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1. Introduction. Let Rn+1 be the (n + l)-dimensional Euclidean space
(n ^ 1). Each point of Rn+1 is denoted by a column vector v = *(vlf v2, ,
vn+1), where t denotes the transpose. We put \v\ = {Σ?ίί (vi)Ύ/2 and
xn+1{v) = vn+1. Let Bn+1 = {ve Rn+1: \v\ < 1} and Hn+1 = {ve Rn+1: xn+1(v) > 0}
be the open unit ball and the upper half space in Rn+i, respectively.
We denote by S(x) the ^-sphere in jβn+1 with center at x and radius 1.

A Mobius transformation of /Ϊ71+1U{00} is, by definition, a composite
of a finite number of inversions in Rn+I[j{oo) with respect to ^-spheres
or w-planes. Let Mob be the group of all the Mobius transformations of
Λn+1U {<*>}. We denote by \Ϋ(x)\ the {n + l)-th root of the absolute value
of the determinant of the Jacobian matrix of 7 6 Mob at x e Λn+1\{7~1(oo)}.

An element 7 6 Mob with a fixed point at °o is of the form 7(#) =
xAx + v for some λ > 0, A e O(n + 1) and v e Rn+1, where O(n + 1) is the
group of orthogonal matrices of degree n + 1 (see [1, p. 20]). Next assume
that 7(oo) φ oo. Then, for the inversion σ with respect to S(7~1(oo)), we
have 7o(j(oo)= co so that Ύ°σ(x) = xAx + v. Hence y(x) = \Aσ(x) + v.
Therefore |7'(ί»)| = \/\x - 7~\^)\2 since \σ'(x)\ = l/\x - Ύ'K™)|2. Let the
center and the radius of the w-sphere {xeRn+1: \Ύ'(X)\ = 1} be α(7) and
|θ(7), respectively. Then we have α(7) = 7~1(oo) and p(yf = λ so that

( l ) |Ύ'(aθi = p(yY/\* - ctirf)\2.

Further, let the interior and the exterior of the ^-sphere be 7(7) and
E(Ύ), respectively. Then, as in [1, p. 30],

(2 ) 7(#(7)) = /(7"1) , 7(7(7)) = E{Ί~ι) .

Let M.oh(Bn+1) be the subgroup of Mob whose elements map Bn+1 onto
itself. A subgroup Γ of Mbb(JBn+1) is said to be discontinuous if the orbit
Mo)}rer of the origin o 6 Bn+ί under Γ has no accumulation points in Bn+1.
Hence, for a discontinuous subgroup Γ, the set Λ(Γ) of accumulation points
of {7(o)}reΓ is contained in dBn+1. We call Λ(Γ) the limit set of Γ. Let d(Γ)
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be the exponent of convergence of the Poincare series ΣreΓ (1 — \v(o)\)β/2,
that is,

δ(Γ) = inf{s > 0: Σ (1 - |τ(o)|)β/2 < oo} .
rer

In this paper we prove the following:

THEOREM. Let Γ be a discontinuous subgroup of M6b(jBn+1) with
%A(Γ) > 2 and let ξQ e Λ(Γ) be the unique fixed point of some transfor-
mation in Γ. If the group ΓζQ = {7 e Γ: 7(£0) — ξo) contains a free abelian
group of rank 1(^1), then δ(Γ) is greater than I. Moreover, the lower
bound I is the best possible.

In the case of n ^ 2, that is, in the case of a Kleinian group Γ
acting on Hs with Λ(Γ) $ oo, Beardon [2] showed this result for the ex-
ponent of convergence of the series Σrer\Γoo PW For the other properties
concerning the exponent of convergence of the Poincare series, see also
Tukia [3, § E] and references quoted there.

In § 2, we give some preliminary lemmas on a Mδbius transformation
and in § 3, we give some properties of a discontinuous group mentioned
in the above theorem. § 4 is devoted to showing some inequalities which
are used in the proof in § 5 of the first half of the theorem. In § 6 we
give an example of discontinuous groups which shows, in § 7, that the
lower bound I is the best possible.

