subseteq\left(\cup_{i=1}^{r}\left(A_{i}\right)_{\infty}\right) \cup\left(\cup_{k \geq 0} \tau^{-k}\left(\left(V \cap Z_{0}^{*}\right)_{\infty *}\right)\right)$.

Proof. Let $x \in V_{\infty}$ and consider two cases.

Case 1. Assume that $\tau^{k}(x) \in Z_{0}^{*}$, some $k \geqq 0$. Then one can find infinitely many $n \geqq k$ such that $\left(\tau^{*}\right)^{n-k}\left(\tau^{k}(x)\right)=\tau^{n-k}\left(\tau^{k}(x)\right)=\tau^{n}(x) \in V$. Therefore, $\left(\tau^{*}\right)^{n-k}\left(\tau^{k}(x)\right) \in Z_{0}^{*} \cap V$, so $\tau^{k}(x) \in\left(Z_{0}^{*} \cap V\right)_{\infty *}$. That is, $x \in \tau^{-k}\left(\left(Z_{0}^{*} \cap V\right)_{\infty *}\right)$.

Case 2. Assume that there is no $k \geqq 0$ as in Case 1. Then there are infinitely many integers $n \geqq 0$ such that $\tau^{n}(x) \notin \cup_{i=1}^{p} I_{w_{i}}$. For these integers, $\tau^{n}(x) \in A_{1} \cup \cdots \cup A_{r}$, hence $x \in\left(A_{1}\right)_{\infty} \cup \cdots \cup\left(A_{r}\right)_{\infty}$.
(5.16) Proposition. $B=\varnothing$.

Proof. Let $y \in B$ and deduce a contradiction as follows.
(1) By (5.14), $y \in \operatorname{int}\left(I_{j}\right)$, for some j, and there is a gap $J_{0}=[a, b]$ of Z_{0}, also in I_{j}, such that $b<y$. Since B is compact and, by (5.14), $b \notin B$, there is a point $\left.\left.y_{0} \in\right] b, y\right] \cap B$ such that $] b, y_{0}[\cap B=\varnothing$.
(2) By (5.14), Z_{0} clusters on y_{0} from both sides. Thus, for n sufficiently large, there is $w \in W_{n}$ such that $I_{w}=[c, d], b<c<y_{0}<d$, and $\left|I_{w}\right| /\left|J_{0}\right| \leqq 1 / \lambda$.
(3) Enumerate $W_{n}=\left\{w_{1}, \cdots, w_{p+r}\right\}$ in such a way that $\left.I_{w_{j}} \cap\right] a, c[=\varnothing$ exactly for $j=1, \cdots, p$. Set $A_{i}=I_{w_{p+i}}, 1 \leqq i \leqq r$, and note that each $A_{i} \subset\left[b, c\left[\right.\right.$. By the choice of $y_{0},\left|\left(A_{i}\right)_{\infty}\right|=0,1 \leqq i \leqq r$.
(4) Let $\Gamma^{*}=\Gamma_{n}\left(w_{1}, \cdots, w_{p}\right)$, as in $\S 4$, and let b^{*} be the minimal element of $Z_{0}^{*} \cap[c, d]$. Then b^{*} is maximal such that $\left.Z_{0}^{*} \cap\right] a, b^{*}[=\varnothing$. Consider three cases.

Case 1. Let $b^{*}=d$, hence $] a, d\left[\cap Z_{0}^{*}=\varnothing\right.$. Take $\left.V=\right] a, d\left[\cap Z_{n}\right.$ and use (5.15) to conclude that $V_{\infty} \subseteq \mathrm{U}_{i=1}^{r}\left(A_{i}\right)_{\infty}$. By step (3), $\left|V_{\infty}\right|=0$ and this contradicts the fact that $y_{0} \in B$.

Case 2. Let $b^{*}<d$, and $\left(\tau^{*}\right)^{-n}\left(b^{*}\right)=\varnothing$, some $n \geqq 1$. For V, we take any neighborhood of y_{0} in the set $[c, d] \cap Z_{0}=I_{w} \cap Z_{0}$. By (5.12), $\left(V \cap Z_{0}^{*}\right)_{\infty *}=\varnothing$, so the argument in Case 1 again yields a contradiction.

