THE EXPONENT OF CONVERGENCE OF POINCARÉ SERIES ASSOCIATED WITH SOME DISCONTINUOUS GROUPS

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

Masami Nakada

(Received February 24, 1987)

1. Introduction. Let \boldsymbol{R}^{n+1} be the ($n+1$)-dimensional Euclidean space ($n \geqq 1$). Each point of R^{n+1} is denoted by a column vector $v={ }^{t}\left(v_{1}, v_{2}, \cdots\right.$, $\left.v_{n+1}\right)$, where t denotes the transpose. We put $|v|=\left\{\sum_{i=1}^{n+1}\left(v_{i}\right)^{2}\right\}^{1 / 2}$ and $x_{n+1}(v)=v_{n+1}$. Let $\boldsymbol{B}^{n+1}=\left\{v \in \boldsymbol{R}^{n+1}:|v|<1\right\}$ and $\boldsymbol{H}^{n+1}=\left\{v \in \boldsymbol{R}^{n+1}: x_{n+1}(v)>0\right\}$ be the open unit ball and the upper half space in \boldsymbol{R}^{n+1}, respectively. We denote by $S(x)$ the n-sphere in R^{n+1} with center at x and radius 1 .

A Möbius transformation of $\boldsymbol{R}^{n+1} \cup\{\infty\}$ is, by definition, a composite of a finite number of inversions in $\boldsymbol{R}^{n+1} \cup\{\infty\}$ with respect to n-spheres or n-planes. Let Möb be the group of all the Möbius transformations of $\boldsymbol{R}^{n+1} \cup\{\infty\}$. We denote by $\left|\gamma^{\prime}(x)\right|$ the $(n+1)$-th root of the absolute value of the determinant of the Jacobian matrix of $\gamma \in$ Möb at $x \in \boldsymbol{R}^{n+1} \backslash\left\{\gamma^{-1}(\infty)\right\}$.

An element $\gamma \in \mathrm{Möb}$ with a fixed point at ∞ is of the form $\gamma(x)=$ $\lambda A x+v$ for some $\lambda>0, A \in O(n+1)$ and $v \in \boldsymbol{R}^{n+1}$, where $O(n+1)$ is the group of orthogonal matrices of degree $n+1$ (see [1, p. 20]). Next assume that $\gamma(\infty) \neq \infty$. Then, for the inversion σ with respect to $S\left(\gamma^{-1}(\infty)\right)$, we have $\gamma \circ \sigma(\infty)=\infty$ so that $\gamma \circ \sigma(x)=\lambda A x+v$. Hence $\gamma(x)=\lambda A \sigma(x)+v$. Therefore $\left|\gamma^{\prime}(x)\right|=\lambda /\left|x-\gamma^{-1}(\infty)\right|^{2}$ since $\left|\sigma^{\prime}(x)\right|=1 /\left|x-\gamma^{-1}(\infty)\right|^{2}$. Let the center and the radius of the n-sphere $\left\{x \in \boldsymbol{R}^{n+1}:\left|\gamma^{\prime}(x)\right|=1\right\}$ be $\alpha(\gamma)$ and $\rho(\gamma)$, respectively. Then we have $\alpha(\gamma)=\gamma^{-1}(\infty)$ and $\rho(\gamma)^{2}=\lambda$ so that

$$
\begin{equation*}
\left|\gamma^{\prime}(x)\right|=\rho(\gamma)^{2} /|x-\alpha(\gamma)|^{2} . \tag{1}
\end{equation*}
$$

Further, let the interior and the exterior of the n-sphere be $I(\gamma)$ and $E(\gamma)$, respectively. Then, as in [1, p. 30],

$$
\begin{equation*}
\gamma(E(\gamma))=I\left(\gamma^{-1}\right), \quad \gamma(I(\gamma))=E\left(\gamma^{-1}\right) . \tag{2}
\end{equation*}
$$

Let $\operatorname{Möb}\left(\boldsymbol{B}^{n+1}\right)$ be the subgroup of Möb whose elements map \boldsymbol{B}^{n+1} onto itself. A subgroup Γ of $\operatorname{Möb}\left(\boldsymbol{B}^{n+1}\right)$ is said to be discontinuous if the orbit $\{\gamma(o)\}_{\gamma \in \Gamma}$ of the origin $o \in \boldsymbol{B}^{n+1}$ under Γ has no accumulation points in \boldsymbol{B}^{n+1}. Hence, for a discontinuous subgroup Γ, the set $\Lambda(\Gamma)$ of accumulation points of $\{\gamma(o)\}_{r \in \Gamma}$ is contained in ∂B^{n+1}. We call $\Lambda(\Gamma)$ the limit set of Γ. Let $\delta(\Gamma)$
be the exponent of convergence of the Poincare series $\sum_{r \in \Gamma}(1-|\gamma(o)|)^{3 / 2}$, that is,

$$
\delta(\Gamma)=\inf \left\{s>0: \sum_{\gamma \in \Gamma}(1-|\gamma(0)|)^{s / 2}<\infty\right\}
$$

In this paper we prove the following:
TheOrem. Let Γ be a discontinuous subgroup of $\operatorname{Möb}\left(\boldsymbol{B}^{n+1}\right)$ with $\# \Lambda(\Gamma)>2$ and let $\xi_{0} \in \Lambda(\Gamma)$ be the unique fixed point of some transformation in Γ. If the group $\Gamma_{\xi_{0}}=\left\{\gamma \in \Gamma: \gamma\left(\xi_{0}\right)=\xi_{0}\right\}$ contains a free abelian group of rank $l(\geqq 1)$, then $\delta(\Gamma)$ is greater than l. Moreover, the lower bound l is the best possible.

In the case of $n \leqq 2$, that is, in the case of a Kleinian group Γ acting on \boldsymbol{H}^{3} with $\Lambda(\Gamma) \nexists \infty$, Beardon [2] showed this result for the exponent of convergence of the series $\sum_{r \epsilon \Gamma \backslash \Gamma_{\infty}} \rho(\gamma)^{s}$. For the other properties concerning the exponent of convergence of the Poincare series, see also Tukia [3, § E] and references quoted there.

In §2, we give some preliminary lemmas on a Möbius transformation and in $\S 3$, we give some properties of a discontinuous group mentioned in the above theorem. $\S 4$ is devoted to showing some inequalities which are used in the proof in $\S 5$ of the first half of the theorem. In § 6 we give an example of discontinuous groups which shows, in $\S 7$, that the lower bound l is the best possible.
2. Preliminary lemmas. Let $\operatorname{Möb}\left(\boldsymbol{H}^{n+1}\right)$ be the subgroup of Möb whose elements map \boldsymbol{H}^{n+1} onto itself. As in the introduction, each $\gamma \in \mathrm{Möb}$ is written as $\gamma(x)=\lambda A x+v$ or $\gamma(x)=\lambda A \sigma(x)+v$ for some $\lambda>0$, $A \in O(n+1)$ and $v \in \boldsymbol{R}^{n+1}$, where σ is the inversion with respect to $S\left(\gamma^{-1}(\infty)\right)$. In particular, if $\gamma \in \operatorname{Möb}\left(\boldsymbol{H}^{n+1}\right)$, then the following known lemma holds.

Lemma 1. If $\gamma \in \operatorname{Möb}\left(\boldsymbol{H}^{n+1}\right)$, then $x_{n+1}(v)=0$ and $A=\left(\begin{array}{ll}A_{0} & 0 \\ 0 & 1\end{array}\right)$ for some $A_{0} \in O(n)$.

Next we prove the following lemmas.
Lemma 2. Let γ_{1} and γ_{2} be elements of Möb satisfying $\gamma_{1}(\infty) \neq \infty$ and $\gamma_{1} \circ \gamma_{2}(\infty) \neq \infty$. Then $\rho\left(\gamma_{1} \circ \gamma_{2}\right)=\rho\left(\gamma_{1}\right) \mid \gamma_{2}^{\prime}\left(\left.\alpha\left(\gamma_{1} \circ \gamma_{2}\right)\right|^{-1 / 2}\right.$ and $\alpha\left(\gamma_{1} \circ \gamma_{2}\right)=$ $\gamma_{2}^{-1}\left(\alpha\left(\gamma_{1}\right)\right)$.

