COMMUTATORS ON THE POTENTIAL-THEORETIC ENERGY SPACES

Ronald R. Coifman and Takafumi Murai

1. Let $L^{1}\left(d x /\left(1+x^{2}\right)\right)$ be the L^{1} space of functions on the real line \boldsymbol{R} with respect to the measure $d x /\left(1+x^{2}\right)$. Let C_{0}^{∞} be the totality of infinitely differentiable functions on \boldsymbol{R} with compact support. For $0<$ $\alpha<1$, the energy space E_{α} with respect to the α-Riesz kernel $|x|^{\alpha-1}$ is the Banach space of functions on \boldsymbol{R} obtained as the completion of C_{0}^{∞} with respect to norm

$$
\|f\|_{\alpha}=\left\{\int_{-\infty}^{\infty}|\xi|^{\alpha}|\hat{f}(\xi)|^{2} d \xi\right\}^{1 / 2}
$$

where \hat{f} is the Fourier transform of f [5, p. 352]. The Hilbert transform H is defined by

$$
H f(x)=\frac{1}{\pi} \mathrm{p} \cdot \mathrm{v} \cdot \int_{-\infty}^{\infty} \frac{f(y)}{y-x} d y .
$$

For $f \in L^{1}\left(d x /\left(1+x^{2}\right)\right),[f, H]$ is an operator defined by

$$
[f, H] g(x)=H(f g)(x)-f(x) H g(x)\left(=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(y)-f(x)}{y-x} g(y) d y\right) .
$$

In the theory of singular integrals, this operator plays an important role [1]. In this note, we shall characterize the boundedness of $[f, H]$ as an operator from E_{α} to itself in terms of the BMO space BMO_{α} with respect to E_{α}. We say that a non-negative measure $d \mu(x, y)$ in the upper half plane $\boldsymbol{C}_{+}=\{(x, y) ; x \in \boldsymbol{R}, y>0\}$ is an α-Carleson measure if there exists a constant B such that, for any open set $O \subset \boldsymbol{R}$ with $\operatorname{Cap}_{\alpha}(O)<\infty$,

$$
\iint_{\hat{o}} d \mu(x, y) \leqq B \operatorname{Cap}_{\alpha}(O),
$$

where $\hat{O}=\cup\{I \times(0,|I|) ; I$ component of $O\}(|I|$ is the length of $I)$ and $\mathrm{Cap}_{\alpha}(\cdot)$ is the capacity with respect to the α-Riesz kernel [5, p. 131]. The minimum of such constants is denoted by $\|d \mu\|_{\|_{\mathrm{crr}, \alpha}}$. Let BMO_{α} denote the Banach space of functions $f \in L^{1}\left(d x /\left(1+x^{2}\right)\right)$, modulo constants, with norm

$$
\|f\|_{\text {вмо }_{\alpha}}=\left\||\nabla f(x, y)|^{2} y^{1-\alpha}\right\|_{\text {Car }, \alpha}^{1 / 2},
$$

where $f(x, y)$ is the Poisson extension of f to C_{+}and $|\nabla f|^{2}=|\partial f / \partial x|^{2}+$ $|\partial f / \partial y|^{2}$. We show:

Theorem. An operator $[f, H]$ is bounded from E_{α} to itself if and only if $f \in \mathrm{BMO}_{\alpha}$.

The dual space $E_{-\alpha}$ of E_{α} is the Banach space of distributions on \boldsymbol{R} obtained as the completion of C_{0}^{∞} with respect to norm

$$
\|f\|_{-\alpha}=\left\{\int_{-\infty}^{\infty}|\xi|^{-\alpha}|\hat{f}(\xi)|^{2} d \xi\right\}^{1 / 2} .
$$

For $f \in L^{1}\left(d x /\left(1+x^{2}\right)\right)$, we put

$$
\|f\|_{H_{\alpha}^{1}}=\inf \sum_{k=1}^{\infty}\left\|g_{k}+i \varepsilon_{k} H g_{k}\right\|_{\alpha}\left\|h_{k}+i \varepsilon_{k} H h_{k}\right\|_{-\alpha},
$$

where the infimum is taken over all sequences $\left\{\left(g_{k}, h_{k}, \varepsilon_{k}\right)\right\}_{k=1}^{\infty}$ of triples such that

$$
f=\sum_{k=1}^{\infty}\left(g_{k}+i \varepsilon_{k} H g_{k}\right)\left(h_{k}+i \varepsilon_{k} H h_{k}\right) \quad\left(g_{k}, h_{k} \in C_{0}^{\infty}, \varepsilon_{k} \in\{-1,1\}\right) .
$$

Let H_{α}^{1} be the Banach space of distributions with respect to norm $\|\cdot\|_{H_{\alpha}^{1}}$. Our theorem shows that the dual space of H_{α}^{1} is BMO_{α}. This corresponds to Fefferman's duality theorem [2, p. 145]. Hence our theorem suggests that BMO_{α} is useful in studying singular integrals from E_{α} to itself. The authors express their thanks to Professors Y. Meyer and S. Semmes for some comments about commutators.
2. Throughout this note, we use C for various absolute constants and for various constants depending only on α. For $f \in L^{1}\left(d x /\left(1+x^{2}\right)\right)$, we write simply by $f(x, y)$ its Poisson extension to \boldsymbol{C}_{+}. Let $\mathscr{A} f$ denote the non-centered maximal function of $f[4, \mathrm{p} .6]$. The "if" part is immediately deduced from the following known inequality.