Case 3. Let $b^{*}<d$ and $b^{*} \in D\left(g^{*}\right)$ for infinitely many $g^{*} \in \Gamma_{+}^{*}$. Set $J_{0}^{*}=\left[a, b^{*}\right], K_{0}^{*}=\left[b^{*}, d\right]$, and $V=Z_{0} \cap\left(J_{0}^{*} \cup K_{0}^{*}\right)$. Then $\operatorname{int}\left(J_{0}^{*}\right) \subset \boldsymbol{R} \backslash Z_{0}^{*}$, but $b^{*} \in Z_{0}^{*}$, and $\left|K_{0}^{*}\right| /\left|J_{0}^{*}\right| \leqq\left|I_{w}\right| /\left|J_{0}\right| \leqq 1 / \lambda$. We would like to use (5.13) to conclude that $\left|\left(V \cap Z_{0}^{*}\right)_{\infty *}\right|=0$. The difficulty is that $J_{0}^{*} \nsubseteq I_{w}$, contrary to what is required by the hypotheses of (5.13). This means that, if $g^{*} \in \Gamma_{+}^{*}$ and $b^{*} \in D\left(g^{*}\right)$, then $J_{0}^{*} \nsubseteq D\left(g^{*}\right)$. The solution to this difficulty is to use the canonical extension $g \in \Gamma_{+}$of each such g^{*}, to note that $J_{0}^{*} \subset I_{j} \subset D(g)$, and to appeal to (4.4) in place of (2.2) in the proof of (5.13). Then $\left|\left(V \cap Z_{0}^{*}\right)_{\infty *}\right|=0$ and we use (5.15) to conclude that $\left|V_{\infty}\right|=0$, again contradicting the fact that $y_{0} \in B$.

The proof of (5.1), hence of Theorem 3, is complete.
6. Counting the semiproper leaves. Our present goal is to prove Theorem 2. Let \mathscr{S} and $\Gamma=\Gamma_{\mathscr{S}}$ be as in the previous section.

Definition. Let $A \subseteq \boldsymbol{R}, x \in A$. Then x is semi-isolated in A if there is an open interval $J \subset R \backslash \bar{A}$ such that $x \in \partial \bar{J}$.

Definition. The Γ-orbit of $x \in Z_{0}$ is semiproper if there is a nonempty, open interval $J \subset R \backslash \overline{\Gamma(x)}$ such that $x \in \partial \bar{J}$.
(6.1) Theorem. Only finitely many τ-cyclic points are semi-isolated in Z_{0}.
(6.2) Corollary. Let $C \subseteq Z_{0}$ be a Markov Γ-minimal set. Then C contains only finitely many semiproper Γ-orbits.

Proof. Every Γ-orbit in C is dense in C, hence is semiproper if and only if each of its points is semi-isolated in C. Apply (6.1) and (3.4).

In particular, (6.2) and (1.2) establish Theorem 2.
The proof of (6.1) will consist of a series of definitions and lemmas.
Definition. A nondegenerate interval A is Γ_{+}-uniform if there is a number $\nu=\nu(A)>0$ such that $g^{\prime}(u) / g^{\prime}(v) \leqq \nu$, for all $g \in \Gamma_{+}$and u, $v \in A \cap D(g)$.
(6.3) Lemma. If A_{1} and A_{2} are Γ_{+}-uniform intervals and $A_{1} \cap A_{2} \neq$ \varnothing, then $A_{1} \cup A_{2}$ is Γ_{+}-uniform.
(6.4) Lemma. If $g \in \Gamma_{+}$and A is a Γ_{+}-uniform interval, then $g A$ is also Γ_{+}-uniform.
(6.5) Lemma. Let $N \geqq 1$ be an integer and let A be an interval. If $g A$ is Γ_{+}-uniform, for all $g \in W_{N}$, then A is Γ_{+}-uniform.

Definition. The uniform set $U_{+} \subseteq \boldsymbol{R}$ is the union of all open, $\Gamma_{+}{ }^{-}$ uniform intervals. The non-uniform set is $B_{+}=\boldsymbol{R} \backslash U_{+}$.

Since intervals not meeting the bounded set $\cup_{j=1}^{m} D\left(h_{j}\right)$ are Γ_{+}-uniform by default, B_{+}is compact. Also, if G and B are as in $\S 5$, one easily shows that $Z_{0} \cap U_{+} \subseteq G$ and that $Z_{0} \cap B_{+} \supseteq B$.
(6.6) Lemma. Let J be a gap of Z_{0} with an endpoint that is not τ-cyclic. Then, with at most finitely many exceptions, $J \subset U_{+}$.