Proof. From (1) we have

$$
\left|\left(\gamma_{1} \circ \gamma_{2}\right)^{\prime}(x)\right|=\left|\gamma_{1}^{\prime}\left(\gamma_{2}(x)\right)\right|\left|\gamma_{2}^{\prime}(x)\right|=\left\{\rho\left(\gamma_{1}\right)^{2} /\left|\gamma_{2}(x)-\alpha\left(\gamma_{1}\right)\right|^{2}\right\}\left|\gamma_{2}^{\prime}(x)\right| .
$$

On the other hand, $\left|\gamma_{2}(x)-\alpha\left(\gamma_{1}\right)\right|^{2}=\left|\gamma_{2}^{\prime}(x)\right|\left|\gamma_{2}^{\prime}\left(\gamma_{2}^{-1}\left(\alpha\left(\gamma_{1}\right)\right)\right)\right|\left|x-\gamma_{2}^{-1}\left(\alpha\left(\gamma_{1}\right)\right)\right|^{2}$
(see [1, p. 19]). Therefore

$$
\left|\left(\gamma_{1} \circ \gamma_{2}\right)^{\prime}(x)\right|=\rho\left(\gamma_{1}\right)^{2} /\left\{\left|\gamma_{2}^{\prime}\left(\gamma_{2}^{-1}\left(\alpha\left(\gamma_{1}\right)\right)\right)\right|\left|x-\gamma_{2}^{-1}\left(\alpha\left(\gamma_{1}\right)\right)\right|^{2}\right\},
$$

from which we have the required equalities.
q.e.d.

Lemma 3. Let γ_{1} and γ_{2} be elements of Möb satisfying $\gamma_{1}(\infty) \neq \infty$, $\gamma_{2}(\infty) \neq \infty, \gamma_{1} \circ \gamma_{2}(\infty) \neq \infty$ and $\gamma_{1} \circ \gamma_{2} \circ \gamma_{1}^{-1}(\infty) \neq \infty$. Then $\rho\left(\gamma_{1} \circ \gamma_{2} \circ \gamma_{1}^{-1}\right)=$ $\rho\left(\gamma_{2}\right)\left|\alpha\left(\gamma_{1} \circ \gamma_{2} \circ \gamma_{1}^{-1}\right)-\alpha\left(\gamma_{1}^{-1}\right)\right| /\left|\alpha\left(\gamma_{1}\right)-\alpha\left(\gamma_{2}^{-1}\right)\right|$.

Proof. Lemma 2 and the identity $\left|\gamma_{2}^{\prime}(x)\right|=\left|\left(\gamma_{2}^{-1}\right)^{\prime}\left(\gamma_{2}(x)\right)\right|^{-1}$ show

$$
\begin{aligned}
\rho\left(\gamma_{1} \circ \gamma_{2} \circ \gamma_{1}^{-1}\right) & =\rho\left(\gamma_{1}\right)\left|\left(\gamma_{2} \circ \gamma_{1}^{-1}\right)^{\prime}\left(\alpha\left(\gamma_{1} \circ \gamma_{2} \circ \gamma_{1}^{-1}\right)\right)\right|^{-1 / 2} \\
& =\rho\left(\gamma_{1}\right)\left\{\left|\gamma_{2}^{\prime}\left(\alpha\left(\gamma_{1} \circ \gamma_{2}\right)\right)\right|\left|\left(\gamma_{1}^{-1}\right)^{\prime}\left(\alpha\left(\gamma_{1} \circ \gamma_{2} \circ \gamma_{1}^{-1}\right)\right)\right|\right\}^{-1 / 2} \\
& =\rho\left(\gamma_{1}\right)\left|\left(\gamma_{2}^{-1}\right)^{\prime}\left(\alpha\left(\gamma_{1}\right)\right)\right|^{1 / 2}\left|\left(\gamma_{1}^{-1}\right)^{\prime}\left(\alpha\left(\gamma_{1} \circ \gamma_{2} \circ \gamma_{1}^{-1}\right)\right)\right|^{-1 / 2}
\end{aligned}
$$

Now, by (1) and $\rho(\gamma)=\rho\left(\gamma^{-1}\right)$, the last expression is equal to the one desired.
q.e.d.

Lemma 4. Suppose $\gamma \in$ Möb satisfies $\gamma(\infty) \neq \infty$ and $\operatorname{cl}(I(\gamma)) \cap \operatorname{cl}\left(I\left(\gamma^{-1}\right)\right)=$ \varnothing where $\operatorname{cl}\left(I\left(\gamma^{ \pm 1}\right)\right)$ is the closure of $I\left(\gamma^{ \pm 1}\right)$. Then $\left\{I\left(\gamma^{m}\right)\right\}_{m=1}^{\infty}$ and $\left\{I\left(\gamma^{-m}\right)\right\}_{m=1}^{\infty}$ are decreasing sequences of sets with $\lim _{m \rightarrow \infty} \rho\left(\gamma^{ \pm m}\right)=0$.

Proof. Take a point $x \in I(\gamma)^{c}$. Then by (2), $\gamma(x) \in \operatorname{cl}\left(I\left(\gamma^{-1}\right)\right)$ so that $\gamma(x) \in(\operatorname{cl}(I(\gamma)))^{c}$ by our assumption. Hence $\left|\left(\gamma^{2}\right)^{\prime}(x)\right|=\left|\gamma^{\prime}(\gamma(x))\right|\left|\gamma^{\prime}(x)\right|<1$, that is, $x \in\left(\operatorname{cl}\left(I\left(\gamma^{2}\right)\right)\right)^{c}$. Thus $I(\gamma) \supset \operatorname{cl}\left(I\left(\gamma^{2}\right)\right) \supset I\left(\gamma^{2}\right)$. In the same manner, we have $I\left(\gamma^{-1}\right) \supset I\left(\gamma^{-2}\right)$. Next assume that $I(\gamma) \supset I\left(\gamma^{2}\right) \supset \cdots \supset I\left(\gamma^{m}\right)$ and $I\left(\gamma^{-1}\right) \supset I\left(\gamma^{-2}\right) \supset \cdots \supset I\left(\gamma^{-m}\right)$. Then for an element $x \in I\left(\gamma^{m}\right)^{c}$, we see $\gamma^{m}(x) \in$ $\operatorname{cl}\left(I\left(\gamma^{-m}\right)\right) \subset \operatorname{cl}\left(I\left(\gamma^{-1}\right)\right) \subset(\operatorname{cl}(I(\gamma)))^{c}$ so that $\left|\left(\gamma^{m+1}\right)^{\prime}(x)\right|=\left|\gamma^{\prime}\left(\gamma^{m}(x)\right)\right|\left|\left(\gamma^{m}\right)^{\prime}(x)\right|<1$, that is, $x \in\left(\operatorname{cl}\left(I\left(\gamma^{m+1}\right)\right)\right)^{c}$. Therefore $I\left(\gamma^{m}\right) \supset I\left(\gamma^{m+1}\right)$. Similarly we have $I\left(\gamma^{-m}\right) \supset I\left(\gamma^{-m-1}\right)$.