Lemma 1 ([3]). $\int_{0}^{\infty} \operatorname{Cap}_{\alpha}(x ; \mathscr{M} f(x)>\lambda) \lambda d \lambda \leqq C\|f\|_{\alpha}^{2} \quad\left(f \in E_{\alpha}\right)$.
Let $f \in \mathrm{BMO}_{\alpha}$. Without loss of generality, we may assume that f is real-valued. For real-valued functions $u, v \in C_{0}^{\infty}$, we have

$$
([f, H] u, v)=(H(f u)-f H u, v)=-(f, H u \cdot v+u H v),
$$

where (\cdot, \cdot) is the inner product (with respect to $d x$). Put $U=u-i H u$ and $V=v-i H v$. Then $\|U\|_{\alpha} \leqq 2\|u\|_{\alpha},\|V\|_{-\alpha} \leqq 2\|v\|_{-\alpha}$, and $U(x, y)$, $V(x, y)$ are analytic in C_{+}. Since

$$
\left\{\iint_{c_{+}}|V(x, y)|^{2} y^{-1+\alpha} d x d y\right\}^{1 / 2}=C\|V\|_{-\alpha} \leqq C\|v\|_{-\alpha}
$$

we have

$$
\begin{aligned}
& |([f, H] u, v)|=|\operatorname{Im}(f, \overline{U V})| \leqq|(f, \overline{U V})| \\
& \quad=C\left|\iint_{c_{+}} \frac{\partial f}{\partial x}(x, y) U(x, y) V(x, y) d x d y\right| \\
& \quad \leqq C\left\{\iint_{c_{+}}|\nabla f(x, y)|^{2}|U(x, y)|^{2} y^{1-\alpha} d x d y\right\}^{1 / 2}\left\{\iint_{c_{+}}|V(x, y)|^{2} y^{-1+\alpha} d x d y\right\}^{1 / 2} \\
& \quad \leqq C\|v\|_{-\alpha}\left\{\iint_{c_{+}}|\nabla f(x, y)|^{2}|U(x, y)|^{2} y^{1-\alpha} d x d y\right\}^{1 / 2} .
\end{aligned}
$$

Let $O_{\lambda}=\{x ; \mathscr{M} U(x)>\lambda\}, O_{\lambda}^{\prime}=\{(x, y) ;|U(x, y)|>\lambda\}(\lambda>0)$. Then $O_{\lambda}^{\prime} \subset \hat{O}_{\eta \lambda}$ ($\lambda>0$) for some absolute constant η [4, p. 85]. Lemma 1 gives that

$$
\begin{aligned}
& \iint_{c_{+}}|\nabla f(x, y)|^{2}|U(x, y)|^{2} y^{1-\alpha} d x d y=C \int_{0}^{\infty}\left\{\iint_{o_{\lambda}^{\prime}}|\nabla f(x, y)|^{2} y^{1-\alpha} d x d y\right\} \lambda d \lambda \\
& \quad \leqq C \int_{0}^{\infty}\left\{\iint_{\hat{o}_{\eta_{\lambda}}}|\nabla f(x, y)|^{2} y^{1-\alpha} d x d y\right\} \lambda d \lambda \leqq C\|f\|_{\mathrm{BMO}_{\alpha}}^{2} \int_{0}^{\infty} \operatorname{Cap}_{\alpha}\left(O_{\eta_{\lambda} \lambda}\right) \lambda d \lambda \\
& \quad \leqq C\|f\|_{\mathrm{BMO}_{\alpha}}^{2}\|U\|_{\alpha}^{2} \leqq C\|f\|_{\text {Bल् }_{\alpha}}^{2}\|u\|_{\alpha}^{2},
\end{aligned}
$$

which shows that

$$
|([f, H] u, v)| \leqq C\|f\|_{\text {вмо }_{\alpha}}\|u\|_{\alpha}\|v\|_{-\alpha} .
$$

Thus $\|[f, H]\|_{\alpha, \alpha} \leqq C\|f\|_{\text {вмо }_{\alpha}}$, where $\|[f, H]\|_{\alpha, \alpha}$ is the norm of $[f, H]$ from E_{α} to itself. This completes the proof of the "if" part.
3. The main part of this note is the proof of the "only if" part. We see easily the following lemma.

Lemma 2. For $f \in L^{1}\left(d x /\left(1+x^{2}\right)\right), s>0$, we put $f_{s}(x)=f(x, s)$ and $F_{s}=f_{s}-i H f_{s}$. Then

$$
\frac{1}{2}\left\|\left[F_{s}, H\right]\right\|_{\alpha, \alpha} \leqq\left\|\left[f_{s}, H\right]\right\|_{\alpha, \alpha} \leqq\|[f, H]\|_{\alpha, \alpha}
$$

Let BMO denote the Banach space of functions f, modulo constants, with norm

$$
\|f\|_{\text {вмо }}=\sup \frac{1}{|I|} \int_{I}\left|f(x)-(f)_{I}\right| d x,
$$

where $(f)_{I}$ is the mean of f over I and the supremum is taken over all intervals I. We show:

Lemma 3. $\|f\|_{\text {вмо }} \leqq C\|[f, H]\|_{\alpha, \alpha}$.
Proof. For an interval I, χ denotes its characteristic function and $\lambda(x)=\left(x-x_{0}\right) \chi(x)$, where x_{0} is the midpoint of I. We have

$$
\begin{aligned}
& |I| \int_{I}\left|f(x)-(f)_{I}\right| d x=\int_{I}\left|\int_{I}(f(x)-f(y)) d y\right| d x \\
& \quad=\int_{I}\left|\int_{I} \frac{f(y)-f(x)}{y-x}\left\{\left(y-x_{0}\right)-\left(x-x_{0}\right)\right\} d y\right| d x \\
& \quad=\pi \int_{-\infty}^{\infty}|\chi(x)[f, H] \lambda(x)-\lambda(x)[f, H] \chi(x)| d x
\end{aligned}
$$