Proof. Let $x \in \partial J$ be a point that is not τ-cyclic. Since the endpoints of $X_{j}=h_{j}^{-1}\left(I_{j}\right)$ are τ-cyclic, $1 \leqq j \leqq m$, provided they pertain to Z_{0}, we see that $x \in \operatorname{int}\left(X_{j}\right)$ and, with at most finitely many exceptions, $J \subset X_{j}$, for some j. It follows that $J \cap D(g) \neq \varnothing$ if and only if $J \subset D(g)$, for each $g \in \Gamma_{+}$. Every such g is a simple chain at x, hence g is also a simple chain at the other point $\tilde{x} \in \partial J$ and \widetilde{x} is not τ-cyclic. Therefore, $J \subset \operatorname{int}\left(X_{j}\right)$. Let
K and \widetilde{K} be compact, nondegenerate subintervals of X_{j} such that $K \cap J=$ $\{x\}, \tilde{K} \cap J=\{\tilde{x}\}$, and $|K| /|J| \leqq 1 / \lambda \geqq|\widetilde{K}| /|J|$. By (2.2), $K \cup J$ and $J \subset \widetilde{K}$ are Γ_{+}-uniform, hence, by (6.3), so is $K \cup J \cup \widetilde{K}$.
(6.7) Lemma. Let $x \in Z_{0}$ be τ-cyclic and let $\gamma \in \Gamma_{+}$be the simple loop at x. If $\gamma^{\prime}(x)=1$ and γ is not germinally the identity at x on at least one side of x, then $x \in B_{+}$.

Proof. In any neighborhood of x in \boldsymbol{R}, there is a γ-fixed point y (perhaps x itself) at which γ is either a (one-side) expansion or contraction. Thus, find a sequence $\left\{y_{n}\right\}_{n \geqq 1}$ near y such that either $\left(\gamma^{n}\right)^{\prime}\left(y_{n}\right) \rightarrow \infty$ or $\left(\gamma^{n}\right)^{\prime}\left(y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\left(\gamma^{n}\right)^{\prime}(x)=1$, for each integer n, it is clear that $x \in B_{+}$.

Definition. A gap J of Z_{0} is τ-cyclic if $J \subseteq X_{j}$, for some $j \in\{1, \cdots, m\}$, and ∂J consists of τ-cyclic points.

Equivalently, there exists $\gamma \in \Gamma_{+}$(nontrivial, by the definition of Γ_{+}) such that $\gamma J=J$.
(6.8) Lemma. Let J be a gap of Z_{0}. Then, with at most finitely many exceptions, J is τ-cyclic if and only if $J \cap B_{+} \neq \varnothing$.

Proof. (1) Assume that $J \cap B_{+} \neq \varnothing$. With at most finitely many exceptions, this implies that ∂J consists of τ-cyclic points (6.6) and $J \subseteq X_{j}$, for some $j \in\{1, \cdots, m\}$.
(2) Suppose that J is τ-cyclic and let $\gamma J=J$, for some $\gamma \in \Gamma_{+}$. We consider three cases.

Case 1. $\gamma \mid J \neq \mathrm{id}_{J}$. Find sequences $\left\{y_{n}\right\}_{n \geqq 1}$ and $\left\{z_{n}\right\}_{n \geqq 1}$ in J such that $\left(\gamma^{n}\right)^{\prime}\left(y_{n}\right) \rightarrow 0$ and $\left(\gamma^{n}\right)^{\prime}\left(z_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Thus, J is not Γ_{+}-uniform. By (6.3) and compactness, $J \subset U_{+}$would imply that J is Γ_{+}-uniform.

Case 2. $\gamma \mid J=\mathrm{id}_{J}$, but at least one $x \in \partial J$ is not isolated in Z_{0}. An elementary use of symbolic dynamics shows that γ is a one-sided contraction to x. By (6.7), $x \in B_{+}$.

Case 3. $\gamma \mid J=\mathrm{id}_{J}$ and both elements of ∂J are isolated in Z_{0}. In this case, it might be that $J \subset U_{+}$. We must show that at most finitely many such gaps exist. Suppose, on the contrary, that $\left\{J_{n}\right\}_{n \geq 1}$ is an infinite sequence of distinct such gaps, chosen so that $J_{n} \rightarrow x \in Z_{0}$ as $n \rightarrow \infty$. Write $x=x_{i_{1} i_{2} \ldots}$, where $\left(i_{k}\right)_{k=1}^{\infty}=h(x) \in \mathscr{K}_{P}$, as in $\S 1$. The set $V=\left\{\left(j_{k}\right) \in\right.$ $\left.\mathscr{K}_{P} \mid j_{1}=i_{1}\right\}$ is a neighborhood of $\left(i_{k}\right)$ in \mathscr{K}_{P} and $h\left(\partial J_{n}\right) \subset V$, for all large values of n. The points of $\partial J_{n}=\left\{x, \widetilde{x}_{n}\right\}$ are τ-cyclic, so one writes $h\left(\widetilde{x}_{n}\right)=h\left(x_{n}\right)=\alpha \cdot \alpha \cdots \alpha \cdots$ (juxtaposition), where $\alpha=\left(i_{1}, j_{2}, \cdots, j_{s}\right)$. In particular, the entry $p_{j_{g} i_{1}}=1$ in the matrix P. It follows that $\alpha \cdot \alpha \cdots \alpha \cdot\left(i_{k}\right) \in$ \mathscr{K}_{P}, for all $r \geqq 1$. This translates to the statement that either x_{n} or \tilde{x}_{n}
is not isolated in Z_{0}, contradicting the assumption.
(6.9) Lemma. Let $x_{0} \in Z_{0} \cap B_{+}$and assume that x_{0} lies in a τ-cycle $X=\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}$. Let $\gamma_{0}=h_{j_{p}} \circ \cdots \circ h_{j_{0}}$ be the simple loop at x_{0} and write $\gamma_{0 i}=h_{j_{i}} \circ \cdots \circ h_{j_{0}}, 0 \leqq i \leqq p-1$. If $\Gamma_{+}\left(x_{0}\right) \cap B_{+} \cong X$, then there is a neighborhood V_{0} of x_{0} in Z_{0} such that $z \in V_{0} \cap B_{+}$if and only if $\Gamma_{+}(z) \cap B_{+}=\left\{\gamma_{0 i} \circ \gamma_{0}^{n}(z) \mid n \geqq 0,0 \leqq i \leqq p-1\right\}$.