Since $\operatorname{cl}\left(I\left(\gamma^{2}\right)\right) \subset I(\gamma)$, there exists a constant $c_{1}>1$ such that $\left|\gamma^{\prime}(x)\right| \geqq c_{1}$ for all $x \in I\left(\gamma^{2}\right)$. Since $\alpha\left(\gamma^{m}\right) \in I\left(\gamma^{m}\right) \subset I\left(\gamma^{2}\right)$ for $m \geqq 2$, we have $\left|\gamma^{\prime}\left(\alpha\left(\gamma^{m}\right)\right)\right| \geqq c_{1}$ so that by Lemma 2, $\rho\left(\gamma^{m}\right)=\rho\left(\gamma^{m-1}\right)\left|\gamma^{\prime}\left(\alpha\left(\gamma^{m}\right)\right)\right|^{-1 / 2} \leqq \rho\left(\gamma^{m-1}\right)\left(c_{1}\right)^{-1 / 2}$. Thus $\lim _{m \rightarrow \infty} \rho\left(\gamma^{m}\right) \leqq \lim _{m \rightarrow \infty}\left(c_{1}\right)^{-(m-1) / 2} \rho(\gamma)=0$. Since $\rho\left(\gamma^{m}\right)=\rho\left(\gamma^{-m}\right)$, we are done.

> q.e.d.
3. Properties of discontinuous subgroups. Let Γ be a discontinuous subgroup of $\operatorname{Möb}\left(\boldsymbol{B}^{n+1}\right)$ which satisfies the conditions stated in the Theorem in the introduction. Let τ be a Möbius transformation with $\tau\left(\boldsymbol{B}^{n+1}\right)=\boldsymbol{H}^{n+1}$, $\tau\left(\xi_{0}\right)=\infty, \tau(\infty)=-e_{n+1}$ and $\tau(0)=e_{n+1}$, where $e_{n+1}={ }^{t}(0, \cdots, 0,1) \in \boldsymbol{H}^{n+1}$. We denote by $\left\{P_{1}, \cdots, P_{l}\right\}$ a system of free generators of the free abelian group of rank l contained in $\tau \circ \Gamma_{\xi_{0}} \circ \tau^{-1}$. We set $G=\tau \circ \Gamma \circ \tau^{-1} \subset \mathrm{Möb}\left(\boldsymbol{H}^{n+1}\right)$ and $G_{\infty}=\tau \circ \Gamma_{\xi_{0}} \circ \tau^{-1}$. Note that G is a discontinuous subgroup of $\operatorname{Möb}\left(\boldsymbol{H}^{n+1}\right)$, that is, $\left\{g\left(e_{n+1}\right)\right\}_{g \in G}$ never accumulate in \boldsymbol{H}^{n+1}.

Lemma 5. There exists an element $g \in G \backslash G_{\infty}$ with $\operatorname{cl}(I(g)) \cap \operatorname{cl}\left(I\left(g^{-1}\right)\right)=$ \varnothing.

Proof. If a Möbius transformation $x \mapsto \lambda B x+w$ has a unique fixed point at ∞, then $\lambda=1$, for otherwise it has exactly two fixed points $\left(\lambda B-E_{n+1}\right)^{-1}(-w)$ and ∞, where E_{n+1} is the unit matrix of degree $n+1$. Choose $g \in G_{\infty}$ which has a unique fixed point at ∞ and set $g(x)=B x+w$. Let $h(x)=\lambda A x+v$ be another such element in G_{∞}. Since $A, B \in O(n+1)$, we have $\left|g^{ \pm 1}(x)\right| \leqq|x|+|w|, \quad\left|h^{m}(x)\right| \leqq \lambda^{m}|x|+\sum_{k=0}^{m-1} \lambda^{k}|v|$ and $\left|h^{-m}(x)\right| \leqq$ $\lambda^{-m}|x|+\sum_{k=0}^{m-1} \lambda^{-k-1}|v|$ for $m=1,2,3, \cdots$. Now if $\lambda \neq 1$ (here we may assume that $\lambda<1$), we have

$$
\left|g \circ h^{m} \circ g^{-1} \circ h^{-m}\left(e_{n+1}\right)\right| \leqq 1+2|w|+2(1-\lambda)^{-1}|v|
$$

for all $m=1,2,3, \cdots$. On the other hand, $x_{n+1}\left(g \circ h^{m} \circ g^{-1} \circ h^{-m}\left(e_{n+1}\right)\right)=1$ by Lemma 1. Furthermore $\left\{g \circ h^{m} \circ g^{-1} \circ h^{-m}\right\}_{m=1}^{\infty}$ are mutually distinct, for if $g \circ h^{m} \circ g^{-1} \circ h^{-m}=$ id for some m, then $g \circ h^{m}=h^{m} \circ g$ and g also fixes the finite fixed point $\left(\lambda A-E_{n+1}\right)^{-1}(-v)$ of h. Therefore the orbit $\left\{g \circ h^{m} \circ g^{-1} \circ h^{-m}\left(e_{n+1}\right)\right\}_{m=1}^{\infty}$ has an accumulation point in \boldsymbol{H}^{n+1}. This contradicts the discontinuity of G. Hence $\lambda=1$ and we have

$$
\begin{equation*}
g(x)=A x+v \quad\left(g \in G_{\infty}\right) . \tag{3}
\end{equation*}
$$

Since $A=\left(\begin{array}{ll}A_{0} & 0 \\ 0 & 1\end{array}\right)$ and $x_{n+1}(v)=0$ by Lemma 1 , we see $x_{n+1}\left(g\left(e_{n+1}\right)\right)=1$ for all $g \in G_{\infty}$. Therefore the accumulation points of the orbit $\left\{g\left(e_{n+1}\right)\right\}_{g \in G_{\infty}}$ consists of only one point $\{\infty\}$. Thus we have $G \supsetneqq G_{\infty}$ by the condition \# $\Lambda(G)>2$.

Now we choose an element $g \in G \backslash G_{\infty}$. Since G is a discontinuous subgroup of $\operatorname{Möb}\left(\boldsymbol{H}^{n+1}\right)$ we have $\lim _{m \rightarrow \infty}\left|P_{1}^{m}(x)\right|=\infty$ for $x \in \boldsymbol{H}^{n+1}$. Further, for $x \in \partial \boldsymbol{H}^{n+1}$, we see $P_{1}^{m}(x)+e_{n+1}=P_{1}^{m}\left(x+e_{n+1}\right)$ by Lemma 1 so that $\lim _{m \rightarrow \infty}\left|P_{1}^{m}(x)\right|=\infty$ also for $x \in \partial \boldsymbol{H}^{n+1}$. Therefore

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \alpha\left(P_{1}^{m} \circ g \circ P_{1}^{-m} \circ g^{-1}\right)=\lim _{m \rightarrow \infty} g \circ P_{1}^{m} \circ g^{-1}(\infty)=\alpha\left(g^{-1}\right) \\
& \lim _{m \rightarrow \infty}\left|\alpha\left(g \circ P_{1}^{m} \circ g^{-1} \circ P_{1}^{-m}\right)\right|=\lim _{m \rightarrow \infty}\left|P_{1}^{m} \circ g \circ P_{1}^{-m} \circ g^{-1}(\infty)\right|=\infty . \tag{4}
\end{align*}
$$

Since $P_{1}^{m} \in G_{\infty}$, we have $\left|\left(P_{1}^{m} \circ g\right)^{\prime}(x)\right|=\left|g^{\prime}(x)\right|$ by (3) so that $\rho\left(P_{1}^{m} \circ g\right)=\rho(g)$. Therefore, by Lemma 2, (1) and $\rho(g)=\rho\left(g^{-1}\right)$, we get

$$
\begin{align*}
\rho\left(P_{1}^{m} \circ g \circ P_{1}^{-m} \circ g^{-1}\right) & =\rho\left(P_{1}^{m} \circ g\right)\left|\left(P_{1}^{-m} \circ g^{-1}\right)^{\prime}\left(\alpha\left(P_{1}^{m} \circ g \circ P_{1}^{-m} \circ g^{-1}\right)\right)\right|^{-1 / 2} \\
& =\rho(g)\left|\left(g^{-1}\right)^{\prime}\left(\alpha\left(P_{1}^{m} \circ g \circ P_{1}^{-m} \circ g^{-1}\right)\right)\right|^{-1 / 2} \\
& =\left|\alpha\left(P_{1}^{m} \circ g \circ P_{1}^{-m} \circ g^{-1}\right)-\alpha\left(g^{-1}\right)\right| . \tag{4}
\end{align*}
$$

Thus $\quad \lim _{m \rightarrow \infty} \rho\left(g \circ P_{1}^{m} \circ g^{-1} \circ P_{1}^{-m}\right)=\lim _{m \rightarrow \infty} \rho\left(P_{1}^{m} \circ g \circ P_{1}^{-m} \circ g^{-1}\right)=0 \quad$ by

Hence, again by (4), we have cl $\left(I\left(P_{1}^{m} \circ g \circ P_{1}^{-m} \circ g^{-1}\right)\right) \cap \operatorname{cl}\left(I\left(g \circ P_{1}^{m} \circ g^{-1} \circ P_{1}^{-m}\right)\right)=$ \varnothing for all large m.
q.e.d.