2. Preliminary lemmas. Let Mob(JEΓn+1) be the subgroup of Mob
whose elements map Hn+1 onto itself. As in the introduction, each 7 e Mob
is written as j(x) = xAx + v or y(x) = χAσ(x) + v for some λ > 0,
A e O(n + 1) and v e Rn+1, where σ is the inversion with respect to
S(7-1(oo)). In particular, if 7 e Mόb(/fn+1), then the following known
lemma holds.

LEMMA 1. Ifye Mob(£Γre+1), then xn+1(v) = 0 and A = ^ ° *j) for some

AQeO(n).

Next we prove the following lemmas.

LEMMA 2. Let Ίλ and 72 be elements of Mob satisfying 71(°°) Φ oo
and 71°72(oo) Φ oo. Then piΎ^Ύ,) = /0(71)|7^(α(71o72))Γ1/2 and

PROOF. From (1) we have

1(7x0 70^)1 = |7ί(7t(a0)| |7ί(aθ| -

On the other hand, |7,(a?) - aMl* = |7ί(»)| l^(72-
1(α(71)))| \x - 72"

1(α(71))|2
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(see [1, p. 19]). Therefore

M \χ - 72-
1(α(71))|2} ,

from which we have the required equalities. q.e.d.

LEMMA 3. Let Ύλ and 72 be elements of Mob satisfying 71(°°) Φ °°,
72(oo) φ oo, 71<>72(oo) Φ 00 and 71o72o7Γ1(oo) ^ 00. Then i Φ ^ ° 72 ° 7Γ1) =

PROOF. Lemma 2 and the identity \Ί[{X)\ = |(72"
1)'(72(ίi;))|-1 show

(α(T1o72o7Γ1))Γ1/2

T,))! |(7Γ1)'(α(71o72o7Γ1))|}-1/2

Now, by (1) and p(y) = p(y~x), the last expression is equal to the one
desired. q.e.d.

LEMMA 4. Suppose 7 eMob satisfies 7(00) Φ 00 and cl(/(τ)) Πcl(/(7"1)) =
0 'w fcere cK^* 1 )) is the closure of 7(7±1). Then {I(7m)}~==1 α^d {/(7"m)}S=1

are decreasing sequences of sets with limTO_oo p(i±m) = 0.

PROOF. Take a point x e J(7)c. Then by (2), y(x) e cl(/(7"1)) so that
7(a?) e (cl(7(7)))c by our assumption. Hence |(72)'(α)| = |7'(7(a?))| |7'(a?)| < 1,
that is, x e (cl(/(72)))c. Thus /(7)=)cl(/(72))=)/(72). In the same manner,
we have J ^ " 1 ) ^ / ^ - 2 ) . Next assume that I(J)Z)I(Ύ2)Z) =)J(7m) and
7(7-1)=)7(7-2)=) D / ( 7 " W ) . Then for an element x e /(7m)c, we see Ύm(x) e
cl(/(7-w))ccl(/(7-1))c(cl(/(7)))c so that |(7m+1)'(^)| = |7'(7m(α;))| |(7m)'(^)| < 1,
that is, x e (cl(J(7m+1)))c. Therefore /(7w)=3/(7m+1). Similarly we have
/(7" m )=)/(7" m - 1 ) .

Since cl(/(72))c/(7), there exists a constant cx > 1 such that |7'(a?)| ^ ^
for all x e /(72). Since α(7m) e 7(7m)c/(72) for m ^ 2, we have |7'(α(7m))| ^ cx

so that by Lemma 2, (̂7™) = |θ(7m-1)|7'(α(7m))Γ1/2 ^ iθ(7m"1)(c1)-1/2. Thus
lim^oo p(Ύm) ^ limm_oo (c1)-(m~1)/2

io(7) = 0. Since p(7m) = |θ(7~m), we are
done. q.e.d.