Proof. Let y_{α} and γ_{α} be as in (5.8), $1 \leqq \alpha \leqq t$. In particular, $y_{\alpha} \notin B_{+}$, $1 \leqq \alpha \leqq t$. Let U_{α} be an open, Γ_{+}-uniform interval about y_{α} and set $V_{\alpha}=Z_{0} \cap U_{\alpha}$. Choose the neighborhood V_{0} of x_{0} in Z_{0} such that $x_{0} \in D\left(\gamma_{\alpha}\right)$ implies that $V_{0} \subset D\left(\gamma_{\alpha}\right)$ and $\gamma_{\alpha} V_{0} \subseteq V_{\alpha}, 0 \leqq \alpha \leqq t$. If $z \in V_{0} \cap B_{+}$, it follows from this choice and from (6.4) that $\Gamma_{+}(z) \cap B_{+} \subseteq\left\{\gamma_{0 i} \circ \gamma_{0}^{n}(z) \mid n \geqq 0,0 \leqq i \leqq\right.$ $p-1\}$. By (6.5) and induction, one obtains the reverse inclusion.

Definition. The set \mathscr{F}_{+}consists of all gaps J of Z_{0} such that $J \cap B_{+} \neq \varnothing$. The set \mathscr{B}_{+}is $\mathscr{J}_{+} \cup\left(Z_{0} \cap B_{+}\right)$.

It makes sense to consider, in \boldsymbol{R}, the cluster points of \mathscr{B}_{+}, each element of \mathscr{J}_{+}being treated as a single "point". These cluster points are honest points, necessarily being elements of $Z_{0} \cap B_{+}$.

Definition. The set $B_{0} \subseteq Z_{0} \cap B_{+}$consists of those points x with a half-open neighborhood $] a, x]$ or $\left[x, a\left[\right.\right.$ meeting no element of \mathscr{B}_{+}except x.

We are going to prove, in (6.15), that every $x \in B_{0}$ is τ-cyclic. For the present we suppose that x is a counterexample.
(6.10) Claim. The non- τ-cyclic point $x \in B_{0}$ is not semi-isolated in Z_{0}.

Proof. Suppose that x is semi-isolated in Z_{0} and consider two cases.
Case 1. $\Gamma_{+}(x)$ is infinite. By (6.5), we assume, without loss of generality, that x is an endpoint of a gap J of Z_{0} and that $J \subset i n t\left(X_{i}\right)$, $X_{i}=h_{i}^{-1}\left(I_{i}\right)$, for some $i \in\{1, \cdots, m\}$. As in the proof of (6.6), it follows that $x \in U_{+}$.

Case 2. $\quad \Gamma_{+}(x)$ is finite. Then x has an open, connected neighborhood that meets $D(g)$ for only finitely many $g \in \Gamma_{+}$. Such an interval is $\Gamma_{+}{ }^{-}$ uniform, again contradicting the assumption that $x \in B_{+}$.

For definiteness, assume that $] a, x]$ is as in the definition of the set B_{0}. By (6.10), we can assume that $[a, x] \subset \operatorname{int}\left(X_{i}\right)$, for some $i \in\{1, \cdots, m\}$, and that $J=[a, b]$ is a gap of Z_{0} and $b<x$.

