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1. Introduction. First-order nonlinear systems of conservation laws
are the equations of the form

(1.1) wt + ± fj(w)xj = 0 .
i=i 3

Here f5, j = 1, •••, n, w denote m-dimensional vectors, with fj smooth
functions of w, and w a functions of the time t and the space coordinate
x = (xlf •••$«) . The subscripts t and xs refer to the partial derivatives
with respect to t and xjf respectively. As is well known, the existence
of an entropy function for (1.1) is characterized by the property that
(1.1) can be symmetrized by introducing a new dependent variable. We
owe these results to Godunov [5] and Friedrichs-Lax [3]. See, in this
connection, [6], [7], [11].

The primary objective of this paper is the initial value problem for
the second-order nonlinear systems associated with (1.1), i.e.,

(1.2) wt + Σ fKw)xj = < Σ i {Gίj(w)wx.}Xί .

Here Gid(w), i, j — 1, •••, n, denote raxm matrices depending smoothly
on w. Both f3\w) and Gίj(w) are defined on an open set ΩcRm. Such
systems arise, for example, as the equations of viscous compressible fluid.
The notion of the entropy function has a natural extension to the second-
order systems (1.2). The definition was given previously by one of the
authors in [8]. That the symmetrizability of the system can be charac-
terized by the existence of an entropy function remains valid for (1.2).
We give a brief review of these observations in § 2. In § 3, we consider
the system (1.2) by assuming the symmetrizability. We formulate a
sufficient condition under which (1.2) can be put in a normal form of the
hyperbolic-parabolic system. This means that the resulting system is
expressed as a coupled system of a hyperbolic system and a parabolic
system. Consequently, the local existence of solutions of the initial
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value problem can be shown by using iteration. The equations of the
hydrodynamics are treated as an application in §4. In §5, we discuss
an analogous system of equations arising in the discrete kinetic theory.
This is the Navier-Stokes equation derived from the discrete velocity
models of the Boltzmann equation by the Chapman-Enskog method.

2. Entropy function and the symmetrizable systems. First of all
we define the entropy function for the system (1.2).

DEFINITION 2.1. Let η = η(w) be a real-valued smooth function defined
on a convex open set ^wdΩ. Then η is called an entropy function for
(1.2), if the following properties hold:

(a) η is a strictly convex function on &w in the sense that the
Hessian Dlη is positive definite on 0>w.

(b) There exist real-valued smooth functions qj = qj(w), j = 1, , n,
such that Dwη(w)Dwf

j(w) = Dwq
j(w), j = 1, , n, for we^w.

(c) {Dlr]{w)ΓG%wγ = &\w)(Dlη(w)r\ i, j = 1, , n, for w e &w,
where the superscript T denotes the transpose.

(d) Σ?,i=i Gίό{w){Dlη{w))~1ωiωj is real symmetric and non-negative
definite for wed?w and ω = (ωlf , ωn)e Sn~\

REMARK. The definition we adopted seems to be somewhat stringent,
because the entropy function is required to have a convex domain of
definition. The convexity is needed in the proofs of Theorems 2.1 and
3.1. In concrete problems, the domain of definition of an entropy function
may eventually be non-convex. We shall return to this point in §4.

Now we rewrite (1.2) by introducing a new dependent variable u
in place of w. It is assumed that there is a diffeomorphism u-+w from
an open set έ?u onto ^ w . Let us set w = w(u) in (1.2). Then (1.2) be-
comes of the form

(2.1) A\u)ut + Σ A'(ttX, - Σ {Bίj(u)uxj}Xi ,
3=1 3 i,3=l 3 l

where

(2.2), A\u) = Duw(u) .

(2.2)2 A*{u) = Dup{w(u)) = (Dwf')(w(u))D%w(u) , j = 1, , n .

(2.2)8 B*'(u) = G^{w{n))Duw{n) , i, j = 1, , n .

We give the definition of the symmetric form as follows.

DEFINITION 2.2. The system (2.1) is said to be of the symmetric
form if the coefficient matrices satisfy the following properties:
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(a) A\u) is real symmetric and positive definite for ueέ?u.
(b) Aj(u), j = 1, , n, are real symmetric for ue^u.
(c) Bίj(u)τ = B>'%u), i, j = 1, , n, for u e £?%.
(d) B(u, ω) — Σ?,y=i Bij(u)a)ia)j is real symmetric and non-negative

definite for ue^u and ω = (a*!, , ωn) e Sn~\

As we noted in §1, the following theorem is a direct generalization
of the known results for the first-order system (1.1) of the nonlinear
conservation laws. The second part of the theorem was given in [8] in
a slightly different form.