3. Properties of discontinuous subgroups. Let Γ b e a discontinuous
subgroup of Mob(Z?n+1) which satisfies the conditions stated in the Theorem
in the introduction. Let τ be a Mobius transformation with τ(Bn+1) = Hn+1,
τ(ζo) = °°. r(oo) = -en+1 and τ(o) = en+1, where en+1 = *(0, , 0, 1) e£Γn+1.
We denote by {Px, , PJ a system of free generators of the free abelian
group of rank I contained in r o f f ^ r " 1 , We set G = τ ° Γ ° τ'1 aMJόh(Hn+1)
and Goo = τ ° Γξo o r"1. Note that G is a discontinuous subgroup of Mob(//n+1),
that is, {g(en+1)}geG never accumulate in £Γn+1.
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LEMMA 5. There exists an element geG\Goo with d(I(g)) Πcl(/(fiΓ1)) =

0 .

PROOF. If a Mobius transformation x ι-> xBx + w has a unique fixed
point at oo, then λ = 1, for otherwise it has exactly two fixed points
(xB — En+1)~X — w) and oo, where En+1 is the unit matrix of degree n + 1.
Choose geGoo which has a unique fixed point at oo and set g(x) = Bx + w.
Let h(x) — xAx + v be another such element in (?«>. Since A, Be0{n + 1),
we have ^(aOI ^ |»| + \w\, \hm(x)\ £ \m\x\ + Σiΐ=o \k\v\ and |/rw(a;)| ^
λ~m|sc| + Σjk=o λ"*"1^! for m = 1, 2, 3, . Now if λ =£ 1 (here we may
assume that λ < 1), we have

\g°hmog-ioh-m(en+ί)\ £ 1 + 2|w| + 2(1 - λ Γ M

for all m = 1, 2, 3, . On the other hand, &n + 1(βr4mo0"1 ° A~w(en+i)) = 1
by Lemma 1. Furthermore {fif °/ιm ° fir"1 °/t"m}m=i are mutually distinct, for
if g o hm o g~ι o h~m = id for some m, then gf ° few = fem © g and ^ also fixes
the finite fixed point (xA — En+1)~\ — v) of h. Therefore the orbit
{g ° hm o gf"1 o Λ~m(βra+1)}S=i has an accumulation point in £Γn+1. This contra-
dicts the discontinuity of G. Hence x = 1 and we have

( 3 ) g(x) = Ax + v (geGJ).

Since A = (Q° «) and a?n+1(i;) = 0 by Lemma 1, we see xn+i(g(en+i)) = 1 for

all fif e Goo. Therefore the accumulation points of the orbit {g(en+1)}geGoo

consists of only one point {oo}. Thus we have G^G*, by the condition

Uiβ) > 2.
Now we choose an element geG\Goo. Since G is a discontinuous

subgroup of M.ob(Hn+1) we have limw_»oo |PΓ(aOI = °° tor xeHn+1. Further,
for x 6 dHn+1, we see P?(x) + en+1 = P?(x + en+1) by Lemma 1 so that
lim^oo |PΓ(a?)| = °° also for x e dHn+1. Therefore

l im a{Pf °go P~m o ̂ f"1) = l im goP? o g~\ oo) = a{g~x)

limlαίflfoP-ojf^oPί--)! = lim |PΓ<>flroPr* 0^(00)1 = 00 .
m->oo m-»oo

Since PTeG*,, we have |(Pf ° g)\x)\ - |fif'(a;)| by (3) so that p(PT°9) = P(g).
Therefore, by Lemma 2, (1) and p(g) — pig'1), we get

P(P? ° 9 o P Γ " » r 1 )

r o g o p Γ « o sf-o)ri/2

g-1) - α(flr-ι)l

Thus l im m _ p(g»p- o ff-1 <, Prm) = l im m _ /9(Pf o g o P f o sr1) = 0 by (4).
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Hence, again by (4), we have cl( J(Pf ° 9 ° Pϊm ° 9'1)) Π c\(I(g o Pf o g-1

 o P f ) ) =
0 for all large m. q.e.d.

We set Zι = {y = (nx, w2, , n,): n, e Z} and (Z1)* = Z ι \ ( 0 , , 0)
where Z is the set of all integers. For v — (nlf n2, ••, nι)eZι, we
set P y = P* l oPj2o.. . oPyi. Since G is a discontinuous subgroup of
Mob(iϊn+1) and since Pv(eB+1) = P,(o) + en+1 by Lemma 1, lim|vHoo \Pv(ό)\ ^
lim î̂ βodPpίβn+x)! — 1} = °o, where M = maxflwj: 1 ^ i ^ i} for v = (n l f ,
nt)eZι, so that there exists a large number mx satisfying |PWl,(o)| > 1
for all v = (wlf , ̂ ) 6 (Zz)* where mxv = ( m ^ , , m^,).