Choose n large and $w \in W_{n}$ such that $I_{w}=[c, d], b<c<x<d$, and $\left|I_{w}\right| /|J| \leqq 1 / \lambda$. Let $W_{n}=\left\{w_{1}, \cdots, w_{p+r}\right\}$, so ordered that $I_{w_{j}} \subset[b, c[$ exactly for $j=p+i, 1 \leqq i \leqq r$. Then $\left.I_{w_{j}} \cap\right] a, c\left[=\varnothing, 1 \leqq j \leqq p\right.$. Set $A_{i}=I_{w_{p+i}}$,
$1 \leqq i \leqq r$.
(6.11) Claim. $\cup_{s=1}^{r} A_{s} \subset U_{+}$.

As in $\S 4$, let $\Gamma^{*}=\Gamma_{n}\left(w_{1}, \cdots, w_{p}\right)$ with generators $h_{1}^{*}, \cdots, h_{p}^{*}$, and let $Z_{0}^{*}=Z_{0}\left(\Gamma^{*}\right), \tau^{*}=\tau \mid Z_{0}^{*}$. By means of Γ^{*}, we define U_{+}^{*} and $B_{+}^{*}=\boldsymbol{R} \backslash U_{+}^{*}$ in exact analogy with U_{+}and B_{+}. Let $D^{*}=\cup_{j=1}^{p} D\left(h_{j}^{*}\right)$.
(6.12) CLAIM. $\quad U_{+}^{*} \cap D^{*} \cong U_{+}$.

Proof. Let $z \in U_{+}^{*} \cap D^{*}$. Let $I \subset U_{+}^{*}$ be a compact interval with $z \in \operatorname{int}(I)$. We choose I so small that $z \in D\left(h_{j}^{*}\right)$ implies that $I \subset D\left(h_{j}^{*}\right)$, $1 \leqq j \leqq p$. By the definition of a Markov system, it follows that $g^{*} \in \Gamma_{+}^{*}$ and $z \in D\left(g^{*}\right)$ implies that $I \subset D\left(g^{*}\right)$.

Let $\gamma \in \Gamma_{+}$be such that $z \in D(\gamma)$ and write $\gamma\left|I=\left(v \circ h_{k} \circ g^{*}\right)\right| I$, where $g^{*} \in \Gamma_{+}^{*}, h_{k}\left(g^{*} I\right) \subset \cup_{s=1}^{r} A_{s}$, and $v \in \Gamma_{+}$. By (6.11) and the fact that I is Γ_{+}^{*}-uniform, it follows easily that I is Γ_{+}-uniform.
(6.13) Claim. $x \in Z_{0}^{*}$.

Proof. Otherwise, $\tau^{k}(x) \in \cup_{s=1}^{r} \operatorname{int}\left(A_{s}\right) \subset U_{+}$(6.11), for some $k \geqq 1$. Let $g \in \Gamma_{+}$be the branch of τ^{-k} such that $x \in R(g)$. An application of (6.4) to g gives the contradiction that $x=g\left(\tau^{k}(x)\right) \in U_{+}$.

By (6.13), there is a maximal element $b^{*} \in[c, x]$ such that $Z_{0}^{*} \cap\left[c, b^{*}[\right.$ $=\varnothing$.
(6.14) Claim. b^{*} is τ^{*}-cyclic and $b^{*}<x$.

Proof. In (4.4), let $J_{0}^{*}=\left[a, b^{*}\right]$ and $K_{0}^{*}=\left[b^{*}, d\right]$ be such that $\left|K_{0}^{*}\right| /\left|J_{0}^{*}\right| \leqq\left|I_{w}\right| /|J| \leqq 1 / \lambda$. If b^{*} is not τ-cyclic, (4.4) implies that $[c, d]$ is Γ_{+}^{*}-uniform, hence $\left.x \in\right] c, d\left[\subset U_{+}^{*} \cap D^{*} \subseteq U_{+}\right.$(6.12), contradicting the fact that $x \in B_{+}$.
(6.15) Lemma. Every element of B_{0} is τ-cyclic.