Note that $\|\chi\|_{\alpha}=C|I|^{(1-\alpha) / 2}$ and $\|\lambda\|_{\alpha}=C|I|^{(3-\alpha) / 2}$. Let $g=|[f, H] \chi|$. Then Parseval's equality shows that

$$
\begin{aligned}
\|g\|_{\alpha} & =C\left\{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|g(x)-g(y)|^{2}}{|x-y|^{1+\alpha}} d x d y\right\}^{1 / 2} \\
& \leqq C\left\{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|[f, H] \chi(x)-[f, H] \chi(y)|^{2}}{|x-y|^{1+\alpha}} d x d y\right\}^{1 / 2} \\
& =C\|[f, H] \chi\|_{\alpha} \leqq C\|[f, H]\|_{\alpha, \alpha}\|\chi\|_{\alpha} \leqq C\|[f, H]\|_{\alpha, \alpha}|I|^{(1-\alpha) / 2}
\end{aligned}
$$

and hence

$$
\begin{gathered}
\int_{-\infty}^{\infty} \lambda(x) g(x) d x \leqq|I| \int_{-\infty}^{\infty} \chi(x) \overline{g(x)} d x=C|I| \int_{-\infty}^{\infty} \hat{\chi}(\xi) \overline{\hat{g}(\xi)} d \xi \\
\quad \leqq C|I|\left\{\left\{\int_{-\infty}^{\infty}|\xi|^{-\alpha}|\hat{\chi}(\xi)|^{2} d \xi\right\}^{1 / 2}\left\{\int_{-\infty}^{\infty}|\xi|^{\alpha}|\hat{g}(\xi)|^{2} d \xi\right\}^{1 / 2}\right. \\
\quad=C|I|^{1+(1+\alpha) / 2}\|g\|_{\alpha} \leqq C| |[f, H] \|_{\alpha, \alpha}|I|^{2}
\end{gathered}
$$

Let $h=|[f, H] \lambda|$. Then, in the same manner as above,

$$
\|h\|_{\alpha} \leqq C\|[f, H]\|_{\alpha, \alpha}\|\lambda\|_{\alpha} \leqq C\|[f, H]\|_{\alpha, \alpha}|I|^{(3-\alpha) / 2}
$$

and hence

$$
\int_{-\infty}^{\infty} \chi(x) h(x) d x \leqq C|I|^{(1+\alpha) / 2}\|h\|_{\alpha} \leqq C\|[f, H]\|_{\alpha, \alpha}|I|^{2}
$$

Consequently we have

$$
\frac{1}{|I|} \int_{I}\left|f(x)-(f)_{I}\right| d x \leqq C\|[f, H]\|_{\alpha, \alpha}
$$

which shows that $\|f\|_{\text {вмо }} \leqq C\|[f, H]\|_{\alpha, \alpha}$.
q.e.d.

Let $L^{2}(1-\alpha, C)$ denote the L^{2} space on the complex plane C with respect to the measure $|y|^{1-\alpha} d x d y$. The norm is denoted by $\|\cdot\|_{L^{2}(1-\alpha, c)}$. Let T^{*} be an operator defined by

$$
T^{*} u(x, y)=\sup _{s>0}\left|\iint_{|\zeta-z|>c} \frac{u(s, t)}{(\zeta-z)^{2}} d s d t\right| \quad(\zeta=s+i t, z=x+i y)
$$

The 2-dimensional (centered) maximal operator $\tilde{\mathscr{M}}$ is defined by

$$
\tilde{\mathscr{M}} u(x, y)=\sup _{\epsilon>0} \frac{1}{\pi \varepsilon^{2}} \iint_{D((x, y), \varepsilon)}|u(s, t)| d s d t
$$

where $D((x, y), \varepsilon)$ is the open disk of center (x, y) and of radius ε. It is well-known that $T^{*}, \tilde{\mathscr{M}}$ are bounded operators from $L^{2}(1-\alpha, C)$ to itself [4, pp. 21 and 56]. For $\beta \in \boldsymbol{R}$ and a function $u(x, y)$ in \boldsymbol{C}_{+}, we write

$$
\left\|\|u\|_{\beta}=\left\{\iint_{c_{+}}|u(x, y)|^{2} y^{\beta} d x d y\right\}^{1 / 2}\right.
$$

We show:
Lemma 4. Let $g(x, y)$ be a function in \boldsymbol{C}_{+}such that $\|g\|_{1+\alpha}<\infty$. Then there exists a function $h(x, y)$ in C_{+}such that

$$
\bar{\partial} h(x, y)=g(x, y) \quad\left((x, y) \in C_{+}\right), \quad\| \| h\left\|_{-1+\alpha} \leqq C\right\|\|g\| \|_{1+\alpha}
$$

where $\bar{\partial}=(\partial / \partial x+i \partial / \partial y) / 2$.
Proof. We put

$$
h(x, y)=\frac{2 i}{\pi} \iint_{c_{+}} \frac{g(s, t) t}{(\zeta-z)(\bar{\zeta}-z)} d s d t \quad(\zeta=s+i t, z=x+i y)
$$