Let geG\Goo be as in Lemma 5. Then by Lemma 4 we can choose
a large number m2 such that ρ(gmή < 1.

Now we set Q, = PmχV and g0 = fifm2. Since Qv(o5) = Ava; + Qv(o) for
some Av e O(w + 1) we may assume, by choosing mx sufficiently large,
that \QXo)\ > 1 and

( 5 ) QXx)eE(gQ)ΠE(go1)

for all xeKgjUligϊ1) and ve(Z1)*.

LEMMA 6. Let g0 and Qv be as above and let

G = fcU{g,°QVlog,o... og0oQvkogQ: Vlf ..., Vke (Z1)*} .

Then each element g of G is mutually distinct and satisfies a(g) e I(g0)
and g(c°) Φ «>.

PROOF. Suppose that the equality

9o°Q,1°9o° ••• °9o°Q»p°9o = 9o°Qμi

09o0 ••• °9o°Qμq

09o

holds for some v19 , vp and μl9 , μ and assume that v1 = μlf , vh_x =
μk_λ and vk Φ μk for some k ^ 1. Then Q_^ o gr"1

 o . . . o Q_μjc+1 o g^1 o Q_^+1/Jk o
0o ° QyA+1 ° ° 9o ° ίλp is the identity mapping and fixes the point oo,
whereas no element of this form fixes oo by (2) and (5). This contra-
diction gives the first part of our assertion. Also by (2) and (5), we have
the other assertions. q.e.d.

4. Inequalities. As is already seen in (3), Pt (1 <̂  i ^ I) is of the
form UiX + at. Hence, for an integer m, we have P?(%) — Ufx + 6f(m)
where bt(m) = ΣS=}Uϊa>i for m ^ 0 and blm) = ΣESε/Γ*"^-^) for m < 0.
Since Qy(a?) = PΓ1711 ° ° PΓlWί(^) we see

( 6 ) QXo) = i ^ n j +

for y = (%1( •• , n i )
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F o r vlf ---,vke{Z1)*, w e d e n o t e b y Q(vlf •••, vk) t h e t r a n s f o r m a t i o n

Qo ° Q^ ° 0o ° ° 9o ° Quk ° 0o of G in L e m m a 6.

LEMMA 7. TΛere e#is£s α positive constant ε1 such that

P(Q(^ , v*)) ^ /o(Λ)eί Π ( Σ \na\Y1 ,

where v3- = (n l Λ , nιά) (1 ^ j ^ k).

PROOF. Lemma 2 gives

for 1 ^ j ^ fc, where we assume that p(Q(v0)) = P(g0). Since \(Quj

og0)\%)\ =

(p)\ = P(QoY\x - a(go)\~\ we have9Ό(

( 7 ) p(Q(vlf , v,)) - ^ ( Q K , v,_1)){|α(Q(v1, , vά)) - a(gQ)\lp(g0)} .

Also from Lemma 2, a{Q{yx, , v5 )) = goloQ-^(oc(Q(vly , v^))). Let
ί/o"1 )̂ = λAσ(α ) + v, where σ is the inversion with respect to S(flro(°°))
Then, for f = Q^d(a(Q(v19 •••, v^))), we have

Iflfo-Xf) - gϊ\<*>)\ = λ|α(f) - σ(oo)|

Since σ(ξ) = flro(°°) + (ί - ffo(°°))le - ^o(-)r 2 = *(<*>) + (f -
we see

( 8 ) \a(Q(vιt • • , y,)) - α(flrβ)| = /̂ Csr̂ 1)2]̂  - aiHϊT1

On the other hand, since ξ is rewritten as A_vj(a(Q(vlt , v^))) + Q-^io)
for A_,,i 6 O(n + 1) and since a(Q(vlt , v,-_i)) 6 /(SO) by Lemma 6, it holds
that

If -

Since |Qp(o)| > 1, the last expression above is bounded by c2\Q_vj(o)\ for
some constant c2 > 0. Hence, by (6), \ξ — aigo1)] ^ c2ΣUil&i(-"^i^ίi)l =
c2mi Σί=i l^ϋl |α<| so that, together with (7), (8) and p(gQ) = p(g*1), we have
the desired inequality for the constant εx = p(go)/c2rn1(mB,x{\aί\: 1 ^ i ^ i}).

q.e.d.