THEOREM 2.1. Let ^waΩ be a convex open set. Suppose that the
system (1.2) can be symmetrized on £?„. In other words, let the following
hold: there exists a diffeomorphism u-+w from an open set έ?u onto &w

such that (2.1), obtained from (1.2) by setting w = w{u), is of the sym-
metric form. Then (1.2) has an entropy function defined on έ?w. Con-
versely, suppose that there is an entropy function for (1.2) defined on a
convex open set ^ c β . Then (1.2) can be symmetrized on &w.

PROOF. Let the properties (a), (b), (c), (d) of Definition 2.2 hold.
Since έ?w is assumed to be convex, έ7u must be simply connected. We
note that the mapping u—>w is by definition a diffeomorphism from έ?u

onto &w. Then, by Poincare's lemma, there exist smooth real-valued
functions 9} and q\ j = 1, , n, defined on έ?u such that

(2.3), Duη(u) = w{u)τ ,

(2.3)2 D%φ(v) = fj(w(u))τ , j = 1, , n .

Here we used t h e fact t h a t Duw(u) and Duf
j(w(u)), j = 1, •••, n, a re

real symmetric matrices. We set

(2.4), η(w) = {w, u(w)) - rj(u(w)) ,

(2.4)2 q*(w) = (fό(w\ u(w)) - ψ\u(w)) , j = 1, , n ,

where < , > denotes the standard inner product in Rm. Then it turns out
that η(w) is an entropy function and qj{w), j — 1, •••,%, are the cor-
responding functions defined in (b) of Definition 2.1. In fact, differen-
tiating (2.4X with respect to w and using (2.3), we find that

(2.5), Dwη(w) = u(w)τ .

Similarly, we get from (2.4)2 and (2.3)2

(2.5)2 DwqKw) = u{w)τDJi(w) , j = 1, , n .

These equalities imply (b) of Definition 2.1. It follows from (2.5), that
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Dlη{w) = Dwu(w). Hence (Duw)(u(w)) = (Dlη(w)Y\ Substituting this into
(2.2)1_3 yields

(2.6X A\u{w)) =

(2.6),

(2.6)8

Combining (2.6)! with (a) of Definition 2.2, we deduce that Dlη(w) is
positive definite. This implies (a) of Definition 2.1. Since (a), (c) of
Definition 2.2 are assumed to hold, (c) of Definition 2.1 is verified by-
using (2.6)3. Finally, (d) of Definition 2.1 follows from (d) of Definition
2.2 combined with (2.6)3. Thus the proof of the first part of Theorem
2.1 is complete.

We turn to the proof of the second part of the theorem. Let us
assume the existence of an entropy function τj(w) defined on a convex
open set <PV. We define the mapping w—>u by

(2.7) u(w) = {Dwη{w))τ .

Then Dwu(w) = Dlη(w) is real symmetric and positive definite by (a) of
Definition 2.1. Hence the mapping w-*u is one-to-one on <?„, because
έ?w is a convex set. On the other hand, Dwu(w) is nonsingular on έ?w as
we noticed above. Therefore, by the inverse function theorem, w —> u
defines a local diffeomorphism at any point of #„. It follows from these
observations that the mapping w —> u is a diffeormorphism from &w onto
an open set £?„. Consequently, the inverse mapping u-*w is defined on
έ?u. The system (1.2) can be written as (2.1) by change of the dependent
variable, i.e., by setting w = w(u). We shall show that the coefficient
matrices given by (2.2)1_3 satisfy the properties (a), (b), (c), (d) of Definition
2.2. Since (Duw)(u(w)) = (Dlη{w)Y\ We see that (2.6)^3 hold. Hence
(a) of Definition 2.2 follows from (a) of Definition 2.1. To show (b) of
Definition 2.2, we employ the arguments given in [3]. By applying Dw

to the equality in (b) of Definition 2.1, we obtain

(2.8) D*q'(w) = Dlη{w)DJKw) + Dwη(w)Dlp\w) , j = 1, , n .