(This form was communicated by Professor S. Semmes; in the earlier draft, the authors did not use this form.) Then $\bar{\partial} h(x, y)=g(x, y)$ $\left((x, y) \in \boldsymbol{C}_{+}\right)$. Suppose that the support of g is compact and contained in \boldsymbol{C}_{+}. Then we have easily $\||h|\|_{-1+\alpha}<\infty$. For $u \in L^{2}(1-\alpha, C)$, we have

$$
\left|\iint_{c_{+}} h(x, y) u(x, y) d x d y\right|=\left|\iint_{c_{+}} g(s, t) S u(s, t) t d s d t\right| \leqq\left||g|\left\|_{1+\alpha}| | S u \mid\right\|_{1-\alpha}\right.
$$

where

$$
S u(s, t)=\frac{2}{\pi} \iint_{c_{+}} \frac{u(x, y)}{(\zeta-z)(\bar{\zeta}-z)} d x d y \quad(\zeta=s+i t, z=x+i y)
$$

We have, for $(s, t) \in C_{+}$,

$$
\begin{aligned}
& S u(s, t)=\frac{2}{\pi} \iint_{D((s, t), t)}+\frac{2}{\pi} \iint_{C_{+}-D((s, t), t)}=L_{1}+L_{2} \\
& \left|L_{1}\right| \leqq \frac{C}{t} \iint_{D(s, t), t)} \frac{|u(x, y)|}{|\zeta-z|} d x d y \leqq C \tilde{M} u(s, t)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|L_{2}\right| \leqq & \frac{2}{\pi}\left|\iint_{c_{+-D((s, t), t)}}\left\{\frac{1}{(\zeta-z)(\bar{\zeta}-z)}-\frac{1}{(\zeta-z)^{2}}\right\} u(x, y) d x d y\right| \\
& +\frac{2}{\pi} T^{*} u(s, t) \leqq C \tilde{\mathscr{M}} u(s, t)+\frac{2}{\pi} T^{*} u(s, t) .
\end{aligned}
$$

Hence

$$
|S u(s, t)| \leqq C \tilde{\mathscr{M}} u(s, t)+\frac{2}{\pi} T^{*} u(s, t) \quad\left((s, t) \in C_{+}\right) .
$$

Consequently

$$
\begin{align*}
& \left|\iint_{c_{+}} h(x, y) u(x, y) d x d y\right| \leqq C \mid\|g\| \|_{1+\alpha}\left\{\| \tilde{\mathscr{M} u \|_{L^{2}(1-\alpha, \boldsymbol{c})}} \begin{array}{l}
\left.\quad+\left\|T^{*} u\right\|_{L^{2}(1-\alpha, \boldsymbol{c})}\right\} \leqq C \mid\|g\|\left\|_{1+\alpha}\right\| u \|_{L^{2}(1-\alpha, \boldsymbol{c})} .
\end{array} .\right. \tag{1}
\end{align*}
$$

We now choose

$$
u(x, y)= \begin{cases}\overline{h(x, y)} y^{-1+\alpha} & \left((x, y) \in \boldsymbol{C}_{+}\right) \\ 0 & \left((x, y) \in \boldsymbol{C}-\boldsymbol{C}_{+}\right)\end{cases}
$$

Since $\|u\|_{L^{2}(1-\alpha, c)}=\| \| h \mid \|_{-1+\alpha}<\infty$, (1) yields that $\||h|\|_{-1+\alpha} \leqq C| ||g| \|_{1+\alpha}$.
In the general case, we restrict g to $\{(x, y) ;|x| \leqq n, 1 / n \leqq y \leqq n\} ;$ say g_{n}. Let h_{n} be the function corresponding to g_{n}. Then

$$
\left\|\left|h_{n}\right|\right\|_{-1+\alpha} \leqq C\left|\left\|g _ { n } \left|\left\|_{1+\alpha} \leqq C \mid\right\| g\| \|_{1+\alpha}\right.\right.\right.
$$

Letting n tend to infinity, we obtain $\left\|\left\|\left\|_{-1+\alpha} \leqq C \mid\right\| g\right\|\right\|_{1+\alpha}$.
q.e.d.

Lemma 5. Let f be a differentiable function on \boldsymbol{R} satisfying $\sup \left\{|f(x)|+\left|f^{\prime}(x)\right| ; x \in \boldsymbol{R}\right\}<\infty$. We put

$$
D^{\alpha} f(x)=-i \int_{0}^{\infty} \frac{f(x+t)-f(x-t)}{t^{1+\alpha}} d t
$$

Then, for any $u \in C_{0}^{\infty}$,

$$
\left\{\iint_{C_{+}}\left|\left(D^{\alpha} f\right)(x, y)\right|^{2}|\nabla U(x, y)|^{2} y^{1+\alpha} d x d y\right\}^{1 / 2} \leqq C\|f\|_{\text {вмо }}\|u\|_{\alpha}
$$

where $U=u-i H u$.
Proof. Since

$$
\|\nabla U\|\left\|_{1-\alpha}=C\right\| U\left\|_{\alpha} \leqq C\right\| u \|_{\alpha},
$$

it is sufficient to show that

$$
\begin{equation*}
\left|\left(D^{\alpha} f\right)(x, y)\right| \leqq C\|f\|_{\text {вмо }} / y^{\alpha} \quad\left((x, y) \in \boldsymbol{C}_{+}\right) . \tag{2}
\end{equation*}
$$