Proof. Assume that $x \in B_{0}$ and that x is not τ-cyclic. Choose all data as in the above discussion and deduce a contradiction as follows.
(1) By (6.14), let $\gamma_{0} \in \Gamma_{+}^{*}$ be the simple loop at b^{*}. Since $[c, d]=$ $I_{w} \subset D\left(\gamma_{0}\right)$, and since x is not τ^{*}-cyclic, elementary symbolic dynamics shows that $\gamma_{0}^{n}(x) \rightarrow b^{*}$ as $n \rightarrow \infty$. In particular, $\gamma_{0}^{n}(x) \in U_{+}$, for each integer $n \geqq 1$.
(2) By (6.5), choose $g_{k}^{*} \in \Gamma_{+}^{*},\left|g_{k}^{*}\right|=k$, such that $g_{k}^{*}(x) \in B_{+}$, for all $k \geqq 1$. By step (1) and (6.4), each g_{k}^{*} is a simple chain at b^{*}.
(3) By step (2), we can take N so large that $g_{N}^{*}\left(b^{*}\right)$ does not lie in the τ^{*}-cycle containing b^{*}, hence is not τ^{*}-cyclic. That is, if $g^{*} \in \Gamma_{+}^{*}$
and $g_{N}^{*}\left(b^{*}\right) \in D\left(g^{*}\right)$, then g^{*} is a simple chain at $g_{N}^{*}\left(b^{*}\right)$. By elementary symbolic dynamics, this implies that $g^{*} \circ g_{N}^{*}$ is a simple chain at b^{*}.
(4) By step (3) and (4.4), we proceed exactly as in the proof of (6.14) to find $\left(g^{*} \circ g_{N}^{*}\right)^{\prime}(u) /\left(g^{*} \circ g_{N}^{*}\right)^{\prime}(v) \leqq \lambda$, for each $u, v \in[c, d]$. Therefore $g_{N}^{*}[c, d]$ is Γ_{+}^{*}-uniform. By (6.12), it follows that $\left.g_{N}^{*}\right] c, d\left[\subset U_{+}\right.$, contradicting the fact that $g_{N}^{*}(x) \in B_{+}$.

Definition. The set $B_{1} \subseteq Z_{0} \cap B_{+}$consists of those points x having a half-open neighborhood $] a, x]$ or [$x, a[$ that contains exactly a countable infinity of elements of \mathscr{B}_{+}, this subset of \mathscr{B}_{+}clustering exactly at x.
(6.16) Lemma. Every element of B_{1} is τ-cyclic.

Proof. The idea is to mimic the proof of (6.15) exactly. However, one needs (6.15) in order to set this up.

Let $x \in B_{1}$. Exactly as in the proof of (6.10), x is not semi-isolated in Z_{0}.

Assume that $] a, x]$ is as in the above definition, that $[a, x] \subset \operatorname{int}\left(X_{i}\right)$, for some $i \in\{1, \cdots, m\}$, and that $J=[a, b]$ is a gap of $Z_{0}, b<x$.

Choose n large, $w \in W_{n}$ as before, $I_{w}=[c, d], b<c<x<d,\left|I_{w}\right| /|J| \leqq$ $1 / \lambda$, etc. The problem is that (6.11) does not necessarily hold this time. It may be that $\cup_{s=1}^{r} A_{s}$ contains finitely many elements of \mathscr{B}_{+}, say $y_{1}, \cdots, y_{t} \in B_{0}$ and $J_{1}, \cdots, J_{u} \in \mathscr{J}_{+}$.

Choose $g_{k} \in \Gamma_{+},[a, d] \subset D\left(g_{k}\right),\left|g_{k}\right|=k$, such that $g_{k}(x) \in B_{0} \cup B_{1}$, for all $k \geqq 1$. These exist by (6.4) and (6.5). Also, by (6.4), $\left\{g_{k}\left(y_{i}\right)\right\}_{i=1}^{t} \cup\left\{g_{k}\left(J_{i}\right)\right\}_{i=1}^{u}$ are the only possible elements of \mathscr{B}_{+}in $g_{k}\left(\cup_{s=1}^{r} A_{s}\right)$.

By (6.6), y_{i} is τ-cyclic, $1 \leqq i \leqq t$. As in the proof of (6.15), k large enough implies that $g_{k}\left(y_{i}\right)$ is not τ-cyclic, hence $g_{k}\left(y_{i}\right) \notin B_{0}$, hence $g_{k}\left(y_{i}\right) \notin \mathscr{B}_{+}$, $1 \leqq i \leqq t$. A similar use of (6.8) shows that $g_{k}\left(J_{i}\right) \notin \mathscr{B}_{+}, 1 \leqq i \leqq u$ and all large values of k.

Take $\widetilde{g}=g_{N}, N$ large enough. Then $\widetilde{g}\left(\cup_{s=1}^{r} A_{s}\right) \subset U_{+}$. Replace w by $\widetilde{w}=\widetilde{g} \circ w \in W_{n+N}, \quad I_{w}$ by $I_{\tilde{w}}=[\widetilde{g}(c), \widetilde{g}(d)], J$ by $\widetilde{J}=[\widetilde{g}(a), \widetilde{g}(b)], W_{n}$ by $W_{n+N}=\left\{\tilde{w}_{1}, \cdots, \widetilde{w}_{q+r}\right\}$ (note that, generally, $q>p$), A_{s} by $\widetilde{g}\left(A_{s}\right)=I_{\tilde{y}^{\prime} w_{p+s}}=$ $I_{\tilde{w}_{q+\varepsilon}}, 1 \leqq s \leqq r$, etc.