The left side of (2.8) is clearly symmetric. The fact that Dlfj(w) is a
symmetric bilinear mapping from Rm x Rm into Rm implies that the second
term on the right side of (2.8) is also symmetric. Consequently, the first
term on the right side of (2.8) must be symmetric. Thus, Dlη(w)Dwf

j(w) =
(Dwf

j(w))τDlη(w). Combining this with (2.6)2, we see that (b) of Defini-
tion 2.2 is satisfied. The other properties, i.e., (c), (d) of Definition 2.2
follow from (c), (d) of Definition 2.1 and (2.6)3. The proof of Theorem
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2.1 is completed.

We give in passing the equation satisfied by an entropy function
r](w). Let qj(w), j = 1, •••, w, be the corresponding functions defined in
(b) of Definition 2.1. A straightforword computation yields

(2.9) η(w)t + Σ Qj(w)xj = Σ Ku(w),
3=1 i,3'=l

n

- < Σ i (u(w)Xi,

Here u(w) and Bίj(u(w)), i, j = 1, , %, are given by (2.7) and (2.6)8.

3. Normal form of the symmetric hyperbolic-parabolic systems.
Let us assume that (1.2) is symmetrizable on a convex open set ^w and
consider the symmetric system (2.1) on ^ u derived from (1.2). When
the right side is identically zero, (2.1) is a symmetric hyperbolic system.
When B(u, ω) defined in (d) of Definition 2.2 is positive definite for u e έ?u

and ω e Sn~\ (2.1) is a symmetric strongly parabolic system. Between
these two limit cases, there are intermediate cases where B{u, ω) does
not vanish identically but has a nontrivial null space. Our aim in this
section is to give a simple sufficient condition such that, by introducing
a new dependent variable again, (2.1) can be rewritten in the normal
form, i.e., a coupled system of a symmetric hyperbolic system and a
symmetric strongly parabolic system.

We consider a diffeomorphism v —> u from an open set έ?v onto g?%.
By substituting u = u(v) into (2.1) and then multiplying by the transpose
of the Jacobian matrix Dvu{v), we obtain the transformed system with v
as the dependent variable

(3.1) A\v)vt + Σ Mv)vxj - Σ B^'Wv^. + g{v, Dxv) .
i=i 3 *,i=i °

Here,

(3.2), A\v) = (DMv))τA\u(v))DMv) ,

(3.2)2 A'(v) = (Dvu(v))τA>Xu(v))DMv) , j = 1, , n ,

(3.2)8 B'Kv) - | ( A Φ ) ) W Φ ) ) + B^u(v))}Dvu(v) , i, j = 1, , n ,

(3.2), g(v, Dxv) = Σ H

Since we started with the assumption that (2.1) is of the symmetric
form, it is obvious that
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(3.3)! A\v) is real symmetric and positive definite for v eέ?v

(3.3)2 Aj(v), j = 1, , n, are real symmetric for veέ?v,

(3.3)8 Bίj(v)f i, j = 1, , w, are real symmetric for v e ^ and in ad-
dition Bίj(v) = Bjί(v) for veέ?v and i, j = 1, , w.

(3.3)4 5(v, α>) Ξ= Σ?,y=i Bij(v)Q)i(uj is real symmetric and non-negative
definite for veέ?v and ω = (α^, , ωn) e S""1.

We introduce here the definition of what we call the normal form.

DEFINITION 3.1. The system (3.1) is said to be of the normal form
of the symmetric hyperbolic-parabolic system, if (3.3)i_4 are satisfied and
in addition there exists a partition {/, //} of the standard basis {elf , em}
of Rm such that, A\v), Bίj(v), i, j = 1, n9 and g(v, Dxv) are decomposed
as follows:

(AXv) 0
AW = , 0

Namely, A\v) is block diagonalized.

(b)

where, Σ?,y=i Bii(v)a)i(Oj is positive definite for ve^v and ω = (ωίf , a)n) e

(c) ^(v, 2?βv) = (9i(v, Dxvn\ gu(v, Dxv))τ ,

where v — (vl9 v^y. In other words, gx does not depend on D9vz.
Let the system (3.1) be of the normal form in the sense defined

above. Let

(Ah(v) Aln(v)\ .
A3{v) = - ^ 1 w

Then (3.1) is written as

(3.4), AKv)vItt + Σ Mi(v)vItX. = K&, Dxvn) ,

(3.4)2 AJzWv//.. - Σ 5ί ί(v)v J I i W = λIZ(ι;, 2?βv) .