We set $\boldsymbol{Z}^{l}=\left\{\nu=\left(n_{1}, n_{2}, \cdots, n_{l}\right): n_{i} \in \boldsymbol{Z}\right\}$ and $\left(\boldsymbol{Z}^{l}\right)^{*}=\boldsymbol{Z}^{l} \backslash(0, \cdots, 0)$ where Z is the set of all integers. For $\nu=\left(n_{1}, n_{2}, \cdots, n_{l}\right) \in Z^{l}$, we set $P_{\nu}=P_{1}^{n_{1}} \circ P_{2}^{n_{2}} \circ \ldots \circ P_{l}^{n_{l}}$. Since G is a discontinuous subgroup of $\operatorname{Möb}\left(\boldsymbol{H}^{n+1}\right)$ and since $P_{\nu}\left(e_{n+1}\right)=P_{\nu}(o)+e_{n+1}$ by Lemma $1, \lim _{|\nu| \rightarrow \infty}\left|P_{\nu}(o)\right| \geqq$ $\lim _{|\nu| \rightarrow \infty}\left\{\left|P_{\nu}\left(e_{n+1}\right)\right|-1\right\}=\infty$, where $|\nu|=\max \left\{\left|n_{i}\right|: 1 \leqq i \leqq l\right\}$ for $\nu=\left(n_{1}, \cdots\right.$, $\left.n_{l}\right) \in \boldsymbol{Z}^{l}$, so that there exists a large number m_{1} satisfying $\left|P_{m_{1}{ }^{\nu}}(0)\right|>1$ for all $\nu=\left(n_{1}, \cdots, n_{l}\right) \in\left(\boldsymbol{Z}^{l}\right)^{*}$ where $m_{1} \nu=\left(m_{1} n_{1}, \cdots, m_{1} n_{l}\right)$.

Let $g \in G \backslash G_{\infty}$ be as in Lemma 5. Then by Lemma 4 we can choose a large number m_{2} such that $\rho\left(g^{m_{2}}\right)<1$.

Now we set $Q_{\nu}=P_{m_{1} \nu}$ and $g_{0}=g^{m_{2}}$. Since $Q_{\nu}(x)=A_{\nu} x+Q_{\nu}(0)$ for some $A_{\nu} \in O(n+1)$ we may assume, by choosing m_{1} sufficiently large, that $\left|Q_{\nu}(o)\right|>1$ and

$$
\begin{equation*}
Q_{\nu}(x) \in E\left(g_{0}\right) \cap E\left(g_{0}^{-1}\right) \tag{5}
\end{equation*}
$$

for all $x \in I\left(g_{0}\right) \cup I\left(g_{0}^{-1}\right)$ and $\nu \in\left(\boldsymbol{Z}^{l}\right)^{*}$.
Lemma 6. Let g_{0} and Q_{ν} be as above and let

$$
\widehat{G}=\bigcup_{k=1}^{\infty}\left\{g_{0} \circ Q_{\nu_{1}} \circ g_{0} \circ \cdots \circ g_{0} \circ Q_{\nu_{k}} \circ g_{0}: \nu_{1}, \cdots, \nu_{k} \in\left(Z^{l}\right)^{*}\right\} .
$$

Then each element g of \hat{G} is mutually distinct and satisfies $\alpha(g) \in I\left(g_{0}\right)$ and $g(\infty) \neq \infty$.

Proof. Suppose that the equality

$$
g_{0} \circ Q_{\nu_{1}} \circ g_{0} \circ \cdots \circ g_{0} \circ Q_{\nu_{p}} \circ g_{0}=g_{0} \circ Q_{\mu_{1}} \circ g_{0} \circ \cdots \circ g_{0} \circ Q_{\mu_{q}} \circ g_{0}
$$

holds for some ν_{1}, \cdots, ν_{p} and μ_{1}, \cdots, μ_{q} and assume that $\nu_{1}=\mu_{1}, \cdots, \nu_{k-1}=$ μ_{k-1} and $\nu_{k} \neq \mu_{k}$ for some $k \geqq 1$. Then $Q_{-\mu_{q}} \circ g_{0}^{-1} \circ \cdots \circ Q_{-\mu_{k+1}} \circ g_{0}^{-1} \circ Q_{-\mu_{k+\nu_{k}}} \circ$ $g_{0} \circ Q_{\nu_{k+1}} \circ \cdots \circ g_{0} \circ Q_{\nu p}$ is the identity mapping and fixes the point ∞, whereas no element of this form fixes ∞ by (2) and (5). This contradiction gives the first part of our assertion. Also by (2) and (5), we have the other assertions. q.e.d.
4. Inequalities. As is already seen in (3), $P_{i}(1 \leqq i \leqq l)$ is of the form $U_{i} x+a_{i}$. Hence, for an integer m, we have $P_{i}^{m}(x)=U_{i}^{m} x+b_{i}(m)$ where $b_{i}(m)=\sum_{k=0}^{m-1} U_{i}^{k} a_{i}$ for $m \geqq 0$ and $b_{i}(m)=\sum_{k=0}^{m-1} U_{i}^{-k-1}\left(-a_{i}\right)$ for $m<0$. Since $Q_{\nu}(x)=P_{1}^{m_{1} n_{1}} \circ \ldots \circ P_{l}^{m_{1} n_{l}}(x)$ we see

$$
\begin{equation*}
Q_{\nu}(o)=b_{1}\left(m_{1} n_{1}\right)+\sum_{i=1}^{l-1} U_{1}^{m_{1} n_{1}} \cdots U_{i}^{m_{1} n_{i}}\left(b_{i+1}\left(m_{1} n_{i+1}\right)\right) \tag{6}
\end{equation*}
$$

for $\nu=\left(n_{1}, \cdots, n_{l}\right) \in\left(\boldsymbol{Z}^{l}\right)^{*}$.

For $\nu_{1}, \cdots, \nu_{k} \in\left(\boldsymbol{Z}^{l}\right)^{*}$, we denote by $Q\left(\nu_{1}, \cdots, \nu_{k}\right)$ the transformation $g_{0} \circ Q_{\nu_{1}} \circ g_{0} \circ \cdots \circ g_{0} \circ Q_{\nu_{k}} \circ g_{0}$ of \widehat{G} in Lemma 6.