At this point, the proof of (6.15) can be carried out with no change.
(6.17) Lemma. $B_{1}=\varnothing$.

Proof. Let $x_{0} \in B_{1}$ and deduce a contradiction. By (6.4), $g\left(x_{0}\right) \in$ $B_{1} \cup B_{0} \cup U_{+}$, for each $g \in \Gamma_{+}$. By (6.15) and (6.16), $g\left(x_{0}\right) \in B_{1} \cup B_{0}$ implies that $g\left(x_{0}\right)$ lies in the τ-cycle $X=\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}$. Thus, $\Gamma_{+}\left(x_{0}\right) \cap B_{+} \cong X$. Let V_{0} be the neighborhood of x_{0} in Z_{0} given by (6.9) and let $\gamma_{0} \in \Gamma_{+}$be
the simple loop at x_{0}. By the definition of B_{1}, the set $\left(V_{0} \backslash\left\{x_{0}\right\}\right) \cap B_{+} \subseteq B_{0}$ clusters at x_{0}. Elementary symbolic dynamics implies that γ_{0} contracts this set to x_{0}, provided V_{0} is small enough. If $z \in\left(V_{0} \backslash\left\{x_{0}\right\}\right) \cap B_{+}$, then (6.15) and (6.4) imply that $\Gamma_{+}(z) \cap B_{+}$is contained in a τ-cycle and (6.9) implies that $\Gamma_{+}(z) \cap B_{+}$is not contained in a τ-cycle.
(6.18) Corollary. There is a finite, possibly empty set F such that $Z_{0} \cap B_{+}=F$ or $F \cup C$, where C is a Cantor set.

Proof. By the structure theory of compact, totally disconnected subsets of $\boldsymbol{R}[\mathrm{Pi}]$, this is an easy consequence of (6.17).
(6.19) Lemma. The set \mathscr{J}_{+}is finite.

Proof. It will be enough to prove that, in (6.18), the possibility that $Z_{0} \cap B_{+}=F \cup C$ does not, in fact, occur. Indeed, if $Z_{0} \cap B_{+}=F$ and if \mathscr{J}_{+}were infinite, then some point of F would belong to $B_{1}=\varnothing$.

Suppose that $Z_{0} \cap B_{+}=F \cup C$ and obtain a contradiction as follows.
(1) Let $A=\left[x_{0}, \bar{x}_{0}\right]$ be a gap of C. If A contains infinitely many elements of \mathscr{J}_{+}, they must cluster in A, necessarily only at x_{0} and/or \bar{x}_{0}. But this cluster point would belong to $B_{1}=\varnothing$.
(2) By step (1), either A is an element of \mathscr{J}_{+}, or some point of ∂A, say x_{0}, is an element of B_{0}.

If $x_{0} \in B_{0}$, then x_{0} is τ-cyclic (6.15) and, by (6.4), $\Gamma_{+}\left(x_{0}\right) \cap B_{+} \subset B_{0}$, hence $\Gamma_{+}\left(x_{0}\right) \cap B_{+}$lies in the τ-cycle.

If $A \in \mathscr{J}_{+}$, then, with finitely many possible exceptions, A is a τ cyclic gap of Z_{0} (6.8) and the τ-cycle of x_{0} also contains $\Gamma_{+}\left(x_{0}\right) \cap B_{+}$, again with the at most finitely many exceptions allowed by (6.8).
(3) By step (2), choose A and $x_{0} \in \partial A$ so that $\left\{x_{0}, x_{1}, \cdots, x_{p}\right\}=X$ is a τ-cycle and $\Gamma_{+}\left(x_{0}\right) \cap B_{+} \subseteq X$.

Similarly, choose a sequence $\left\{A_{k}\right\}_{k=1}^{\infty}$ of gaps of C clustering at x_{0} and having τ-cyclic endpoint $z_{k} \in \partial A_{k}$ with exactly the same property as x_{0}.
(4) Let $\gamma_{0} \in \Gamma_{+}$be the simple loop at x_{0}. By symbolic dynamics, $\gamma_{0}^{n}\left(A_{k}\right) \rightarrow x_{0}$ as $n \rightarrow \infty$, for k sufficiently large. An application of (6.9) to $z=z_{k} \in A_{k}, k$ large enough, then contradicts the fact that $\Gamma_{+}(z) \cap B_{+}$lies in the τ-cycle of z.

Proof of (6.1). If infinitely many τ-cyclic points are semi-isolated in Z_{0}, then (6.8) implies that \mathscr{J}_{+}is an infinite set.