Here v = (vIf vu)
τ and the right sides of (3.4)1>2 are given explicitly by

hj(v, Dxvn) = gΣ(v, Dxvu) - Σ M(
3=1

n

hu(v, Dxv) = gn(v, Dxv) - Σ {Mn(v)vI}X.
3=1
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The system (3.4)1>2 can be regarded as a coupled system of a symmetric
hyperbolic system for vz and a symmetric strongly parabolic system for
vn. Hence, for the initial value problem, the existence and the unique-
ness of solutions local in time are proved in an appropriate function
space. (See Theorem 2.9 of [12].) This implies that, if (1.2) is symme-
trizable and the corresponding (2.1) can be written in the normal form,
then the initial value problem for (1.2) is well posed. For such systems,
several sufficient conditions that guarantee the existence of solutions global
in time are known also. The reader is referred to [8], [12].

We shall show that the symmetric system (2.1) can be put into a
normal form if the following condition is assumed to hold.

Condition N. The null space of B(u, ω)-=ΎJHiJB
i5{u)ωiωj is independent

of u e έ?u and ω e S71"1.
It is clear that this condition holds if (2.1) itself is of the normal form.

THEOREM 3.1. Suppose that the symmetric system (2.1) is derived
from (1.2) which is symmetrizable on a convex open set 0>w(zΩ, by change
of the dependent variable. Let Condition N hold on ^u that corresponds
to έ7w. Then there exists a dijfeomorphism v^>u from an open set (9V

onto &„ such that, by rewriting (2.1) with v as the dependent variable
and then multiplying by (Dvv(u))τ, the resulting system (3.1) is of the
normal form. Furthermore, (c) of Definition 3.1 is satisfied with gΣ = 0.

PROOF. We may assume without loss of generality that Bίj(u) are
of the form

Here we denote by {/, //} the partition of the standard basis {elf , em)
of Rm defined as / = {elf , es), II = {e8+1, , em}. To see this, suppose
for a moment that this is not the case. Let R be an orthogonal matrix
with constant elements and let vf = Rτu. Then, u = Ruf. Substituting
this into (2.1) and then multiplying by Rτ, we obtain again a symmetric
system which is equivalent to (2.1). It is easily seen that, by virtue of
Condition N, (3.5) is realized with uf in place of it by a suitable choice
of R.

Now we define a smooth mapping u —> v by utilizing the diffeomorphism
u—>w that symmetrizes (1.2) on έ?w. Namely,

(3.6) v = (wM, , ws(u), u8+1, , um)τ .

Here wk(u) and uk denote the fc-th components of w(u) and ^respectively.



456 S. KAWASHIMA AND Y. SHIZUTA

The domain of definition of the above mapping is <^u. But, to show that
this mapping is a diffeomorphism, some care must be taken. Once this
is proved, we shall see that the inverse mapping of the mapping (3.6)
put the symmetric system (2.1) in a normal form.

We note that Σ?,/=i -B /̂Mα^α),- is r e a l symmetric and positive definite
by Condition N. Let

(3.7)

Since A\u) = D%w(u)9 we have A°II(u) = dwI/duI, A°III(u) = dwI/duII, A°III(u) =
dwZI/duI9 Azzzz(u) = dwzz/duzz. Here u = (uZ9 un)

T

9 w = (wl7 wn)
τ. These

partial derivatives may be understood in the sense of Frechet derivatives.
Let us define a smooth mapping w->v by

(3.8) vz = wZ9 vn = uzz(wl9 wzz) .

We show in the following that this mapping is a diffeomorphism. First
we note that Duw(u) = A\u) is positive definite. This implies that Dwu(w)
is positive definite. Hence, dun/dwn is positive definite also. Since ^w

is a convex open set, the mapping wzz—>uZI is one-to-one for arbitrarily
fixed wΣ. We deduce from this fact that the mapping w —> v is one-to-one
from έ?w onto ^ M . To show that Dwv(w) is nonsingular on έ?w9 we notice
that Dwv(w) is lower triangular as a block matrix, i.e., dvz\dwzz = 0. Since
dvz/dwz = EJt we obtain det(Dwv(w)) = άet(duzz/dwZI). But duzz/dwZI is
positive definite as we noted above. Therefore, det(Dwv(w)) does not
vanish on ^w. We conclude that the mapping w->v is a, diffeomorphism
from έ?w onto an open set &„.