Lemma 7. There exists a positive constant ε_{1} such that

$$
\rho\left(Q\left(\nu_{1}, \cdots, \nu_{k}\right)\right) \geqq \rho\left(g_{0}\right) \varepsilon_{1}^{k} \prod_{j=1}^{k}\left(\sum_{i=1}^{l}\left|n_{i j}\right|\right)^{-1},
$$

where $\nu_{j}=\left(n_{1 j}, \cdots, n_{l j}\right)(1 \leqq j \leqq k)$.
Proof. Lemma 2 gives

$$
\rho\left(Q\left(\nu_{1}, \cdots, \nu_{j}\right)\right)=\rho\left(Q\left(\nu_{1}, \cdots, \nu_{j-1}\right)\right)\left|\left(Q_{\nu j} \circ g_{0}\right)^{\prime}\left(\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j}\right)\right)\right)\right|^{-1 / 2}
$$

for $1 \leqq j \leqq k$, where we assume that $\rho\left(Q\left(\nu_{0}\right)\right)=\rho\left(g_{0}\right)$. Since $\left|\left(Q_{\nu j} \circ g_{0}\right)^{\prime}(x)\right|=$ $\left|g_{0}^{\prime}(x)\right|=\rho\left(g_{0}\right)^{2}\left|x-\alpha\left(g_{0}\right)\right|^{-2}$, we have

$$
\begin{equation*}
\rho\left(Q\left(\nu_{1}, \cdots, \nu_{j}\right)\right)=\rho\left(Q\left(\nu_{1}, \cdots, \nu_{j-1}\right)\right)\left\{\left|\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j}\right)\right)-\alpha\left(g_{0}\right)\right| / \rho\left(g_{0}\right)\right\} \tag{7}
\end{equation*}
$$

Also from Lemma 2, $\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j}\right)\right)=g_{0}^{-1} \circ Q_{-\nu_{j}}\left(\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j-1}\right)\right)\right)$. Let $g_{0}^{-1}(x)=\lambda A \sigma(x)+v$, where σ is the inversion with respect to $S\left(g_{0}(\infty)\right)$. Then, for $\xi=Q_{-\nu j}\left(\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j-1}\right)\right)\right)$, we have

$$
\begin{aligned}
\left|\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j}\right)\right)-\alpha\left(g_{0}\right)\right| & =\left|g_{0}^{-1}(\xi)-g_{0}^{-1}(\infty)\right|=\lambda|\sigma(\xi)-\sigma(\infty)| \\
& =\rho\left(g_{0}^{-1}\right)^{2}|\sigma(\xi)-\sigma(\infty)|
\end{aligned}
$$

Since $\sigma(\xi)=g_{0}(\infty)+\left(\xi-g_{0}(\infty)\right)\left|\xi-g_{0}(\infty)\right|^{-2}=\sigma(\infty)+\left(\xi-\alpha\left(g_{0}^{-1}\right)\right)\left|\xi-\alpha\left(g_{0}^{-1}\right)\right|^{-2}$, we see

$$
\begin{equation*}
\left|\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j}\right)\right)-\alpha\left(g_{0}\right)\right|=\rho\left(g_{0}^{-1}\right)^{2}\left|\xi-\alpha\left(g_{0}^{-1}\right)\right|^{-1} \tag{8}
\end{equation*}
$$

On the other hand, since ξ is rewritten as $A_{-\nu j}\left(\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j-1}\right)\right)\right)+Q_{-\nu_{j}}(o)$ for $A_{-\nu_{j}} \in O(n+1)$ and since $\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j-1}\right)\right) \in I\left(g_{0}\right)$ by Lemma 6 , it holds that

$$
\begin{aligned}
\left|\xi-\alpha\left(g_{0}^{-1}\right)\right| & \leqq\left|A_{-\nu_{j}}\left(\alpha\left(Q\left(\nu_{1}, \cdots, \nu_{j-1}\right)\right)\right)\right|+\left|Q_{-\nu_{j}}(o)\right|+\left|\alpha\left(g_{0}^{-1}\right)\right| \\
& \leqq\left\{\left|\alpha\left(g_{0}\right)\right|+\rho\left(g_{0}\right)\right\}+\left|Q_{-\nu_{j}}(o)\right|+\left|\alpha\left(g_{0}^{-1}\right)\right| .
\end{aligned}
$$

Since $\left|Q_{\nu}(0)\right|>1$, the last expression above is bounded by $c_{2}\left|Q_{-\nu_{j}}(o)\right|$ for some constant $c_{2}>0$. Hence, by (6), $\left|\xi-\alpha\left(g_{0}^{-1}\right)\right| \leqq c_{2} \sum_{i=1}^{l}\left|b_{i}\left(-m_{1} n_{i j}\right)\right| \leqq$ $c_{2} m_{1} \sum_{i=1}^{l}\left|n_{i j}\right|\left|a_{i}\right|$ so that, together with (7), (8) and $\rho\left(g_{0}\right)=\rho\left(g_{0}^{-1}\right)$, we have the desired inequality for the constant $\varepsilon_{1}=\rho\left(g_{0}\right) / c_{2} m_{1}\left(\max \left\{\left|a_{i}\right|: 1 \leqq i \leqq l\right\}\right)$. q.e.d.

Let \sum_{ν} be the summation over $\nu \in\left(\boldsymbol{Z}^{l}\right)^{*}$ and let $\zeta(s)=\sum_{k=1}^{\infty} k^{-s}$.
Lemma 8. For any positive number s, it holds that

$$
\sum_{k=1}^{\infty}\left[\sum_{\nu_{1}} \cdots \sum_{\nu_{k}}\left\{\rho\left(Q\left(\nu_{1}, \cdots, \nu_{k}\right)\right)\right\}^{s}\right] \geqq \rho\left(g_{0}\right)^{s} \sum_{k=1}^{\infty}\left\{\varepsilon_{1}^{s} l^{-s} \zeta(s-l+1)\right\}^{k} .
$$

Proof. From Lemma 7 we have

$$
\begin{gathered}
\sum_{k=1}^{\infty}\left[\sum_{\nu_{1}} \cdots \sum_{\nu_{k}}\left\{\rho\left(Q\left(\nu_{1}, \cdots, \nu_{k}\right)\right)\right\}^{s}\right] \geqq \rho\left(g_{0}\right)^{s} \sum_{k=1}^{\infty}\left[\varepsilon_{1}^{k s}\left\{\sum_{\nu_{1}} \cdots \sum_{\nu_{k}}\left(\prod_{j=1}^{k}\left(\sum_{i=1}^{l}\left|n_{i j}\right|\right)^{-s}\right)\right\}\right] \\
=\rho\left(g_{0}\right)^{s} \sum_{k=1}^{\infty}\left\{\varepsilon_{1}^{k s} \prod_{j=1}^{k}\left(\sum_{\nu}\left(\sum_{i=1}^{l}\left|n_{i}\right|\right)^{-s}\right)\right\}=\rho\left(g_{0}\right)^{s} \sum_{k=1}^{\infty}\left\{\varepsilon_{1}^{s}\left(\sum_{\nu}\left(\sum_{i=1}^{l}\left|n_{i}\right|\right)^{-s}\right)\right\}^{k},
\end{gathered}
$$

where $\nu=\left(n_{1}, \cdots, n_{l}\right) \in\left(\boldsymbol{Z}^{l}\right)^{*}$. By considering $X(k)=\left\{\nu=\left(n_{1}, \cdots, n_{l}\right) \in\right.$ $\left(\boldsymbol{Z}^{l}\right)^{*}:\left|n_{i}\right| \leqq k$ for $1 \leqq i \leqq l$ and $\left|n_{i}\right|=k$ for at least one $\left.i\right\}$ for a natural number k, we obtain

$$
\begin{aligned}
\sum_{\nu}\left(\sum_{i=1}^{l}\left|n_{i}\right|\right)^{-s} & =\sum_{k=1}^{\infty} \sum_{\nu \in X(k)}\left(\sum_{i=1}^{l}\left|n_{i}\right|\right)^{-s} \\
& \geqq l^{-s} \sum_{k=1}^{\infty}(\# X(k)) k^{-s} \geqq l^{-s} \sum_{k=1}^{\infty}\left(k^{l-1}\right) k^{-s}=l^{-s} \zeta(s-l+1) .
\end{aligned}
$$

Thus we have our lemma.
q.e.d.
5. Proof of the first half of the Theorem. Let $\hat{\Gamma}:=\tau^{-1} \circ \hat{G} \circ \tau$ and let $\delta(\hat{\Gamma})$ be the exponent of convergence of $\sum(1-|\gamma(o)|)^{2 / 2}$, where the summation is taken over $\gamma \in \hat{\Gamma}$. Then $\delta(\Gamma) \geqq \delta(\hat{\Gamma})$ so that, to prove our theorem, it suffices to show that $\delta(\hat{\Gamma})>l$.