Without loss of generality, we may assume that $x=0$. We have, with $I=(-y, y)$,

$$
\begin{aligned}
\left|\left(D^{\alpha} f\right)(0, y)\right| & =\frac{1}{\pi}\left|\int_{0}^{\infty} \frac{1}{t^{1+\alpha}}\left\{\int_{-\infty}^{\infty}\left(\frac{y}{(s-t)^{2}+y^{2}}-\frac{y}{(s+t)^{2}+y^{2}}\right)\left(f(s)-(f)_{I}\right) d s\right\} d t\right| \\
& \leqq \frac{1}{\pi}\left|\int_{0}^{2 y} \frac{1}{t^{1+\alpha}}\left\{\int_{-\infty}^{\infty}\right\} d t\right|+\frac{1}{\pi}\left|\int_{2 y t^{1+\alpha}}^{\infty} \frac{1}{1+}\left\{\int_{I}\right\} d t\right|+\frac{1}{\pi}\left|\int_{2 y}^{\infty} \frac{1}{t^{1+\alpha}}\left\{\int_{I^{c}}\right\} d t\right| \\
& =L_{1}+L_{2}+L_{3} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{y}{s^{2}+y^{2}}\left|f(s)-(f)_{I}\right| d s \leqq C\|f\|_{\text {вмо }} \quad([2, \text { p. 142]) } \\
& \left|L_{1}\right| \leqq C \int_{0}^{2 y} \frac{1}{t^{1+\alpha}}\left\{\frac{t}{y} \int_{-\infty}^{\infty} \frac{y}{s^{2}+y^{2}}\left|f(s)-(f)_{I}\right| d s\right\} d t \\
& \quad \leqq C \int_{0}^{2 y} \frac{1}{t^{\alpha}} d t\|f\|_{\text {вмо }} / y \leqq C\|f\|_{\text {вМо }} / y^{\alpha}
\end{aligned}
$$

We have

$$
\left|L_{2}\right| \leqq C \int_{2 y}^{\infty} \frac{1}{t^{1+\alpha}}\left\{\frac{1}{y} \int_{I}\left|f(s)-(f)_{I}\right| d s\right\} d t \leqq C\|f\|_{\text {вмо }} / y^{\alpha}
$$

It remains to estimate L_{3}. We have

$$
\begin{aligned}
\int_{2 y}^{\infty} \frac{1}{t^{1+\alpha}}\{ & \left.\int_{I^{c}} \frac{y}{(s-t)^{2}+y^{2}}\left(f(s)-(f)_{I}\right) d s\right\} d t \\
& =\int_{2 y}^{\infty} \frac{1}{1+\alpha}\left\{\int_{-\infty}^{-y}\right\} d t+\sum_{n=1}^{\infty} \int_{2^{n_{y}}}^{2^{n+1} y} \frac{1}{t^{1+\alpha}}\left\{\int_{y}^{2^{n-1} y}\right\} d t \\
& +\sum_{n=1}^{\infty} \int_{2^{n_{y}}}^{2^{n+1} y} \frac{1}{t^{1+\alpha}}\left\{\int_{2^{n-1_{y}}}^{2^{n+2_{y}}}\right\} d t+\sum_{n=1}^{\infty} \int_{2^{n_{y}}}^{2^{n+1} y} \overline{t^{1+\alpha}}\left\{\int_{2^{n+2} y}^{\infty}\right\} d t \\
& =L_{31}+L_{32}+L_{33}+L_{34} .
\end{aligned}
$$

We have easily $\left|L_{31}\right| \leqq C\|f\|_{\text {вмо }} / y^{\alpha}$. Since

$$
\begin{aligned}
&\left|(f)_{I}-(f)_{\left(y, 2^{n-1_{y}}\right)}\right| \leqq C n\|f\|_{\text {вмо }} \quad(n \geqq 2)([2, \text { p. 142]) }, \\
&\left|L_{32}\right| \leqq C \sum_{n=2}^{\infty} \int_{2^{n_{y}}}^{2^{n+1} y} \frac{1}{t^{1+\alpha}}\left\{\frac{1}{2^{n} y} \int_{y}^{2^{n-1} y}\left|f(s)-(f)_{I}\right| d s\right\} d t \\
& \leqq C \sum_{n=2}^{\infty} \int_{2^{n_{y}}}^{2^{n+1} y} \frac{1}{t^{1+\alpha}}\left\{\frac{1}{2^{n} y} \int_{y}^{2^{n-1} y}\left|f(s)-(f)_{\left(y, 2^{n-1} y\right)}\right| d s+n\|f\|_{\text {ВМО }}\right\} d t \\
& \leqq C\|f\|_{\text {вмо }} \sum_{n=2}^{\infty} n \int_{2^{n} y}^{n_{y}+1} \frac{1}{t^{1+\alpha}} d t \leqq C\|f\|_{\text {вмо }} / y^{\alpha} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\left|L_{34}\right| & \leqq C \sum_{n=1}^{\infty} \int_{2^{n} y}^{2^{n+1} y} \frac{1}{t^{1+\alpha}}\left\{\int_{2^{n+2} y}^{\infty} \frac{y}{S^{2}+y^{2}}\left|f(s)-(f)_{I}\right| d s\right\} d t \\
& \leqq C \int_{2 y}^{\infty} \frac{1}{t^{1+\alpha}} d t \int_{-\infty}^{\infty} \frac{y}{s^{2}+y^{2}}\left|f(s)-(f)_{I}\right| d s \leqq C\|f\|_{\text {вмо }} / y^{\alpha} .
\end{aligned}
$$