As already observed, this completes the proof of Theorem 2.
7. Concluding remarks. It is not hard to produce exceptional minimal sets (or, more generally, LMS) that are not Markovian. One way is
to start with a Markov example in which one of the generators of Γ, say $h=h_{1}$, is a contraction to a point $x \in C$ that is not semi-isolated in C, having the property that h is C^{∞}-tangent to the identity at x. One can replace the generator h with \tilde{h}, an element that agrees with h on one side of x and with h^{-1} on the other side. The new pseudogroup, call it $\widetilde{\Gamma}$, has the same orbits as Γ, but the generator of $H_{x}(\tilde{\Gamma}(x), C)$ is not represented by a contraction. By Theorem 1, the exceptional, $\widetilde{\Gamma}$-minimal set C cannot be Markovian. Again, one could replace h with two generators, \tilde{h} and \bar{h}, one agreeing with h on one side of x and with the identity on the other side, the other being similar, but with the sides of x reversed. In this case, $H_{x}(\tilde{\Gamma}, C) \cong \boldsymbol{Z} \oplus \boldsymbol{Z}$, again contrary to the conclusion of Theorem 1.

Another naturally occuring class of non-Markov examples has been suggested by Inaba (private communication). They are finitely generated, nonelementary Fuchsian groups of the second kind which have parabolic elements. The limit set of such a group is an exceptional minimal set, but it is not Markovian because a parabolic element is neither a contraction nor an expansion at its unique fixed point.

In an earlier version of this paper we proposed some conjectures that now seem to us to have been overly optimistic. One of these was that the general case might be orbit equivalent to the Markov case. In the special case of a transversely projective foliation that is transverse to a fibration by circles, Inaba has verified this conjecture (Ibid.). It would be interesting to remove the hypothesis of transversality to an S^{1} fibration.

It is not hard to show that the general exceptional LMS gives rise to a multitude of Markov sub-pseudogroups that, in some sense, form a "dense" subsystem. It should be possible to exploit this fact.

References

[C-C 1] J. Cantwell and L. Conlon, Poincaré-Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc. 265 (1981), 181-209.
[C-C 2] J. Cantwell and L. Conlon, Leafwise hyperbolicity of proper foliations, preprint, 1987.
[De] A. Denjoy, Sur les courbes definies par les differentielles a la surface du tore, J. Math. Pures Appl. 11 (1932), 333-375.
[Di] P. Dippolito, Codimension one foliations of closed manifolds, Ann. of Math. 107 (1978), 403-453.
[Du] G. Duminy, L'invariant de Godbillon-Vey se localise dans les feuilles ressort, preprint, 1982.
[G-L-W] E. Ghys, R. Langevin and P. Wolczak, Entropie geometrique des feuilletages, preprint, 1985.
[G-S] E. Ghys and V. Sergiescu, Sur un groupe remarquable de diffeomorphismes du cercle, I.H.E.S. preprint, 1985.
[He] G. Hector, Quelques exemples de feuilletages-espèces rares, Ann. Inst. Fourier 26 (1975), 239-264.
[H-H] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part B, Vieweg, Braunschweig, 1983.
[In] T. Inaba, Examples of exceptional minimal sets, preprint, 1986.
[Ma] S. Matsumoto, Measure of exceptional minimal sets of codimension one foliations, preprint, 1986.
[Pi] P.S. Pierce, Existence and uniqueness theorems for extensions of zero dimensional compact metric spaces, Trans. Amer. Math. Soc. 148 (1970), 1-21.
[Ra] B. Raymond, Ensembles de Cantor et feuilletages, Publ. Math. d’Orsay, No. 191-76 56.
[Sa 1] R. Sacksteder, On the existence of exceptional leaves in foliations of codimension one, Ann. Inst. Fourier 14 (1964), 221-226.
[Sa 2] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79-102.
[Sch] P. A. Schweitzer (Ed.), Some problems in foliation theory and related areas, Lecture Notes in Mathematics 652, Springer-Verlag, New York, 1978, 240-252.
[Ta] M. Takamura, Reeb stability for leaves with uncountable endset (in Japanese), Master Thesis, Hokkaido Univ., 1984.
[Th] W. Thurston, A local construction for foliations for three-manifolds, Proc. Sympos. Pure Math. 27, Amer. Math. Soc., Providence, R.I., 1975, 315-319.
[Wa] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer-Verlag, New York, 1982.
$\begin{array}{ll}\text { Saint Louis University and } & \text { Washington University } \\ \text { Saint Louis, MO, 63103 } & \text { Saint Louis, MO, } 63130 \\ \text { U.S.a. } & \text { U.S.A. }\end{array}$

[^0]: ${ }^{1}$ Partially supported by N.S.F. Contract DMS-8420322
 ${ }^{2}$ Partially supported by N.S.F. Contract DMS-8420956