Lemma 9. There exists a constant $\varepsilon_{2}>0$ such that $(1-|\gamma(o)|)^{1 / 2} \geqq$ $\varepsilon_{2} \rho\left(\tau \circ \gamma \circ \tau^{-1}\right)$ for all $\gamma \in \hat{\Gamma}$.

Proof. Let $\gamma \in \hat{\Gamma}$ and let $\gamma=\tau^{-1} \circ g \circ \tau$ for $g=g_{0} \circ Q_{\nu_{1}} \circ g_{0} \circ \ldots \circ g_{0} \circ$ $Q_{\nu_{k}} \circ g_{0} \in \hat{G}$. As in [1, p. 29, (43)], we have $1-|\gamma(o)|^{2}=\left|\left(\gamma^{-1}\right)^{\prime}(o)\right|$ so that $\left(1-|\gamma(o)|^{2}\right)^{1 / 2}=\rho\left(\gamma^{-1}\right) /\left|\alpha\left(\gamma^{-1}\right)\right|$ by (1). Since $-e_{n+1} \in E\left(g_{0}\right)$ we see $g\left(-e_{n+1}\right) \in$ $I\left(g_{0}^{-1}\right)$ and we have $\left|\alpha\left(\gamma^{-1}\right)\right|=|\gamma(\infty)|=\left|\tau^{-1}\left(g\left(-e_{n+1}\right)\right)\right| \leqq c_{3}$ for some constant $c_{3}>0$. Hence, using $1+|\gamma(o)|<2$, we have ($\left.1-|\gamma(o)|\right)^{1 / 2} \geqq \rho\left(\gamma^{-1}\right) / \sqrt{2} c_{3}$.

Also since $-e_{n+1} \in E\left(g_{0}^{-1}\right)$ we see $g^{-1}\left(-e_{n+1}\right) \in I\left(g_{0}\right)$ and we have $\gamma^{-1}(\infty)=$ $\tau^{-1}\left(g^{-1}\left(-e_{n+1}\right)\right) \neq \infty$. Moreover, $g(\infty) \neq \infty$ by Lemma 6. Thus, applying Lemma 3, we have $\rho\left(\gamma^{-1}\right)=\rho\left(g^{-1}\right)\left|\gamma(\infty)-\xi_{0}\right| /\left|e_{n+1}+g^{-1}(\infty)\right|$. Since $g^{-1}(\infty) \in$ $I\left(g_{0}\right)$, we get $\left|g^{-1}(\infty)\right| \leqq\left|\alpha\left(g_{0}\right)\right|+\rho\left(g_{0}\right)$. On the other hand, the facts $\xi_{0}=$ $\tau^{-1}(\infty)$ and $\gamma(\infty)=\tau^{-1}\left(g\left(-e_{n+1}\right)\right) \in \tau^{-1}\left(I\left(g_{0}^{-1}\right)\right)$ imply $\left|\gamma(\infty)-\xi_{0}\right| \geqq c_{4}$ for some constant $c_{4}>0$. Hence $\rho\left(\gamma^{-1}\right) \geqq c_{4} \rho\left(g^{-1}\right) /\left\{\left|\alpha\left(g_{0}\right)\right|+\rho\left(g_{0}\right)+1\right\}$. Thus, by $\rho(g)=\rho\left(g^{-1}\right)$, we have our inequality for $\varepsilon_{2}=c_{4} / \sqrt{\overline{2}} c_{3}\left\{\left|\alpha\left(g_{0}\right)\right|+\rho\left(g_{0}\right)+1\right\}$. q.e.d.

Now Lemmas 6, 8 and 9 show

$$
\begin{aligned}
\sum_{r \in \hat{\Gamma}}\left(1-|\gamma(o)|^{s / 2}\right. & \geqq \varepsilon_{2}^{s} \sum_{g \in \hat{G}}\{\rho(g)\}^{s} \\
& \geqq \varepsilon_{2}^{s} \rho\left(g_{0}\right)^{s} \sum_{k=1}^{\infty}\left\{\varepsilon_{1}^{s} l^{-s} \zeta(s-l+1)\right\}^{k}
\end{aligned}
$$

Hence, if $s>\delta(\hat{\Gamma})$, then $\sum_{k=1}^{\infty}\left\{\varepsilon_{1}^{s} l^{-s} \zeta(s-l+1)\right\}^{k}<\infty$. Consequently we have

$$
\begin{equation*}
\zeta(s-l+1)<\left(l / \varepsilon_{1}\right)^{s} \tag{9}
\end{equation*}
$$

for all $s>\delta(\hat{\Gamma})$. On the other hand, if s tends to l then $\zeta(s-l+1)$ tends to ∞. Hence there exists a $t_{0}(>l)$ such that $\zeta(t-l+1) \geqq\left(l / \varepsilon_{1}\right)^{t}$ for all $t, l<t \leqq t_{0}$. Therefore by (9), $\delta(\hat{\Gamma}) \geqq t_{0}>l$.
6. A discontinuous group. We give an example which shows that the lower bound l in our theorem is the best possible. The construction of the following is similar to that in [2].

Let $\left\{e_{i}\right\}_{i=1}^{n+1}$ be the standard basis of R^{n+1} and let θ be a positive number with $\theta \geqq 3$. We define Möbius transformations $P_{1}, \cdots, P_{l}(1 \leqq l \leqq n)$ and g_{0} by $P_{i}(x)=x+\theta e_{i}(1 \leqq i \leqq l)$ and $g_{0}(x)={ }^{t}\left(-x_{1}, \cdots,-x_{n}, x_{n+1}\right) /|x|^{2}$ for $x=\left(x_{1}, \cdots, x_{n+1}\right)$. Let $G(\theta)$ be the group generated by $\left\{P_{1}, \cdots, P_{l}, g_{0}\right\}$. Then, by the same argument as in [2], $G(\theta)$ is a discontinuous subgroup of $\mathrm{Möb}\left(\boldsymbol{H}^{n+1}\right)$.

For $\nu=\left(n_{1}, \cdots, n_{l}\right) \in Z^{l}$ we denote the element $P_{1}^{n_{1}} \circ \cdots \circ P_{l}^{n_{l}}$ by P_{ν}. Let

$$
\widehat{G}(\theta)=\bigcup_{k=1}^{\infty}\left\{g_{0} \circ P_{\nu_{1}} \circ g_{0} \circ \cdots \circ g_{0} \circ P_{\nu_{k}} \circ g_{0}: \nu_{1}, \cdots, \nu_{k} \in\left(\boldsymbol{Z}^{l}\right)^{*}\right\}
$$

Since $I\left(g_{0}\right)=I\left(g_{0}^{-1}\right)$ and since $P_{\nu}\left(I\left(g_{0}\right)\right) \subset E\left(g_{0}\right)$ for $\nu \in\left(\boldsymbol{Z}^{l}\right)^{*}$, we see, by the same argument as in the proof of Lemma 6, that each element $g \in \widehat{G}(\theta)$ is mutually distinct and satisfies $\alpha(g) \in I\left(g_{0}\right)$ and $g(\infty) \neq \infty$.

Since $g_{0}^{2}=\mathrm{id}$, we have

$$
G(\theta)=\left\{P_{\nu_{1}} \circ g_{0} \circ P_{\nu_{2}} \circ g_{0} \circ \cdots \circ P_{\nu_{k-1}} \circ g_{0} \circ P_{\nu_{k}}: k \geqq 2, \nu_{1}, \cdots, \nu_{k} \in \boldsymbol{Z}^{l}\right\}
$$

so that $\hat{G}(\theta) \cup\left\{g_{0}, \mathrm{id}\right\}$ is a complete system of representatives of the double coset space $G^{\prime} \backslash G(\theta) / G^{\prime}$, where $G^{\prime}=\left\{P_{\nu}: \nu \in \boldsymbol{Z}^{l}\right\}$. If $g \in \widehat{G}(\theta) \cup\left\{g_{0}\right\}$, then no element of the double coset $G^{\prime} g G^{\prime}$ fixes ∞. Hence $G_{\infty}(\theta):=\{g \in G(\theta): g(\infty)=$ ∞ \} is the same as G^{\prime}.