Let us form the product of the mapping u —> w and the mapping
defined by (3.8). Namely,

(3.9) vz = wz(ul9 un) , vn = uzz .

This is a diffeomorphism from &u onto έ?v. Differentiating (3.9) with
respect to u9 we get

(3.10) Γ >- IAUW) A'"{UΆ

Consequently,

(3.11) i

It is easy to see that the mapping defined by (3.9) coincides with that
defined by (3.6). Now we rewrite (2.1) with v as the dependent variable.
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Substituting u = u(v) into (2.1) and then multiplying the resulting equation
by (Dvu(v)Y, we obtain (3.1) where A\v), Aj(v), Bi3\v) and g(v, Dxv) are
defined as in (3.2\_4. Clearly, (3.3)i_4 are satisfied. The properties (a),
(b), (c) of Definition 3.1 can be verified by using (3.5), (3.7), (3.11). In
particular, (c) of Definition 3.1 holds with gz = 0. The system (3.1) is
therefore a symmetric hyperbolic-parabolic system of the normal form.
The proof of Theorem 3.1 is completed.

4. Hydrodynamical equations. In this section we treat the system
of equations for compressible fluids as an application of the general
theory. The equations are given as

ft + Σ (pu)ίd = o

(Pu')t + Σ ( ^ V + pδti)^

(4.1) = Σ
3=1

{p(e + \u\*/2)}t + Σ {pu'(e + W/2) + pu%

= Σ \μΣ uXu' + ui.) + μ'WΣ <k + KΘΛ .

Here, <o, w = (u1, w2, ^3) and ^ are the mass density, the fluid velocity and
the absolute temparature, respectively. The pressure p and the internal
energy e are given smooth functions of p > 0 and θ > 0 satisfying

(4.2) pp = 3p(ft 0)/3/o > 0 , β, = 3β(ft θ)/dθ > 0 .

The viscosity coefficients μ9 μ' and the heat conduction coefficient K are
also given functions depending smoothly on p > 0 and θ > 0. We consider
in the following the four cases listed below.

( i ) μ, 2μ + μ\ K > 0.
(ii) jeι = jM' = Of c > 0 .

^ ; (iii) ^, 2^ + μ' > 0, /c = 0.
(iv) μ = /ι' = Λ: = 0.

We take jθ and ^ as the two independent thermodynamical variables and
set

(4.4) V=(p,u,θ)τ.

V ranges over the open convex set &v = (0, oo)χ/ί3χ(0, oo) in Rδ. Next
we set

(4.5) W = (p, pu, p(e + W/2))τ .
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We regard If as a function of V defined on £&γ. The range of the
mapping V—>W is denoted by Ω. A direct computation shows that the
Jacobian matrix of the mapping V-+W is given as follows.

/ 1 0 0

(4.6) DvW=l uτ pi, 0

\e + \u\2/2 + peP pu ρeθl

Here, ep = de(p, θ)/dp and J3 denotes the 3x3 unit matrix. We note that
dp(e + \u\2l2)/dθ = peθ > 0 by (4.2). Hence p(e + \u\2/2) is a monotone in-
creasing function of θ for arbitrarily fixed p and u. It is evident that
the mapping (p, u) —• (p, pu) is one-to-one. Combining these observations
we see that the mapping V->W is one-to-one on £&y. On the other hand,
DVW is nonsingular on &v as is seen from (4.6). Hence, V->W defines
a local diffeomorphism at every point of the domain of definition. We
conclude therefore that the mapping V-+W is a diffeomorphism from 2$v

onto Ω. (It follows from this fact that Ω is a simply connected open set
in Rδ.) We rewrite (4.1) with W as the dependent variable and obtain

(4.7) Wt

where

(4.8) Σ fj(W)ζj = (ρ(u ζ), pu(u ξ) + pζ, p(e + \u\2/2)(u ξ) + p(u ξ))τ

3=1

for ξ = (ξlf ζ2, ξι) e R3. Note that u-ξ stands for the standard inner product
of u and ξ in R\ We omit the explicit forms of Gjk(W).

Let us denote by s the entropy of the fluid. It is assumed that s
is a smooth function of p > 0 and θ > 0. We recall here the identity
de = θds — pd(l/p) which is an expression of the first law of the thermo-
dynamics. From this follow the relations

(4.9) eP = (p- θpθ)lρ2 , β, = -Pθ/P2 , sθ - e$/θ .