Let Σv be the summation over ye(Z ' )* and let ζ(s) = Σfc^i^'8-

LEMMA 8. For α^?/ positive number s, ΐ£ feoZώs that

Σ [ Σ Σ {p(Q{»» , vfc))}
8] ^ (̂fiTo)8 Σ {είΓβζ(s - I +

fcl k
Σ
k=l



EXPONENT OF CONVERGENCE OF POINCARέ SERIES 419

PROOF. From Lemma 7 we have

Σ [Σ Σ ίrtQOΊ, , »*))}•] ̂  P(9o)8 Σ W Σ Σ ( ή ( Σ l»</l)~')Π

= Pω- Σ {εί π ( Σ ( Σ inή")} = p(9oy Σ jβ<Σ ( Σ w)~')}* ,

where v — (nlf , nt) e (Z1)*. By considering X(k) = {v = (n^ , wO e
(Z1)*: |%| ̂  fc for 1 ^ i ^ I and |wj = fc for at least one i} for a natural
number k, we obtain

( I \—8 oo / i \-β

Σ W ) = Σ Σ ( Σ Nil)
^ I"8 Σ (#^(fc))/c"β ^ i"β Σ (kι~ι)k-* = rβζ(s - Z + 1) .

fc fcl

Thus we have our lemma. q.e.d.

5. Proof of the first half of the Theorem. Let f : = τ'^Qoz and

let δ(f) be the exponent of convergence of Σ (1 ~ l^(o)|)8/2, where the
summation is taken over 7 6 f. Then δ(Γ) ^ δ(f) so that, to prove our
theorem, it suffices to show that δ(f) > ϊ.

LEMMA 9. There exists a constant ε2 > 0 such that (1 — |τ(o)|)1/2 ^
e2ρ(τ°7°z'1) for all 7 e f.

PROOF. Let yeΓ and let Ύ = τ~log°τ for g = gooQVl°g0° °flf0

o

Q»kog0eG. As in [1, p. 29, (43)], we have 1 - |7(o)|2 = |(7"1)'(o)| so that
(1 - |7(o)|T2 = jo(7-1)/|α(7"1)| by (1). Since -en+1 eE(g0) we see g(-en+1)e
Iigo1) and we have |α(7~1)l = l^(°°)l = \τ~\g(—en+1))\ ^ c3 for some constant
c3 > 0. Hence, using 1 + |7(o)| < 2, we have (1 - |7(o)|)1/2 ^ p{Ί-ι)IVΎcz.

Also since — en+1 e E(g^) we see flf"^—βn+1) 6 7(^0) and we have 7~1(°o) =
^•"Kff"̂ —βn+i)) ^ °° Moreover, flf(oo) ̂  oo by Lemma 6. Thus, applying
Lemma 3, we have ^(T"1) = pig'1)^™) - fol/k+i + g'K00)]- Since flf^oo) G
/(ft)» we get I^'X00)! ^ |α(ί/o)l + ι°(ί/o) On the other hand, the facts ξ0 =
τ~\oo) and 7(oo) = τ~\g(-en+1)) e r " 1 ^ ^ " 1 ) ) imply |7(oo) - ςo\ ̂  c4 for some
constant c4 > 0. Hence ^(T"1) ^ ^(^/{Wffo)!+jP(ffo) + 1} Thus, by
Pis) = Piβ'1)* we have our inequality for ε2 = c4/v/2c3{|α(fif0)l + ι̂ (̂ o) + 1}.

q.e.d.

Now Lemmas 6, 8 and 9 show

geG
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Hence, if s > δ(f), then Σ ϊ U {ell~X(s - Z + l)}k < oo. Consequently we
have

( 9 ) C(β - I + D < (I/*)'

for all s > 5(Γ). On the other hand, if s tends to I then ζ(s - Z + 1)

tends to oo. Hence there exists a ί0 (> Z) such that ζ(t — I + 1) ^ (II erf

for all t, Z < t ^ ί0. Therefore by (9), δ(Γ) ^ ί0 > Z.