Let $P\left(\nu_{1}, \cdots, \nu_{i}\right)=g_{0} \circ P_{\nu_{1}} \circ g_{0} \circ \cdots \circ g_{0} \circ P_{\nu_{i}} \circ g_{0} \in \hat{G}(\theta)$. Then

$$
\begin{aligned}
\left|\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i}\right)\right)\right| & =\left|g_{0} \circ P_{-\nu_{i}}\left(\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i-1}\right)\right)\right)\right| \\
& =\left|P_{-\nu_{i}}\left(\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i-1}\right)\right)\right)\right|^{-1} \\
& =\left|\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i-1}\right)\right)-\theta \sum_{j=1}^{i} n_{j i} e_{j}\right|^{-1}
\end{aligned}
$$

for $\nu_{i}=\left(n_{1 i}, \cdots, n_{l i}\right) \in\left(\boldsymbol{Z}^{l}\right)^{*}$. Since $\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i-1}\right)\right) \in I\left(g_{0}\right)$, we have $\left|\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i-1}\right)\right)\right|<1$. Therefore $\left|\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i}\right)\right)\right| \leqq\left\{\theta\left|\sum_{j=1}^{l} n_{j i} e_{j}\right| / 2\right\}^{-1}$ by $\theta \geqq 3$ and $\left|\sum_{j=1}^{l} n_{j_{i}} e_{j}\right|>1$. Now, by Lemma 2 , $\rho\left(P\left(\nu_{1}, \cdots, \nu_{i}\right)\right)=$ $\rho\left(P\left(\nu_{1}, \cdots, \nu_{i-1}\right)\right)\left|\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i}\right)\right)\right|$ so that, for the summation over $g \in \hat{G}(\theta)$, we have

$$
\begin{aligned}
\sum\{\rho(g)\}^{s} & =\sum_{j=1}^{\infty}\left[\sum_{\nu_{1}} \cdots \sum_{\nu_{j}}\left\{\rho\left(P\left(\nu_{1}, \cdots, \nu_{j}\right)\right)\right\}^{s}\right] \\
& =\sum_{j=1}^{\infty}\left[\sum_{\nu_{1}} \cdots \sum_{\nu j}\left\{\prod_{i=1}^{j}\left|\alpha\left(P\left(\nu_{1}, \cdots, \nu_{i}\right)\right)\right|\right\}^{s}\right] \\
& \leqq \sum_{j=1}^{\infty}\left\{(\theta / 2)^{-s} \sum_{\nu}\left(\left|\sum_{i=1}^{l} n_{i} e_{i}\right|^{-s}\right)\right\}^{j}
\end{aligned}
$$

where \sum_{ν} is the summation defined in $\S 4$. Let $X(k)$ be the set in the proof of Lemma 8. Then $\left\{\sum_{i=1}^{l} n_{i} e_{i}:\left(n_{1}, \cdots, n_{l}\right) \in X(k)\right\}$ consists of lattice points in the l-dimensional Euclidean space \boldsymbol{R}^{l} satisfying $\left|n_{i}\right| \leqq k(1 \leqq i \leqq l)$ and $\left|n_{i}\right|=k$ for at least one $i \in\{1, \cdots, l\}$. Therefore $\left|\sum_{i=1}^{l} n_{i} e_{i}\right| \geqq k$ for all $\left(n_{1}, \cdots, n_{l}\right) \in X(k)$. Hence

$$
\begin{aligned}
\sum_{\nu}\left|\sum_{i=1}^{l} n_{i} e_{i}\right|^{-s} & \leqq \sum_{k=1}^{\infty} \sum_{\nu \in X(k)} k^{-s}=\sum_{k=1}^{\infty}(\# X(k)) k^{-s} \\
& \leqq \sum_{k=1}^{\infty}\left\{2 l(2 k+1)^{l-1}\right\} k^{-s} \leqq l 2^{2 l-1} \zeta(s-l+1)
\end{aligned}
$$

so that we have, for the summation \sum over $g \in \hat{G}(\theta)$,

$$
\begin{equation*}
\sum\{\rho(g)\}^{s} \leqq \sum_{j=1}^{\infty}\left\{l 2^{s+2 l-1} \theta^{-s} \zeta(s-l+1)\right\}^{j} \tag{10}
\end{equation*}
$$

Let s_{0} be an arbitrary number with $s_{0}>l$ and let $\theta_{0}(\geqq 3)$ be such a number that $\theta_{0}^{s_{0}}>l 2^{s_{0}+2 l-1} \zeta\left(s_{0}-l+1\right)$. Then the right hand side of (10) converges for $s=s_{0}$.

Let $h_{0}(x)=g_{0}\left(x+e_{1}\right)$. Applying Lemma 3 to $g \in G\left(\theta_{0}\right) \backslash G_{\infty}\left(\theta_{0}\right)$ and h_{0}, we have $\rho\left(h_{0} \circ g \circ h_{0}^{-1}\right)=\rho(g)\left\{\left|g(\infty)+e_{1}\right|\left|g^{-1}\left(-e_{1}\right)+e_{1}\right|\right\}^{-1}$. Hence for an element $P_{\mu} \circ g \circ P_{\nu}$ of the double coset $G_{\infty}\left(\theta_{0}\right) g G_{\infty}\left(\theta_{0}\right)\left(g \in \hat{G}\left(\theta_{0}\right) \cup\left\{g_{0}\right\}\right)$,

$$
\rho\left(h_{0} \circ P_{\mu} \circ g \circ P_{\nu} \circ h_{0}^{-1}\right)=\rho(g)\left\{\left|g(\infty)+P_{\mu}\left(e_{1}\right)\right|\left|g^{-1} \circ P_{-\mu}\left(-e_{1}\right)+P_{-\nu}\left(e_{1}\right)\right|\right\}^{-1},
$$

where we used $\rho\left(P_{\mu} \circ g \circ P_{\nu}\right)=\rho(g)$. Since $g \in \hat{G}\left(\theta_{0}\right) \cup\left\{g_{0}\right\}$, we see $g(\infty) \in$ $I\left(g_{0}^{-1}\right)=I\left(g_{0}\right)$ and $g^{-1} \circ P_{-\mu}\left(-e_{1}\right) \in I\left(g_{0}\right)$. Furthermore, since $\theta_{0} \geqq 3$, we have $\left|P_{\nu}\left(e_{1}\right)\right| \geqq 2$ for all $\nu \in\left(\boldsymbol{Z}^{l}\right)^{*}$. Hence $\left|P_{\mu}\left(e_{1}\right)+g(\infty)\right|\left|P_{-\nu}\left(e_{1}\right)+g^{-1} \circ P_{-\mu}\left(-e_{1}\right)\right| \geqq$ $\left\{\left|P_{\mu}\left(e_{1}\right)\right| / 2\right\}\left\{\left|P_{-\nu}\left(e_{1}\right)\right| / 2\right\}$ so that $\rho\left(h_{0} \circ P_{\mu} \circ g \circ P_{\nu} \circ h_{0}^{-1}\right) \leqq 4 \rho(g)\left\{\left|P_{\mu}\left(e_{1}\right)\right|\left|P_{-\nu}\left(e_{1}\right)\right|\right\}^{-1}$ for all $\mu, \nu \in\left(\boldsymbol{Z}^{l}\right)^{*}$. Because of $s_{0}>l$ we see $\sum_{\nu}\left|P_{\nu}\left(e_{1}\right)\right|^{-s_{0}}<\infty$. Therefore we have the following for some constant c_{5} :

$$
\begin{align*}
& \sum \sum_{\mu} \sum_{\nu}\left\{\rho\left(h_{0} \circ P_{\mu} \circ g \circ P_{\nu} \circ h_{0}^{-1}\right)\right\}^{s_{0}}+\sum_{\mu} \sum_{\nu}\left\{\rho\left(h_{0} \circ P_{\mu} \circ g_{0} \circ P_{\nu} \circ h_{0}^{-1}\right)\right\}^{s_{0}} \tag{11}\\
& \leqq c_{5}\left(\sum\{\rho(g)\}^{s_{0}}+\left\{\rho\left(g_{0}\right)\right\}^{s_{0}}\right),
\end{align*}
$$