Here the subscripts p and 0 refer to the partial differentiations with
respect to these variables. We set

(4.10) η = -ps .

Then Ύ] can be regarded as a function of V, and hence, of W. We shall
show that the Hessian Dwf] is symmetric and positive definite on Ω. The
gradient of η with respect to W, i.e., Vwrj can be computed by using the
relation Vwη = Vy^DyW)'1 and (4.6), (4.9). We obtain

(4.11) UEΞ (V^)Γ = (-s + (β - M72
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We regard (4.11) as the definition of the mapping V—>U. The domain of
this mapping is £&γ. We denote the range by £&Ό. The Jacobian matrix
can be computed by using (4.9) as follows.

IVPIP -U ~{e~ \u\2/2 + peP)/θ\

(4.12) DVU=— ( 0 I3 -uτ/θ
θ \ o o ye

We observe that d{-s + (e - \u\2/2 + plp)/θ}/dp = pP/ρθ > 0 by (4.2). Hence
—s + (β — \u\2/2 + p/p)/θ is a monotone increasing function of p for arbi-
trarily fixed u and θ. It is readily seen that the mapping (u, θ) —>
(w/ί, — 1/ί) is one-to-one. From these observations follows that the
mapping V—>U is one-to-one on 3ίγ. On the other hand, V—>U defines
a local diffeomorphism at every point of the domain of definition, because
DγU is nonsingular on &v as is seen from (4.12). Therefore, the mapping
V->U is a diffeomorphism from 2$v onto 3fΌ. As a consequence the
mapping W—>U defined also by (4.11) is a diffeomorphism from Ω onto
&jj. Since Ώlη = DWU = DVU(DVWY\ we get (D&ηY1 = JDFTΓ(DF£/P)" 1.

Let us set

(4.13) A°( V) = (Dv UYiDlηY'Dy U .

Then, A\V) = (DVU)TDVW. Hence the explicit form of A\V) is obtained
by using (4.12), (4.6) and (4.9). Namely,

(4.14)

It is clear by inspection that A°(V) is symmetric and positive definite on
£2fY. Hence by (4.13) DwV is symmetric and positive definite on Ω. In
other words, η is a strictly convex function on Ω in the sense defined
in §2.

Since the inverse mapping U-+W of the mapping W->U = V ^ is a
diffeomorphism from £&Ό onto i2, we may substitute W=W(U) into (4.7)
and rewrite the equation. Then we obtain the following equation with
U as the dependent variable.

(4.15) A\U)Ut + ±A'(U)Umi = £jB>'k(U)UXkl. .

Taking into account of the relation DVW = (D^)" 1 , we see that the
coefficient matrices are given by
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(4.16) AK U) = DwfK W)(D^VΓ , 3 = 1, 2, 3 ,

B*\U) = G*\W){D*wηΓ , j, k = 1, 2, 3 .

Now we shall prove that (4.15) is of the symmetric form in the sense of
Definition 2.2. The positive definiteness of A\U) is easily seen. We set

(4.17) η = p/θ, ψ = pu'/θ , j = 1, 2, 3 ,

and regard these quantities as functions of V, and hence, of U. A direct
computation using (4.12), (4.9) shows that

(4.18) Vvη = W\ Vvφ = f'{Wγ , j = 1, 2, 3 .

In particular, it follows from the latter relation that Aj(U) = .D ί̂p' for
j = 1, 2, 3. This implies that Aj(U) are real symmetric matrices. (We
omit the concrete forms of A3\U).) Let us consider the case (iv) of (4.3).
Since the right side of (4.15) is identically zero in this case, we may
conclude that (4.15) is a symmetric hyperbolic system. We owe this result
to Godunov [5]. We consider next the other three cases of (4.3). The
right side of (4.15) can be computed by using the expressions of the right
side of (4.1) in terms of u/θ, —1/0, and their space derivatives. We omit
the explicit forms and only note that

(4.19) Bik{U)τ = Bk*(U) , j , fc = l, 2, 3 .