Since $\left|(f)_{I}-(f)_{(t-y, t+y)}\right| \leqq C n\|f\|_{\text {вмо }} \quad\left(t \in\left(2^{n} y, 2^{n+1} y\right)\right)$,

$$
\begin{aligned}
\left|L_{33}\right| & \leqq \sum_{n=1}^{\infty} \int_{2^{n} y}^{2^{n+1} y} \frac{1}{t^{1+\alpha}}\left\{\int_{2^{n-1} y}^{2_{y}^{n+2} y} \frac{y}{(s-t)^{2}+y^{2}}\left|f(s)-(f)_{(t-y, t+y)}\right| d s+C n\|f\|_{\text {ВМО }}\right\} d t \\
& \leqq \sum_{n=1}^{\infty} \int_{2^{n} y}^{2^{n+1} y} \frac{1}{t^{1+\alpha}}\left\{\int_{-\infty}^{\infty} \frac{y}{(s-t)^{2}+y^{2}}\left|f(s)-(f)_{(t-y, t+y)}\right| d s\right\} d t+C\|f\|_{\text {вМО }} / y^{\alpha} \\
& \leqq C\|f\|_{\text {вМО }}\left\{\sum_{n=1}^{\infty} \int_{2^{n} y}^{2^{n+1} y} \frac{1}{t^{1+\alpha}} d t+1 / y^{\alpha}\right\} \leqq C\|f\|_{\text {вМО }} / y^{\alpha} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left|\int_{2 y}^{\infty} \frac{1}{t^{1+\alpha}}\left\{\int_{I^{c}(s-t)^{2}+y^{2}}\left(f(s)-(f)_{I}\right) d s\right\} d t\right| \leqq C\|f\|_{\text {вмо }} / y^{\alpha} \tag{3}
\end{equation*}
$$

In the same manner, we have (3) with $(s-t)^{2}+y^{2}$ replaced by $(s+t)^{2}+y^{2}$. Thus $\left|L_{3}\right| \leqq C\|f\|_{\text {вмо }} / y^{\alpha}$. This completes the proof of (2).
q.e.d.

We now show the main lemma in this note.
Lemma 6. Let F_{s} be the function in Lemma 2. Then, for any $u \in C_{0}^{\infty}$,

$$
\left\{\iint_{c_{+}}\left|\left(D^{\alpha} F_{s}\right)(x, y)\right|^{2}|U(x, y)|^{2} y^{1-\alpha} d x d y\right\}^{1 / 2} \leqq C\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha}
$$

where $U=u-i H u$.
Proof. Let V be a function in $L^{1}\left(d x /\left(1+x^{2}\right)\right)$ such that $V(x, y)$ is analytic in \boldsymbol{C}_{+}. Parseval's equality and Lemma 2 show that

$$
\begin{align*}
& \left|\iint_{C_{+}} \overline{\left(D^{\alpha} F_{s}\right)(x, y)} U(x, y) V(x, y) y^{-1+\alpha} d x d y\right|=C\left|\left(F_{s}, U V\right)\right| \tag{4}\\
& \quad=C\left|\left(\left[F_{s}, H\right] \bar{U}, V\right)\right| \leqq C\left\|\left[F_{s}, H\right]\right\|_{\alpha, \alpha}\|\bar{U}\|_{\alpha}\|V\|_{-\alpha} \\
& \quad \leqq C\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha}\|V\|_{-\alpha} .
\end{align*}
$$

Let $g(x, y)=\left(D^{\alpha} F_{s}\right)(x, y) \overline{\partial U(x, y)}(\partial=(\partial / \partial x-i \partial / \partial y) / 2)$. Then Lemmas 2, 3 and 5 show that

$$
\|g \mid\|_{1+\alpha} \leqq C\left\|F_{s}\right\|_{\text {вмо }}\|U\|_{\alpha} \leqq C\left\|\left[F_{s}, H\right]\right\|_{\alpha, \alpha}\|u\|_{\alpha} \leqq C\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha}
$$

Let $h(x, y)$ be the function associated with $g(x, y)$ in Lemma 4. We put

$$
\begin{equation*}
V_{0}(x, y)=\left(D^{\alpha} F_{s}\right)(x, y) \overline{U(x, y)}-h(x, y) \tag{5}
\end{equation*}
$$

Then $V_{0}(x, y)$ is analytic in $\boldsymbol{C}_{+}\left(V_{0}(x, y)\right.$ is an analytic extension of a function in $L^{1}\left(d x /\left(1+x^{2}\right)\right)$, say $\left.V_{0}(x)\right)$ and

$$
\begin{aligned}
\left\|V_{0}\right\|_{-\alpha} & =C\left\|| | V_{0}\right\|_{-1+\alpha} \leqq C\left|\left\|\left(D^{\alpha} F_{s}\right) \bar{U}\right\|\left\|_{-1+\alpha}+C \mid\right\| h\| \|_{-1+\alpha}\right. \\
& \leqq C \mid\left\|\left(D^{\alpha} F_{s}\right) U\right\|\left\|_{-1+\alpha}+C\right\|[f, H]\left\|_{\alpha, \alpha}\right\| u \|_{\alpha} .
\end{aligned}
$$

Hence, by (4),

$$
\begin{aligned}
& \left\|\left\|\left(D^{\alpha} F_{s}\right) U\right\|\right\|_{-1+\alpha}^{2}=\left|\iint_{c_{+}} \overline{\left(D^{\alpha} F_{s}\right)(x, y)} U(x, y)\left\{V_{0}(x, y)+h(x, y)\right\} y^{-1+\alpha} d x d y\right| \\
& \quad \leqq C\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha}\left\|V_{0}\right\|_{-\alpha}+\| \|\left(D^{\alpha} F_{s}\right) U \mid\left\|_{-1+\alpha}\right\|\|h\| \|_{-1+\alpha} \\
& \quad \leqq C\left\{\left\|\mid\left(D^{\alpha} F_{s}\right) U\right\|\left\|_{-1+\alpha}\right\|[f, H]\left\|_{\alpha, \alpha}\right\| u\left\|_{\alpha}+\right\|[f, H]\left\|_{\alpha, \alpha}^{2}\right\| u \|_{\alpha}^{2}\right\}
\end{aligned}
$$

which shows that

$$
\left\|\left|\left(D^{\alpha} F_{s}\right) U\right|\right\|_{-1+\alpha} \leqq C\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha}
$$

q.e.d.