where \sum means the summation over $g \in \widehat{G}\left(\theta_{0}\right)$. On the other hand, by Lemma 2 and (1), $\rho\left(h_{0} \circ P_{\nu} \circ h_{0}^{-1}\right)=\left|\left(h_{0}^{-1}\right)^{\prime}\left(\alpha\left(h_{0} \circ P_{\nu} \circ h_{0}^{-1}\right)\right)\right|^{-1 / 2}=\mid \alpha\left(h_{0} \circ P_{\nu} \circ h_{0}^{-1}\right)-$ $\alpha\left(h_{0}^{-1}\right)\left|=\left|P_{-\nu}(o)\right|^{-1}\right.$ so that

$$
\begin{equation*}
\sum_{\nu}\left\{\rho\left(h_{0} \circ P_{\nu} \circ h_{0}^{-1}\right)\right\}^{s_{0}}=\sum_{\nu}\left|P_{\nu}(o)\right|^{-s_{0}}<\infty . \tag{12}
\end{equation*}
$$

Since $\hat{G}\left(\theta_{0}\right) \cup\left\{g_{0}, \mathrm{id}\right\}$ is a complete system of representatives for the double coset space $G_{\infty}\left(\theta_{0}\right) \backslash G\left(\theta_{0}\right) / G_{\infty}\left(\theta_{0}\right)$ and since $G_{\infty}\left(\theta_{0}\right)=\left\{P_{\nu}: \nu \in \boldsymbol{Z}^{l}\right\}$, the summation $\sum\left\{\rho\left(h_{0} \circ g \circ h_{0}^{-1}\right)\right\}^{s_{0}}$ over $g \in G\left(\theta_{0}\right) \backslash\{\mathrm{id}\}$ is equal to the sum on the left hand sides of (11) and (12). Hence it converges by the inequality (10).
7. Proof of the second half of the Theorem. We set $G_{0}=h_{0}$ 。 $G\left(\theta_{0}\right) \circ h_{0}^{-1} \subset \operatorname{Möb}\left(\boldsymbol{H}^{n+1}\right)$. Let τ be a Möbius transformation with $\tau\left(\boldsymbol{B}^{n+1}\right)=$ \boldsymbol{H}^{n+1} and $\tau(\infty)=-e_{n+1}$, and let $\Gamma_{0}=\tau^{-1} \circ G_{0} \circ \tau$. Then Γ_{0} is a discontinuous subgroup of $\operatorname{Möb}\left(\boldsymbol{B}^{n+1}\right)$ which satisfies the hypothesis in our Theorem for $\xi_{0}=\tau^{-1} \circ h_{0}(\infty)$. Now, as in the proof of Lemma 9, $(1-|\gamma(o)|)^{1 / 2} \leqq$ $\rho\left(\gamma^{-1}\right) /\left|\alpha\left(\gamma^{-1}\right)\right| \leqq \rho(\gamma)$ for $\gamma \in \Gamma_{0} \backslash\{\mathrm{id}\}$.

Let $g \in G\left(\theta_{0}\right)$. Then g is written as $g=P_{\mu} \circ g_{1} \circ P_{\nu}$ for some $\mu, \nu \in Z^{l}$ and $g_{1} \in \widehat{G}\left(\theta_{0}\right) \cup\left\{g_{0}, \mathrm{id}\right\}$ so that each element of $G\left(\theta_{0}\right) \backslash\{\mathrm{id}\}$ does not fix $-e_{1}$ and $-e_{1} \pm e_{n+1}$.

Since $-e_{1}$ and $-e_{1}-e_{n+1}$ are not fixed by $g \in G\left(\theta_{0}\right) \backslash\{\mathrm{id}\}$, each element, different from the identity, of G_{0} and Γ_{0} does not fix ∞. Hence Lemma 3 gives $\rho(\gamma)=\rho(g)|\alpha(\gamma)-\alpha(\tau)| /\left|\alpha\left(\tau^{-1}\right)-\alpha\left(g^{-1}\right)\right|$ for $\gamma \in \Gamma_{0} \backslash\{$ id $\}$ and $g=$ $\tau \circ \gamma \circ \tau^{-1} \in G_{0} \backslash\{\mathrm{id}\}$. Since $\alpha\left(g^{-1}\right)=g(\infty) \in \partial H^{n+1}$ and since $\alpha\left(\tau^{-1}\right)=\tau(\infty)=$ $-e_{n+1}$ we have $\left|\alpha\left(\tau^{-1}\right)-\alpha\left(g^{-1}\right)\right| \geqq 1$. Therefore $\rho(\gamma) \leqq \rho(g)\{|\alpha(\gamma)|+1\}$.

By the discontinuity of $G\left(\theta_{0}\right)$ and the fact $g\left(-e_{1}+e_{n+1}\right) \neq-e_{1}+e_{n+1}$ for $g \in G\left(\theta_{0}\right) \backslash\{\mathrm{id}\}$, there exists a constant $c_{6}>0$ such that $\mid g\left(-e_{1}+e_{n+1}\right)-$ $\left(-e_{1}+e_{n+1}\right) \mid \geqq c_{6}$ for all $g \in G\left(\theta_{0}\right) \backslash\{i d\}$. Therefore $\mid g\left(-e_{1}-e_{n+1}\right)-\left(-e_{1}-\right.$ $\left.e_{n+1}\right) \mid \geqq c_{6}$, since the left hand side is the same as $\left|g\left(-e_{1}+e_{n+1}\right)-\left(-e_{1}+e_{n+1}\right)\right|$ by Lemma 1. Furthermore, $\tau^{-1} \circ h_{0}\left(-e_{1}-e_{n+1}\right)=\tau^{-1}\left(-e_{n+1}\right)=\infty$ so that we have $\left|\tau^{-1} \circ h_{0}\left(g\left(-e_{1}-e_{n+1}\right)\right)\right| \leqq c_{7}$ for some constant c_{7}. Hence $|\alpha(\gamma)|=$ $\left|\tau^{-1} \circ h_{0}\left(g\left(-e_{1}-e_{n+1}\right)\right)\right| \leqq c_{7}$ for $\gamma=\tau^{-1} \circ h_{0} \circ g^{-1} \circ h_{0}^{-1} \circ \tau \in \Gamma_{0} \backslash\{\mathrm{id}\}$.

Thus $(1-|\gamma(o)|)^{1 / 2} \leqq \rho(\gamma) \leqq \rho(g)\{|\alpha(\gamma)|+1\} \leqq \rho(g)\left(c_{7}+1\right)$ so that

$$
\sum_{\gamma}\left(1-|\gamma(o)|^{s / 2} \leqq\left(1+c_{7}\right)^{s} \sum_{g}\{\rho(g)\}^{8}\right.
$$

where γ and g run over $\Gamma_{0} \backslash\{\mathrm{id}\}$ and $G_{0} \backslash\{\mathrm{id}\}$, respectively. As proved in $\S 6$, the sum $\sum\{\rho(g)\}^{8_{0}}$ over $g \in G_{0} \backslash\{\mathrm{id}\}$ converges so that the left hand side of the above inequality is finite for $s=s_{0}$. This implies $\delta\left(\Gamma_{0}\right) \leqq s_{0}$ and we have the second half of our Theorem.

References

[1] L. V. Ahlfors, Möbius transformations in several dimensions, University of Minnesota Lecture Notes, Minnesota, 1981.
[2] A.f. Beardon, The exponent of convergence of Poincaré series, Proc. London Math.

Soc. 18 (1968), 461-483.
[3] P. Tukia, The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984), 127-140.
Department of Mathematics
Faculty of Science
Yamagata University
Yamagata, 990
Japan