6. A discontinuous group. We give an example which shows that
the lower bound Z in our theorem is the best possible. The construction
of the following is similar to that in [2].

Let {ejji1 be the standard basis of Rn+1 and let θ be a positive number
with θ ^ 3. We define Mδbius transformations Plf , Px (1 ^l ^ n) and
g0 b y Plx) = x + θet ( l ^ i ^ l ) a n d gQ(x) = \-xlf , -xnj xn+i)l\x\2 for

α? = (a?!, •• ,ccn + 1). Let G(ί) be the group generated by {Py •••, Ph g0}.
Then, by the same argument as in [2], G(θ) is a discontinuous subgroup
of Mόb(£P*+1).

For j ; = (nlf , nt) e Zι we denote the element P?1© oPγ by P y .
Let

G{θ) = { l k

Since I(g0) = ligo1) and since Pv(I(g0))c:E(g0) for ve(Z1)*, we see, by the
same argument as in the proof of Lemma 6, that each element geG(θ)
is mutually distinct and satisfies a(g)el(go) and g(oo) φ oo.

Since g\ — id, we have

G(θ) = {Pnog0oPV2og0o...oPvk_iog0oPuk:k^2,v1, .- ,vkeZ1} ,

so that G(θ) U {g09 id} is a complete system of representatives of the double
coset space G'\G(Θ)/G', where G' = {Pv: veZ1}. If geG(θ){J{g0), then no
element of the double coset G'gG' fixes oo. Hence GJβ): = {g e G(0): flf(°°) =
oo} is the same as G'.

Let P(vlf •••, v,) = gQoPViogQo...ogQoPHogQBG{θ). Then

, , iVi)) - ^ Σ

for »i = (nli9 , nH) e (Z1)*. Since a(P(i>19 , v^O) e I(g0), we have
|α(P(^, , y M ) ) | < 1. Therefore |α(P(^, , v%))\ ̂  WIΣU ^iβyl^}-1 by
0 ^ 3 and | Σ i = i % Λ l > l . Now, by Lemma 2, ^ ( P ^ , , v%)) =
ρ(P(v19 , yί_i))|α(P(v1, , Vi))| so that, for the summation over g e G{θ),
we have
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Σ {p(9)Y = Σ [Σ Σ {p{P<)>u , v,))} ]
i l y

where Σ> is the summation defined in § 4. Let X(k) be the set in the
proof of Lemma 8. Then (Σί=i^A K •••, nι)eX(k)} consists of lattice
points in the Z-dimensional Euclidean space Rι satisfying \nt\ ̂  k (1 ^ i ^ I)
and \nt\ = k for at least one ie{ l , •••, Z}. Therefore I Σ L i ^ e J ^ k for
all (%, , nt) e X(&). Hence

^ Σ {2ϊ(2fc + l)^1}^-* ^ l22l~X(s - I + 1)

so that we have, for the summation Σ over geG(θ),

(10) Σ {P(Q)Y ^ Σ {ϊ2β+2Z-^-8ζ(s - I + l)}j .

Let s0 be an arbitrary number with s0 > I and let θ0 (^3) be such a number
that θ8o° > ί280+2ί-1ζ(s0 - Z + 1). Then the right hand side of (10) converges
for s = s0.

Let ho(x) = go(x + e j . Applying Lemma 3 to ̂ eG(^0)\Goo(^0) and λ0,
we have p{hQogoh^) = p(g){\g(o°) + ej |βr~1(—βx) + eλ\}~\ Hence for an ele-
ment Pμogopu of the double coset Goo(θ0)gGoo(θ0) (geG(θ0)U{go})9

p(h0oPμogoPvohn = p(g){\g(oo) + Pμ{eλ)\ l ^ o P . ^ - e J + P^fe)!}" 1,

where we used ρ(PμogoPv) = p(g). Since #eG(ΘQ)Utoo}» we see g(°°)e
/(gf-1) = j(g0) and g~loP-μ{—e^) el(go). Furthermore, since θ0 ^ 3, we have
\Pv(ei)\ ^ 2 for all v e (Z1)*. Hence |P,(β l) + ff(oo)| |P_v(βl) + g-^p_μ{-ei)\ ^
{\PM\/2}{\P_M\/2} so that pihooP.ogoP^h^^ApmPMllP.MlΓ1

for all μ, ve (Z1)*. Because of s0 > I we see Σ , \PM\~8° < ©o. Therefore
we have the following for some constant c5:

(11) Σ Σ Σ WooPμogoPuoho1)}8" + Σ Σ iP(hQoPμogQθpvo
μ v μ v

+ {p(ffo)}">),.

where Σ means the summation over geG(θ0). On the other hand, by

Lemma 2 and (1), pQi^P^K1) = \{h^)\a{h°Pvoh^))\-m = \a(h°P»°Λo"1) -

l = l-P-.Co)!"1 so that
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(12) Σ {P(ho o P. o ho1)}'" = Σ |P»(o)|-- < -
v v

Since G(θ0) U {g0, id} is a complete system of representatives for the double
coset space G0o(θo)\G(θo)/GOQ(θ0) and since Goo(θ0) = {PP: v e Z1}, the summation
Σi{p(ho°g°ho1)Y0 over 0eG(0o)\{id} is equal to the sum on the left hand
sides of (11) and (12). Hence it converges by the inequality (10).

7. Proof of the second half of the Theorem. We set G0 = h0o
G(θ0)

Όho1ciM.ob(Hn+1). Let τ be a Mobius transformation with τ(Bn+1) =
Hn+1 and τ(°°) = —en+19 and let Γo = r"1 °Go<>r. Then Γo is a discon-
tinuous subgroup of Mόb(2?π+1) which satisfies the hypothesis in our Theo-
rem for ξ0 = T^ofcoί00)- Now, as in the proof of Lemma 9, (1 — |τ(o)|)1/2 ^
pfr-yiaiΎ-y ^ ρ(Ύ) for τeΓ0\{id}.

Let geG(θ0). Then g is written as g = Pμ°gι°Pv for some μ, veZ1

and ffi e G(ffo) U {ffo» id} so that each element of G(0o)\{id} does not fix —e1

and — βx ± β n + 1 .

Since — ex and — βx — en+1 are not fixed by g e G(^0)\{id}, each element,
different from the identity, of Go and Γo does not fix oo. Hence Lemma
3 gives p(7) = p(g)\a(Ύ) - atol/laiτ-1) - aig-^l for 7eΓ 0 \{ id} and g =
ToTor^eGoNpd}. Since α^" 1 ) = g(oo)edHn+1 and since a(r"') = τ(oo) =
- β n + 1 we have |α(r - 1) - αία"1)! ^ 1. Therefore ρ(l) S p(g){\a(y)\ + 1}.

By the discontinuity of G(0O) and the fact flf(—βx + en+1) Φ —eί + en+1

for sr 6 G(^0)\{id}, there exists a constant cβ > 0 such that \g(—ex + en+1) —
(-ei + e»+i)l ^ c6 for all » e G(/?0)\{id}. Therefore \g(-ex - en+1) - (-e, -
en+1)\ ^ cβ, since the left hand side is the same as \g(—e1 + en+1) — (—ex + en+1)|
by Lemma 1. Furthermore, τ"ι^hJi—e1 — en+1) = τ~\—en+1) = oo so that
we have \τ~~ι°h0(g(—βx — en+1))| ^ c7 for some constant c7. Hence |α(7)| =
\τ~ι^K{g{-eι - βn+1))| ^ c7 for 7 = τ ^ o f e o ^ ' ^ ^ ^ τ e Γ o X ί i d } .

Thus (1 - |7(o)|)1/2 ^ /o(7) ^ |0(gf){|α(7)| + 1} S p(g)(c7 + 1) so that

where 7 and # run over Γ0\{id} and G0\{id}, respectively. As proved
in § 6, the sum Σ {p(g)}8° over g e G0\{id} converges so that the left hand
side of the above inequality is finite for s = sQ. This implies δ(Γ0) ^ sQ

and we have the second half of our Theorem.
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