Lemma 7. Let F_{s}, u and U be the same as in Lemma 6. We put

$$
U_{F_{s}}(x, y)=\int_{0}^{\infty}(U(x, y+t)-U(x, y))\left(D^{\alpha} F_{s}\right)(x, y+t) t^{-2+\alpha} d t
$$

Then

$$
\mid\left\|U_{F_{s}}\right\|\left\|_{1-\alpha} \leqq C\right\|[f, H]\left\|_{\alpha, \alpha}\right\| u \|_{\alpha} .
$$

Proof. We may assume that $\|[f, H]\|_{\alpha, \alpha}=1$. Inequality (2) combined with Lemmas 2 and 3 shows that

$$
\begin{aligned}
& \left|U_{F_{s}}(x, y)\right|^{2} \leqq C\left\{\int_{0}^{\infty} \frac{|U(x, y+t)-U(x, y)|}{t^{2-\alpha}(y+t)^{\alpha}} d t\right\}^{2} \\
& \quad=C\left\{\int_{0}^{y}+\int_{y}^{\infty}\right\}^{2} \leqq C\left\{y^{-\alpha} \int_{0}^{y}|U(x, y+t)-U(x, y)|^{2} t^{-3+\alpha} d t\right. \\
& \left.\quad+y^{-1} \int_{y}^{\infty}|U(x, y+t)-U(x, y)|^{2} t^{-2} d t\right\}
\end{aligned}
$$

and hence

$$
\begin{align*}
& \left\|\left\|U_{F_{s}}\right\|_{1-\alpha}^{2} \leqq C \iint_{C_{+}}\left\{\int_{0}^{\infty}|U(x, y+t)-U(x, y)|^{2} t^{-3+\alpha} d t\right\} y^{1-2 \alpha} d x d y\right. \\
& \quad+C \iint_{c_{+}}\left\{\int_{0}^{\infty}|U(x, y+t)-U(x, y)|^{2} t^{-2} d t\right\} y^{-\alpha} d x d y \\
& =C \int_{0}^{\infty}|\hat{U}(\xi)|^{2}\left(\int_{0}^{\infty} e^{-2 \xi y} y^{1-2 \alpha} d y\right)\left(\int_{0}^{\infty}\left|e^{-\xi t}-1\right|^{2} t^{-3+\alpha} d t\right) d \xi \\
& \quad+C \int_{0}^{\infty}|\hat{U}(\xi)|^{2}\left(\int_{0}^{\infty} e^{-2 \xi y} y^{-\alpha} d y\right)\left(\int_{0}^{\infty}\left|e^{-\xi t}-1\right|^{2} t^{-2} d t\right) d \xi \\
& =C \int_{0}^{\infty} \xi^{\alpha}|\hat{U}(\xi)|^{2} d \xi=C\|U\|_{\alpha}^{2} \leqq C\|u\|_{\alpha}^{2}
\end{align*}
$$

4. We now show the "only if" part. Let $f \in L^{1}\left(d x /\left(1+x^{2}\right)\right)$ satisfy $\|[f, H]\|_{\alpha, \alpha}<\infty$. We may assume that f is real-valued. Let F_{s}, u, U, V_{0} be the functions in Lemma 6 and (5). Then

$$
L=\left|\iint_{c_{+}} \overline{\left(\frac{\partial}{\partial x} F_{s}\right)(x, y)} U(x, y) V_{0}(x, y) d x d y\right|
$$

$$
\begin{aligned}
& =C\left|\left(F_{s}, U V_{o}\right)\right|=C\left|\left(\left[F_{s}, H\right] \bar{U}, V_{0}\right)\right| \\
& \leqq C\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha}\left\|V_{0}\right\|_{-\alpha} \\
& \leqq C\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha}\left\{\| \|\left(D^{\alpha} F_{s}\right) U \mid\left\|_{-1+\alpha}+\right\|[f, H]\left\|_{\alpha, \alpha}\right\| u \|_{\alpha}\right\} \\
& \leqq C\|[f, H]\|_{\alpha, \alpha}^{2}\|u\|_{\alpha}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
L \geqq & \left|\iint_{C_{+}} \overline{\left(\frac{\partial}{\partial x} F_{s}\right)(x, y)} U(x, y)\left(D^{\alpha} F_{s}^{\prime}\right)(x, y) \overline{U(x, y)} d x d y\right| \\
& \quad-\left\|\left(\frac{\partial}{\partial x} F_{s}\right) U\right\|\left\|_{1-\alpha}\right\|\|h\|_{-1+\alpha} \\
\geqq & \left|\iint_{C_{+}} \overline{\left(\frac{\partial}{\partial x} F_{s}\right)(x, y) U(x, y)} U(x, y)\left(D^{\alpha} F_{s}\right)(x, y) d x d y\right| \\
& -C\left\|\left(\frac{\partial}{\partial x} F_{s}\right) U\right\|_{1-\alpha}\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha} .
\end{aligned}
$$

We put $G(x, y)=U(x, y)\left(D^{\alpha} F_{s}\right)(x, y)$ and

$$
\widetilde{D}^{1-\alpha} G(x, y)=-\int_{0}^{\infty}(G(x, y+t)-G(x, y)) t^{-2+\alpha} d t
$$