(4.20) B(U,ξ)= Σ B'WfA
3,k=ί

0 0

μ\ξ\% + (μ + μ')fξ μuτ\ζ\> + (μ + μ')(u ξ)ζτ

\0 μu\ξ\* + (μ + f/)(u ξ)ξ {ιcθ +μ\unξ\* + (

Here, ξ = (ξ19 ξ2, ζ3) e R \ Let 2eΛ 3 and let Z = («0, «, z4) 6iί 5 . Then it
follows from (4.20) that

(4.21) <(1/0)J5(C/, ς)Z, Z) = μ\ξ\*\z + uztf + {μ + μ'){{z + uzJ-ξY + /c0|ί|2^ ,

where < , > denotes the inner product in R\ Note that the inner product
appearing in the second term of the right side is that of R*. By inspection
of (4.21) it is seen that B{U, ξ) is nonnegative definite for any Ue&u
and ξ eR3 in all cases of (4.3). We conclude therefore that (4.15) is of
a symmetric form. This means that η can be regarded as an entropy
function despite of the fact that we are unable to show the convexity
of Ω. Now we recall the arguments in §2 and set
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by abuse of notation. We define also

\ uy-ψ
Then it turns out that this η coincides with that defined by (4.10). We

obtain

(4.22) q* = -pujs . j = 1, 2, 3 .

These assertions are verified by making use of (4.5), (4.8), (4.11) and (4.17).
Finally we examine whether Condition N is satisfied by the symmetric

form (4.15) or not. Let ωeS2 and let ^V~(B(U, ώ)) be the null space of
B(JJt a;). In the case (i) of (4.3), ,sr(B(U, ft))) consists of vectors Z such
that z = 24 = 0 and hence has one dimension. Condition N is satisfied in
this case. By the arguments in § 3, (4.15) can be put into a normal form.
In fact this is realized by using the diffeomorphism V—>U. Let us set
U = U(V) in (4.15). Then we obtain the following equation.

(4.23) A\ V) Vt + g M V) Vxj = ±=i B'K V) VxjX]c + g( V, Dx V) .

Here, A\V) is given by (4.14) and

KPplP)(u-ξ) pPζ 0

(4.24) Σ A'( V)ζj = M pPξ
τ p(u ς)I> Vθζ

τ

\ 0 pθζ (βe$/θ)(u-ξ)l

/0 0 0

(4.25) Σ &\ V)ζ£k = I 0 μ \ζ\% + (μ + μ')?ξ 0

\0 0

for ζ = (|1( f2, | s ) e R\ Furthermore,

(4.26)

= i-j-g Σ M} + <) 2 + μ'(± uίX + ± κx.θΛ

It is easily seen from (4.26) that gΣ= 0. We turn to the case (ii) of (4.3).
By (4.21), <yK(B(U, ω)) consists of vectors Z such that z4 = 0. Hence
^4^(B(Uf ft))) is a four dimensional subspace. Condition N is satisfied.
We can get the corresponding normal form by setting μ = μf = 0 in (4.23).
Since h = 0 in (4.26), we see that ^ = 0, Now we treat the case (iv) of
(4.3). We have <Λ^(B(U, ώ)) = JB5 in this case. Hence it is evident that
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Condition N holds true. The corresponding normal form is obtained by-
setting μ = μ' = K = 0 in (4.15), or equivalently, in (4.23). Briefly, the
right side vanishes in this case. Let us consider the case (iii) of (4.3)
that remains. ^V(B(U9 ω)) is a two dimensional subspace consisting of
vectors Zsatisfying z + uz4 = 0. Hence, in this case, ^V(B(U, ω)) depends
on U. (It does not depend on (yeS2.) Consequently, Condition N does
not hold. Despite of this fact, we see that (4.23) with K = 0 gives the
normal form for this case. We note that ~gΊ = 0 is violated in this normal
form.

PROPOSITION 4.1. Suppose that the conditions (4.2) and (4.3) are
satisfied for the system of equations (4.1) for compressible fluids. Let W
be defined as in (4.5). Then, with W as the dependent variable, (4.1) can
be written as (4.7). This system of equations has an entropy function
η defined by (4.10). The corresponding qj, j = 1, 2, 3, are given by (4.22).
Let U be defined as in (4.11). Then, if we rewrite (4.7) with U as the
dependent variable, the resulting system of equations is of the symmetric
form. Condition N holds except for the case (iii) of (4.3). Furthermore,
(4.15) can be reduced to the normal form (4.23) for all cases of (4.3).
This is realized by using V as the dependent variable, where V is defined
by (4.4). (In the case (iv) of (4.3), (4.23) is a symmetric hyperbolic system.
This case can be regarded as a limit case.)

5. Application to the discrete kinetic theory. We discuss the Navier-
Stokes equation derived from the discrete velocity models of the Boltzmann
equation. Let us consider an ^-dimensional N-velocity model. Let vlf ,
vN e Rn be the velocity vectors. The discrete Boltzmann equation for this
model is written in the following form:

(5.1) - ^ + vt>V,F, - QIF, F) i = l,-'-,N.
ot

Here each unknown Ft(i = 1, , JV) is a function of the time t ^ 0 and
the space coordinate x e Rn, and denotes the density distribution of particles
with the velocity vt. The right side of (5.1) is given as

(5.2) Qt(F,F) = ±Σtι(A%FkFι-AΪ}FiFJ)9 i = 1, -- ,N.

Alii is a positive constant if the quadruplet i, j, k, I corresponds to a col-
lision and, if otherwise, Aiί is zero. It is assumed also that A% — A'ί =
AH and t h a t A% = AH).

We recall here two basic concepts in the discrete kinetic theory. One
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is summational invariant and the other is Maxwellian. An element φ =
(Φi, '•-, ΦN) of RN such t h a t

(5.3) AiιUi + Φi -Φk-Φι) = θ

for any i, j, k, I is called a summational invariant. The set of all sum-

mational invariants forms a subspace of RN and is denoted by ^ti We
write dim ̂ t = m. Let F = (i^, • , ίVf G RN satisfy F > 0, i.e., F, > 0
for i = 1, . . . , AT. If

(5.4) AίXfypy - 2 W - 0

holds for any if j, k, I, F is called a Maxwellian. F is a Maxwellian if
and only if Qt(F, F) = 0 for i = 1, , N, provided that F > 0. The set
of all Maxwellians will be denoted by Γ. Then Γ is a m-dimensional open
manifold in RN.

We apply the method of Chapmann-Enskog to (5.1) and obtain the
Euler and the Navier-Stokes equations. These equations are the equations
of hydrodynamics derived from the discrete kinetic theory. Let ψk, k =
1, , m, be a basis of ^f and let FeRN. We set

(5.5) w = (w19 , wj, wk = (ψk, F) , k = 1, , m ,

where < , > denotes the standard inner product in RN. The wk are called
the hydrodynamical moments or the macroscopic variables. The unknowns
of the Euler and the Navier-Stokes equations obtained by using the
Chapman-Enskog expansion are the wk. The Euler equation takes the
form of (1.1), while the Navier-Stokes equation is written in the form
of (1.2).

Now let us regard (5.5) as the definition of a mapping from (R+)N

into Rm which sends F to w. We set

(5.6) Ω = {w — (wlf , wm)τ; wk=(ψk, F}, k — 1, , m, for some F>0} .

It is known that the mapping F-^w defined by (5.5) can be regarded as
a diffeomorphism from Γ onto Ω. This result is due to Gatignol. (See,
for the proof, Appendix 2 of [4]). As a consequence, Ω(zRm is an open
set. We shall see that Ω is convex. Let w, w' e Ω. Then there exist
F> 0 and Ff > 0 such that Ofc, F) = wk, (ψk, Ff) = w'k9 k = 1, , m. It
follows that for 0 ^ λ ^ 1, (ψk, \F + (1 - \)F') = Xwk + (1 - x)w'k, k =
1, , m. Since λ F + (1 — λ)F' > 0, this implies that λ^ + (1 — \)w' e Ω.
Hence, Ω is convex. Briefly, Ω is a convex open set. The unknown w
of the system of hydrodynamical equations takes values in Ω.

It can be shown that the system of the Navier-Stokes equations with
w as the dependent variable is symmetrizable on ^w — Ω. In other words,
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there exists an entropy function defined on έ?w = Ω. Hence we can
transform the system in a symmetric form by introducing a new de-
pendent variable u in place of w. Let us consider Condition N for the
symmetric system with u as the dependent variable. This condition can
be verified under an additional assumption, i.e., the existence of a par-
ticular basis of ^ . Therefore, applying Theorem 3.1 and a result of
Kawashima (Theorem 2.9 of [8]), the initial value problem for the system
of Navier-Stokes equations is solved locally in time. The additional as-
sumption can be checked for various concrete models among which we
mention the 14-velocity and the 32-velocity models introduced by Cabannes
[1], [2]. (See in this respect [10], [12].) The detailed proofs of the results
presented in this section as well as the global existence theorems will be
given in the forthcoming paper [9].
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