Since

$$
\begin{gathered}
\widetilde{D}^{1-\alpha} G(x, y)=-U(x, y) \int_{0}^{\infty}\left(\left(D^{\alpha} F_{s}\right)(x, y+t)-\left(D^{\alpha} F_{s}\right)(x, y)\right) t^{-2+\alpha} d t \\
\quad-U_{F_{s}}(x, y)=C U(x, y)\left(\frac{\partial}{\partial x} F_{s}\right)(x, y)-U_{F_{s}}(x, y),
\end{gathered}
$$

we have, by Lemma 7,

$$
\begin{aligned}
& \mid \iint_{C_{+}} \left.\left(\frac{\partial}{\partial x} F_{s}\right)(x, y) U(x, y) U(x, y)\left(D^{\alpha} F_{s}\right)(x, y) d x d y \right\rvert\, \\
&=\left|\iint_{C_{+}} \overline{\left(\frac{\partial}{\partial x} F_{s}\right)(x, y) U(x, y)} \widetilde{D}^{1-\alpha} G(x, y) y^{1-\alpha} d x d y\right| \\
&=\left.\left|C \iint_{C_{+}}\right|\left(\frac{\partial}{\partial x} F_{s}\right)(x, y)\right|^{2}|U(x, y)|^{2} y^{1-\alpha} d x d y \\
& \left.\quad-\iint_{C_{+}} \overline{\left(\frac{\partial}{\partial x} F_{s}\right)(x, y) U(x, y)} U_{F_{s}}(x, y) y^{1-\alpha} d x d y \right\rvert\, \\
& \geqq \geqq\left|\left\|\left(\frac{\partial}{\partial x} F_{s}\right) U\right\|_{1-\alpha}^{2}-\left\|\left|\left(\frac{\partial}{\partial x} F_{s}\right) U\| \|_{1-\alpha}\left\|\mid U_{F_{s}}\right\| \|_{1-\alpha}\right.\right.\right. \\
& \quad \geqq C\left|\left\|\left|\nabla F_{s}\right| U\right\|_{1-\alpha}^{2}-C\right|\left\|\left|\nabla F_{s}\right| U \mid\right\|_{1-\alpha}\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha} .
\end{aligned}
$$

Thus

$$
\left\|\left\|\left|\nabla F_{s}\right| U\right\|\right\|_{1-\alpha}^{2} \leqq C\left|\left\|\left|\nabla F_{s}\right| U\right\|_{1-\alpha}\|[f, H]\|_{\alpha, \alpha}\|u\|_{\alpha}+C\|[f, H]\|_{\alpha, \alpha}^{2}\|u\|_{\alpha}^{2},\right.
$$ which gives that

$$
\begin{equation*}
\iint_{C_{+}}\left|\nabla F_{s}(x, y)\right|^{2}|U(x, y)|^{2} y^{1-\alpha} d x d y \leqq C\|[f, H]\|_{\alpha, \alpha}^{2}\|u\|_{\alpha}^{2} \quad\left(u \in C_{0}^{\infty}\right) . \tag{6}
\end{equation*}
$$

The standard argument shows that (6) holds for any $u \in E_{\alpha}$.
Let O be an open set in \boldsymbol{R} with $\operatorname{Cap}_{\alpha}(O)<\infty$. Then there exists a non-negative function $u_{o} \in E_{\alpha}$ such that $\left\|u_{o}\right\|_{\alpha}^{2}=\operatorname{Cap}_{\alpha}(O)$ and $u_{o}(x) \geqq C$ on $O[5, \mathrm{p} .138]$. Let $U_{o}=u_{o}-i H u_{o}$. Then $\left|U_{o}(x, y)\right| \geqq C$ on \hat{O}. Hence (6) shows that

$$
\begin{aligned}
& \iint_{\hat{o}}\left|\nabla F_{s}(x, y)\right|^{2} y^{1-\alpha} d x d y \leqq C\left|\left\|\left|\nabla F_{s}\right| U_{o}\right\|_{1-\alpha}^{2}\right. \\
& \quad \leqq C| |[f, H]\left\|_{\alpha, \alpha}^{2}\right\| u_{o}\left\|_{\alpha}^{2}=C\right\|[f, H] \|_{\alpha, \alpha}^{2} \operatorname{Cap}_{\alpha}(O) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \iint_{\hat{o}}|\nabla f(x, y+s)|^{2} y^{1-\alpha} d x d y=\iint_{\hat{o}}\left|\nabla f_{s}(x, y)\right|^{2} y^{1-\alpha} d x d y \\
& \quad \leqq \iint_{\hat{o}}\left|\nabla F_{s}(x, y)\right|^{2} y^{1-\alpha} d x d y \leqq C\|[f, H]\|_{\alpha, \alpha}^{2} \operatorname{Cap}_{\alpha}(O) .
\end{aligned}
$$

Letting s tend to 0 ,

$$
\iint_{\hat{o}}|\nabla f(x, y)|^{2} y^{1-\alpha} d x d y \leqq C\|[f, H]\|_{\alpha, \alpha}^{2} \operatorname{Cap}_{\alpha}(O) .
$$

Since O is arbitrary, we have $\|f\|_{\text {یо }_{\alpha}} \leqq C\|[f, H]\|_{\alpha, \alpha}$. This completes the proof of the "only if" part.

References

[1] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-625.
[2] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[3] K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102.
[4] J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math., 994, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
[5] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1972.
[6] D. A. Stegenga, Multipliers of the Dirichlet space, Illinois J. of Math. 24 (1980), 113-119.
Department of Mathematics and Department of Mathematics

Yale University
New Haven, CT 06520
USA

Faculty of Science
Nagoya University Chikusa-ku, Nagoya, 464 Japan

